Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We...

22
Copyright © 2005 Creare Incorporated An unpublished work.  All rights reserved. MTG-xx-xx-xxxx / #### - 1 Deployed Magnetic Shielding for Deployed Magnetic Shielding for Long-Duration Spaceflight Long-Duration Spaceflight Darin Knaus, Ph.D. Darin Knaus, Ph.D. Creare Inc., Hanover, NH Creare Inc., Hanover, NH [email protected] [email protected]

Transcript of Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We...

Page 1: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2005Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 1

Deployed Magnetic Shielding forDeployed Magnetic Shielding forLong­Duration SpaceflightLong­Duration Spaceflight

Darin Knaus, Ph.D.Darin Knaus, Ph.D.Creare Inc., Hanover, NHCreare Inc., Hanover, NH

[email protected]@creare.com

Page 2: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 2

Creare Overview• Founded 1961 by a group of Dartmouth researchers• Owned by a partnership of engineers• ~100 employees• Multiple spin­off companies• Primary business areas

– Cryogenics– Biomedical– Fluid Dynamics, Heat Transfer– Advanced Manufacturing– Sensors and Controls– Software and Data Systems

Page 3: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 3

Spaceflight Research at Creare

• Bioastronautics– Urinary calcium monitoring– ISS hearing assessment– DCS risk for EVA

• Cryocoolers• Power generation• Radiation Shielding

Page 4: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 4

DISCLAIMER• This is a controversial topic• Human have never traveled beyond LEO for long 

durations• All shielding concepts are merely concepts• The validity of any approach depends on:

– Mission profile– Spacecraft architecture– Operational constraints– Acceptable risk

• NASA’s mission is moving target• For a recent discussions see

– Eugene Parker, “Shielding Space”, Scientific American, March 2006– Jay Buckey, “Next Stop Mars”, The Scientist, 19(6):20, March 2005

Page 5: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 5

Roadmap• The radiation environment in space presents 

significant risks that must be addresses in order to enable long duration space travel

• Current technology cannot solve the radiation problem for some missions

• Active shielding is a radical approach that could potentially solve the radiation problem– Radiation environment on Earth and in space– Radiation risk– Current technology: passive shielding– Active shielding approaches

Page 6: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 6

Radiation Dose Units• The SI unit for absorbed dose is the Gray (Gy)

– Purely physical unit describing energy deposition to matter– 1 Gy = 100 rad

• SI unit for dose equivalent is the Sievert (Sv)– Weighted unit used to estimate tissue damage– 1 Sv = 100 rem

• Dose Equivalent (Sv) = Q*N*Absorbed Dose (Gy)– Quality factor: Q

• Reflects the relative damage caused by different particles• Electron Q = 1, Alpha particle Q = 20

– Tissue factor: N• Reflects relative sensitivity of different tissues to radiation• Most sensitive tissues reproductive, colon, bone marrow

Page 7: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 7

Radiation on Earth

• We enjoy shielding from the Earth’s atmosphere and magnetic field– Particles originating in space muons, neutrons and electrons (low Q)

0.4 2.45.0

50.0

0

10

20

30

40

50

60

Backgroundfrom Space

TotalBackground

Chest CT RadiationWorker

Radi

atio

n Do

se (m

Sv)

Page 8: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 8

Radiation Environment in Space• Radiation Belts

– Only a concern in orbit– Solution: mission planning

• Solar Particles– High flux, high energy protons– Passive shielding effective– Solution: early warning + shelter

• Galactic Cosmic Radiation– Low flux, high energy nuclei– HZE GCR most damaging– Passive shielding ineffective– Solution: ???

Page 9: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 9

Radiation Risk for Spaceflight• Dose limits for space travel are based on risk• Primary risk considered is carcinogenesis• 3% increased lifetime cancer mortality typically used• Radiation limits for LEO, Male (35)

– 500 mSv/year, 1,000 mSv/career• Most experience is for LEO

– Earth’s magnetic field shields GCR• HZE GCR present unique risks

– Difficult to establish Q– Non­cancerous risks– Non­repairable cells: CNS

Page 10: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 10

Passive Shielding• Passive shield thickness 

typically expressed in units g/cm2

– Low molecular­weight materials more effective for GCR than high

• Typical hull thickness 1 cm Al (2.7 g/cm2)

• Significant shielding unsatisfactory for typical Mars mission profiles

– Cucinotta et al., “Managing Lunar and Mars Mission Radiation Risks”, NASA/TP­2005­213164

– Mars surface mission– Aluminum shielding

• Spallation Radiation Limits GCR Performance

– Hydrogen shielding reduces dose by ~50%

0

500

1000

1500

2000

2500

5 g/cm2 20 g/cm2

Radi

atio

n Do

se (m

Sv)

GCRSolar

Page 11: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 11

Passive Shield Analysis: CEV• Current CEV plan is for 5 m diameter capsule, based on 

Apollo capsule• At 20 g/cm2, shield mass approaches shuttle launch 

capability (~30,000 kg)• Larger spacecraft will be required for Martian missions 

• 20 g/cm2 is not adequate• Increasing thickness has 

limited effect on GCR dose

Page 12: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 12

Active Shielding• Deflect particles using electric or magnetic fields• Plasma and electrostatic approaches require large voltages 

(order kV) that make them generally impractical• Superconducting technology enables magnetic approaches• Two magnetic strategies:

– Confined– Deployed– Superconducting technology

Page 13: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 13

Confined Magnetic Shield Analysis• Field confined via torus, concentric spheres, cancellation• Equation of motion for particle in magnetic field

– F = q (v x B)

• Larmor Radius– rL (m) = 3.33 R (GV) / B (T)– Rigidity = Momentum / Charge

• Consider HZE GCR particle– 1 GeV/nucleon Fe nucleus– R = 3.65 GV– rL = 1.2 m @ B = 10 T– MRI magnet ~5 T

Page 14: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 14

Issues with Confined Approach

• Habitability issues close to large magnetic field• Interference with communications• Interference with on­board electronics• Constraints on spacecraft architecture• Quench risk

– Energy proportional to B2, order GJ for confined approach

• Alpha Magnetic Spectrometer– 0.8 T, LTSC magnet for ISS

Page 15: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 15

Page 16: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 16

Overview of Deployed Approach

• Spatial dimension is large, so that small bending radii can still miss spacecraft

• B is not constant such that Larmor analysis does not apply

• Störmer studied the polar auroras• Störmer defined characteristic dimension 

“protected” by the field of a magnetic dipole• rSt ∝ (M/R)1/2

– M = Magnetic Moment of Dipole

• For current loop, M = NIA ∝ N I rcoil2

Page 17: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 17

Störmer Analysis

6500.13 mG13 pT2200 A10,000

5,600130 mG13 µT17520 kA1,000

56,000130 G13 mT17,5002 MA100

560,000130 kG13 T1,750,000200 MA10

m (kg)BBN (turns)Ircoil (m)

• Consider 1 GeV/nucleon Fe nucleus (R = 3.65 GV)• rSt = 5 m• Assumes 120 A HTS wire (commercially available)• B value is for loop axis• Mass calculation based on HTS wire only

Page 18: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 18

Advantages of Deployed Approach

• Benefits– No spallation radiation– Rigidity cutoff can theoretically be set anywhere– Minimal energy requirement– Reasonable mass requirement for large shield

• Challenges– Storage/deployment/retraction of coil– HTS cooling– Redundancy– Structural/control issues for maneuvers, external 

disturbances (spacecraft only)

Page 19: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 19

Overcoming Challenges• Cooling

– HTS temperatures currently ~70 K– Selective emitter coatings have been proposed

• Orientation dependent– Active cooling strategies

• Inflatable structures

• Deployment– NASA Tethered Satellite System– 250 m, then jammed– Shield stored on spool for launch– Deployment in LEO– B induces hoop stress to aid deployment

Page 20: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 20

Solar Magnetic Sails• Zubrin primary champion• Interaction of solar wind and magnetic field 

imparts acceleration on spacecraft• Acceleration is very small (order mm/s2) but 

is continuous– 10 mm/s2 over 6 days results in final velocity of 

18,000 km/hr (5g rocket over 100 sec)• Cosmos 1 (non­magnetic)

– Private launch 2005– Russian submarine!– Launch failure

Page 21: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 21

Lunar Surface Applications

• GCR dose for lunar surface 50% of deep space• In a habitat, astronauts can be well­protected by 

creating large­thickness regolith barriers• During EVA/surface exploration, astronauts will be 

exposed• Applications include 

large­area shielding and shielding rover vehicles

Page 22: Deployed Magnetic Shielding for LongDuration Spaceflightsshepherd/research/Shielding/... · • We enjoy shielding from the Earth’s atmosphere and magnetic field – Particles originating

Copyright © 2004Creare IncorporatedAn unpublished work.  All rights reserved.  MTG­xx­xx­xxxx / #### ­ 22

Selected ReferencesBuckey, J.C., “Radiation Hazards: Establishing a Safe Level,” Space Physiology, Oxford University Press, New York, in press 2005.Cocks, F.H., “A Deployable High Temperature Superconducting Coil (DHTSC): A Novel Concept for Producing Magnetic Shields Against Both 

Solar Flare and Galactic Radiation During Manned Interplanetary Missions,” J. British Interplanetary Soc., Vol. 44, 1991, pp. 99–102.Cocks, J.C., Watkins, S.A., Cocks, F.H., Sussingham, C., “Applications for Deployed High Temperature Superconducting Coils in Spacecraft 

Engineering: A Review and Analysis,” J. British Interplanetary Soc., Vol. 50, 1997, pp. 479–484.Curtis, S.B., Vazquez, M.E., Wilson, J.W., Atwell, W., Kim, M., Capala, J., “Cosmic Ray Hit Frequencies in Critical Sites in the Central Nervous 

System,” Advanced Space Research, Vol. 22 No. 2, 1998, pp. 197–207.Hilinski, E.J., Cocks, F.H., “Deployed High­Temperature Superconducting Coil Magnetic Shield,” J. Spacecraft, Vol. 31, No. 2, 1993, pp. 342–

344. Landis, G.A., “Magnetic Radiation Shielding: An Idea Whose Time Has Returned?” Space Manufacturing 8: Energy and Materials from Space, AIAA, 1991, pp. 383–386.

Letaw, J.R., Silberberg, R., Tsao, C.H., “Radiation Hazards on Space Mission Outside the Magntosphere,” Adv. Space Res., Vol. 9, No. 10, 1989, pp. 285–291.

Levy, R.H., “Radiation Shielding of Space Vehicles by Means of Superconducting Coils,” ARS Journal, Nov 1961, pp. 1568–1570.Masur, L.J., Kellers, J., Li, F., Fleshler, S., Podtburg, E.R., “Industrial High Temperature Superconductors: Perspectives and Milestones,” IEEE 

Trans. Applied Superconductivity, Vol. 12, No. 1, Mar 2002, pp. 1145–1150.Simonsen, L.C., Nealy, J.E., “Radiation Protection for Human Missions to the Moon and Mars,” NASA Technical Paper 3079, Feb 1991.Simonsen, L.C., Nealy, J.E., Townsend, L.W., Wilson, J.W., “Space Radiation Shielding for a Martian Habitat,” SAE Technical Paper 901346, 

20th Intersociety Conference on Environmental Systems, Williamsburg, VA, July 9–12, 1990.Sussingham, J.C., Watkins, S.A., Cocks, F.H., “Forty Years of Development of Active Systems for Radiation Protection of Spacecraft,” J. 

Astronautical Sciences, Vol. 47, No. 3–4, July–Dec 1999, pp. 165–175.Townsend, L.W., “HZE Particle Shielding Using Confined Magnetic Fields,” J. Spacecraft, Vol. 20, No. 6, 1983, pp. 629–630.Townsend, L.W., Nealy, J.E., Wilson, J.W., “Large Solar Flare Radiation Shielding Requirements for Manned Interplanetary Missions,” J. 

Spacecraft, Vol. 26, No. 2, 1989, pp. 126–128.Townsend, L.W., Wilson, J.W., Shinn, J.L., Nealy, J.E., Simonsen, L.C., “Radiation Protection Effectiveness of a Proposed Magnetic Shielding 

Concept for Manned Mars Missions,” SAE Technical Paper Series 901343, 20th Intersociety Conference on Environmental Systems, Williamsburg, VA, July 9–12, 1990.

Townsend, L.W., “Overview of Active Methods for Shielding Spacecraft from Energetic Space Radiation,” Physica Medica, Vol. 17, Sup. 1, 2001, pp. 84–85.

Townsed, L.W., Fry, R.J.M., “Radiation Protection Guidance for Activities in Low­Earth Orbit,” Advanced Space Research, Vol. 30, No. 4, 2002, pp. 957–963.