Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron...

62
Department of Physics Department of Physics National Tsing Hua University National Tsing Hua University G.T. Chen G.T. Chen 2005/11/3 2005/11/3 Model Spectra of Model Spectra of Neutron Star Surface Neutron Star Surface Thermal Emission Thermal Emission ---Diffusion ---Diffusion Approximation Approximation
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    221
  • download

    3

Transcript of Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron...

Page 1: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Department of PhysicsDepartment of PhysicsNational Tsing Hua UniversityNational Tsing Hua University

G.T. ChenG.T. Chen2005/11/32005/11/3

Model Spectra of Neutron Model Spectra of Neutron Star Surface Thermal Star Surface Thermal

EmissionEmission---Diffusion Approximation ---Diffusion Approximation

Model Spectra of Neutron Model Spectra of Neutron Star Surface Thermal Star Surface Thermal

EmissionEmission---Diffusion Approximation ---Diffusion Approximation

Page 2: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

OutlineOutline

AssumptionsAssumptions Radiation Transfer EquationRadiation Transfer Equation ------Diffusion Approximation------Diffusion Approximation Improved Feautrier MethodImproved Feautrier Method Temperature CorrectionTemperature Correction ResultsResults Future workFuture work

Page 3: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Plane-parallel atmosphere( local model).Plane-parallel atmosphere( local model). Radiative equilibrium( energy transported Radiative equilibrium( energy transported

solely by radiation ) .solely by radiation ) . Hydrostatics. All physical quantities are inHydrostatics. All physical quantities are in

dependent of timedependent of time The composition of the atmosphere is fully The composition of the atmosphere is fully

ionized ideal hydrogen gas. ionized ideal hydrogen gas. No magnetic fieldNo magnetic field

AssumptionsAssumptions

Page 4: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Spectrum

The Structure of neutron star atmosphere

Radiation transfer equation

Temperature correction

Flux ≠const

Flux = const

P(τ) ρ(τ) T(τ)

Improved Feautrier Method

Unsold Lucy process

Oppenheimer-VolkoffOppenheimer-Volkoff

Diffusion Approximation

Page 5: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

SpectrumRadiation transfer equation

Temperature correction

Flux ≠const

Flux = const

P(τ) ρ(τ) T(τ)

Improved Feautrier Method

Unsold Lucy process

The Structure of neutron star atmosphere

Oppenheimer-VolkoffOppenheimer-Volkoff

Diffusion Approximation

Page 6: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

The structure of neutron star atmosphereThe structure of neutron star atmosphere

Gray atmosphereGray atmosphere (Trail temperature profile)(Trail temperature profile)

Equation of stateEquation of state

Oppenheimer-VolkoffOppenheimer-Volkoff

4 43 2

4 3e RT T

31

2 2 2 2

*

*

4 2(1 )(1 )(1 )

R

dP Gm P z P Gm

dz z c mc zc

dPg

dz

dP g

d

The Rosseland mean depth R Rd dz

kT

mP p

2

Page 7: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

0

0

1

1

R

Bd

T

Bd

T

*sc ff

The Rosseland mean opacity

where

If given an effective temperature( Te ) and effective gravity ( g* ) , we can get

( )

( )R

R

T T

P P

(The structure of NS atmosphere)

The structure of neutron star atmosphereThe structure of neutron star atmosphere

Page 8: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Parameters In this CaseParameters In this Case

First ,we consider the effective First ,we consider the effective temperature is 10temperature is 106 6 K and effective K and effective gravity is 10gravity is 101414 cm/s cm/s22

Page 9: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Spectrum

Temperature correction

Flux ≠const

Flux = const

Unsold Lucy process

The Structure of neutron star atmosphere

Radiation transfer equation

P(τ) ρ(τ) T(τ)

Improved Feautrier Method

Oppenheimer-VolkoffOppenheimer-Volkoff

Diffusion Approximation

Page 10: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Absorption Spontaneous emission

Induced emission Scattering

I

dldz

n

Radiation Transfer EquationRadiation Transfer Equation

Page 11: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Diffusion ApproximationDiffusion Approximation

4

cuJ B

4

3

3

4

BF

B F

τ>>1 , (1) Integrate all solid angle and divide by 4π

(2) Times μ ,then integrate all solid angle and divide by 4π

BI B

Page 12: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Diffusion ApproximationDiffusion Approximation

3

4

cI u F

c

We assume the form of the specific intensity is always the same in all optical depth

I

dldz

n

Page 13: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Radiation Transfer EquationRadiation Transfer Equation

* * '( )

4ff sc ff sc

R R R R

dI dI B pI

d

Page 14: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Radiation Transfer EquationRadiation Transfer Equation

* *ff ff

R R R

dHJ B

d

*ff sc

R R

dKH

d

(1) Integrate all solid angle and divide by 4π

(2) Times μ ,then integrate all solid angle and divide

by 4π

Note:

J ν= ∫I ν dΩ/4π

Hν= ∫I νμdΩ/4π

Kν= ∫I ν μ2dΩ/4π

(1)

(2)

4

4

cuJ

FH

Page 15: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Radiation Transfer EquationRadiation Transfer Equation

*R

ff sc R

dKH

d

2*

R

ff sc R

dF I d

d

3

4

cI u F

c

*

1

3 3R

ff sc R R

du duc cF

d d

And according to D.A.

From (2) ,

Page 16: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Radiation Transfer EquationRadiation Transfer Equation

* *1

3 ff ff B

R R R R

dudu u

d d

4Bu Bc

substitute into (1) ,

*ff sc

R

where

Page 17: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

RTE---Boundary ConditionsRTE---Boundary Conditions

I(τ1,-μ,)=0

τ1,τ2,τ3, . . . . . . . . . . . . . . . . . . . . . . . . . . .,τD

BI B

Page 18: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

RTE---Boundary ConditionsRTE---Boundary Conditions

Outer boundaryOuter boundary

0I

at τ=0

2

cF u

1 3

2R

duu

d

Page 19: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

RTE---Boundary ConditionRTE---Boundary Condition

Inner boundaryInner boundary

3

4

cI u F

c

BI B

Bu u at τ=∞

[BC1]

∫ dΩ

Page 20: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

RTE---Boundary ConditionRTE---Boundary Condition

B

R R

du du

d d

∫μdΩ

BB

R R

du duu u

d d

[BC2]

at τ=∞

Page 21: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Improved Feautrier MethodImproved Feautrier Method

1

1i

i ii

uu

F

To solve the RTE of u , we use the outer boundary condition ,and define some discrete parameters, then we get the recurrence relation of u

1

1

1

1

1

1

1

1

i ii i

i i

i i ii

i ii i

i

AFF H

C F

U A

AFC H

F

where

Page 22: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Improved Feautrier MethodImproved Feautrier Method

2

1 1

2

1 1

*

*

4ln

4ln

3

3( )

ii i i i i

ii i i i i

ffi

R i

ff Bi

R i

C

A

H

U u

1 1 2 1

1

3

20

F

Initial conditions

Page 23: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Improved Feautrier MethodImproved Feautrier Method

Put the inner boundary condition into the relaPut the inner boundary condition into the relation , we can get the u=u (tion , we can get the u=u (τ) )

F = F (F = F (τ)) Choose the delta-logtau=0.01Choose the delta-logtau=0.01 from tau=10from tau=10-7-7 ~ 1000 ~ 1000 Choose the delta-lognu=0.1Choose the delta-lognu=0.1 from freq.=10from freq.=101515 ~ 10 ~ 101919

Note : first, we put BC1 in the relation

Page 24: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Spectrum

The Structure of neutron star atmosphere

Radiation transfer equation

Temperature correction

Flux ≠const

Flux = const

P(τ) ρ(τ) T(τ)

Improved Feautrier Method

Unsold Lucy process

Oppenheimer-VolkoffOppenheimer-Volkoff

Diffusion Approximation

Page 25: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Unsold-Lucy ProcessUnsold-Lucy Process

4

)( '**

dpIBI

d

dI

R

sc

R

ff

R

scff

4

)1()('

dpIdl

dlIedlBedlIdI

sc

kTh

ffkT

h

ffscff

Hd

dK

BJd

dH

R

scff

R

ff

R

ff

*

**

∫ dΩ

∫μdΩ

Note:

J ν= ∫I ν dΩ/4π

Hν= ∫I νμdΩ/4π

Kν= ∫I ν μ2dΩ/4π

Page 26: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Unsold-Lucy ProcessUnsold-Lucy Process

Hd

dK

BJd

dH

R

H

R

P

R

J

define B= ∫Bν dν , J= ∫J ν dν, H= ∫Hν dν, K= ∫Kν dν

define Planck mean κp= ∫κff

* Bν dν /B

intensity mean κJ= ∫ κff* Jν dν/J

flux mean κH= ∫(κff*+κsc )Hν dν/H

Page 27: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Eddington approximation: J(τ)~3K(τ)

and J(0)~2H(0)

Use Eddington approximation and combine above two equation

30

3

4

0

194e

*

0

***

0

4

])0(2')'(3[

)4

,(

])0(2')'(3[

)4

10*5.69

4

TH*(

])0(2')'(3[

])0(2')'(3[

T

dHd

HdH

T

T

BT

TdBB

d

HdHdHB

d

dHHdHB

d

dHHdHB

P

R

R

H

P

J

P

R

R

H

P

J

P

R

R

H

P

J

P

R

R

H

P

J

Unsold-Lucy ProcessUnsold-Lucy Process

Page 28: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Spectrum

The Structure of neutron star atmosphere

Radiation transfer equation

Temperature correction

Flux ≠const

Flux = const

P(τ) ρ(τ) T(τ)

Improved Feautrier Method

Unsold Lucy process

Oppenheimer-VolkoffOppenheimer-Volkoff

Diffusion Approximation

Page 29: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

ResultsResults

Page 30: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Effective temperature = 106 K

Page 31: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

5.670*1019 ±1%

Te=106 K

Page 32: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K

Page 33: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K

Page 34: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K

Page 35: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K

Page 36: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.
Page 37: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.
Page 38: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K frequency=1017 Hz

Page 39: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Spectrum Te=106 K

Page 40: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

BC1BC1 vs vs BC2BC2

Page 41: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

BC1 vs BC2Te=106 K

Page 42: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

BC1 vs BC2Te=106 K

Page 43: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

The results of using The results of using BC1 and BC2 BC1 and BC2 are are almost the same almost the same

BC1 has more physical meanings, so BC1 has more physical meanings, so we take the results of using BC1 to we take the results of using BC1 to compare with Non-diffusion compare with Non-diffusion approximation solutions calculated approximation solutions calculated by Soccerby Soccer

Page 44: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Diffusion ApproximationDiffusion Approximation

vsvs

Non-Diffusion ApproximationNon-Diffusion ApproximationThis part had been calculated by Soccer

Page 45: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K

1.2137*106 K

1.0014*106 K4.2627*105 K

3.7723*105 K

Page 46: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K

Page 47: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K frequency=1016 Hz

Page 48: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K frequency=1017 Hz

Page 49: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K frequency=1018 Hz

Page 50: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K

6.3096*1016 Hz 7.9433*1016 Hz

Page 51: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=5*105 K

5.04614*105 K2.5192*105 K

1.9003*105 K

6.0934*105 K

Page 52: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=5*105 K

Page 53: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=5*105 K

3.1623*1016 Hz 5.0119*1016 Hz

3.9811*1016 Hz

Page 54: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=5*106 K

2.1211*106 K

1.9084*106 K

4.7285*106 K

5.7082*106 K

Page 55: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=5*106 K

Page 56: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=5*106 K

3.9811*1017 Hz

Page 57: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

The results with higher effective The results with higher effective temperature are more closed to Non-temperature are more closed to Non-DA solutions than with lower DA solutions than with lower effective temperatureeffective temperature

When θ is large , the difference When θ is large , the difference between two methods is largebetween two methods is large

The computing time for this method The computing time for this method is faster than anotheris faster than another

The results comparing with Non-DA The results comparing with Non-DA are not good enough are not good enough

Page 58: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Future WorkFuture Work

Including magnetic field effects in R.T.E, anIncluding magnetic field effects in R.T.E, and solve the eq. by diffusion approximation d solve the eq. by diffusion approximation

Compare with Non-D.A. results Compare with Non-D.A. results

Another subject: Another subject: One and two-photon process calculation One and two-photon process calculation

Page 59: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

To Be Continued…….To Be Continued…….

Page 60: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.
Page 61: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K intensity of gray temperature profile

ν=1017 Hz

Page 62: Department of Physics National Tsing Hua University G.T. Chen 2005/11/3 Model Spectra of Neutron Star Surface Thermal Emission ---Diffusion Approximation.

Te=106 K Total flux of gray temperature profile