DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI...

47
A NOVEL MEDICAL IMAGE DENOISING ENTITY. MAHESH MOHAN M R M.Tech student Govt. Engineering College Trichur OM NAMA SIVAYA SHIVA KUDE KANANE… Omnamasivaya Om nama sivaya KUDE KANANE DEVA Om nama sivaya SHEEBA V S Professor Govt. Engineering College Trichur

Transcript of DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI...

Page 1: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

A NOVEL MEDICAL IMAGE

DENOISING ENTITY.

MAHESH MOHAN M RM.Tech student

Govt. Engineering College Trichur

OM NAMA SIVAYA

SHIVA KUDE KANANE…OmnamasivayaOm nama sivayaKUDE KANANE

DEVAOm nama sivaya

SHEEBA V SProfessor

Govt. Engineering College Trichur

Page 2: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

OVERVIEW

INTRODUCTION

WORK AT A GLANCE

PROBLEM FORMULATION`SPATIAL DOMAIN APPROACHES

TRANSFORM DOMAIN APPROACHES

PROPOSED WORK

CONCLUSION

Page 3: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

❖ The incorporated noise during image acquisition degrades the human interpretation, or computer-aided analysis of the images

❖ For a visual analysis of medical images, the clarity of details are

important.

❖ Two approaches to reduce noise in a medical image.

COMPEX ACQUISITION(Slower)

(High SNR)

INTRODUCTION

SIMPLE ACQUISITION(Faster)

(Low SNR)

1 2

Page 4: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

▪ Require long and repeated acquisition of the same subject to reduce noise and blur and to maintain a high SNR.

High SNR DTI (1 hour) High SNR HARDI (13 hours)

▪ To recover noisy and blurry image without lengthy repeated scans, post-processing of data plays a critical role .

MOTIVATION

Page 5: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

THESIS AT A GLANCE

❖ SPATIAL DOMAIN TECHNIQUES Bilateral filtering.NLm filtering.

❖ TRANSFORM DOMAIN TECHNIQUES DWT thresholding.Contourlet thresholding.

❖ PROPOSE A NOVEL ENTITY FOR MEDICAL IMAGE DENOISING.

France, Bourget du Lac – February 23, 2012

OMNAMASIVAYA

Page 6: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Problem Formulation

❖ Noise in medical images can be generalised to Additive White Gaussian Noise (AWGN).

MEAN=0VARIANCE=0.05

MEAN=1.5VARIANCE=10

Original image

Noise image

ADDITION

DENOISING Entity

Page 7: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

SPATIAL DOMAIN METHODS?

Gaussian blur

Bilateral filter

NLm filtering

Page 8: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Blur IN GAUSSIAN Comes from Averaging across Edges

*

*

*

input output

Same Gaussian kernel everywhere.

Page 9: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Bilateral FilterNo Averaging across Edges

*

*

*

input output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi 98]

Page 10: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Bilateral Filter on a Height Field

output

inputoutput

p

qWeigh I(q)By 2 * 0.4 = 0.8

r

Weigh I(r)By 48 * 0.4 = 19.2

Page 11: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

HOW TO ENHANCE PERFORMANCE OF BILATERAL FILTERING

p

❖ Bilateral very much depend on spatial intensities and thus abrupt noise values❖ Need to device preprocessing technique which removes the abrupt noise value retaining every edge information.

Page 12: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

NL-Means Filter (Buades 2005)

• Same goals: ‘Smooth within Similar Regions’

• KEY INSIGHT: Generalize, extend ‘Similarity’– Bilateral:

Averages neighbors with similar intensities;

– NL-Means: Averages neighbors with similar neighborhoods!

Page 13: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

NL-Means Method:Buades (2005)

• For each and

every pixel p:

Define a small, simple fixed size neighborhood;

Define vector Vp: a list of neighboring pixel values.

0.740.320.410.55………

Vp =

Page 14: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

‘Similar’ pixels p, q

🡪 SMALL vector distance;

NL-Means Method:Buades (2005)

|| Vp – Vq ||2

q

p

Page 15: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

‘Dissimilar’ pixels p, q

🡪 LARGE vector distance;

Filter with this.

NL-Means Method:Buades (2005)

|| Vp – Vq ||2

q

p

Page 16: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

HOW TO ENHANCE PERFORMANCE OF NLm FILTERING?

q

p

❖ NLm peformance very much depend on spatial intensities and thus abrupt noise values❖ Need to device preprocessing technique which removes the abrupt noise value retaining every edge information.

Page 17: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Fig. 4.7 Comparing performance (a) Noisy image (σ = 40 ) (b) Mean filtering (c) Median filtering (d) Bilateral filtering (e) NLm filtering.

RESULT ANALYSIS OF SPATIALDOMAIN TECHNIQUES

Pls kude kananam

Comparing performance (a) Noisy image (σ = 40 ) (b) Mean filtering ,, (c) Gaussian filtering (d) Bilateral filtering (e) NLm filtering.

Page 18: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

… .Thresholding

TRANSFORM DOMAIN METHODS?

FORWARDTRANSFOR

M

REVERSETRANSFOR

M

Pls kude kananam

❖ DISCRETE COSINE TRANSFORM(DCT)❖ DISCRETE WAVELET TRANSFORM(DWT)❖ CONTOURLET TRANSFORM

Page 19: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

D.L. Donoho, I.M. Johnstone

Biometrika, vol. 81, no. 3, pp. 425-55, 1994.

“IDEAL SPATIAL ADAPTATION VIA WAVELET SHRINKAGE”

Page 20: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

WHY CONTOURLET IS SUPERIOR?

❖ WAVELET SATISFIES FIRST THREE WHILE CONTOURLET “ALL OF IT”.❖ BECAUSE CONTOURLET IS NOT A SEPERABLE TRANSFORM.

WHAT WE WISH IN A TRANSFORM?

MULTIRESOLUTIONLOCALIZATIONCRITICAL SAMPLINGDIRECTIONALITYANISOTROPY

Page 21: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Fig. 4.7 Comparing performance (a) Noisy image (σ = 40 ) (b) Mean filtering (c) Median filtering (d) Bilateral filtering (e) NLm filtering.

RESULT ANALYSIS OF freQUENCYDOMAIN TECHNIQUES

Pls kude kananam

Comparing performance (a) Noisy image (σ = 40 ) (b) DCT based denoising (c) DWT based denoising (d) Contourlet based denoisng

Page 22: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

PROP0sed contributions

#1 Empirically formed a scaling factor for universal threshold for Visushrink.

#2 Introduced contourlet transform for denoising and empirically formed a similar scaling factor.

#3 Introduced a new entity for medical image denoising comprised of aforementioned contourlet thresholding as a preprocessing step to non-local mean denoising.

Page 23: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

CONTRIBUTION #1

THEORETICAL VALIDATIONUniversal threshold as derived by Donoho is hundred percent effective only when number of pixels in an image tends to infinity.

So a scaling parameter is deviced so that new threshold is Tw = λw *T. Where λw is

λw =3.944*10-11 S2 – 5.5285*10-6 *S+0.6022 and

Page 24: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

CONTRIBUTION #2

So a scaling parameter is deviced so that new threshold is Tc = λc *T. Where λcis

λc =3.944*10-11 S2 – 5.5285*10-6 *S+0.5522 and

THEORETICAL VALIDATIONFor image denoising, random noise will generate significant wavelet coefficients just like true edges, but is less likely to generate significant contourlet coefficients.

Page 25: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

EXPERIMENTAL RESULTSTABLE

Page 26: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

SIMULATION RESULTS #1 & #2

a b

c d

1 2 34 5

1-Noisy image(σ = 30) 2-Wavelet Univ threshold3-Contourlet Univ threshold4-Wavelet proposed5-Contourlet proposed

Page 27: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

CONTRIBUTION #3

THEORETICAL VALIDATION

Bilateral filtering –• real homogeneous gray levels corrupted by noise is

polluted significantly• fails to efficiently remove noise in regions of

homogeneous physical properties.

Contourlet denoising done before bilateral filtering,noise in homogeneous regions can be removed efficiently retaining the edge information as well as texture.

Page 28: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

THEORETICAL VALIDATION

NLM filter –• the calculation for similarity weights is

performed in a full-space of neighborhood. • Specifically, the accuracy of the similarity

weights will be affected by noise

CONTRIBUTION #3

Contourlet denoising done before NLm filtering,noise in neighbourhood can be removed efficiently retaining the edge information as well as texture.

Page 29: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

EXPERIMENTAL RESULTSTABLE

Page 30: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

SIMULATION RESULTS #3 & #4

a b

c d

1 2 34 5

1-Noisy image(σ = 30) 2-Bilateral filtering3-NLm denoising4-Proposed scheme BL5-Proposed scheme NLM

a b

c d

Page 31: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

PROPOSED MEDICALPROCESSING ENTITY

ADDITION

PROPOSED DENOISING Entity

NLm filteringProposedContourlet

thresholding

BACK

Page 32: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

PROCESSING TIME

s/m specification-4 GB RAM,2.30 Ghz processor.

Maximum exceeded time from Normal process = 0.2763 second

Page 33: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

❖ Improved the performance of Wavelet based thresholding.

❖ Introduced contourlet transform to image denoising and proved by simulation,proposed method is superior to wavelet transform.

❖ `By introducing proposed entity for common medical image denoisng techniques,performance can be significanly increased without significantly increasing time of processing.

CONclusion

Page 34: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

REFERENCESstogram?1. O. Christiansen, T. Lee, J. Lie, U. Sinha, and T. Chan. \Total

Variation Regularization of Matrix-Valued Images." International Journal of Biomedical Imaging, 2007(27432):11, December 2007.

2. S.Kalaivani Narayanan, and R.S.D.Wahidabanu. A View on Despeckling in Ultrasound Imaging. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2009, 2(3):85-98.

3. H. Guo, J. E. Odegard, M.Lang, A. Gopinath, J. W. Selesnick. Wavelet based Speckle Reduction with Application to SAR based ATD/R. First International Conference on Image Processing 1994:75-79.

4. Rafael C. Gonzalez, Richard E. Woods,Digital Image processing using MATLAB. Second Edition, Mc Graw hill.

5. Lu Zhang, Jiaming Chen, Yuemin Zhu, Jianhua Luo. Comparisons of Several New Denoising Methods for Medical Images. IEEE, 2009:1-4.

6. C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images. " Proc Int Conf Computer Vision, pp. 839–846, 1998.

Page 35: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

REFERENCESstogram?7. D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation

via wavelet shrinkage,” Biometrika, 81, pp. 425–455, 1994.8. A. Buades, B. Coll, and J. M. Morel, “A review of image

denoising algorithms, with a new one,” Multiscale Modeling and Simulation (SIAM Interdisciplinary Journal), Vol. 4, No. 2, 2005, pp 490-530

9. M. N. Do and M. Vetterli, "Contourlets", in Beyond Wavelets, Academic Press, New York, 2003.Rafael C. Gonzalez, Richard E. Woods,Digital Image processing using MATLAB. Second Edition, Mc Graw hill.

10. J. B. Weaver, Y. Xu, D. M. Healy, and L. D. Cromwell, “Communications. Filtering noise from images with wavelet transforms,” Magnetic Resonance in Medicine, vol. 21, no. 2, pp. 288–295, 1991.

11. K.N. Chaudhury, D. Sage, and M. Unser, "Fast O(1) bilateral filtering using trigonometric range kernels," IEEE Trans. Image Processing, vol. 20, no. 11, 2011.

Page 36: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

REFERENCESstogram?8. D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation

via wavelet shrinkage,” Biometrika, 81, pp. 425–455, 1994.9. A. Buades, B. Coll, and J. M. Morel, “A review of image

denoising algorithms, with a new one,” Multiscale Modeling and Simulation (SIAM Interdisciplinary Journal), Vol. 4, No. 2, 2005, pp 490-530

10. M. N. Do and M. Vetterli, "Contourlets", in Beyond Wavelets, Academic Press, New York, 2003.Rafael C. Gonzalez, Richard E. Woods,Digital Image processing using MATLAB. Second Edition, Mc Graw hill.

11. J. B. Weaver, Y. Xu, D. M. Healy, and L. D. Cromwell, “Communications. Filtering noise from images with wavelet transforms,” Magnetic Resonance in Medicine, vol. 21, no. 2, pp. 288–295, 1991.

0m nama sivayaShivam shivakaram shantham shivathmanam shivothamam

Shiva marga pranetharam pranathasmi sada shivam…

Page 37: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Equation of Gaussian filter

normalizedGaussian function

Same idea: weighted average of pixels.

0

1

Page 38: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Gaussian FILTER

average

input

per-pixel multiplication

output

*

Gaussian blur

Bilateral filter

NLm filtering

Page 39: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Fixing the Gaussian Blur”: the Bilateral Filter

space weight

not new

range weight

I

new

normalizationfactor

newSame idea: weighted average of pixels.

Box average

Gaussian blur

Bilateral filter

NLm filtering

Page 40: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Bilateral Filter on a Height Field

output

inputoutput

p

qWeigh I(q)By 2 * 0.4 = 0.8

r

Weigh I(r)By 48 * 0.4 = 19.2

BACK

Page 41: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

wavelet transform?

Pls kude kananam

Page 42: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Discrete wavelet transform?

Pls kude kananam

❖ A family of wavelets is then associated with the bandpass, and a family of scaling functions with the lowpass filters.

Page 43: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Construction of 2d wavelet?

Pls kude kananam

LL LH HL HH

❖ Wavelet is a seperable transform.

Page 44: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

D.L. Donoho, I.M. Johnstone

Biometrika, vol. 81, no. 3, pp. 425-55, 1994.

“IDEAL SPATIAL ADAPTATION VIA WAVELET SHRINKAGE”

Hard thresholding Soft thresholding

BACK

Page 45: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Construction of contourlet TRANSFORM.

BACK

Page 46: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

Test image

Wavelet Universal

Threshold

Contourlet

Universal

Threshold

Wavelet proposed

Threshold

Contourlet

proposed

threshold

σ =30

CT 19.2590 18.0033 22.7820 23.2653

MRI 20.8224 19.4452 23.7486 23.8390

σ =40

CT 16.1492 14.9014 20.2541 20.7107

MRI 18.2044 16.7866 21.4390 21.5036

σ =50

CT 13.8143 12.6572 18.4467 18.6677

MRI 16.2471 14.8722 19.7023 19.8100

EXPERIMENTAL RESULTS

BACK

Page 47: DENOISING ENTITY A NOVEL MEDICAL IMAGE · 2020-05-19 · CT 16.1492 14.9014 20.2541 20.7107 MRI 18.2044 16.7866 21.4390 21.5036 σ =50 CT 13.8143 12.6572 18.4467 18.6677 MRI 16.2471

EXPERIMENTAL RESULTSProposed entity Vs Simple bilateral and NLm filtering

BACK