DeleonibusPresentation

download DeleonibusPresentation

of 49

Transcript of DeleonibusPresentation

  • 8/3/2019 DeleonibusPresentation

    1/49

    INSTITUTE FOR ENERGY EFFICIENCY

    Santa Barbara, California, December 2, 2011

    More MOORE and MORE THAN MOORE MEETING FOR 3D

    S.Deleonibus,CEA-LETI, MINATEC Campus,

    17 rue des Martyrs , 38054 Grenoble Cedex 09 France.

    Tel : 33 (0)4 38 78 59 73 ; Fax: 33 (0)4 38 78 51 83; email: [email protected]

  • 8/3/2019 DeleonibusPresentation

    2/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 2

    CEA LETI organization

    15,000 Employees

    3 billion Budget

    15,000 Employees

    3 billion Budget

    French Nuclear Agency

    TechnologicalResearch

    FundamentalResearch

    ElectronuclearEnergy Res.

    Defense

    3,200 Researchers

    3,200 Researchers

    New technology forEnergy &

    Nanomaterials

    Software orientedsystem

    Micro NanoTechnology &

    integration in System

    1,600 Researchers

    1,600 Researchers

    * Grenoble

    * Grenoble

    * Saclay

  • 8/3/2019 DeleonibusPresentation

    3/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 3

    LETI: Mission and Focus

    Basic ResearchPublications

    Applied Research

    Patents

    Pilot LinePrototypes

    Mass ProductionProducts

    A single mission :

    Create innovation

    & transfer it to industry

    A clear focus :-nanotechnologies, with critical mass in Si

    Advanced devices for new applications

  • 8/3/2019 DeleonibusPresentation

    4/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 4

    LETI in a few numbers - 2010

    Microelectronics

    Microsystems

    Biology & Health

    Photonics

    Wireless & Smart devices

    Energy & Environment

    200 and 300mm Si capabities8,000 m clean roomsContinuous operation

    1 600 researchers1 000 permanent LETI staff

    300 M budget> 73% from contract~ 40 M CapEx

    350 new patents in 2010Portfolio > 1,500 patents32 start-ups

  • 8/3/2019 DeleonibusPresentation

    5/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 5

    Since 2005: A complete set of research platforms

    interacting daily with R & D platforms worldwide(ST Crolles, IBM Albany, )

    CEA LETI (1600 CEA researchers)collaborating

    in MINATEC campus (>4000 researchers)

    300mmCMOS Integration

    & adv. modules

    200mmCMOS new concepts

    & Beyond CMOS

    More Than Moore200mm

    NanoscaleCharacterization

    Design

    MicroTechsfor bio

    Education

    Incubation

    AdvancedResearch

    100-200mm

  • 8/3/2019 DeleonibusPresentation

    6/49

  • 8/3/2019 DeleonibusPresentation

    7/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 7

    Outline

    Introduction : Trends and Hot Topics in Nanoelectronics

    Nanoelectronics scaling and use of the 3rddimension to continue Moores law.

    Interfacing the Multiphysics World (More Than Moore)thanks to functional diversification

    Building new systems and their packagingwith a 3D tool box at a wafer level.

    Conclusions

  • 8/3/2019 DeleonibusPresentation

    8/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 8

    Semiconductor Market applications successive waves

    Source : Semico Research Corp. May 2004 IPI Report

    Quality of life, Social, Environment, Health, Energy,associated to ICT

  • 8/3/2019 DeleonibusPresentation

    9/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 9

    Currently, 3 % of the world-wide energy is consumed by the ICT

    infrastructure

    which causes about 2 % of the world-wide CO2 emissions

    comparable to the world-wide CO2 emissions by airplanes or of the world-wide CO2 emissions by cars

    ICT: 10% of electrical energy in industrialized nations 900 Bill.. kWh / year = Central and South Americas

    The transmitted data volume increases approximately by a factor of 10

    every 5 years

    Source: TU Dresden

    Ecological Footprint of ICTsreported by Intergovernmental Panel Climate Change(IPCC)

    For ICTs, keep in mind:P = P

    stat+ P

    dynP

    stat= V

    ddxI

    offand P

    dyn=CV

    dd

    2 f

  • 8/3/2019 DeleonibusPresentation

    10/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 10

    Scaling: a success storythanks to innovation

    1,00E+00

    1,00E+01

    1,00E+02

    1,00E+03

    1,00E+04

    1,00E+05

    1,00E+06

    1,00E+07

    1,00E+08

    1,00E+09

    1,00E+10

    1958 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008 2013 2018

    Date

    Numberoftra

    nsistorsperchip

    100m

    10m

    1m

    0,10m

    10 nmCriticalDimensio

    n

    4004

    8080

    8086 80286

    i386

    i486Pentium

    Pentium II

    Pentium IIIPentium IV

    Itanium

    1k4k

    16k

    64k

    256k

    1M4M

    16M

    64M128M

    256M512M

    1G2G

    4G

    micro

    proc

    essors

    dyna

    mic m

    emories(D

    RAM)

    contacts plugs (3 lev met)

    vias plugs ,CMP(4 lev met)

    FSG(6 lev met)

    damascene(5 lev met)

    Cu (7 lev met)

    Cu+H(M)SQ (9 lev met)

    polymers

    +ALD (10 lev met)

    ULK(11 lev met)

    poly gate

    polycide

    1 billionOffice

    PC

    MainFrame

    C.T.V.

    VCRDefense

    HomePC

    PortableInternet

    Convergence

    10 millions

    STI, salicide

    DigitalCamera

    HiK +metal gate

    1,00E+00

    1,00E+01

    1,00E+02

    1,00E+03

    1,00E+04

    1,00E+05

    1,00E+06

    1,00E+07

    1,00E+08

    1,00E+09

    1,00E+10

    1958 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008 2013 2018

    Date

    Numberoftra

    nsistorsperchip

    100m

    10m

    1m

    0,10m

    10 nmCriticalDimensio

    n

    4004

    8080

    8086 80286

    i386

    i486Pentium

    Pentium II

    Pentium IIIPentium IV

    Itanium

    1k4k

    16k

    64k

    256k

    1M4M

    16M

    64M128M

    256M512M

    1G2G

    4G

    micro

    proc

    essors

    dyna

    mic m

    emories(D

    RAM)

    contacts plugs (3 lev met)

    vias plugs ,CMP(4 lev met)

    FSG(6 lev met)

    damascene(5 lev met)

    Cu (7 lev met)

    Cu+H(M)SQ (9 lev met)

    polymers

    +ALD (10 lev met)

    ULK(11 lev met)

    poly gate

    polycide

    1 billionOffice

    PC

    MainFrame

    C.T.V.

    VCRDefense

    HomePC

    PortableInternet

    Convergence

    10 millions

    STI, salicide

    DigitalCamera

    HiK +metal gate

    Moores law: 2Xdevices/year

    Electronic Device Architectures for the Nano-CMOS Era

    From Ultimate CMOS Scaling to Beyond CMOS DevicesEditor: S.Deleonibus, Pan Stanford Publishing, Oct 2008

  • 8/3/2019 DeleonibusPresentation

    11/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 11

    Three major product families(ITRS aware of CMOS scaling limits)

    High Performance (HP) t=CV/I

    Connection to power network

    Low Operating Power (LOP) Intermittent Nomadic Function

    Low Stand-by Power (LSTP) Pstat= VddxIoff Permanent Nomadic Function

    Nomadic consumer and professional products:largest market share continuously increasing

    Pdyn=CVdd2f

    Ptot=Pstat+ Pdyn

  • 8/3/2019 DeleonibusPresentation

    12/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 12

    More, More than, Beyond Moore

    Tomorrows top added value markets

    ITRS 2009 & 2011

    High growth with More than Moore technologies:they require expertise in all technical domains and in-

    depth knowledge of the targeted markets

  • 8/3/2019 DeleonibusPresentation

    13/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 13

    EUV ( = 13.5nm)

    60% reflectivity for several hundreds of Si / Mo stacksw roughness precision < 3

    Placement of mirror and mask

    Photoresist

    from S.A. Campbell, The Science and Engineering of Microelectronic

    Fabrication, Oxford University Press 2001 Engineering Test Stand (VNL/EUV-LLC)

    >100 M$100Wph !!

  • 8/3/2019 DeleonibusPresentation

    14/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 14

    System made of 13,000 electron

    beams working in parallel (MAPPER)(1)

    Key numbers 22nm node:

    HVM pre-alpha

    #beams and data channels 13,000 110

    Spotsize: 25 nm 35 nm

    Beam current: 13 nA 0.3 nA

    Datarate/channel 3.5 Gbs 20 MHz

    Acceleration voltage 5 kV 5 kV

    Nominal dose 30 C/cm2 30 C/cm2

    Throughput @ nominal dose 10 wph 0.002 wph

    Pixel size @ nominal dose 3.5nm 2.25 nm

    Wafer movement Scanning Static

    Electron source

    Collimator lens

    Aperture array

    Beam Blanker array

    Beam Deflector arrayProjection lens array

    Condensor lens array

    Beam Stop array

    Electron source

    Collimator lens

    Aperture array

    Beam Blanker array

    Beam Deflector arrayProjection lens array

    Condensor lens array

    Beam Stop array

  • 8/3/2019 DeleonibusPresentation

    15/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 15

    1mMAPPER single column tool. Upgrade to

    13,000 beam for 10WPH

    Interface totrack1m

    MAPPER single column tool. Upgrade to13,000 beam for 10WPH

    Interface totrack

    Interface totrackCluster 100WPH

    System made of 13,000 electron

    beams working in parallel (MAPPER)(2)

  • 8/3/2019 DeleonibusPresentation

    16/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 16

    Hot Topics in MOSFET technology

    Introduction of HiK and metal gate allows continued scaling and relaxesSiO2 gate leakage current related issues

    - Ig added to SCE, DIBL, subthreshold leakage(LETI IEDM 2002, Intel IEDM 2005)

    Statistical dopant variability

    - number of dopants in the active area decreases with scaling

    - random distribution of channel dopants

    Poissons law. Standard deviation:

    S.Deleonibus et al. ESSDERC 1999

    Major interest for Low

    Doped channels

    21

    =

    Volume

    Ndoping

    0.01

    0.1

    1

    10

    100

    1000

    104

    0.01 0.1 1

    N/N

    Nombred'impurets

    Lg (m)

    Statistical fluctuations of

    threshold voltage: 150 mV decay

    for VT=200mV( Lg=25nm) !!

  • 8/3/2019 DeleonibusPresentation

    17/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 17

    Outline

    Introduction : Trends and Hot Topics in Nanoelectronics

    Nanoelectronics scaling and use of the 3rddimension to continue Moores law.

    Interfacing the Multiphysics World (More Than Moore)thanks to functional diversification

    Building new systems and their packagingwith a 3D tool box at a wafer level.

    Conclusions

  • 8/3/2019 DeleonibusPresentation

    18/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 18

    32nm Low Power FDSOI Undoped channels

    C.Fenouillet Beranger et al., IEDM 2007, VLSI Symp 2010

    V.Barral et al., IEDM2007

    VDD=1V Ioff=6pA/m

    0.248m2 SNM (1.2V)=140mV0.179m2 SNM (1.2V)=230mV

    6T SRAM

    10 nm BOx8 nm TSi 10 nm BOx8 nm TSi

    Range = 4 !

    0000

    +5+5+5+5

    ----5555

    1 917

    25

    33

    41

    49

    57

    65

    73

    81

    89

    97

    105

    113

    121

    129

    137

    Wafer #

    -10

    -5

    0

    5

    10

    SOIThickness

    De

    viationtotarget()

    SOI Thickness

    Max

    Mean

    Min

    XUT+/- 5 - SOI thickness deviation

    1 917

    25

    33

    41

    49

    57

    65

    73

    81

    89

    97

    105

    113

    121

    129

    137

    Wafer #

    -10

    -5

    0

    5

    10

    SOIThickness

    De

    viationtotarget()

    SOI Thickness

    Max

    Mean

    Min

    XUT+/- 5 - SOI thickness deviation

    300mm wafers

  • 8/3/2019 DeleonibusPresentation

    19/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 19

    0.5

    1

    1.5

    2

    2.5

    3

    10 20 30 40 50 60

    AVt

    (mV

    .um

    )

    Gate length L (nm)

    FinFETs

    Planar FDSOI

    Wfin

    =10nm

    UTBSOILETI

    square : Vd=50mV

    circle : Vd=1V

    Wfin

    =20nm

    Wfin

    =15nmW

    fin

    =20nm

    [14]

    [13]

    [1]

    [12]

    [13]

    [15]

    [15]

    [16]

    0

    20

    40

    60

    80

    100

    120

    -105 -8

    7-69

    -51

    -33

    -15 0 15 33 51 69 87 10

    5

    Vt=34.5mV

    Vt=24.5mV

    AVt=0.95mV.mCoun

    t

    Vt shift Vt (mV)

    0

    20

    40

    60

    80

    100

    120

    -105 -8

    7-69

    -51

    -33

    -15 0 15 33 51 69 87 10

    5

    Vt=34.5mV

    Vt=24.5mV

    AVt=0.95mV.mCoun

    t

    Vt shift Vt (mV)

    Best trade-off between VT variations and gate length scalingcompared to bulk MOSFETs and FinFETs

    L=25nm

    W=60nm

    (Vt=Vt/2 to compare measurements on pairsand on arrays of transistors in the literature)

    O.WeberO.WeberO.WeberO.Weber et al., IEDM 2008et al., IEDM 2008et al., IEDM 2008et al., IEDM 2008WL

    AVtVt =

    Record-high VT matching performance

    FDSOI Undoped channels vs.FinFET

  • 8/3/2019 DeleonibusPresentation

    20/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 20

    Multi VT solutions for SOC design

    UTBOX + Back bias ; Gate stack engineering

    0

    0,1

    0,2

    0,3

    0,4

    0,50,6

    0,7

    0,8

    0,9

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

    VTP (V)

    VTN(V)

    HfO2/TiN

    HfO2/Al203/TiN

    HfO2/Al203+/TiN

    HfSiON/TiN5

    HfSiON/Al203+/TiN

    HfSiON/TaAlN/TaN

    HfSiON/TaN/TaAlN

    HfSiON/TiN10

    HfSiON/TiN

    VT tuning by gate stack engineering

    F.Andrieu et al. , VLSI 2010 Honolulu

    O.Faynot et al., IEDM 2010 San Francisco, invited talk

    BOX = 10nm and VBB/ Ground Plane

    N and PMOS: VT modulation of200mV

  • 8/3/2019 DeleonibusPresentation

    21/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 21

    Merits of FDSOI

    Reachable Scaling rules

    (TSi, TBOx)

    Delay vs. Power x Delay

    22% improvement/bulk (20nm)

    O.Faynot et al, IEDM 2010, invited talk

    L.Clavelier et al, IEDM 2010, invited talk

  • 8/3/2019 DeleonibusPresentation

    22/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 22

    Thin Films Devices

    Relaxing optimizationscaling rule

    by architecture

    TSi= Lg

    TSi= 1 to 2 Lg

    PlanarDouble-gate

    Planar or Finfet

    Trigate/nanowire

    tsource

    Gate

    tsource

    Gate

    Gate

    sourcet

    Gate

    SourceL

    w

    ThinSOI

    Bulk or thick SOI

    TSi= Lg

    w

    TSi=2.5nm

    Strain global & local

    Lg=10nm

    Barral et al.

    IEDM2007

    Andrieu et al

    VLSI2006

    Bernard et al

    VLSI 2008

    Dupr et al.

    IEDM 2008

    Ernst et al.

    IEDM 2008

    Jahan et al.

    VLSI2005

    Vinet et al.EDL 2005

    4.8 nm

    3.4 nm

    4.8 nm

    3.4 nm

  • 8/3/2019 DeleonibusPresentation

    23/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 23

    Si/Si0.8Ge0.2superlatticeepitaxy on SOI

    Anisotropicetchingof these layers

    Isotropicetchingof SiGe or Si

    HfO2 (3nm)TiN (10nm)Poly-Si (200nm)

    Gate depositions

    S/D implantationSpacer formationActivation annealSalicidation

    BOX

    SiSiGe

    SiSiGe

    SiSiGeSiN

    BOX BOX BOX

    Gate

    BOX

    Gate

    Gate etching

    StandardBack-End

    of-LineProcesses

    500 nm

    Source Drain

    Gate

    Top view of our device

    Nanowires

    Stacked Multichannels and MultiNanowires

    Top-Down approach: device fabrication

  • 8/3/2019 DeleonibusPresentation

    24/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 24

    0

    1

    2

    3

    4

    5

    6

    0 1 2Layout width (a.u.)

    Con

    du

    ctance

    (a

    .u.)

    1 nanowire

    planar

    0

    1

    2

    3

    4

    5

    6

    0 1 2Layout width (a.u.)

    Con

    du

    ctance

    (a

    .u.)

    1 nanowire

    3 nanowires

    0

    1

    2

    3

    4

    5

    6

    0 1 2Layout width (a.u.)

    Conduc

    tance

    (a

    .u.)

    Finfet

    Tunable width

    See for details:

    T. Ernst et al, IEDM06,08 SSDM07, ICIDT08

    E. Bernard et al. VLSI08, ESSDER07C. Dupr et al, IEEE SOI Conference 07

    Layout width1 2

    vvv

    0

    1

    2

    3

    4

    5

    6

    0 1 2Layout width (a.u.)

    Con

    du

    ctance

    (a

    .u.) 3 multi

    - channels(MC)

    WW

    pitch

    Design flexibility to tunethe conductance

    Stacked Multichannels and MultiNanowires

    Top-Down approach

  • 8/3/2019 DeleonibusPresentation

    25/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 25

    Stacked Multichannels and MultiNanowires

    Top-Down approach

    LETI: Dupr et al. IEDM 2008, San Francisco(CA)Ernst et al., Invited talk IEDM 2008, San Francisco(CA)

    Bernard et al, VLSI Symposium 2008 HonoluluK.Tachi et al., IEDM 2010, San Francisco

    LETI top down approach forLow Power and High performance

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    DrainCu

    rrentID(A/m)

    Gate Voltage VG

    (V)

    VD=1.2VV

    D=1.2V

    NWFET

    P N

    VD=50mV

    ION

    =6.5mA/m

    IOFF

    =27nA/m

    SS=68mV/decDIBL=15mV/VV

    T=0.5V

    C.E.T.=1.8nm

    VD=50mV

    ION

    =3.3mA/m

    IOFF

    =0.5nA/m

    SS=65mV/decDIBL=7mV/VV

    T=-0.62V

    -CV/I outperforms Planar in loaded environment

    -Improved voltage gain (8GHz) wrt Planar

    -Gate separation possible

    -Transport properties in small nanowires

  • 8/3/2019 DeleonibusPresentation

    26/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 26

    Pervasion of Nanowire technology

    20nm

    Poly SiSiO2Si3N4SiO2

    3D NANDFlash Memories

    Q=870 resonatorGauge width = 80 nm

    15 nm oscillator

    Zeptogram mass resolution

    Mass detection

    60

    70

    80

    90

    100

    110

    120

    130

    0 2000 4000 6000 8000 10000 12000

    Time (s)

    Conductance(nS)

    pH 7

    pH 4pH 5

    pH 6

    pH 3

    pH

    60

    70

    80

    90

    100

    110

    120

    130

    0 2000 4000 6000 8000 10000 12000

    Time (s)

    Conductance(nS)

    pH 7

    pH 4pH 5

    pH 6

    pH 3

    pH

    Metaln-doped Si Hole ElectronPassivation

    Buffer solution

    at pH

  • 8/3/2019 DeleonibusPresentation

    27/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 27

    Tunnel FET Operation principle

    N & P operation modes

    A single TFET device can operate

    either in n or p channel mode

    N mode : VSD>0 & VGD>0 P mode: VDS

  • 8/3/2019 DeleonibusPresentation

    28/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 28

    SOI TFETs co-integrated with CMOSFETs

    L=100nm; T=300K

    P mode: VDS0

    Experimental demonstrationof Tunnel FET operations:

    F.Mayer et al., IEDM 2008,

    C.LeRoyer et al., ULIS 2009

    SOI TFETw. LDDn

    BOx

    S D

    GP modeN mode

    LDDHDD

    50nm

    NiSi NiS

    NiSi

    Sour

    HDD

    Gate

    tSi

    TiNHfO2

    Poly

    LG

    1st spacer

    2nd spacer

    NiSi

    SiN protection lay

    Drain

    LDDHDD

    50nm

    NiSi NiS

    NiSi

    Sour

    HDD

    Gate

    tSi

    TiNHfO2

    Poly

    LG

    1st spacer

    2nd spacer

    NiSi

    SiN protection lay

    Drain

  • 8/3/2019 DeleonibusPresentation

    29/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 29

    TFET for Ultra Low Power outperforms CMOSOffset/drain reduces Ioff(ambipolar current)

    LETI: Mayer et al, IEDM 2008

    Intel: U.E. Avci et al, VLSI Tech Symp 2011

    EPFL: K. Boucart & A. M. Ionescu, ESSDERC 2006TUM: M. Schlosser et al. IEEE TED, Jan. 2009

    Multigate improves Ion

  • 8/3/2019 DeleonibusPresentation

    30/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 30

    CoCo--Integrating Heterogeneous orientation or materialsIntegrating Heterogeneous orientation or materials3D sequential process3D sequential process

    (100)

    FirstFirst heterogeneousheterogeneous orientation in 3D Siorientation in 3D Si sequentialsequential integrationintegration

    EnabledEnabled by use of waferby use of wafer bondingbonding byby keepingkeeping lowlow thermal budgetthermal budget

    (110)

    0.0 0.2 0.4 0.6 0.8 1.00

    50

    100pMOS

    Reference TiN/ HfO2/ Si (100)

    TiN/HfO2/Si(110)

    eff

    ,hole(cm

    2/V.s)

    Eeff (MV/cm)

    P.Batude et al., Best student Paper Award, IEDM 2009

    Ge

    -4T SRAM

    - cold end process(bonding).

    Opportunities for other SC(Ge,III-V,...)

    - improved layout (40% area SRAM cell)-dynamically controlled VT:

    improved RNM and SNM

  • 8/3/2019 DeleonibusPresentation

    31/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 31

    Tsi 10nm

    Tsi ~10 nm

    LG~50 nm

    THFO2 2.5 nmTiN

    LG~50 nm

    Sequential 3D: towards nanoscale devices

    First demonstration of 3D sequential structuredown to LG 50 nm

    P.Batude et al, 2011 VLSI Tech Symp

    P.Batude et al., IEDM 2011, Invited talk

  • 8/3/2019 DeleonibusPresentation

    32/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 32

    -2 -1 0 10.00

    0.01

    0.02

    0.03Top FET

    Bottom FET

    EOT= 1.45nm

    EOT= 1.15nm

    Ca

    pacitance(F

    /m

    2)

    Gate Voltage VG(V)

    BOX

    HfOHfO22= 2.5nm= 2.5nm

    Specific interest of low temperature process

    The low temp. process (600C) leads to a reduced EOTExplained by a reduction of interfacial oxide growthP.Batude et al, 2011 VLSI Tech Symp

    Sequential 3D: Potential and Demonstrated ApplicationsSequential 3D: Potential and Demonstrated Applications

  • 8/3/2019 DeleonibusPresentation

    33/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 33

    ~ 1 node gain withsame design rules for

    Front end levels

    top

    GeOI pMOS

    2m

    nMOSGate

    nMOS

    Source

    pMOS

    Gate

    pMOSSource

    bottom

    SOI nMOS

    top

    GeOI pMOS

    2m

    nMOSGate

    nMOS

    Source

    pMOS

    Gate

    pMOSSource

    bottom

    SOI nMOS

    Y-H. Son et al, VLSI 07, Jung et al, IEDM 2006

    Nanoelectronics &Photonicsapplications withSi-Ge Co-integration

    SRAM on top SOIlogic, I/Os, analogon bottom bulk

    SRAMs FLASH

    Sequential 3D: Potential and Demonstrated ApplicationsSequential 3D: Potential and Demonstrated Applications

    High density logic applicationsHigh density logic applications

    Highly miniaturizedHighly miniaturized

    CMOS imagers pixelsCMOS imagers pixels

    Heterogeneous integrationHeterogeneous integration 3D memories3D memories

    P. Coudrain et al, IEDM 08,

    P. Batude et al,VLSI09P.Batude et al., IEDM 2009, Best Student Paper Award

    3D Xb M t k d L i t d NV

  • 8/3/2019 DeleonibusPresentation

    34/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 34

    Logic + Stacked NVM:

    High bandwith,Reduced Power consumption,

    Reconfigurability

    ex: 32 nm node : > 1TB/s per 1mm2

    Resistive switchesToshiba, Stanford Univ.: K.Abe et al, ICICDT 2008

    3D-Xbar Memory stacked on Logic: towards NV

    Logic

    proven in 2D with

    Magnetic Tunnel Junctions,

    FeRAM Tohoku Univ., Hitachi:S.Matsunaga et al., Appl.Phys. Express(2008);

    ROHM

    Advanced Devices and Systems

  • 8/3/2019 DeleonibusPresentation

    35/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 35

    MoreMoore

    MorethanMoore

    Dual channel

    xsSOI(N)/ Ge(P)

    Advanced Devices and Systems

    Future Vision

    UTBOX

    22nm 16nm

    sSOI

    2010 20132009 2014 2016

    FDSOI

    11nm

    Std SOI

    HP options

    Nanowire

    3D Nanowires

    3D stacked devices3D

    Logic

    2012 2015

    3D

    III-V/Ge Heat sink C

    Memory storing(SRAM, NVM) -

    ZDRAM

    3D stacked Mixed functions:

    NV Logic +sensors/polymers

    X bar

    3D Sensing/Actuation

    Bio, Mechanical &Chemical

    (functionalization,

    NEMS, Single

    electronics, RF,

    opto, )

    Diversified Logic(association to Memory,Passives, Sensors,)

    Beyond CMOS(e-wavesconfinement, Spinelectronics)

    Si

    FeFe

    Si

    FeFe

    Low stress,HiD

    Carbone

    lec

    tron

    ics

    (CN

    T,G

    rap

    hene,

    Dia

    mon

    d)

    Transfer to Industry Development

    < 11nm

    Opportunities for other materials on Silicon

  • 8/3/2019 DeleonibusPresentation

    36/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 36

    2.1x1060.721.4212.9554008500GaAs

    4

    2,7

    5,0@77K

    0.6

    0,60

    0,86

    vsat(107cm/s)

    1x1012cm-2

    (1x1015)

    10-27

    2x1016

    6X1011

    2x1013

    2x1010

    ni(cm-3)(m*em*h/m

    2)T3/2

    exp(-Eg/2kT)

    0.1716.91.885077000InSb

    Semi-metal

    5.71000104-105104-105Graphene

    (CNT) sp2

    5.7

    13.9

    16

    11.9

    Rel. K

    5.47

    0.74

    0.66

    1.12

    Eg(eV)

    200018002200C-Diamondsp3

    530012 000InGa0.47As0.53

    59.919003900Ge

    1415001400Si

    sth (W/m/K)p(cm2V-1s-1)

    n(cm2V-1s-1)

    Material

    2.1x1060.721.4212.9554008500GaAs

    4

    2,7

    5,0@77K

    0.6

    0,60

    0,86

    vsat(107cm/s)

    1x1012cm-2

    (1x1015)

    10-27

    2x1016

    6X1011

    2x1013

    2x1010

    ni(cm-3)(m*em*h/m

    2)T3/2

    exp(-Eg/2kT)

    0.1716.91.885077000InSb

    Semi-metal

    5.71000104-105104-105Graphene

    (CNT) sp2

    5.7

    13.9

    16

    11.9

    Rel. K

    5.47

    0.74

    0.66

    1.12

    Eg(eV)

    200018002200C-Diamondsp3

    530012 000InGa0.47As0.53

    59.919003900Ge

    1415001400Si

    sth (W/m/K)p(cm2V-1s-1)

    n(cm2V-1s-1)

    Material

    Highest n but Worst n/p!!

    Well established high quality material(>40yrs experience) Oxidizable !

    Silicon compatibleAvailable in all fabsGaAs lattice constant matching

    Opto/Power RF applicationsGe compatibleHP N channel

    Highest th

    Most compact logic,

    Interconnect

    High short channel

    effect immunity

    Passive layer combine

    w BOx

    (thermal shunt)

    Poor short channel

    effect immunity

    BTBT

    TFET/W

    Opportunities for other materials on SiliconElectronic Device Architectures for the Nano-CMOS Era

    From Ultimate CMOS Scaling to Beyond CMOS Devices

    Editor: S.Deleonibus, Pan Stanford Publishing, July 2008

  • 8/3/2019 DeleonibusPresentation

    37/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 37

    Outline

    Introduction : Trends and Hot Topics in Nanoelectronics

    Nanoelectronics scaling and use of the 3rd

    dimension to continue Moores law.

    Interfacing the Multiphysics World (More Than Moore)thanks to functional diversification

    Building new systems and their packagingwith a 3D tool box at a wafer level.

    Conclusions

    NEMS scaling laws Is it worth scaling?

  • 8/3/2019 DeleonibusPresentation

    38/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 38

    NEMS scaling laws. Is it worth scaling?

    k3 [rough estimate]energy consumption

    k-4mass responsivity

    k-1resonant frequency

    kstiffness

    k3mass

    Scaling ruleParameter

    twlMeff

    3

    3

    l

    tweff

    20 lt

    Mf

    eff

    eff

    effeff M

    f

    M

    f

    2

    00 =

    =

    2

    2

    1MaxeffP xE

    txMax and

    - resolution increases- sensitivity decreases (SBR,SNR) => arrays, actuation,- figures of merit pressure and vacuum quality dependent

    ( )20/10 DReff

    Q

    Mm =

    SNRP

    SDR

    act

    noise 1=

    ML Roukes et. al. APL (2005)

    Nanowire used for mass detection

  • 8/3/2019 DeleonibusPresentation

    39/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 39

    Nanowire used for mass detection

    - First 200 mm wafers with 3.5 millions NEMS

    - Association Nanowire/Resonator ; Cantilever arrays

    CMOS compatible

    Capacitive actuation & detection Capacitive actuation & piezo-resistive

    detection with nanowires

    Thermo-elastic actuation& piezo-resistive detection.

    15 nm oscillator

    Hzzgm /5.0

    Q=870 resonator

    Gauge width = 80 nm

    LETI: T.Ernst et al., IEDM 2008, Invited talk

    L. Duraffourg et. al, APL 92, 174106 (2008)

    E Mille et al, Nanotechnology, 165504, (2010)

    NEMS array

    M&NEMS co integrated devices platform

  • 8/3/2019 DeleonibusPresentation

    40/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 40

    M&NEMS co integrated devices platformfor 3D sensing

    i

    P.Robert et al, 2009 IEEE SensorsD.Ettelt et al, 2011 Transducers

    3-axis accelerometerR/R

  • 8/3/2019 DeleonibusPresentation

    41/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 41

    NEMS switch

    from AB. Kaul et al., Nano Letters 6(5) 942-947 (2006)

    high speed

    rf

    from Q.Li et al.,IEEE Nano 6(2) 256-262 (2007)

    bistable

    memory

    high on/off low powerlogic

    from D. Tsamados et al. Solid-State Elec. 52 1374 (2008)

    O li

  • 8/3/2019 DeleonibusPresentation

    42/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 42

    Outline

    Introduction : Trends and Hot Topics in Nanoelectronics

    Nanoelectronics scaling and use of the 3rd

    dimension to continue Moores law.

    Interfacing the Multiphysics World (More Than Moore)thanks to functional diversification

    Building new systems and their packagingwith a 3D tool box at a wafer level.

    Conclusions

    System On Wafer: Heterogeneous co-Integrated Systems

  • 8/3/2019 DeleonibusPresentation

    43/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 43

    Heterogenous Integration On Silicon

    80 m diameter TSV

    imagers packaging

    1 m diameter

    High AR TSV stacked ICs

    12m1m

    Si

    Si

    12m1m

    Si

    Si

    Si

    Si

    Cu

    SiO2

    Si

    Si

    Cu

    SiO2

    Si

    Si

    Cu

    SiO2

    Si

    Si

    Cu

    SiO2

    Copper/Copper bonding

    Oxide/Oxide bonding

    Wafer level packaged MEMS

    Packaging is taken into account

    at the 3D wafer level

    y g g y(Parallel 3D)

    Embedded passives

    (Passives, filters, spin

    torque osc,)

    Stacked Memories +

    Logic, Sensors,,

    Optical Interconnects

    Energy source

    converterMEMS

    Stacked ICs

    Cooling

    option

    Commercial products

    - image on board VGA camera,- mixed nodes & modes,

    - high density TSV

    Cross talks:-delay, matching,

    -power dissipation

    (global temp. increase,

    hot spots, reliability, )

    Multiphysics

    New Progress Laws

    - application specific

    Viabe

    lttechnol

    ogy

    MEMS+ICs

    tack

    Ultraflat3D

    Chipstac

    king(TSV)

    ActiveSili

    coninterp

    oser

    3D Integration: from imagers to advanced 3D ICs

  • 8/3/2019 DeleonibusPresentation

    44/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 44Image-on-Board

    Active Silicon interposer

    Die to Die Copper pillars

    Die to substrate

    copper pillars

    Thinned wafer(~100 m)

    Diam 60mThick 120 m

    Via Last TSV(Aspect Ratio 2-3)

    g g

    Memory, Processors,Memory, Processors,Memory, Processors,Memory, Processors, ImagersImagersImagersImagers

    withwithwithwith highhighhighhigh densitydensitydensitydensity TSV, NEMSTSV, NEMSTSV, NEMSTSV, NEMS

    3D-IC

    Metal1

    TSV~3m Thin Si~15m

    TSV~3m Thin Si~15m

    3D highdensity

    withTSV

    2001

    2008

    VGA cameras (300kpixels)

    withTSV

    2001

    2008

    2001

    2008

    VGA cameras (300kpixels)

    STSTSTST LETI collaborationLETI collaborationLETI collaborationLETI collaborationStack structure

    170m

    30m

    120m

    80m

    400m

    Pitch 120m

    Pitch 50m

    Stack structure

    170m

    30m

    120m

    80m

    400m

    Pitch 120m

    Pitch 50m

    Mixed Signal

    Digital/Analog STSTSTST LETI collaborationLETI collaborationLETI collaborationLETI collaboration

    Photonics Integration on Silicon.

  • 8/3/2019 DeleonibusPresentation

    45/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 45

    The building blocks.

    Grating coupler

    Waveguide

    In-plane coupler

    Optical modulator

    MUX & DEMUX

    Laser source

    Optical switch

    Photodetector

    LETI: L.Fulbert ESSDERC 2011, Invited talk

    Application DriversGreat focus on packaging & integration

  • 8/3/2019 DeleonibusPresentation

    46/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 46

    COMPUT

    ING

    &STORAG

    E

    Application Drivers

    MOBIL

    E

    MO

    BILE

    WIRELESS

    WIRELESS HEAL

    TH

    AUTOMOTIV

    E

    CONSUME

    R

    CONSUME

    R

    FormForm FactorFactor

    CostCost

    PerformancePerformanceNokia N82, 5Mpixel

    Video capture,coding, transmission

    Ultra small TVTuner , Sharp

    One Chip SetTopBox(STM)

    Computer controlusing thoughts

    Quad Core Intel

    Intel's Teraflop Chip

    128 GB SSD, Toshiba

    Full tranceiver onChip, Antenna+RF+

    Baseband, Leti

    Conclusion :Nanoelectronics CMOS from

  • 8/3/2019 DeleonibusPresentation

    47/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 47

    Co c us o a oe ect o cs C OS oDevices to Systems Perspectives

    Si CMOS: Nanoelectronics Base platform beyond ITRS

    Durable Low Power solutions:health, environment, quality of life, energy, IST,

    Low Power consumption: major challenge (sub 1V VDD CMOS).

    => Device/ system architecture optimization:

    Thin Films Gate All Around nanowires, low slopes,layout, 3D

    => Opportunities for new materials on Silicon

    (Ge, revised low BG III-V, Carbon,) to co-integrate from LSTP to HP.

    Heterogeneous 3D co-Integration on Si, Low Power: Monolithic/Sequential 3rddimension in device. New active materials Reconfigurability with NVM ; NV Logic

    System On Wafer: 2 to 3D heterogeneity functions & chips

  • 8/3/2019 DeleonibusPresentation

    48/49

    Thank you for your attention

    Merci de votre attention

  • 8/3/2019 DeleonibusPresentation

    49/49

    CEA. All rights reserved

    S.Deleonibus CEA-LETI December 2011 | 49

    Electronic Device Architectures for the Nano-CMOS Era

    From Ultimate CMOS Scaling to Beyond CMOS Devicesedited bySimon Deleonibus (CEA-LETI, France)Cloth July 2008 978-981-4241-28-1

    Discusses the scaling limits of CMOS, the leverage brought by

    new materials, processes and device architectures (HiK andmetal gate, SOI, GeOI, Multigate transistors, and others), thefundamental physical limits of switching based on electronicdevices and new applications based on few electrons operation

    Weighs the limits of copper interconnects against thechallenges of implementation of optical interconnects

    Reviews different memory architecture opportunities throughthe strong low-power requirement of mobile nomadic systems,due to the increasing role of these devices in future circuits

    Discusses new paths added to CMOS architectures based onsingle-electron transistors, molecular devices, carbon nanotubes,and spin electronic FETs

    Available at Amazon.com or

    any good bookstores.