Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex...

28
Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE Newcastle University, UK

Transcript of Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex...

Page 1: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

Delay/Phase Regeneration Circuits

Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev

Microelectronics Systems Design Group

School of EECE

Newcastle University, UK

Page 2: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 2/28

OutlineIntroduction

Background on Phase-encoding

Dual-rail/multiple-rail phase encoding

Motivation for the present work

Taxonomy

Latch-based designs

MUTEX-based designs

Design types

Conclusions

Page 3: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 3/28

Phase EncodingDual-Rail

Main idea: encode data on the phase relationship between two identical out-of-phase signals

Resistant to transient faults

Similarity with dual-rail dual-spacer protocol

sp0 sp1

0

sp0

1

sp1

0

sp0

0

ref

t_1

t_0

data

t_1 before t_0t_0 before t_1

Page 4: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 4/28

Multiple RailNo group of wires has the same delay

All wires toggle when an item of data is sent

17 2017

/req

/ack

/a

/b

/c

/d

cdba cdba dbac

Page 5: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 5/28

Phase Corruption Phase corruption is due to jitter (introduced by the gates), physical wire fabric and transistor mismatches

Mismatch in process variations cause a systematic delay offset to appear between the two lines, which could cause errors in decoding

Additionally, cross-talk causes symbol-dependent phase corruption

As the wires are always “allies” in terms of cross-talk, the longer the wire, the more corrupted the phase relationship between the wires

What is then the optimal length of wire which “guarantees” that the phase relationship is maintained?

Page 6: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 6/28

Phase CorruptionExample of phase corruption

No change in sequence

Change in absolute value of phase

Page 7: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 7/28

TaxonomyDifferent design styles can be identified

We focus in this presentation on digital implementations

Latch-based designs

A latch is used on each wire

Gate-level implementation

Transistor-level implementation

MUTEX-based designs

A single MUTEX is used to arbitrate between the two edges

“Early-propagating”

“Merging”

Page 8: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 8/28

ParametersMaximum input time separation affected δmax

Events whose time separation is > δmax retain their original separation

Circuit latency λ

Time between the first event occurring and the corresponding output being generated

Response time ζ

Time between the two events below which the time separation cannot be regenerated

Capture range κ= δmax – ζ

Using the convention sometimes used in PLLs to give a value for the range

Linearity

Page 9: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 9/28

Graphs

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Out

put T

ime S

epar

atio

n/La

tenc

y (F

O4)

Input Time Separation (FO4)

Response of latch-based design (2)

FallRise

Latency (fall)Latency (rise)

δmax

λ

ζ

κ

Linearity:

how flat

this part is

Page 10: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 10/28

Passive Solution

“Textbook” solution

Different response for rising/falling – can be matched using balanced drivers

Not very linear

Capacitor size a problem – also introduces latency

0

2

4

6

8

10

12

0 2 4 6 8 10O

utpu

t Tim

e Sep

arat

ion/

Laten

cy (F

O4)

Input Time Separation (FO4)

Response of passive device

FallRise

Latency (fall)Latency (rise)

o2

o1i1

i2

Sender

Page 11: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 11/28

Latch-basedGate level/1

Q

Q

D

G

i2

i1 o1

o2

Q

Q

D

G

Page 12: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 12/28

Latch-basedGate level/1

Latches are transparent at startup

They are closed after one edge arrives at the output

They are then reopened after the pulse is finished

6 FO4 capture range, stops working around 5 FO4 input delta

Difference in rising and falling behaviour

Q

Q

D

G

i2

i1 o1

o2

Q

Q

D

G

0

2

4

6

8

10

12

0 2 4 6 8 10O

utpu

t Tim

e Sep

arat

ion/

Laten

cy (F

O4)

Input Time Separation (FO4)

Response of latch-based design (1)

FallRise

Latency (fall)Latency (rise)

Page 13: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 13/28

Latch-basedGate level/2

Similar to previous design

Two pulse generators – faster

Only blocks one output and not both

Only one output used – less difference between rising and falling edges

Q

Q

D

G

Pulse generator - width=

Pulse generator - width=

i2

i1 o1

o2Q

Q

D

G

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10O

utpu

t Tim

e Sep

arat

ion/

Laten

cy (F

O4)

Input Time Separation (FO4)

Response of latch-based design (2)

FallRise

Latency (fall)Latency (rise)

Page 14: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 14/28

Latch-basedTransistor level

i1

i2

o2

o1

Page 15: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 15/28

Latch-basedTransistor level

Better latency and response

Capture range can be increased increasing tau

Good linearity

i1

i2

o2

o1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4Ou

tput

Tim

e Sep

arati

on/L

atenc

y (F

O4)

Input Time Separation (FO4)

Response of transistor-based design (with keepers)

FallRise

Latency (fall)Latency (rise)

Page 16: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 16/28

MUTEX-based

i2

i1

o2

o1

Page 17: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 17/28

MUTEX-based

Higher latency (complex gates)

Good response and capture range

Poor linearity

Early-propagating

i2

i1

o2

o1

0

2

4

6

8

10

0 1 2 3 4 5

Out

put T

ime

Sepa

ratio

n/L

aten

cy (F

O4)

Input Time Separation (FO4)

Response of modified-ME design

FallRise

Latency (fall)Latency (rise)

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Out

put T

ime

Sepa

ratio

n/La

tenc

y (F

O4)

Input Time Separation (FO4)

Response of modified-ME design

FallRise

Page 18: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 18/28

MUTEX-based

“Infinite” capture range – lower-bounded

Flat response

Very high latency – dependent on input time separation

NOR-MUTEX is slow

C C

g11g12

g21

g22

g12g11

g22

g21

i1

i2

o1

o2

+

-

g11

g12

g21

g22

ref

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10O

utpu

t Tim

e Sep

arat

ion/

Laten

cy (F

O4)

Input Time Separation (FO4)

Response of "merge" design

FallRise

Latency (fall)Latency (rise)

Page 19: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 19/28

STG for RepeaterSTG for a repeater

Use timing assumptions:

i1- -> p1 -> g11-, g12-

g11- -> i1+

… and mirror ones

This STG can be synthesised using PETRIFY

Synthesised version in next slide…

g21-

o2-

o1-

o1-

g22-

o2-

g21+ g22+

i2-i1-

ME2

ME1

g11+

o2+

o1+

o1+

g12+

o2+

g11- g12-

i1+ i2+

p1 p2

p7

p5

p8

p3 p4

p6

Page 20: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 20/28

MUTEX-basedw/PETRIFY

Very good linearity and capture range

High latency independent on input until 0.5 FO4

Generated using PETRIFY (STG in previous slide)

i2

i1

o2

o1

C

g22

g11

g12

g21

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20O

utpu

t Tim

e Sep

arat

ion/

Laten

cy (F

O4)

Input Time Separation (FO4)

Response of PETRIFY-generated design

FallRise

Latency (fall)Latency (rise)

Page 21: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 21/28

TSETransition Sequence Encoder

This circuit generates a number of requests based on an input matrix

The acknowledgments can be either “proper” or a delayed version of the output signals

Can be used as a phase-encoder

req[1]

req[2]

req[3]

ack[1]ack[2]ack[3]

go

R[1,3]

R[1,2]

R[2,3]

R[2,1]

R[3,2]

R[3,1]

Page 22: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 22/28

MUTEX-TSE

This solution is similar to the MUTEX-based one, only using the TSE as a sender

λ < 2 FO4

Increasing output time separation dependent on the input (output δ > 8FO4)

C

i1

i2

o1

o2

R[1,2]

R[2,1]

go

0

5

10

15

20

0 2 4 6 8 10O

utpu

t Tim

e Sep

arat

ion/

Laten

cy (F

O4)

Input Time Separation (FO4)

Response of TSE design

FallRise

Latency (fall)Latency (rise)

Page 23: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 23/28

TSE – Transistor-level

Like above, only rising and falling edge

Transistor-level implementation of the TSE

Results similar to the previous case

Note the similarity with the transistor-level latch-based design

C

i1

i2

R1[1,2]

R2[1,2]

R2[2,1]

o2

o1

R2[1,2]

R1[1,2]

R1[2,1]

R1[2,1]

R2[2,1]

0

5

10

15

20

0 2 4 6 8 10O

utpu

t Tim

e Sep

arat

ion/

Laten

cy (F

O4)

Input Time Separation (FO4)

Response of TSE design (transistor level)

FallRise

Latency (fall)Latency (rise)

Page 24: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 24/28

Multiple-railMultiple-rail phase-encoding requires similar designs to regenerate the phase relationship

The design on the right is a simple expansion of the previous latch-based design

Very slow response

Only useful for large δ

Acceptable latency

Q

Q

D

G

Q

Q

D

G

Q

Q

D

G

Q

Q

D

G

i2

i3

i4

Pulse generator

Pulse generator

Pulse generator

Pulse generator

i1 o1

o2

o3

o4

Page 25: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 25/28

Multiple-rail “merge”

Better design: use a TSE

Shown: 3-wires regeneration – left, rising edge only, right; rising and falling edges

Better response, but λ depends on the input time separation (needs to wait for all inputs to be present)

i1

i2

i3

o1

o2

o3

sender

go

receiver

R1[1,3]

R1[1,2]

R2[1,2]

R2[1,3]

Co1

o4

o2

o3

go

R1[1,4]

R2[1,4]

Page 26: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 26/28

Performance comparison

Dual-rail implementations

Area in transistor count

κ and λ in FO4

Area and energy for “Latch-based transistor level” design is for no keeper/keeper

“Charge compensation”: area calculated estimating the size of the capacitors

Avg. for rise/fall

Design Area pJ/bit ζ κ λ

Latch-based 1 58 0.82 6 (avg)

2 2.5

Latch-based 2 68 0.59 4 3 3.5

Mod. MUTEX 88 1.17 <0.5 1 7

Automatic Synthesis

94 0.9 <0.1 5 7

MUTEX-based merging

110 0.98 <0.1 δinput

Latch-based transistor level

28/32

0.43/0.47 <0.5 3 1

Charge-compensation

24 0.22 2 4 4 (avg)

TSE gate-level

74 0.78 <0.1 δinput

TSE transistor-level

52 0.79 <0.1 δinput

Page 27: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 27/28

ConclusionsSome phase-regeneration circuits have been presented

More work to do:

Metastability behaviour, in particular for keeper structures

Behaviour in case of faults

Characterisation with different input signal slopes

Page 28: Delay/Phase Regeneration Circuits Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, Alex Yakovlev Microelectronics Systems Design Group School of EECE.

ASYNC 2007 - C D'Alessandro et al. - 28/28

Contact details

Crescenzo S. D’Alessandro

Microelectronics Systems Design Group

School of Electrical, Electronics and Computer Engineering

Merz Court

Newcastle University, UK

Crescenzo.D’[email protected]

http://async.org.uk