DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

download DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

of 20

Transcript of DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    1/20

    Very fast exhumation of high-pressure metamorphic rocks with

    excess 40Ar and inherited 87Sr, Betic Cordilleras, southern Spain

    Koen de Jong*

    Department of Isotope Geochemistry, Vrije Universiteit, Amsterdam, The Netherlands

    CNRS, UMR 6526 Geosciences Azur, Universite de Nice-Sophia Antipolis, Nice, France

    Abstract

    In order to attempt to further constrain the age of the early Alpine tectonic evolution of the Mulhace n Complex and to

    explore the influence of inherited isotopes, micas from a small number of well-characterised rocks from the Sierra de los

    Fila bres, with a penetrative tectonic fabric related to the exhumation of eclogite-facies metamorphic rocks, were selected for40Ar/39Ar and RbSr dating.

    A single phengite grain from an amphibolite yielded an40

    Ar/39

    Ar laser step heating plateau age of 86.9F 1.2 Ma (2r; 70%39Ar released) and an inverse isochron age of 86.2F2.4 Ma with an 36Ar/40Ar intercept within error of the atmospheric value.

    Induction furnace step heating of a biotite separate from a gabbro relic in an eclogite yielded a weighted mean age of

    173.2F 6.3 Ma (2r; 95% 39Ar released). These ages are diagnostic of excess argon (40ArXS) incorporation, as they are older

    than independent age estimates for the timing of eclogite-facies metamorphism and intrusion of the gabbros. 40ArXSincorporation probably resulted from restricted fluid mobility in the magmatic rocks during their metamorphic recrystallisation.

    RbSr whole-rockphengite ages of graphite-bearing mica schists from Paleozoic rocks (Secano unit) show a dramatic

    variation (66.1F 3.2, 40.6F 2.6 and 14.1F2.2 Ma). An albite chlorite mica schist from the Mesozoic series of the Nevado

    Lubrn unit has a whole-rockmicaalbite age of 17.2 F 1.9 Ma, which is within error of an 40Ar/39Ar plateau age published

    previously and of the youngest RbSr age of the Paleozoic series obtained in this study. The significant spread in RbSr ages

    implies that progressive partial resetting of an older isotopic system has occurred. The microstructure of the samples with pre-

    Miocene RbSr ages reveals incomplete recrystallisation of white mica and inhibited grain growth due to the presence of

    graphite particles. This interpretation agrees with previously published, disturbed and slightly dome-shaped 40Ar/39Ar age

    spectra that may point similarly to the presence of an older isotope component. The progressively reset RbSr system is a relic

    of Variscan metamorphism of the Paleozoic series of the Mulhacen Complex. In contrast, the origin of the ca. 17.2 Ma old

    sample from the Mesozoic series precludes any isotopic inheritance, in agreement with its pervasive tectono-metamorphic

    recrystallisation during the Miocene.

    Exhumation of the eclogite-facies Mulhacen Complex occurred in two stages with contrasting rates of about 22.5 mm/yearduring the early phase and 910 mm/year during the late phase; the latter with a cooling rate in the order of 330 jC/Ma.

    D 2003 Elsevier B.V. All rights reserved.

    Keywords: 40Ar/39Ar dating; Excess argon; Isotope inheritance; Phengite; Biotite; Fluids

    0024-4937/$ - see front matterD 2003 Elsevier B.V. All rights reserved.doi:10.1016/S0024-4937(03)00094-X

    * Present address. Argon Geochronology Laboratory, Department of Geosciences, National Taiwan University, 245 Choushan Road, Taipei

    106, Taiwan, ROC. Tel.: +886-2-3365-1899; fax: +886-2-2363-6095.

    E-mail address: [email protected] (K. de Jong).

    www.elsevier.com/locate/lithos

    Lithos 70 (2003) 91110

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    2/20

    1. Introduction

    Phengite has yielded meaningful 40Ar/39Ar plateau

    ages for eclogite-facies metamorphic rocks (Bosse etal., 2000), but research during the last decade of the

    20th century provided a lot of evidence for the incor-

    poration of excess argon (40ArXS) in its lattice (e.g.

    Tonarini et al., 1993; Li et al., 1994; Arnaud and

    Kelley, 1995; Inger et al., 1996; Sherlock et al.,

    1999). 40ArXS uptake occurs in association with partial

    recrystallisation of high-pressure phengite during sub-

    sequent metamorphism at lower temperature and pres-

    sure (Hammerschmidt and Franz, 1992; Hannula and

    McWilliams, 1995; Ruffet et al., 1995; Reddy et al.,

    1996; de Jong et al., 2001). Alternatively, strongly

    restricted fluid mobility, leading to the incorporation of

    locally derived (inherited) argon, is commonly quoted

    as the mechanism responsible for the frequently ob-

    served elevated phengite 40ArXS ages in (ultra-) high-

    pressure metamorphic rocks (Scaillet, 1996; Boundy et

    al., 1997; Li et al., 1999; Giorgis et al., 2000), and is

    also seen as the reason for the survival of pre-orogenic

    RbSr ages in biotite (Verschure et al., 1980; Kuhn et

    al., 2000). It appeared that incorporation of argon into

    phengite may have been controlled by very low lattice

    and grain boundary diffusion under dry, eclogite-facies

    conditions and that the gas has been internally derivedfrom within the eclogite protoliths.

    de Jong et al. (2001) attempted to constrain the age

    of early Alpine exhumation of the Mulhacen Complex

    of the Internal Zone of the Betic Cordilleras of

    southern Spain, or Betic Zone (Fig. 1). They obtained

    widely scattered 40Ar/39Ar laser step heating plateau

    ages between 15.8F 0.4 and 90.1F1.0 Ma (2r) on

    well-crystallised single phengite grains from orthog-

    neisses in a small area in the easternmost Sierra de los

    Filabres (Fig. 2). Age discordance was observed at the

    outcrop scale as well as in individual grains. The

    authors explained these phenomena by 40ArXS uptake

    that seems to be associated with the gneisses, since the

    RbSr ages in these rocks are systematically younger

    than the KAr and 40Ar/39Ar ages. Specific to this

    case is the occurrence of hydraulic cracks in the

    gneisses, high atmospheric contamination and submi-

    croscopic illitisation of phengite, permitting 40ArXSstorage in interlayer vacancies and other lattice imper-

    Fig. 1. Tectonic map of the eastern Betic Cordilleras, modified after de Jong (1993a). The sampled areas in the eastern Sierra de los Filabres

    (Figs. 2 and 3) are outlined. Stars: samples from the Sierra de Baza (SdB) and from Cerro del Almirez (CdA) are discussed.

    K. de Jong / Lithos 70 (2003) 9111092

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    3/20

    Fig. 2. Geological map of the easternmost Sierra de los Fila bres, modified afterde Jong et al. (2001), with the sample locations indicated by

    arrows. The Ar/Ar total gas ages obtained by these authors on single phengite grains at different locations (stars) in gneiss body of the Macael

    Chive unit are indicated.

    K. de Jong / Lithos 70 (2003) 91110 93

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    4/20

    fections. The oldest phengite was from a coarse-

    grained gneiss with closely spaced late-stage hydrau-

    lic cracks, which are lacking in fine-grained mylonitic

    gneiss that yielded the youngest micas. Hence, theinteraction of meteoric waters with the hot metamor-

    phic rocks, phengite recrystallisation and 40ArXS up-

    take were much more intense in the coarse-grained

    gneiss. Like the fine-grained mylonitic gneisses, mica

    schists and mica-bearing foliated amphibolites lack

    such extensively developed hydraulic crack networks,

    rendering them less liable for the incorporation of40ArXS by this mechanism. Accordingly, white mica

    from albitechloritemica schists and marbles with a

    penetrative S2 yielded 15.417.6 Ma40Ar/39Ar pla-

    teau and total fusion ages (de Jong et al., 1992) that

    are not obviously affected by significant levels of

    incorporated 40ArXS.

    The aim of the present study is to investigate

    further the occurrence and source of excess argon as

    well as the role of limited fluid mobility in the

    incorporation process during the early tectono-meta-

    morphic evolution of the Mulhacen Complex in the

    Sierra de los Fila bres. For this purpose, we used

    biotite from a gabbro with a Late Jurassic Rb Sr

    isochron age, in which 40ArXS incorporation has been

    established, and that occurs in the core of an eclogite,

    which is chemically well characterised. In addition,we selected a phengite grain from an amphibolite,

    which occurs in the same level as the eclogite, and

    that acquired a penetrative fabric during the main

    tectono-metamorphic phase, D2, subsequent to the

    eclogite-facies metamorphism. Also, we applied

    RbSr dating to a small number of mica schists with

    a tectono-metamorphic fabric that was formed during

    D2 and which, in a previous study, yielded40Ar/39Ar

    age spectra that are in part slightly dome-shaped and

    in one case flat. Our data set has a large spread in

    ages, which is interpreted as due to the occurrence of40ArXS and partially inherited radiogenic40Ar and

    87Sr isotopes, but, the least affected samples permitted

    to date the timing of exhumation of the Mulhacen

    Complex as Middle Miocene.

    2. Tectonic setting

    The Betic Zone comprises a stack of four nappe

    complexes that have overthrust the southernmost

    External Zone, which crops out in windows as the

    (very) low-grade metamorphic Almagride Complex

    (Fig. 1; Simon, 1987; de Jong, 1993a). These are,

    from top to bottom: (1) the Malaguide Complex, (2)Alpujarride Complex, (3) Mulhacen Complex and (4)

    Veleta Complex (Egeler and Simon, 1969; Puga and

    Diaz de Federco, 1978; de Jong, 1993a,b; Puga et

    al., 1999, 2002). The Alpujarride and Mulhacen

    complexes have basal series of graphite-rich metape-

    lites and cover series of metapelites and metapsam-

    mites with abundant metacarbonates and greenstones

    and locally gypsum (Egeler and Simon, 1969; de

    Jong and Bakker, 1991; de Jong, 1991). The carbon-

    ate series of the Alpujarride Complex are well dated

    as Middle to Late Triassic by microfossils (Kozur et

    al., 1985; Simon, 1987), whereas the basal series of

    some tectonic units yielded Variscan ion-microprobe

    zircon ages (Zeck and Williams, 2001, and references

    therein). The Mulhacen Complex experienced an

    Alpine metamorphism composed of a sequence of

    different metamorphic facies (de Roever and Nijhuis,

    1963), as well as pre-Alpine recrystallisation, as will

    be outlined below. The Malaguide Complex has a

    Paleozoic basal series covered by a condensed, but

    almost complete Mesozoic and Tertiary section

    (Egeler and Simon, 1969). Sediment petrographical

    analysis of its Late Paleozoic series implies that itexperienced a Variscan orogeny (Herbig and Statteg-

    ger, 1989; Henningsen and Herbig, 1990), although a

    major angular unconformity between the Paleozoic

    and younger series did not form (Makel, 1988). The

    Veleta Complex comprises a monotonous lithological

    sequence of graphite-bearing mica schists and quartz-

    ites that yielded rare Middle Devonian (Lafuste and

    Pavillon, 1976) and Riphean (Gomez-Pugnaire et al.,

    1982) fossils. The Alpine tectono-metamorphic

    recrystallisation has essentially obliterated the pre-

    Alpine fabrics and mineral assemblages, except forinclusions in chloritoid porphyroblasts in some mica

    schists that are very rich in graphite (Puga and Diaz

    de Federco, 1978; Gomez-Pugnaire and Sassi, 1983;

    Puga et al., 2002).

    2.1. The Mulhacen Complex

    The Mulhacen Complex in the Sierra de los

    Fila bres is composed of three superimposed nappes

    (Figs. 2 and 3), each with a probably Paleozoic

    K. de Jong / Lithos 70 (2003) 9111094

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    5/20

    Fig. 3. Geological map of the northern part of the central Sierra de los Filabres, modified afterde Jong et al. (1992), with arrows indicating the

    sampled sites. Thrust slices on top of the Alpujarride Complex consisting of rocks of the Mulhacen Complex, north of Huertecicas Altas, have

    been omitted for clarity. Triangles indicate nappe contacts.

    K. de Jong / Lithos 70 (2003) 91110 95

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    6/20

    basal series of graphite-rich garnet mica schists that

    contain orthogneisses and metagranites in the up-

    permost two nappes (de Jong and Bakker, 1991).

    The cover series are generally regarded as Triassicand younger and comprise alternating quartzites and

    (albite-bearing) mica schists with marble levels in

    the upper parts (de Jong and Bakker, 1991; Tendero

    et al., 1993), hereafter called Mesozoic series.

    Ultramafic rocks, mainly serpentinites, and abundant

    greenstones occur in these higher levels, in part as a

    mapable unit of amphibolites and amphibole mica

    schists ((Figs. 2 and 3); de Jong and Bakker, 1991,

    encl. 1). Early Alpine eclogites occur locally in

    these greenstones (Morten et al., 1987; Bakker et

    al., 1989; Gomez-Pugnaire et al., 1989; Puga et al.,

    1989, 1999), which are wrapped by the main

    foliation (S2) in the matrix. Part of the eclogite-

    facies metabasites are derived from often cumulitic

    gabbros, with partly preserved igneous paragenesis,

    a MORB-like chemical composition and 143Nd/144 Nd ratios higher than 0.5130 and 87Sr/86Sr ratios

    below 0.705 (Puga et al., 2002). Morten et al.

    (1987) inferred that crystallisation of the gabbros

    occurred at pressures below 1 GPa. A troctolitic

    gabbro in the core of an eclogite yielded an RbSr

    mineral isochron age of 146F 3 Ma (Hebeda et al.,

    1980). The serpentinites are derived from spinellherzolites and secondary harzburgites with spini-

    fex-like textures, which both contain abundant part-

    ly rodingitised dolerite dykes (Puga et al., 2002).

    The origin of the greenstone association is still a

    matter of debate, with models ranging from a

    dismembered ocean floor sequence (Puga et al.,

    1989, 1999, 2002) to continental, rift-related mag-

    matism (Gomez-Pugnaire et al., 2000). Glauco-

    phane-bearing dolerites have locally well-preserved

    intrusive contacts with calcite marbles (de Jong and

    Bakker, 1991). The greenstone association mayhave developed in small oceanic pull-apart basins

    situated in a major continental strike-slip zone that

    connected Late Jurassic spreading centres in the

    Atlantic and Ligurian Oceans (de Jong, 1991,

    1993a).

    Maximum pressures of 2.0 2.2 GPa have been

    estimated for kyanite eclogites (Puga et al., 1999,

    2002) and metamorphic ultramafic rocks (Lopez

    Sanchez-Vizcano et al., 2001) in the Mulhacen

    Complex at temperatures of about 700 jC. Strong

    decompression concomitant with cooling of the rocks

    to 500600 jC took place during and subsequent to

    the main tectono-metamorphic phase, D2, which

    occurred at a pressure of about 1.51.7 GPa (Pugaet al., 2002) and 0.81.2 GPa (Bakker et al., 1989;

    de Jong, 1991, 1993a) during the final phase (Fig.

    10). This resulted in pervasive amphibolitisation of

    the eclogites. Further retrogression is marked by

    widespread albite and chlorite growth that occurs

    synkinematically with a phase of localised penetra-

    tive D3 folding at pressures of about 0.40.5 GPa

    and temperatures around 400 jC (Fig. 10; de Jong,

    1991, 1993a,c). The cooling was followed by pro-

    nounced late stage fluid-assisted reheating shown by

    the widespread occurrence of rims of oligoclase and

    biotite around albite and chlorite, respectively, as

    well as by rare and local growth of staurolite and

    kyanite during the early stages of D4 in mica schists

    of the Mesozoic series of the Nevado Lubrn unit

    (Bakker et al., 1989; de Jong, 1991, 1993a,c). The

    absence of garnet constrains the PT conditions at

    around 0.40.5 GPa and temperatures of about 500

    jC (Fig. 10). The reheating was related to extension

    (Bakker et al., 1989; de Jong, 1991, 1993a), which

    resulted in recrystallisation, isotope resetting and40ArXS incorporation (de Jong et al., 2001). Ductile

    (D5) and brittle ductile (D6) shear zones, whichdeveloped during retrogression, occur at various

    levels within the Mulhacen Complex, but character-

    istically at the contact with the overlying Alpujarride

    Complex (de Jong, 1991, 1993a,c).

    Micas from rocks with a penetrative alpine tectonic

    foliation have Rb Sr ages that generally range be-

    tween 12.5 and 16.9 Ma, whereas KAr and 40Ar/39Ar

    dates span 13.790.7 Ma (Monie et al., 1991; de Jong

    et al., 1992, 2001). Monie et al. (1991) obtained40Ar/39Ar ages of 24.6F 3.6 and 48.4F 2.2 Ma on

    amphibole (Sierra de Baza, Fig. 1). Eleven SHRIMPUPb analysis on nine zircon grains in a pyroxenite

    layer in ultramafic rocks (Cerro del Almirez, Fig. 1),

    which are characterised by high pressure breakdown

    of antigorite to spinifex-textured olivine and ortho-

    pyroxene, yielded a mean age of 15.0F 0.6 Ma

    (2r) (Lo pez Sanchez-Vizcano et al., 2001). This

    U Pb zircon age is comparable to the majority of

    RbSr ages of white mica and to 40Ar/39Ar ages of

    this mineral that are the least affected by 40ArXSuptake. Zircon fission-track ages of the Sierra de los

    K. de Jong / Lithos 70 (2003) 9111096

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    7/20

    Filabres are in the 1114 Ma range (Johnson et al.,

    1997).

    2.2. Pre-alpine history of the Mulhacen Complex

    Despite the pervasive nature of Alpine tectono-

    metamorphic recrystallisation, the basal series of the

    Mulhacen Complex contain unambiguous relics of

    pre-Alpine tectono-metamorphic evolution. Pre-Al-

    pine deformation structures are found in the deeper

    part of the complex in the Sierra Nevada, in some

    boudins or layers of graphite-bearing mica schists,

    which also contain pre-Alpine amphibolite-facies par-

    ageneses (Puga et al., 1975, 2002; Puga and Diaz de

    Federco, 1978). The occurrence of chloritoid + al-

    mandine, chiastolite + almandine + biotiteF staurolite

    parageneses or rare cordierite points to PT condi-

    tions of about 0.20.3 GPa and 500600 jC (Puga et

    al., 2002). Elsewhere, studies of the relationship

    between mineral growth and superimposed deforma-

    tion phases have not yielded any evidence for the

    presence of relic minerals that did not form during

    Alpine metamorphism (Kampschuur, 1975; Martnez

    Martnez, 1980; Bakker et al., 1989; de Jong, 1991).

    However, complex inclusion patterns in the cores of

    some Alpine porphyroblasts in the Sierra de los

    Filabres have been interpreted as due to a pre-Alpineorogeny (Helmers and Voet, 1967; Vissers, 1977),

    especially in garnets and staurolites that are spatially

    associated with orthogneisses.

    Gneisses and metagranites of the basal series of

    this complex in the Sierra de los Filabres have yielded

    RbSr errorchrons ranging between 275 and 191 Ma

    (Andriessen et al., 1991), which the authors discussed

    in the context of partial Alpine resetting and incom-

    plete isotope rehomogenisation. A 267F 29 Ma Rb

    Sr age (Andriessen et al., 1991) and a 307F 34 Ma

    SmNd isochron (Nieto, 1996) are regarded as the best estimate of the crystallisation age of the subsol-

    vus granites. The country rock to these intrusives is

    affected by contact metamorphism, as revealed by the

    occurrence of hedenbergite skarn and hornfels bodies

    (Helmers, 1982; de Jong and Bakker, 1991). The

    petrology of the granites and associated contact meta-

    morphic rocks indicates an intrusion depth of at least 6

    km (de Jong and Bakker, 1991), which agrees with

    PT estimates for pre-Alpine mineral assemblages

    described by Puga et al. (2002).

    3. Sample description

    3.1. Troctolitic gabbro

    Biotite separate ALM 104 (63 125 Am sieve

    fraction) has been obtained from a 1-m diameter

    massive troctolitic gabbro that occurs in an eclogite,

    which yielded a 146F 3 Ma RbSr mineral isochron

    age and an initial 87Sr/86Sr ratio of 0.7028F 0.0001

    (Hebeda et al., 1980). The biotite separate is known to

    have 40ArXS and was used as one of the points that

    defined the isochron and was selected for analysis to

    better understand this phenomenon. The gabbro is

    separated from the underlying albite chlorite mica

    schists (Tahal schists, de Jong and Bakker, 1991) by

    a fault that was folded during D4 and subsequently

    reactivated as a low-angle D6 detachment fault (de

    Jong, 1993c). This outcrop is part of a series of

    amphibolites and amphibole mica schists of the

    NevadoLubrn unit (Fig. 2). The course-grained

    gabbro has a cumulitic texture with olivine and

    labradoriteoligoclase as cumulus phases and clino-

    pyroxene as well as minor brown hornblende and

    biotite as intercumulus phases.

    3.2. Micaceous amphibolite

    The slightly elongated (0.75 1.5 mm) single phen-

    gite grain, JK 0, which has been used for 40Ar/39Ar

    dating, was obtained from a well-crystallised amphib-

    olite with a strongly developed tectonic fabric, from the

    same lithological unit as ALM 104 (Fig. 2). Blue-green

    hornblende and phengite have a well-developed shape-

    preferred orientation with respect to foliation S2,

    whereas c-axes of the amphibole are parallel to the

    lineation L2. Cores of a number of blue-green horn-

    blendes contain relics of glaucophane. The transforma-

    tion of glaucophane to blue-green hornblende is a syn-D2 reaction (Bakker et al., 1989; de Jong, 1991,

    1993a,c).

    3.3. Mica schists

    Mineral separates in the 125250 Am sieve frac-

    tion of four mica schists have been used for RbSr

    mineral dating. The same white mica separate of three

    of these samples has been analysed by 40Ar/39Ar

    furnace step-heating, which yielded a plateau age of

    K. de Jong / Lithos 70 (2003) 91110 97

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    8/20

    17.3F 0.2 Ma (ALM 270) and in two cases an40Ar/39Ar age spectra with progressively increasing

    apparent ages over the main part of degassing that is

    somewhat dome shaped as the last important degass-ing step is slightly younger (Fig. 9). Total gas ages are

    19.1F 0.1 (ALM 272) and 25.9F 0.1 Ma (ALM

    273). The 40Ar/39Ar isotopic data are given in de

    Jong et al. (1992). The samples were chosen to better

    understand why some samples yielded disturbed age

    spectra and others did not.

    The mica schists have a penetrative quartzmica

    differentiated S2 foliation. ALM 272, 273 and 274 are

    graphitic chloritoid garnet mica schists from the

    Secano unit (Fig. 3; sensu, Helmers and Voet,

    1967). This unit, which resembles the basal series of

    the MacaelChive unit, however, without gneisses, isseparated from the underlying NevadoLubrn unit

    by a D6 detachment fault (de Jong, 1991). ALM 272

    and 273 are taken from the same outcrop within 20 m

    from each other. ALM 274 is the most quartz-rich

    sample and the least graphite rich. Chloritoid and

    garnet porphyroblasts were formed pre- and syn-D2,

    during which the main tectonic foliation of the rocks

    was formed. Continuous lattice bending and limited

    Table 140

    Ar/39

    Ar analytical data of micas from greenstones, Nevado Lubrn unitStep 40Aratm (%)

    39ArK (10 13 cm3) 39Ar (%) 37ArCa/

    39ArK40Ar*/39ArK Apparent age (Ma)

    ALM 104 (biotite separate, 63 125 lm, 6.0 mg) (furnace step heating) (J = 0.01716F 1%, 2r)

    450 100.00 6.14 0.06 3.664

    550 88.31 69.35 0.73 0.000 2.48F 3.79 75.3F 50.3

    650 75.86 48.22 0.51 0.731 5.90F 2.16 174.1F106.6

    700 68.59 51.79 0.54 4.203 5.43F 0.77 160.7F 61.0

    780 79.80 116.91 1.22 0.596 4.96F 0.51 147.3F 21.8

    840 39.19 330.87 3.46 0.325 5.40F 0.35 159.9F 14.4

    880 15.36 648.98 6.79 0.002 5.58F 0.11 165.0F 9.8

    920 9.74 1428.49 14.95 0.000 5.57F 0.08 164.6F 3.2

    960 10.60 2128.77 22.28 0.081 5.70F 0.11 168.3F 2.2

    1000 13.55 1396.01 14.61 0.015 5.91F 0.14 174.1F 3.1

    1050 13.10 1211.42 12.68 0.000 6.17F 0.07 181.5F 3.81150 10.99 1994.65 20.88 0.000 6.30F 1.10 185.2F 2.0

    1350 26.54 120.59 1.26 1.177 12.71F146.52 355.9F 28.0

    Fuse 92.55 1.56 0.02 24.133 40.30F 1.69 948.1F 2681.4

    Total age: 174.7F 1.6

    Inverse isochron age steps 450 1150= 173.2F 8.7 Ma; 40Ar/36Ar intercept = 281F 82; MSWD = 15

    JK 0 (single phengite grain) (laser step heating) (J = 0.01709F 1%, 2r)

    0.35 97.25 110.53 0.65 0.045 9.87F 11.82 282.1F 312.6

    0.40 92.67 101.01 0.59 0.011 3.25F 1.70 98.0F 50.0

    0.45 90.65 325.50 1.92 0.013 3.13F 0.96 94.3F 28.0

    0.56 54.89 4501.07 26.67 0.001 2.91F 0.08 87.8F 2.4

    0.64 14.24 2846.62 16.86 0.001 2.90F 0.04 87.7F 1.2

    0.70 14.47 1629.74 9.66 0.001 2.86F 0.06 86.3F 1.7

    0.82 19.72 2280.95 13.51 0.001 2.85F 0.04 86.0F 1.4

    0.89 23.11 856.17 5.07 0.002 2.82F 0.10 85.4F 2.8

    0.99 27.03 838.18 4.96 0.004 2.76F 0.12 83.5F 3.7

    1.20 23.63 2491.93 14.76 0.006 2.80F 0.06 84.7F 1.6

    Fuse 19.52 900.83 5.33 0.007 3.01F 0.08 90.8F 2.4

    Total age: 87.9F 2.2

    Inverse isochron plateau steps (0.35 0.82)= 86.2F 2.4 Ma; 40Ar/36Ar intercept= 299.0F 4.8; MSWD= 0.96

    Step= temperature (jC) or laser output power (in Watt) for material analysed with an induction furnace or a laser probe, respectively.40Aratm is

    the atmospheric 40Ar; 40Ar* is the radiogenic argon from natural K-decay; 37ArCa is the Ca-derived argon during irradiation. The volume of39ArK (K-derived argon during irradiation) is based on a mass spectrometer sensitivity of 7 10

    10 V cm 3 STP. Uncertainty is quoted at the

    2r level; step ages do not include the errors in J and the age of the flux monitor. Decay constant 40Ktot= 5.54310 10 year 1. 40Ar/36Ar

    measured: 288F 0.5.

    K. de Jong / Lithos 70 (2003) 9111098

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    9/20

    recrystallisation to strain-free phengite in microfold

    hinges is especially prominent in ALM 272 and ALM

    273. Continuity between microfold limbs and hinges

    is often maintained, and hence, the amount of shape- preferred orientation of white mica parallel to S2cleavage septa is relatively limited. Such a micro-

    structure points to the pinning of mica (sub) grain

    boundaries and dislocations on graphite particles.

    Cleavage microlithons contain relics of S1.

    ALM 270 is an albite chlorite mica schist from the

    Mesozoic series of the NevadoLubrn unit (La Yedra

    Schists and Marbles, de Jong and Bakker, 1991; Fig.

    2). The sample is not affected by D3 crenulations, but

    chlorite and albite porphyroblasts, which are syn-D3minerals (de Jong, 1991, 1993a,c), overgrew S2.

    Phengite grains are well crystallised and strain-free,

    and generally lie with their basal cleavage plane in the

    differentiated S2 layering.

    4. Experimental procedures and mineral

    separation

    Single phengite grain JK 0 was selected for40Ar/39Ar incremental heating and separated from

    the hand specimen after gentle crushing. It was

    carefully selected under a binocular zoom microscopeand subsequently ultrasonically cleaned in demineral-

    ised water for 5 min. Mineral separates for RbSr and40Ar/39Ar analyses were prepared from the sieve

    fractions by means of a Faul table, a laboratory

    overflow centrifuge employing heavy liquids and a

    Frantz isodynamic magnetic separator.40Ar/39Ar analyses were made at the University of

    Nice-Sophia Antipolis (France) following the proce-

    dures outlined in detail by de Jong et al. (2001).

    Biotite separate ALM 104 was wrapped in high purity

    Al foil and incrementally heated to fusion with a high-frequency furnace system, whereas phengite single

    grain JK 0 was step heated using an argon ion laser

    probe with a continuous beam defocused to at least

    twice the grain diameter. Homogeneity of the heating

    of the grain was monitored with a coupled video-

    microscope system. The laser extraction line consists

    of an Innova Coherent 70-4 continuous argon ion

    laser in combination with a sensitive gas mass spec-

    trometer comprising a 12 cm, 120j M.A.S.S.E.R

    tube, a Baur-SignerR ion source and an A.E.M.

    1000ETPR electron multiplier. A Pyrex cold finger

    at 95 jC and a ZrAl alloy getter operated at 400

    jC purified the extracted gas. System blank runs were

    carried out at the start of each laser experiment andwere repeated every third run. Background values

    were typically 110 11, 5 10 14, 2 10 13 and

    110 12 cm3 STP for the 40, 39, 37 and 36 argon

    isotopes, respectively, and were subtracted from the

    subsequent sample analysis results. Samples ALM

    104 and JK 0 were irradiated in the Melusine reactor

    (Grenoble, France) for 40.95 h together with flux

    monitors biotite standard 4B (KAr age: 17.25 Ma,

    Hall et al., 1984 and subsequent analyses in Nice and

    Toronto) and MMHb (KAr age: 520.4 Ma, Alexan-

    der et al., 1978), respectively, while being rotated

    around a vertical axis. The irradiation parameter J was

    obtained from the 40Ar*/39ArK ratios measured from

    Fig. 4. 40Ar/39Ar induction furnace step heating age spectrum (lower

    panel) and 37ArCa/39ArK ratio spectrum (upper panel) of biotite

    separate ALM 104 from the Mesozoic series of the NevadoLubrn

    unit. The RbSr mineral isochron age obtained by Hebeda et al.

    (1980) is indicated by the grey horizontal line.

    K. de Jong / Lithos 70 (2003) 91110 99

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    10/20

    three standards in the tube at the same level as the

    samples.

    Rb Sr dating was carried out at the Vrije Uni-

    versiteit, Amsterdam, The Netherlands. Pressed pow-der pellets prepared from splits of whole-rock

    powder sample were analysed by X-ray fluorescence

    spectrometry for Rb and Sr contents and Rb/Sr ratios

    with a Philips PW 1404 automatic spectrometer.

    Spiked and unspiked Sr analyses were made on an

    automated Finnigan MAT-261 mass spectrometer

    with three Faraday cup multicollector system for

    Sr. Rb-spiked isotope dilution measurements were

    performed using a computer-controlled Teledyne

    mass spectrometer with a single Faraday cage col-

    lector. For additional analytical details, see footnote

    on Table 2.

    Mineral ages are calculated using decay constants

    given by Steiger and Jager (1977). Plateau, total

    fusion and isochron ages include errors in J and the

    age of the flux monitor and have errors quoted at the

    2r level. Isochron calculations are according to Lud-

    wig (2000). Plateau ages were calculated if 60% or

    more of the 39Ar was released in three or more

    contiguous steps with a probability-of-fit of the

    weighted mean of more than 5% (Ludwig, 2000).

    All argon isotopic measurements were corrected for

    linear extrapolation to gas inlet time, mass discrimi-nation, atmospheric argon contamination and irradia-

    tion-induced contaminant Ar-isotopes derived from

    Ca and K in the sample; correction factors applied:

    (36Ar/37Ar)Ca: 2.79 10 4 (F 3%), (39Ar/37Ar)Ca:

    7.06 10 4 (F 4 %) , (40Ar /39Ar )K: 2 5 8 10 4

    (F 3%).

    5. Results

    The 40Ar/39Ar analytical data of samples ALM 104

    and JK 0 are listed in Table 1 and portrayed as age

    spectra in Figs. 4 and 6, respectively. RbSr isotopic

    analyses of mica schist samples ALM 270, 272, 273

    and 274 are given in Table 2.

    5.1.40

    Ar/39

    Ar step heating

    5.1.1. Biotite separate ALM 104

    Induction furnace step heating of biotite separate

    ALM 104 yielded an age spectrum with progressively

    increasing apparent ages from 147 to 185 Ma, subse-

    quent to the first 1% of gas release with irregular

    apparent ages (Table 1; Fig. 4, lower panel). The

    weighted mean age of the main flat part of the spectrum

    (steps 3 12) is 173.2F 6.3 Ma. The 37ArCa/39ArKratio

    spectrum is flat, with more Ca-rich compositions

    degassing during the first 6.5% and final 2% of gas

    release (Fig. 4, upper panel), which probably corre-spond to impurities. The total fusion age of 174.7F 1.6

    Ma and 36Ar/40Ar vs. 39Ar/40Ar inverse isochron age of

    Table 2

    RbSr analytical data of white mica; ALM 270, Mesozoic series, NevadoLubr n unit; ALM 272, 273, 274 Paleozoic rocks, Secano unit

    Estimated errors are 0.5% for X-ray fluorescence spectrometric Rb/Sr and isotope dilution measurements of Rb and Sr, 0.01% for 87Sr/86Sr

    isotope ratio measurements of whole-rocks and 0.02% for 87Sr/86Sr analysis of minerals. The uncertainty is at the 2r level and based on the

    above mentioned estimated analytical errors. Decay constant of 87Rb= 1.4210 11year 1.(1) X-ray fluorescence spectrometric data (whole-rock) and mass-spectrometric isotope dilution (minerals).(2) Directly measured on unspiked sample (whole-rock) and calculated from analysis of spiked sample (minerals).

    K. de Jong / Lithos 70 (2003) 91110100

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    11/20

    173.2F 8.7 Ma (Table 1; Fig. 5) are concordant.

    However, the large MSWD of 15 renders the meaning

    of the isochron age and the 40Ar/36Ar intercept of

    281F 82 uncertain.

    5.1.2. Phengite single grain JK 0

    Laser step heating of a single phengite grain JK 0

    yielded a plateau age of 86.9F 0.8 Ma (Fig. 6. lower

    panel). The plateau age is concordant to both the

    87.9F 2.2 Ma total fusion age and the 86.2F 2.4 Ma36Ar/40Ar vs. 39Ar/40Ar inverse isochron age of the

    plateau steps, with an 40Ar/36Ar intercept that is

    within error of the atmospheric value (Table 1, Fig.

    7). The 37ArCa/39ArK ratio spectrum is flat over the

    main part (Fig. 6, upper panel); the high ratio during

    the first 3% and the slightly elevated ratio for the final

    25% of gas release probably correspond to more Ca-

    rich inclusions in the grain.

    5.2. RbSr ages

    Rb Sr analyses of phengites from mica schists have

    yielded a wide spread of ages (Table 2). Despite un-

    favourable enrichment factors of radiogenic 87Sr, sam-

    ples ALM 272 and 273 of the Secano unit preserve a

    pre-Miocene isotope signal, yielding whole-rockmi-

    ca ages of 66.1F 3.2 and 40.6F 2.6 Ma. ALM 274(Secano unit) yielded an age of 14.1F 2.2 Ma that is

    concordant with the whole-rock phengite albite age

    Fig. 7. 36Ar/40Ar vs. 39ArK/40Ar correlation plot for single grain JK

    0. The open ellipses of steps 8 11 are excluded from the

    calculation.

    Fig. 6. 40Ar/39 Ar laser step heating age spectrum (lower panel) and37ArCa/

    39ArK ratio spectrum (upper panel) of single phengite grain

    JK 0 from the Mesozoic series of the NevadoLubrn unit.

    Fig. 5. 36Ar/40Ar vs. 39ArK/40Ar correlation plot for biotite separate

    ALM 104. Points 1350 and fuse are excluded from the calculation.

    K. de Jong / Lithos 70 (2003) 91110 101

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    12/20

    of 17.2F 1.9 Ma of ALM 270 (NevadoLubrn unit,

    Fig. 8).

    6. Interpretation

    The results obtained on samples with the same

    tectonic foliation show a wide range of40Ar/39Ar andRbSr ages, emphasising the fact that they cannot be

    interpreted in terms of a simple cooling history during

    exhumation.

    6.1. Excess and inherited40

    Ar

    The 173F 6 Ma 40Ar/39Ar weighted mean age and

    virtually all apparent ages of biotite ALM 104 are much

    older than the 146F 3 Ma Rb Sr mineral isochron age

    of the host gabbro (Fig. 4), which indicates that40ArXS

    has been incorporated into the mineral.The concordant 86.9F 0.8 Ma plateau age and the

    86.2F 2.4 Ma isochron age of single phengite grain

    JK 0 are much older than the 15.0F 0.6 Ma SHRIMP

    U Pb zircon age obtained by Lo pez Sanchez-Viz-

    cano et al. (2001) in Cerro del Almirez (Fig. 1). The

    discrepancy between these two estimates for the

    timing of high-pressure metamorphism in the Mulha-

    cen Complex cannot be accounted for by a polycyclic

    Alpine orogeny (e.g. Puga et al., 2002), as the upper

    and lower parts of the NevadoLubrn unit did not

    experience a different tectono-metamorphic evolution,

    as would be expected following a re-subduction of the

    lower part, as proposed by the latter authors. Accord-

    ingly, the best interpretation is that the ca. 87 Ma ageof the phengite is due to the incorporation of 40Ar into

    its lattice, which may have been inherited from the

    magmatic precursor of the amphibolite that hosted the

    white mica and which contained 40ArXS.

    The 37ArCa/39ArK ratio and atmospheric contami-

    nation of phengite grain JK 0 are fairly constant and

    not elevated during the main argon release (Fig. 6,

    upper panel; Table 1). It is, therefore, unlikely that40ArXS incorporation was the result of late-stage

    illitisation related to fluid ingress via late cracks,

    described by de Jong et al. (2001) for phengites in

    gneisses, which have an atmospheric contamination

    that is well above 30% and 37ArCa/39ArK ratios that

    tend to be much higher than those observed for JK 0.

    The absence of a dense network of cracks in the

    amphibolite emphasizes this.

    The fact that the single mica grain yielded a plateau

    age that is enhanced by inherited 40Ar implies that Ar

    was not released by volume diffusion during in vacuo

    step heating. It has been argued that chemical and

    structural changes, such as dehydroxylisation of white

    mica during step heating, permit the simultaneous

    release of 39ArK, 40Ar* and 40ArXS from the coresand rims of crystals, leading to homogenisation of40Ar reservoirs and age gradients (Inger et al., 1996;

    Sletten and Onstott, 1998; de Jong et al., 2001).

    Trioctahedral micas behave in a similar way (Harrison

    et al., 1985; Phillips and Onstott, 1988; Lo and

    Onstott, 1989), however, probably due to sample

    inhomogeneity, we did not obtain an age plateau for

    biotite ALM 104.

    In light of the above discussion, the meaning of the

    plateau ages of 48.4F 2.2 and 24.6F 3.6 Ma of

    barroisitic amphibole and magnesiohornblende, re-spectively, obtained by Monie et al. (1991) in the

    Sierra de Baza (Fig. 1), which both yielded irregular40Ar/39Ar age spectra, cannot be taken at face value.

    The barroisitic amphibole grew in an undeformed

    metadolerite that contains magmatic plagioclase and

    clinopyroxene, making inherited 40Ar likely. The

    well-expressed saddle-shaped age spectrum of the

    magnesiohornblende clearly points to 40ArXS uptake,

    and this sample only yielded a plateau age due to the

    very large errors on the individual steps.

    Fig. 8. RbSr albite phengite whole-rock isochron for ALM 270(Mesozoic series, NevadoLubrn unit). The errors are at the 2r

    level.

    K. de Jong / Lithos 70 (2003) 91110102

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    13/20

    6.2. Trapped argon component

    Although 40ArXS often results in40Ar/36Ar inter-

    cepts in isotope correlation diagrams greater than295.5 (Heizler and Harrison, 1988), examples of

    phengite (Inger et al., 1996; Sherlock and Arnaud,

    1999; de Jong et al., 2001) and biotite (Foland, 1983;

    Ruffet et al., 1995) show that samples with 40ArXSplateau ages can give 40Ar/36Ar intercepts close to the

    atmospheric value. The initial 40Ar/36Ar ratio not

    necessarily reflects the argon composition immediate-

    ly prior to crystallisation, but might equally well

    indicate the argon com position added to minerals

    during later processes (Roddick, 1978; de Jong et

    al., 2001). This may also be the case for ALM 104, as

    this sample has an elevated 36ArAIR contamination

    corresponding to high 37ArCa/39ArK ratios during the

    first 6.5% of 39Ar release. This is most likely related

    to impurities of a Ca-rich phase that degasses at low

    temperature, like carbonates (500700 jC: Spray and

    Roddick, 1981) and/or chlorite (first degassing peak

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    14/20

    agreement with the evolution of the 87Sr/86Sr ratio, the

    observed zonation of the metamorphic minerals

    implies a state of disequilibrium and a deficit of

    cations. Such features suggest that fluid mobilitywas limited during eclogitisation, which consequently

    conserved the 40ArXS levels in rocks.

    The ca. 87 Ma 40Ar/39Ar age of phengite JK 0 is

    most likely the consequence of the incorporation of40Ar into the mineral and restricted fluid mobility may

    have been instrumental in this process. The amphib-

    olite from which single phengite grain JK 0 was

    extracted occurs in the same tectono-stratigraphic

    level as the 146-Ma-old gabbro ALM 104, which

    was plagued by 40ArXS incorporation. Most eclogites

    and gabbros in this level are pervasively amphiboli-

    tised, pointing to the infiltration of water. Thorough

    amphibolitisation of eclogites resulted in changes in

    main and trace element chemistry (Morten et al.,

    1987). The preferred orientation of mica and blue-

    green hornblende in amphibolite JK 0 formed during

    thorough recrystallisation that accompanied exhuma-

    tion of high-pressure metamorphic rocks during D2.

    Yet, the presence of glaucophane relics in the cores of

    some hornblendes in this sample implies that disequi-

    librium conditions existed during the breakdown of

    the blue amphibole during this event. Although the

    hydration of eclogites, leading to their amphibolitisa-tion, resulted in a significant reduction of 40ArXS in

    the whole-rock, it was not completely removed, as

    shown by the data of Hebeda et al. (1980). This

    observation implies that during D2 recrystallisation,

    a semi-closed system persisted, in which the argon

    activity remained elevated, at least locally. Amphib-

    olitisation of gabbros and eclogites under such con-

    ditions has led to the local redistribution and

    incorporation of 40Ar in newly formed metamorphic

    minerals, such as phengite.

    6.4. Inherited isotopic components

    White micas from the basal series of the Secano

    unit yielded RbSr ages that range from 66.1F 3.2 to

    14.1F 2.2 Ma (Table 2) and 40Ar/39Ar total gas ages

    of 25.9F 0.1 and 19.1F 0.1 Ma (see Section 3),

    which imply the progressive resetting of an older

    isotopic system. White mica from graphite-rich sam-

    ples ALM 272 and 273 has disturbed 40Ar/39Ar age

    spectra with apparent ages that are virtually all older

    than the 17.3F 0.2 Ma plateau age of ALM 270 of the

    NevadoLubrn unit (Fig. 9). Disturbed age spectra,

    whether dome-shaped or composed of progressively

    rising apparent ages, have been interpreted by degass-ing of mixed micas, one containing an inherited Ar

    component due to partial resetting during superim-

    posed tectono-metamorphic recrystallisation and a

    second that was newly formed during this event, both

    of which do not release Ar over the same temperature

    interval (Wijbrans and McDougall, 1986; Hammer-

    schidt and Frank, 1991; de Jong et al., 1992; West and

    Lux, 1993). Consequently, the age spectra of ALM

    272 and 273 imply that a relict inherited Ar component

    exists in both samples. Their microstructure reveals

    incomplete recrystallisation of white mica and the

    pinning of its grain boundaries on graphite particles.

    Fig. 9. 40Ar/39Ar induction furnace step heating age spectra (lower

    panel) and 37ArCa/39ArK ratio spectra (upper panel) of phengite

    separates from the eastern Sierra de los Filabres. Data from de Jong

    et al. (1992). ALM 270 (Mesozoic series, NevadoLubrn unit)

    shows a well-developed age plateau, whereas ALM 272 and 273

    (Paleozoic series, Secano unit) have disturbed spectra.

    K. de Jong / Lithos 70 (2003) 91110104

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    15/20

    This inclusion-inhibited growth mechanism may sim-

    ilarly explain why phengites ALM 272 and 273 have

    partially retained an older RbSr isotope signal, as

    indicated by their relatively old RbSr ages of 66.1and 40.6 Ma, respectively. In contrast, the 14.1F 2.2

    Ma Rb Sr age of the most quartz-rich and least

    graphite-rich sample ALM 274, which is not affected

    by inclusion-inhibited growth of white mica, implies a

    complete resetting of its RbSr system. The RbSr

    age of this youngest sample of the Secano unit over-

    laps with the 17.2F 1.9 Ma RbSr age of ALM 270 of

    the Nevado Lubrn unit. Widespread retrograde

    growth of albite and chlorite at the cost of phengite

    in ALM 270 implies complete tectono-metamorphic

    recrystallisation following D2.

    The progressively reset isotopic system in the

    Secano unit may be derived from a pre-Miocene

    early Alpine signal, or alternatively, its occurrence in

    probably Paleozoic rocks implies that it may partially

    retain a pre-Alpine history. The ca. 15 Ma U Pb

    SHRIMP zircon age for the high-pressure metamor-

    phism (Lopez Sanchez-Vizcano et al., 2001) renders

    the first option unlikely. In contrast, during the pre-

    Alpine evolution of the Mulhacen Complex, the

    basal series were metamorphosed up to about 500

    jC (Section 2; Fig. 10). Their crystalline nature and

    the inhibited recrystallisation of white mica in graph-ite-rich samples during the Alpine orogeny may lie

    behind the inherited pre-Alpine Rb Sr and K Ar

    systems in these rocks. Their partial survival in white

    mica during the Alpine orogeny, when temperatures

    of about 500 jC were reached, once again under-

    scores that temperature alone is ineffective for iso-

    tope resetting, but that fast recrystallisation processes

    that affect the ionic bonds in minerals, like tectono-

    metamorphic recrystallisation and fluid ingress, are

    (Chopin and Maluski, 1980; Verschure et al., 1980;

    Wijbrans and McDougall, 1986; Hames and Cheney,1997; Villa, 1998; Itaya and Fujino, 1999; Kuhn et

    al., 2000; de Jong et al., 2001; Dunlap and Kronen-

    berg, 2001; Reddy et al., 2001). In contrast, the

    occurrence of ALM 270 in the Mesozoic series of

    the Nevado Lubrn u ni t an d i ts c a. 17.2 Ma40Ar/39Ar plateau and RbSr ages precludes the

    presence of any inherited pre-Alpine isotopic com-

    ponent. Yet, a small 40ArXS component seems likely,

    taking the ca. 15 Ma UPb SHRIMP zircon age at

    face value.

    6.5. Age and rates of exhumation and cooling

    Despite the occurrence of inherited isotope systems

    and40

    ArXS incorporation in white mica and biotite,our dating sheds light on the timing of exhumation of

    the Mulhacen Complex and its rates. Albite in ALM

    270 was probably formed from the paragonite com-

    ponent in white mica during its recrystallisation at low

    pressure during D3. The87Sr/86Sr ratio of this sample

    shows that the age information obtained essentially

    pertains to albite, as the 87Sr/86Sr ratios of phengite

    and the whole-rock are virtually identical (Table 2).

    The 17.2F 1.9 Ma whole-rock mica albite age con-

    sequently has bearing on the decompression to about

    0.4 0.5 GPa for D3 (see Section 2.2, Fig. 10).

    However, due to the large uncertainty, the age is

    within error of the 15.0F 0.6 Ma age estimate of

    the high-pressure metamorphism based on the zircon

    SHRIMP data of Lo pez Sanchez-Vizcano et al.

    (2001). Subsequent to the D3 cooling phase temper-

    atures increased to about 500 jC, whereas the pres-

    sure probably did not significantly decrease (Fig. 10).

    de Jong et al. (2001) argued that, in conjunction with

    this D4 reheating, white mica in the gneisses of the

    MacaelChive unit acquired 40ArXS during submicro-

    scopic illitisation, a fluid-assisted recrystallisation

    process that probably also affected the RbSr system.RbSr white mica ages reported by Andriessen et al.

    (1991) from the gneisses of the MacaelChive unit in

    the eastern Sierra de los Filabres span the 12.515.6

    Ma range, with errors of about 22.5%. It might be

    argued that the youngest RbSr white mica age of

    12.5F 0.2 Ma is the result of a thorough recrystalli-

    sation during D4, which might imply a decompression

    of about 55 km in roughly 2.5 Ma (Fig. 10). The

    exhumation rate may consequently be as high as about

    22.5 mm/year, about twice the estimate of Lopez

    Sanchez-Vizcano et al. (2001), who based their valueon an assumed geothermal gradient and not on avail-

    able PTestimates for the late stage evolution.

    Fission-track data ofJohnson et al. (1997) point to

    an accelerated cooling following the first phase of fast

    exhumation and cooling. These authors inferred from

    an 11 Ma apatite fission-track model age that the

    cooling of the uppermost Mulhacen Complex in the

    eastern Sierra de los Filabres was essentially complet-

    ed by that time. This is consistent with the first

    appearance of detritus derived from this part of the

    K. de Jong / Lithos 70 (2003) 91110 105

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    16/20

    complex (in part as boulders of the marbles and

    gneisses of the MacaelChive unit) in latest Serraval-

    lian to Early Tortonian deposits around the eastern

    Sierra de los Filabres (de Jong et al., 2001, andreferences in therein). Under the assumption of a

    12.5 Ma age for D4 during which temperatures were

    in the order of about 500 jC, the final cooling has

    taken about 1.5 Ma with a rate of about 330 jC/Ma

    and much less fast exhumation rate of 912 mm/year

    compared to the early exhumation phase.

    The Late Miocene cooling has been accounted for

    by extension (Johnson et al., 1997). Since the work

    of Platt and Vissers (1989), the contact between the

    Mulhacen and Alpujarride complexes has been inter-

    preted as a major low-angle extensional fault. D5mylonites and D6 brittleductile structures are most

    penetratively developed in the uppermost Mulhacen

    Complex along the contact with the overlying Alpu-

    jarride Complex and show the decreasing tempera-

    ture (de Jong, 1991, 1993a) during exhumation. But

    also important low-angle brittleductile detachments

    were formed within the Mulhacen Complex during

    this event, like e.g. at the base of the Secano unit

    and at the base of the greenstones that contain the

    eclogites.

    7. Conclusions

    Radiometric dating of phengite from rocks with a

    tectonic fabric related to the exhumation of high- pressure metamorphic rocks implies that40ArXS in-

    corporation and isotopic inheritance have occurred

    under conditions of restricted fluid mobility and

    tectono-metamorphic recrystallisation.

    A well-crystallised single phengite grain from an

    amphibolite (Nevado Lubrn unit) has yielded a40Ar/39Ar laser step heating plateau age of 86.9F

    0.8 (2r; 70% 39Ar released), which is concordant to

    its inverse isochron age of 86.2F 2.4 Ma (40Ar/36Ar:

    299.0F 4.8). A biotite separate from a gabbro relic in

    an eclogite yielded an induction furnace step heatingage spectrum with progressively increasing apparent

    ages and a weighted mean age of 173.2F 6.3 Ma (2r;

    95% 39Ar released). These ages are older than the

    eclogite-facies metamorphism (15 Ma) and intrusion

    of the gabbros (146 Ma) and, hence, are the result of40ArXS incorporation.

    40ArXS uptake by the gabbro

    was probably caused by infiltration of fluids derived

    from the country rocks during their incipient meta-

    morphism at the onset of subduction. 40ArXS incor-

    poration in the phengite in the amphibolite was related

    Fig. 10. PressureTemperaturetimedeformation path and exhumation history of the Mulhacen Complex. PT determinations by Bakker et

    al. (1989), de Jong (1991, 1993a) and Puga et al. (2002). (1) Lower P stability limit of glaucophane after Maruyama et al. (1986); (2)

    FeChl+Ms=FeCld+Ann; (3) Cld+AS= St+Chl; (4) FeCld+Ann=Alm+Ms; (5) Cld = Grt + Chl + St; according to Spear and Cheney

    (1989); Stability Al-silicate fields after Holdaway and Mukhopadhyay (1993). Mineral abbreviations according to Kretz (1983). Age

    constraints: (A) SHRIMP UPb mean age of nine zircon grains (Lopez Sanchez-Vizcano et al., 2001); (B) youngest RbSr white mica age of

    Andriessen et al. (1991); (C) apatite fission-track model age (Johnson et al., 1997).

    K. de Jong / Lithos 70 (2003) 91110106

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    17/20

    to metamorphic recrystallisation of the magmatic

    rocks in an environment with a restricted fluid mo-

    bility inherited from the magmatic stage.

    Rb Sr whole-rock phengite ages of graphite- bearing mica schists from Paleozoic rocks (Secano

    unit) show a dramatic age variation (66.1F 3.2,

    40.6F 2.6 and 14.1F 2.2 Ma) that has arisen from

    the progressive resetting of an older isotopic system.

    This system was probably a remnant of the Variscan

    low-grade metamorphism of the basal series of the

    Mulhacen Complex. The microstructure of the sam-

    ples with pre-Miocene RbSr ages implies that phen-

    gite has only partially recrystallised as grain growth

    was inhibited by the presence of graphite particles.

    This interpretation corroborates previously obtained

    disturbed and slightly dome-shaped 40Ar/39Ar age

    spectra that reveal the presence of an older isotopic

    component. In contrast, the most quartz-rich and least

    graphite-rich sample is not affected by inclusion-

    inhibited growth of white mica, and has a completely

    reset RbSr system, as implied by its 14.1F 2.2 Ma

    Rb Sr age. The latter date overlaps with the

    17.2F 1.9 Ma Rb Sr whole-rock phengite albite

    age obtained from a schist from the Mesozoic series

    of the NevadoLubrn unit.

    Comparison of our data and literature data reveals

    that exhumation of the eclogite-facies Mulhacen Com- plex occurred at rates in the order of 22.5 mm/year

    during the early phase and of 9 12 mm/year during the

    late phase. During the latter event, the cooling rate was

    of about 330 jC/Ma.

    Acknowledgements

    I would like to dedicate this article to Prof. W.P. de

    Roever, who passed away on 24 September 2000, and

    was one of the pioneers in high-pressure petrology justafter World War II. He worked as an undergraduate

    student in the area around Lubrn and interpreted the

    occurrence of zoned metamorphic minerals by dis-

    equilibrium during a succession of different metamor-

    phic facies in time (plurifacial metamorphism). Only

    much later would such a notion become general with

    the reconstruction ofPTtpaths.

    I would like to thank Drs. Gilbert Feraud (Geo-

    science Azur, Universite de Nice-Sophia Antipolis,

    France) and Jan Wijbrans (Department of Isotope

    Geochemistry, Faculty of Earth and Life Sciences,

    Vrije Universiteit, Amsterdam, The Netherlands) for

    the use of analytical facilities and the use of sample

    ALM 104 from the mineral separate collection of thedepartment. Part of the work was carried out while

    holding a NATO post-doctoral research fellowship

    and The Netherlands Organisation for Scientific

    Research (NWO) and the Vakgroepfonds Strukturele

    Geologie of the University of Amsterdam met travel

    costs incurred during the project. Some of the points

    addressed in this study came up during a discussion

    with Igor Villa. Constructive reviews by Sarah

    Sherlock and Richard Spikings contributed to the

    clarity of the presentation and the styling of the text.

    Daniella Rubatto and Encarnacion Puga are thanked

    for providing pre-prints.

    References

    Alexander Jr., E.C., Michelson, G.M., Lanphere, M.A., 1978. A

    new 40Ar/39Ar dating standard. In: Zartman, R.E. (Ed), Short

    Pap. Int. Conf. Geochronology, Cosmochronology and Isotope

    Geology; 4th U.S. Geol. Surv. Open-File Rep. 78-701, pp. 6-8.

    Andriessen, P.A.M., Hebeda, E.H., Simon, O.J., Verschure, R.H.,

    1991. Tourmaline K Ar ages compared to other radiometric

    dating systems in Alpine anatectic leucosomes and metamor-

    phic rocks (Cyclades and southern Spain). Chem. Geol. 91,

    3348.

    Arnaud, N.O., Kelley, S.P., 1995. Evidence for excess argon during

    high pressure metamorphism in the Dora Maira Massif (Western

    Alps, Italy), using an ultra-violet laser ablation microprobe40Ar 39Ar technique. Contrib. Mineral. Petrol. 121, 111.

    Bakker, H.E., de Jong, K., Helmers, H., Biermann, C., 1989. The

    geodynamic evolution of the Internal Zone of the Betic Cordil-

    leras (SE Spain): a model based on structural analysis and geo-

    thermobarometry. J. Metamorph. Geol. 7, 359 381.

    Bosse, V., Feraud, G., Ruffet, G., Ballevre, M., Peucat, J.-J.,

    de Jong, K., 2000. Timing of burial and exhumation of eclo-

    gite-facies rocks from the Champtoceaux Complex (Variscan

    belt, France). Geol. J. 35, 297325.Boundy, T.M., Hall, C.M., Li, G., Essene, E.J., Halliday, A.N.,

    1997. Fine-scale isotopic heterogeneities and fluids in the deep

    crust: a 40Ar/39Ar laser ablation and TEM study of muscovites

    from a granuliteeclogite transition zone. Earth Planet. Sci.

    Lett. 148, 223 242.

    Chopin, C., Maluski, H., 1980. 40Ar 39Ar dating of high-pressure

    metamorphic micas from the Gran Paradiso area (Western Alps):

    evidence against the blocking temperature concept. Contrib.

    Mineral. Petrol. 74, 109122.

    de Jong, K., 1991. Tectono-metamorphic studies and radiometric

    dating in the Betic Cordilleras (SE Spain)with implications

    for the dynamics of extension and compression in the western

    K. de Jong / Lithos 70 (2003) 91110 107

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    18/20

    Mediterranean area. Publ. PhD Thesis. Vrije Universiteit, Am-

    sterdam. 204 pp.

    de Jong, K., 1993a. The tectono-metamorphic and chronologic de-

    velopment of the Betic Zone (SE Spain) with implications for

    the geodynamic evolution of the western Mediterranean area.Proc. K. Ned. Akad. Wet., Ser. B 96, 295333.

    de Jong, K.,1993b. The tectono-metamorphic evolution of the Veleta

    Complex and the development of the contact with the Mulhacen

    Complex (Betic Zone, SE Spain). Geol. Mijnb. 71, 227 237.

    de Jong, K., 1993c. Large scale polyphase deformation of a coher-

    ent HP/LT metamorphic unit: the Mulhacen Complex in the

    eastern Sierra de los Filabres (Betic Zone, SE Spain). Geol.

    Mijnb. 71, 327 336.

    de Jong, K., Bakker, H.E., 1991. The Mulhacen and Alpujarride

    complex in the Sierra de los Filabres, SE Spain: Litho-stratig-

    raphy. Geol. Mijnb. 70, 93103.

    de Jong, K., Wijbrans, J.R., Feraud, G., 1992. Repeated thermal

    resetting of phengites in the Mulhacen Complex (Betic Zone,

    southern Spain) shown by 40Ar/39Ar step heating and single

    grain laser probe dating. Earth Planet. Sci. Lett. 110, 173191.

    de Jong, K., Feraud, G., Ruffet, G., Amouric, M., Wijbrans, J.R.,

    2001. Excess argon incorporation in phengite of the Mulhacen

    Complex: submicroscopic illitization and fluid ingress during

    late Miocene extension in the Betic Zone, south-eastern Spain.

    Chem. Geol., Isot. Geosci. Sect. 178, 159195.

    de Roever, W.P., Nijhuis, H.J., 1963. Plurifacial alpine metamor-

    phism in the eastern Betic Cordilleras (SE Spain) with special

    reference to the genesis of the glaucophane. Geol. Rundsch. 53,

    324336.

    Dunlap, W.J., Kronenberg, A.K., 2001. Argon loss during deforma-

    tion of micas: constraints from laboratory deformation experi-

    ments. Contrib. Mineral. Petrol. 141, 174 185.Egeler, C.G., Simon, O.J., 1969. Sur la tectonique de la Zone be-

    tique (Cordilleres betiques, Espagne). Verh. K. Ned. Akad. Wet.

    25 (90 pp.).

    Foland, K.A., 1983. 40Ar/39Ar incremental heating plateaus for bio-

    tites with excess argon. Chem. Geol., Isot. Geosci. Sect. 1, 321.

    Giorgis, D., Cosca, M., Li, S., 2000. Distribution and significance

    of extraneous argon in UHP eclogite (Sulu terrain, China): in-

    sight from in situ 40Ar/39Ar UV laser ablation analysis. Earth

    Planet. Sci. Lett. 181, 605615.

    Gomez-Pugnaire, M.T., Sassi, F.P., 1983. Pre-Alpine metamorphic

    features and alpine overprints in some parts of the Nevado

    Filabride basement (Betic Cordilleras, Spain). Mem. Soc. Geol.

    Padua 36, 4972.

    Gomez-Pugnaire, M.T., Chacon, J., Mitrofanov, F., Timofeev, V.,1982. First report of Precambrian rocks in the graphite-bearing

    series of the NevadoFilabride complex (Betic Cordilleras.

    Spain). N. Jb. Geol. Palaont. Mh. 3, 176 180.

    Gomez-Pugnaire, M.T., Franz, G., Munoz, M., 1989. Progressive

    metamorphic evolution of eclogites containing kyanite veins in

    the Betic Cordilleras (SE Spain). Rend. Soc. Ital. Mineral. Pet-

    rol. 43, 671685.

    Gomez-Pugnaire, M.T., Ulmer, P., Lo pez Sanchez-Vizcaino, V.,

    2000. Petrogenesis of the mafic igneous rocks of the Betic Cor-

    dilleras: a field, petrological and geochemical study. Contrib.

    Mineral. Petrol. 139, 436457.

    Hall, C.M., Walter, R.C., Westgate, J.A., York, D., 1984. Geochro-

    nology, stratigraphy and geochemistry of cindery tuffs in Plio-

    cene hominid bearing sediments of the Middle Awash, Ethiopia.

    Nature 308, 26 31.

    Hames, W.E., Cheney, J.T., 1997. On the loss of40

    Ar* from mus-covite during poly-metamorphism. Geochim. Cosmochim. Acta

    61, 3863 3872.

    Hammerschidt, K., Frank, E., 1991. Relics of high pressure meta-

    morphism in the Lepontine Alps (Switzerland)a 40Ar/39Ar

    and microprobe analyses on white micas. Schweiz. Mineral.

    Petrogr. Mitt. 71, 261274.

    Hammerschmidt, K., Franz, G., 1992. Retrograde evolution of eclo-

    gites: evidences from microstructures and 40Ar/39Ar white mica

    dates, Munchberg Massif, northern Bavaria. Contrib. Mineral.

    Petrol. 111, 113125.

    Hannula, K.A., McWilliams, M.O., 1995. Reconsideration of the

    age of blueschist facies metamorphism on the Seward Peninsula,

    Alaska, based on phengite 40Ar/39Ar results. J. Metamorph.

    Geol. 13, 125 139.

    Harrison, T.M., Duncan, I., McDougall, I., 1985. Diffusion of 40Ar

    in biotite: temperature, pressure and compositional effects. Geo-

    chim. Cosmochim. Acta 49, 24612468.

    Hebeda, E.H., Boelrijk, N.A.I.M., Priem, H.N.A., Verdurmen,

    E.A.Th., Verschure, R.H., Simon, O.J., 1980. Excess radiogenic

    Ar and undisturbed RbSr systems in basic intrusives subjected

    to alpine metamorphism in southeastern Spain. Earth Planet.

    Sci. Lett. 47, 8190.

    Heizler, M.T., Harrison, T.M., 1988. Multiple trapped argon isotope

    components revealed by 40Ar/39Ar isochron analysis. Geochim.

    Cosmochim. Acta 52, 12951303.

    Helmers, H., 1982. Eclogitization of hedenbergite skarns in the

    Sierra de los Filabres, SE Spain. Terra Cogn. 23, 320.Helmers, H., Voet, H.W., 1967. Regional extension of the Nevado

    Filabride nappes in the eastern and central Sierra de los Filabres

    (Betic Cordilleras SE Spain). Proc. K. Ned. Akad. Wet., Ser. B

    70, 239252.

    Henningsen, D., Herbig, H.-G., 1990. Die karbonischen Grauwack-

    en der Malaguiden und Menorcas im vergleich Betische Kordil-

    lere und Balearen, Spanien. Z. Dtsch. Geol. Ges. 141, 1329.

    Herbig, H.-G., Stattegger, K., 1989. Late Paleozoic heavy mineral

    and clast modes from the Betic Cordillera (southern Spain):

    transition from a passive to an active continental margin. Sedi-

    ment. Geol. 63, 93108.

    Holdaway, M.J., Mukhopadhyay, B., 1993. A reevaluation of the

    stability relations of andalusite: thermochemical data and

    phase diagram for the aluminium silicates. Am. Mineral. 78,298315.

    Inger, S., Ramsbotham, W., Cliff, R.A., Rex, D.C., 1996. Metamor-

    phic evolution of the SeziaLanzo Zone, Western Alps: time

    constraints from multi-system geochronology. Contrib. Mineral.

    Petrol. 126, 152168.

    Itaya, T., Fujino, M., 1999. KAr agechemistryfabric relations

    of phengite from the Sanbagawa high-pressure schists, Japan.

    Isl. Arc 8, 523536.

    Johnson, C., Harbury, N., Hurford, A.J., 1997. The role of exten-

    sion in the Miocene denudation of the NevadoFila bride Com-

    plex, Betic Cordillera (SE Spain). Tectonics 16, 189 204.

    K. de Jong / Lithos 70 (2003) 91110108

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    19/20

    Kampschuur, W., 1975. Data on thrusting and metamorphism in the

    eastern Sierra de los Filabres: higher Nevado Filabride units and

    the glaucophanitic greenschist facies. Tectonophysics 27, 57 81.

    Kozur, H., Mulder-Blanken, C.H.W., Simon, O.J., 1985. On the

    Triassic of the Betic Cordilleras (S. Spain), with special empha-sis on holoturian scleretis. Proc. K. Ned. Akad. Wet., Ser. B 88,

    83110.

    Kretz, R., 1983. Symbols for rock-forming minerals. Am. Mineral.

    68, 277279.

    Kuhn, A., Glodny, J., Iden, K., Austrheim, H., 2000. Retention of

    Precambrian Rb/Sr phlogopite ages through Caledonian eclogite

    facies metamorphism, Bergen Arc Complex, W-Norway. Lithos

    51, 305330.

    Lafuste, J., Pavillon, M.-J., 1976. Mise en evidence dEifelien dates

    au sein de des terrains metamorphiques des zones internes des

    Cordilleres betiques. Interet de cenouveau repere stratigraphique.

    C. R. Acad. Sci. Paris 283, 10151018.

    Li, S., Wang, S., Chen, Y., Liu, D., Qiu, J., Zhou, H., Zhang, Z.,

    1994. Excess argon in phengite from eclogite: evidence from

    dating of eclogite minerals by SmNd, RbSr and 40Ar/39Ar

    methods. Chem. Geol., Isot. Geosci. Sect. 112, 343350.

    Li, S., Jagoutz, E., Lo, C.-H., Chen, Y., Li, Q., Xiao, Y., 1999. Sm

    Nd, RbSr and 40Ar/39Ar isotopic systematics of the ultrahigh

    pressure metamorphic rocks in the DabieSulu Belt, Central

    China: a retrospective view. Int. Geol. Rev. 41, 11141124.

    Lo, C.-H., Onstott, T.C., 1989. 39Ar recoil artifacts in chloritized

    biotite. Geochim. Cosmochim. Acta 53, 26972711.

    Lo pez Sanchez-Vizcano, V., Rubatto, D., Gomez-Pugnaire, M.T.,

    Trommsdorff, V., Muntener, O., 2001. Middle Miocene high-

    pressure metamorphism and fast exhumation of the Nevado

    Filabride Complex, SE Spain. Terra Nova 13, 327332.

    Ludwig, K.R., 2000. Isoplot/Ex version 2.3. A GeochronologicalToolkit for Microsoft Excel. Berkeley Geochronology Center,

    Special publication 1a, p. 54.

    Makel, G.H., 1988. The geology of the Late Paleozoic sequences of

    the BeticRif and Tell Orogens; implications for the paleogeog-

    raphy of the Western Mediterranean. Proc. K. Ned. Akad. Wet.

    92, 251276.

    Martnez Martnez, J.M., 1980. Evolucion de deformaciones y

    metamorfismo alpnos en el Complejo Nevado Fila bride de

    la Sierra de los Filabres, SE de Espana. Cuad. Geol. 11,

    85106.

    Maruyama, S., Cho, M., Liu, J.G., 1986. Experimental investiga-

    tions of blueschistgreenschist transition equilibria pressure de-

    pendence of Al2O3 contents in sodic amphibolesa new geo-

    barometer. Geol. Soc. Am. Mem. 164, 116.Monie, P., Galindo-Zaldivar, J., Gonzalez-Lodeiro, F., Goffe, B.,

    Jabaloy, A., 1991. 40Ar/39Ar geochronology of the Alpine tec-

    tonism in the Betic Cordilleras (southern Spain). J. Geol. Soc.

    Lond. 148, 289 297.

    Morten, L., Bargossi, G.M., Martnez Martnez, J.M., Puga, E.,

    Diaz de Federco, A., 1987. Metagabbro and associated eclo-

    gites in the Lubrin area, Nevado Filabride Complex, Spain.

    J. Metamorph. Geol. 5, 155174.

    Nieto, J.M., 1996. Petrologa y geoqumica de los ortogneises del

    Complejo del Mulhacen Cordilleras Beticas. PhD Thesis. Uni-

    versidad de Granada.

    Phillips, D., Onstott, T.C., 1988. Argon isotopic zoning in mantle

    phlogopite. Geology 16, 542546.

    Platt, J.P., Vissers, R.L.M., 1989. Extensional collapse of thickened

    continental lithosphere: a working hypothesis for the Alboran

    Sea and Gibraltar arc. Geology 17, 540543.Puga, E., Diaz de Federco, A., 1978. Metamorfsmo polifasico y

    deformaciones alpnas en el Complejo de Sierra Nevada (Cor-

    dillera Betica). Implicaciones geodinamicas. In: Univ. de Gran-

    ada (Ed.), Reunion sobre la Geodinamica de la Cordillera Betica

    y Mar de Alboran (Granada, May 1976), pp. 79111.

    Puga, E., Fontbote, J.M., Martn-Vivaldi, J.L., 1975. Kyanite pseu-

    domorphs after andalusite in polymetamorphic rocks of the Si-

    erra Nevada (Betic Zone, S. Spain). Schweiz. Mineral. Petrogr.

    Mitt. 55, 227 241.

    Puga, E., Diaz de Federco, A., Bargossi, G.M., Morten, L., 1989.

    The NevadoFilabride metaophiolitic association in the Cobdar

    region (Betic Cordillera, Spain): preservation of pillow struc-

    tures and development of coronitic eclogites. Geodin. Acta 3,

    1736.

    Puga, E., Nieto, J.M., Daz de Federico, A., Bodinier, J.L., Morten,

    L., 1999. Petrology and metamorphic evolution of ultramafic

    rocks and dolerite dykes of the Betic Ophiolitic Association

    (Mulhacen Complex, SE Spain): evidence of eo-Alpine subduc-

    tion following an ocean-floor metasomatic process. Lithos 49,

    107140.

    Puga, E., Daz de Federico, A., Nieto, J.M., 2002. Tectonostrati-

    graphic subdivision and petrological characterisation of the

    deepest complexes of the Betic zone: a review. Geodin. Acta

    15, 23 43.

    Reddy, S.M., Kelley, S.P., Wheeler, J., 1996. A 40Ar/39Ar laser

    probe study of micas from the Sesia Zone, Italian Alps: impli-

    cations for metamorphic and deformation histories. J. Meta-morph. Geol. 14, 493508.

    Reddy, S.M., Potts, G.J., Kelley, S.P., 2001. 40Ar/39Ar ages in

    deformed potassium feldspar: evidence of microstructural con-

    trol on Ar isotope systematics. Contrib. Mineral. Petrol. 141,

    174185.

    Roddick, J.C., 1978. The application of isochron diagrams in 40Ar 39Ar dating: a discussion. Earth Planet. Sci. Lett. 41, 233244.

    Ruffet, G., Feraud, G., Amouric, M., 1991. Comparison of 40Ar 39Ar conventional and laser dating of biotites from the North

    Tregor Batholith. Geochim. Cosmochim. Acta 55, 16751688.

    Ruffet, G.,Feraud, G.,Ballevre, M.,Kienast, J.R., 1995. Plateau ages

    and excess argon in phengites: an 40Ar 39Ar laser probe study of

    Alpine micas (Sesia zone, Western Alps, northern Italy). Chem.

    Geol., Isot. Geosci. Sect. 121, 327 343.Scaillet, S., 1996. Excess 40Ar transport scale and mechanism in

    high-pressure phengites: a case study from eclogitized metaba-

    site of the DoraMaira nappe, western Alps. Geochim. Cosmo-

    chim. Acta 60, 10751090.

    Sherlock, S., Arnaud, N.O., 1999. Flat plateau and impossible iso-

    chrons: Apparent 40Ar 39Ar geochronology in a high-pressure

    terrain. Geochim. Cosmochim. Acta 63, 28352838.

    Sherlock, S., Kelley, S., Inger, S., Harris, N., Okay, A., 1999.40Ar 39Ar and RbSr geochronology of high-pressure meta-

    morphism and exhumation history of the Tavsanli Zone, NW

    Turkey. Contrib. Mineral. Petrol. 137, 4658.

    K. de Jong / Lithos 70 (2003) 91110 109

  • 8/6/2019 DeJong_Eclogites: Very Fast Exhumation, Excess Ar, Inherited Sr (Betics, Spain)_Lithos 2003

    20/20

    Simon, O.J., 1987. On the Triassic of the Betic Cordilleras (South-

    ern Spain). Cuad. Geol. Iber. 11, 385402.

    Sletten, V.W., Onstott, T.C., 1998. The effects of the instability of

    muscovite during vacuo heating on 40Ar/39Ar step-heating spec-

    tra. Geochim. Cosmochim. Acta 62, 123141.Spear, F.S., Cheney, J.T., 1989. A petrogenetic grid for pelitic

    schists in the system SiO2Al2O3FeOMgOK2O H2O.

    Contrib. Mineral. Petrol. 101, 149164.

    Spray, J.G., Roddick, J.C., 1981. Evidence for Upper Cretaceous

    transform fault metamorphism in West Cyprus. Earth Planet.

    Sci. Lett. 55, 273291.

    Steiger, R.H., Jager, E., 1977. Subcommission on geochronology:

    convention on the use of decay constants in geo- and cosmol-

    ogy. Earth Planet. Sci. Lett. 36, 359362.

    Tendero, J.A., Martin-Algarra, A., Puga, E., Diaz de Federco, A.,

    1993. Lithostratigraphy of the metasediments of the Nevado

    Filabride ophiolitic association (SE Spain) and discovery of

    ankerite spots resembling Cretaceous planktonic foramini-

    fera paleogeographic consequences. C. R. Acad. Sci. Paris,

    Ser. 316, 1115 1122.

    Tonarini, S., Villa, I.M., Oberli, F., Meier, M., Spencer, D.A., Pog-

    nante, U., Ramsay, J.G., 1993. Eocene age of eclogite meta-

    morphism in Pakistan Himalaya: implications for India

    Eurasia collision. Terra Nova 5, 1320.

    Verschure, R.H., Andriessen, P.A.M., Boelrijk, N.A.I.M., Hebeda,

    E.H., Maijer, C., Priem, H.N.A., Verdurmen, E.A.Th., 1980. On

    the thermal stability of RbSr and KAr biotite systems: Evi-

    dence from coexisting Sveconorwegian (ca 870 Ma) and Cale-

    donian (ca 400 Ma) biotites in SW Norway. Contrib. Mineral.Petrol. 74, 245252.

    Villa, I.M., 1998. Isotopic closure. Terra Nova 10, 4247.

    Vissers, R.L.M., 1977. Deformation of Pre-Alpine age in the Ne-

    vado Filabride complex of the central Sierra de los Filabres, SE

    Spain: macroscopic and microstructural evidence. Proc. K. Ned.

    Akad. Wet., Ser. B 80, 302311.

    West, D.P., Lux, D.R., 1993. Dating mylonitic deformation by the40Ar 39Ar method: an example from the Norumbega fault

    Zone, Maine. Earth Planet. Sci. Lett. 120, 221237.

    Wijbrans, J.R., McDougall, I., 1986. 40Ar/39Ar dating of white

    micas from an Alpine high-pressure metamorphic belt on Naxos

    (Greece): the result of resetting of the argon isotopic system.

    Contrib. Mineral. Petrol. 93, 187194.

    Zeck, H.P., Williams, I.S., 2001. Hercynian metamorphism in nappe

    core complexes of the BeticRif Belt, western Mediterranean

    a SHRIMP zircon study. J. Petrol. 42, 13731385.

    K. de Jong / Lithos 70 (2003) 91110110