Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti.

34
Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti

Transcript of Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti.

Degenerate Quantum Gases manipulation on AtomChips

Francesco Saverio Cataliotti

• Bose-Einstein condensates on a microchip

• Atom Interferometry

• Multipath Interferometry on an AtomChip

• Results and Conclusions

Outlook

Degenerate atoms

Temperatura

T < TC

Bosoni T < TF

EF

Fermioni

Degenerate Atoms1925: Einstein predicts “condensation” of bosons

80’s: Development of laser cooling

1985: Magnetic Trapping of ultracold atoms

1986: Optical trapping of Na

1987: Na Magneto-Optical Trap

60’s: Development of Lasers

1995: First 87Rb Bose-Einstein Condensate

2001: First BEC of 87Rb on an Atom Chip

Huge playground for fundamental physics:- BEC with Li, Na, K, Cs, Fr…- Optical gratings, collective excitations…

First applications:- Interferometry- Earth and Space sensors- Quantum Information

612.23 dBn

T 300 K 10-20

Route to BEC in dilute gases

laser cooling

evaporative cooling

10-6T 10 K

T 100 nK 2.6

F=- v-kz

coolingtrapping

Magneto Optical Trap (MOT)

tem

pera

ture

Evaporative cooling

E

x

Forced evaporation in a magnetic trap (conservative

potential)

remove highest velocities

thermalization through elastic

collisions

cooling

BEC on a chipMacroscopic trap Micro-trap

I

Current ~ 100 APower ~ 1.5 kW

double MOT system: Laser power ~ 500 mW

Ultra High Vacuum ~ 10-11 Torr

n = 10-100 Hz Current < 1 APower < 10 W

single MOT system: Laser power ~ 100 mW

High Vacuum ~ 10-9 Torr

Large BEC 106 atomsbutproduction cycle > 1 min

BEC 105 atomsandproduction cycle ~ 1 s

n = 1-100 kHz

s+s+

s- s-

s+ s-

Laser Cooling close to a surface

• Planar Geometry gold microstrips on silicon substrates

Bwir (Iwir= 3A) Bbias = {0,3.3,1.2} Gauss

1000 2000 3000 4000 5000

12345678

2000 1000 1000 2000

12345678

z (mm)

x (mm)

1000 2000 3000 4000 5000

12345678

2000 1000 1000 2000

12345678

|B| (

Gau

ss)

|B| (

Gau

ss)

Iwir= 3 A ; Bbias= {0,3.3,1.2} Gauss Iwir= 1 A ; Bbias= {0,3.3,1.2} Gauss

BEC on a chip

BEC on a chip

BEC Generation RoutineMOT in reflection loading10^8 atoms

MOT transfer close to the chip (~1mm)

CMOT + Molasses 5 x 10^7 atoms @ T ~ 10 μK

Optical pumpingAncillary magnetic trap (big Z wire)20 x 10^6 atoms @ T ~ 12 μK

Compression and transfer to themagnetic trap on chip (chip Z wire)20 x 10^6 atoms @ T ~ 50 μK (~200 μm)

Evaporation (big U under the chip)BEC with 30x10^3 atoms, Tc=0.5 μK

End of the cycle

5000

5450

5485

5490

5740

8300

time [ms] action

23000

lens

CCD cameraatoms

Imaging cold atoms

MOT ~ 10^8 atoms

Molasses phase ~ 5 x 10^7 atoms @ T ~ 15 uK

First Magnetic Trap (big Z wire)~ 20 x 10^6 atoms @ T ~ 12 uK

Magnetic Trap on Chip (chip Z wire)~ 20 x 10^6 atoms @ T ~ 50 uK

BEC~ 20 x 10^3 atoms @ T < 0.5 uK

Free fall of the BEC

BEC on a chip

• Bose-Einstein condensates on a microchip

• Atom Interferometry

• Multipath Interferometry on an AtomChip

• Results and Conclusions

Outlook

Atom Interferometer

coupling mechanism

BEC 1 BEC 1

BEC 2BEC 1,2

BEC 1

BEC 2

separation for measurement

Rabi pulse

Stern-Gerlach experiment

BEC – coherent form of matter , a wavepacket

BEC 1,2 different spin states

BEC on a chip

Atomic Ramsey Interferometer

- Theory -

Solve SE for 1 atomfor the non-interacting BEC

1

2Δ=ω 0 -ω

ω ω0let them evolvefor time T

mix them up again

start from

mix two states

Solve GPE for the BEC

Rabi Oscillations

mf=1mf=2mf=2

time

Tp

BECmf=1

BECmf=2

B

Δ

spac

e

Stern-Gerlach method

- pulse

Rabi frequency

Rabi Oscillation

Rabi frequency ~ 50KHz

π/2

-2 -1

0

1

2

mf

Experimental Scheme:Ramsey Interferometer

mf=2mf=2 mf=1

mf=1

mf=2B

Δ

time

spac

e

π/2 π/2

Oscillation frequency = 1/RF = 1/650KHz = 1.5 μs

Ramsey Interferometer

• Bose-Einstein condensates on a microchip

• Atom Interferometry

• Multipath Interferometry on an AtomChip

• Results and Conclusions

Outlook

Parameters of the Interferometric Signal

background

Sensitivity:

Resolution:

D’Ariano & Paris, PRA (1996)amplitude

24

Working range:

Weihs et al., Opt. Lett. (1996)

Multi-path Interferometer

Multi-Path interferometer

0000

000

000

000

0000W W W W

Funny enougn for N>3 the system can be aperiodic since frequencies are incommensurableEven more fun they are the solutions of a complex Fibonacci Polynomial

)()()( 11 xFxxFxF nnn

Multi-Path interferometer

There does not exist a p/2 pulse.To obtain the best resolution from the interferometer one has to optimize pulse area

Multi-Path interferometer

Multi-Path interferometer

• Bose-Einstein condensates on a microchip

• Atom Interferometry

• Multipath Interferometry on an AtomChip

• Results and Conclusions

Outlook

Detection of a Light-Induced Phase Shift

Polarisation σ- Polarisation σ+

Light-pulse detuning from F=2 F=3 was 6.8GHz.

32

What can you use it for?

• We have demonstrated a compact time-domain multi-path interferometer on an atom chip

• Sensitivity can be controlled by an RF pulse acting as a controllable state splitter.

• Resolution superior to that of an ideal two-path interferometer.

• Simultaneous measurement of multiple signals at the output enables a range of advanced sensing applications in atomic physics and optics

• Integration of interferometer with a chip puts it into consideration for future portable cold-atom based measurement systems.

Conclusions

Atom Chip Team

Ivan Herrera

Pietro Lombardi

our typical signal

Jovana Petrovic

Those who really did it

Ivan Herrera

Pietro Lombardi

A typical BEC

Jovana Petrovic

Who did it?