DeformaonProcesses* Rolling*...

36
Deforma(on Processes Rolling Rolling –reducing the thickness or changing the crosssec4on of a long workpiece by compressive forces applied through a set of rolls Accounts for 90% of all metals produced by metal working processes OAen carried out at elevated temperatures first (hot rolling). Hot Rolling It changes the coarsegrained, briHle, and porous ingot structures to wrought structures with finer grain sizes and enhanced proper4es. It does not provide precise final dimensions or good surface finishes. Cold Rolling Homologous Temperature Ranges (Kelvin) Process T/Tmel4ng Cold Working <0.3 Warm Working 0.3 to 0.5 Hot Working >0.6 It provides a large number of semifinished products, such as sheets, strips and foils. It provides a precise control of product dimensions and good surface finishes. The material work hardens, i.e. increased strengths.

Transcript of DeformaonProcesses* Rolling*...

Page 1: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Deforma(on  Processes  Rolling  Rolling  –reducing  the  thickness  or  changing  the  cross-­‐sec4on  of  a  long  workpiece  by  compressive  forces  applied  through  a  set  of  rolls  Accounts  for  90%  of  all  metals  produced  by  metal  working  processes  OAen  carried  out  at  elevated  temperatures  first  (hot  rolling).    

Hot  Rolling  It  changes  the  coarse-­‐grained,  briHle,  and  porous  ingot  structures  to  wrought  structures  with  finer  grain  sizes  and  enhanced  proper4es.  It  does  not  provide  precise  final  dimensions  or  good  surface  finishes.        Cold  Rolling  

Homologous  Temperature  Ranges  (Kelvin)  

Process   T/Tmel4ng  

Cold  Working   <0.3  

Warm  Working   0.3  to  0.5  

Hot  Working   >0.6  

It  provides  a  large  number  of  semi-­‐finished  products,  such  as  sheets,  strips  and  foils.  It  provides  a  precise  control  of  product  dimensions  and  good  surface  finishes.  The  material  work  hardens,  i.e.  increased  strengths.  

Page 2: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Dynamic  recrystalliza4on  of  the  deformed  grains  occurs  during  hot-­‐rolling.    

Page 3: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Terminology   Cross  sec4onal  Area  (CSA)  

Semi-­‐finished  Products  

Bloom   Product  of  the  first  breakdown  of  ingot  (CSA>230cm2)  

Billet   Bloom  with  further  reduc4on  by  hot  rolling  (CSA  40x40mm2)  

Slab   Hot  rolled  ingot  (CSA>100cm2  with  a  width  >2  x  thickness)  

Mill  Products  

Plate   Thickness  >  6mm  (examples:  boiler  support  –  0.3m  ;  reactor  vessels  –  150mm  ;  baHleships  and  tanks  –  100-­‐125mm)  

Sheet   Thickness  <  6mm  and  width  >  600mm  (examples  Boeing  747  skin  thickness  –  1.8mm  ;  Aluminum  beverage  cans  –  starts  as  sheets  –  0.28mm  thick  and  it  is  reduced  aAer  deep  drawing  to  0.1mm)    

Strip   Thickness  <  6mm  and  width  <  600mm  

Page 4: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Rolling  Opera(ons  

Page 5: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Deforma4on  process  in  which  work  thickness  is  reduced  by  compressive  forces  exerted  by  two  opposing  rolls      

Flat  Rolling  

Rota4ng  rolls  perform  two  main  func4ons:  §  Pull  the  work  into  the  gap  between  them  by  fric4on  between  work-­‐piece  and  rolls  §  Compresses  the  work  to  reduce  its  cross  sec4on      

The  material  is  constrained  in  the  z-­‐direc4on,  i.e  the  material  is  not  extended  in  the  width  direc4on.  The  material  gets  longer  and  not  wider.  This  condi4on  is  known  as  plane  strain.  Fric4on  plays  a  cri4cal  role  in  enabling  rolling  µ  >  tan  α Rolling  can  not  occur  without  fric4on.  

Page 6: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Flat  Rolling  Analysis  

Ini4al  thickness  ho  Final  thickness  hf  Roll  gap  L  Surface  speed  of  rolls  Vr  Entry  velocity  of  the  strip  Vo    Final  velocity  of  the  strip  Vf  Neutral  point  :  No  slip  point  –  point  along  contact  length  where  the  velocity  of  the  strip  =  velocity  of  the  roll  

Page 7: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Flat  Rolling  Analysis  

Rolling  can  not  take  place  without  fric4on,  for  rolling  to  occur  µ>tan(α)  

Stresses  in  the  slab  on  the  entry-­‐zone  

Stresses  in  the  slab  on  the  exit-­‐zone  

σ x +δσ x( ) ⋅ h+δh( )− 2pR ⋅δφ ⋅sinφ ± 2µpR ⋅δφ ⋅cosφ −σ xh = 0h ⋅δσ x +δσ x ⋅δh− 2pR ⋅δφ ⋅sinφ ± 2µpR ⋅δφ ⋅cosφ = 0

Page 8: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

σ x +δσ x( ) ⋅ h+δh( )− 2pR ⋅δφ ⋅sinφ ± 2µpR ⋅δφ ⋅cosφ −σ xh = 0h ⋅δσ x +δσ x ⋅δh− 2pR ⋅δφ ⋅sinφ ± 2µpR ⋅δφ ⋅cosφ = 0δ σ xh( )δφ

= 2pR ⋅ sinφ µ cosφ( )

δ σ xh( )δφ

= 2pR ⋅ φ µ( )

The  angle  φ  designates  any  point  of  contact  between  the  material  and  the  roll  surface.  The  stresses  present  are  the  radial  pressure  p  and  the  tangen4al  stress  generated  by  fric4on  µp.  The  stress  σx  is  assumed  to  be  uniformly  distributed  in  the  sec4on.      

Simplifying  and  ignoring  the  High  Order  Terms  (HOT’s).  For  very  small  angles  sinΦ=Φ  and  cosΦ=1  

Page 9: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Flat  Rolling  Analysis  

Simplifying  and  ignoring  higher  order  terms  

Restric4ng  the  analysis  for  contact  angles  <6degrees  α<<1  ,  then  sin  φ  = φ and  cos  φ  =1  

δ σ xh( )δφ

= 2pR ⋅ sinφ µ ⋅cosφ( )

δ σ xh( )δφ

= 2pR ⋅ φ µ( )For  Plane  Strain  condi4ons  and  using  the  Von  Mises  Criterium  

p−σ x =23

"

#$

%

&'Yflow =1.15Yflow =Yflow

'

δ p−Yflow'( )h"

#$%

δφ= 2pR ⋅ φ µ( )

Yflow' ⋅h ⋅ δ

δφp

Yflow'

"

#$$

%

&''+

pYflow' −1

"

#$$

%

&''⋅δδφ

Yflow' ⋅h( ) = 2pR ⋅ φ µ( )

δδφ

Yflow' ⋅

pYflow' −1

#

$%%

&

'((⋅h

)

*++

,

-..= 2pR ⋅ φ µ( )

δδφ

pYflow'

!

"##

$

%&&

pYflow'

!

"##

$

%&&

=2Rh

φ µ( )

δδφ

pYflow'

!

"##

$

%&&

pYflow'

!

"##

$

%&&

'

(

)))))

*

+

,,,,,

∫ = ln pYflow'

'

())

*

+,,=

2Rh

φ µ( )'

()*

+,φ=α

φ=0

Page 10: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Thickness  expression  as  a  func4on  of  the  angle  

h = hf + 2 ⋅R ⋅ 1− cosφ( )

cosφ =1− φ2

2!+φ 4

4!....

h = hf + R ⋅φ2

Taylor’s  series  expansion  

Subs4tu4ng  in  the  above  integral  and  integra4ng,  we  obtain  

ln pYflow'

!

"##

$

%&&= ln h

R 2µ R

hf⋅ tan−1 φ R

hf

!

"##

$

%&&+ lnC

H = 2 Rhf⋅ tan−1 φ R

hf

!

"##

$

%&&

p =CYflow' hReµH

At  entry  φ=α,  hence  H=Hb    At  exit  φ=0,  hence  H=Hf=0.  Also,  at  entry  and  at  exit  p=Y’flow  Then:  

C = RhbeµHb p = h

hbYflow

' e−µ H−Hb( )

C = Rhf

p = hhfYflow

' eµH

At  entry      At  exit  

The  pressure  at  any  loca4on  is  a  func4on  of  h  and  hence  of  the  angular  posi4on  φ.  

Page 11: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

p = hhbYflow

' e−µ H−Hb( )

p = hhfYflow

' eµH

At  entry        At  exit  

H = 2 Rhf⋅ tan−1 φ R

hf

#

$%%

&

'((

Hb = 2Rhf⋅ tan−1 α R

hf

#

$%%

&

'((

Page 12: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

If  front  and  back  tensions  are  applied,  the  expressions  are  modified  to:  

p = hhb

Yflow' −σ b( )e−µ H−Hb( )

p = hhf

Yflow' −σ f( )eµH

At  entry        At  exit  

Back  tension  to  cause  slip  If  the  back  tension  is  high  enough  the  rolls  will  begin  to  slip,  that  is  the  neutral  point  has  moved  to  the  exit.  The  whole  contact  area  becomes  the  entry  zone.  When  φ=0  then  H=0  

p =hfhb

Yflow' −σ b( )eµ Hb( ) =Yflow

'

σ b =Yflow' 1− hb

hf

"

#$$

%

&''e

−µHb

(

)**

+

,--

Page 13: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

At  the  neutral  point,  the  neutral  point  must  be  where  the  two  pressure  equa4ons  are  the  same  ,  thus  equa4ng  both  expressions  

p = hhbYflow

' e−µ Hn−Hb( ) =hhfYflow

' eµHn

hbhf=e−µ Hn−Hb( )

eµHn= eµ Hb−2Hn( ) Hn =

12Hb −

ln hbhf

"

#$$

%

&''

"

#$$

%

&''

φn =hfR

tanhfR⋅Hn

2

"

#$$

%

&''

Zero  slip:  At  entry,  the  material  is  pulled  towards  the  neutral  point.  At  exit,  the  material  is  pulled  back  towards  the  neutral  point.  

Page 14: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Calcula7ng  Roll  Forces  (roll  separa7ng  force):  

F = wpRδφ0

φn∫ + wpRδφφn

α

The  strip  width  (w),  and  R  is  the  radius  of  the  roll.  If  L  is  the  length  of  contact  and  Δh  is  the  difference  between  the  ini4al  and  final  thicknesses  of  the  strip  (also  called  the  draA),  then:  

Another  method  is  calcula4ng  the  average  contact  stress  

F = Lwpaverage

L = RΔh haverage =hinitial + hfinal

2

h = hf + 2 ⋅R ⋅ 1− cosφ( )h = hf + R ⋅φ

2

L = R ⋅φ hb = hf + R ⋅LR#

$%

&

'(

2

Page 15: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Approxima4ons  based  on  Forging  (Von  Mises)  

paverage =1.15 ⋅Yflow 1+µL

2haverage

"

#$$

%

&''

Small  rolls  (R  small)  and  small  reduc4ons  Δ =

haverageL

>>1

paverage

=1.15 ⋅Yflow

Fric4on  is  small  or  no  significant  

For  large  rolls  or  large  reduc4ons   Δ =haverageL

<<1

paverage

=1.15 ⋅Yflow 1+µL

2haverage

#

$%%

&

'((

Force  (per  unit  width)  Approxima4on  :  Low  fric4on   F = L ⋅w ⋅ p

average=1.15 ⋅Yflow ⋅L ⋅w

Force  (per  unit  width)  Approxima4on  :  High  fric4on  

F = L ⋅w ⋅ paverage

=1.15 ⋅Yflow 1+µL

2haverage

"

#$$

%

&''⋅L ⋅w

Page 16: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Roll  Torque  and  Power  

T = wµpR2 δφ −φn

a∫ wµpR2 δφ

0

φn∫The  torque  can  also  be  es4mated  by  considering  that  the  roll  force  (F  –  obtained  with  the  average  pressure)  is  perpendicular  to  the  rolling  plane  and  that  it  acts  in  the  middle  of  the  arc  of  contact.  

T = FL2

Power = Tω

P(kW ) = πFLN60000

P(HP) = πFLN33000

Power  per  roll.  Where:  F(N  or  lb)  ;  N  (RPM)  and  L  (meters  –  A)  

Page 17: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Roll  Bite  Condi(on  The  horizontal  component  of  the  fric4on  force  must  be  equal  or  greater  than  the  horizontal  component  of  the  normal  force  for  the  work  piece  to  enter  the  throat  of  the  roll.  

F cosα ≥ Pr sinα⇒FPr≥sinαcosα

= tanα

F = µPr ⇒ µ = tanα

Free  engagement  will  occur  when  µ>tanα 1.  Increase  the  effec4ve  value  of  the  

coefficient  of  fric4on  µ.  For  example  by  grooving  the  rolls  parallel  to  the  roll  axis.  

2.  Using  large  diameter  rolls  to  reduce  the  angle  α.  If  the  roll  diameter  is  fixed,  then  reduce  the  sheet  thickness    

Maximum  angle  of  acceptance  

Page 18: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Maximum    Reduc(on  

From  triangle  ABC,  we  have  

R2 = Lp2 + R− a( )2

Lp2 = R2 − R2 − 2Ra+ a2( )Lp2 = 2Ra− a2 ≅ 2Ra

As  a  is  much  smaller  than  R,  a2  can  be  neglected  

Lp ≅ 2Ra ≈ RΔh

µ = tanα =Lp

R−Δh2≈

ΔhR

⇒Δhmax = µ2R Maximum  

reduc(on  in  thickness  

Page 19: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Example:   Determine  the  maximum  possible  reduc4on  for  cold  rolling  a  300mm-­‐thick  slab  when  the  coefficient  of  fric4on  µ=0.08  and  the  roll  diameter  is  600mm.  What  is  the  maximum  reduc4on  on  the  same  mill  for  hot  rolling  when  µ=0.5?  

Δhmax = µ2R = 0.08( )2 600

2"

#$

%

&'=1.92mm

Δhmax = µ2R = 0.5( )2 600

2"

#$

%

&'= 75mm

sinα =Lp

D2=

RΔhR

α = tan−1 µ( ) Δh =1.92mm

Page 20: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Example:   Es4mate  the  total  power  required  for  a  rolling  opera4on  of  a  9in  wide  6061-­‐O  aluminum  strip  that  is  rolled  from  a  thickness  of  1in  to  a  final  thickness  of  0.8in.  The  roller  radius  is  12in  and  the  roller  speed  is  100RPM.  

Es4mate  the  true  strain:   ε = ln tot f

!

"##

$

%&&= ln

1.00.8!

"#

$

%&= 0.223

Y =k ε n dε0

ε1

∫ε1

=kε1

n

n+1

Y =30000 0.223( )0.2

1+ 0.2=18500psi

Y flow'

=1.15×18500 = 21275psi

F = LwY flow'

=1.55×9×21275= 297000lb

L = RΔh = 12× 1.0− 0.8( ) =1.55in

P(hp) = 2πFLN33000

=2×π ×297000× 1.55 12( )×100

33000= 735hp

Page 21: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Roll  FlaMening  Due  to  the  large  forces  that  are  generated,  in  the  contact  area  the  rolls  flaHen,  and  as  a  result,  the  radius  of  the  roll  is  increased.  To  calculate  the  separa4ng  force,  the  radius  of  the  rolls  are  needed.    To  calculate  the  new  radius  due  to  flaHening,  the  separa4ng  force  is  needed.  The  need  radius  is  given  by  the  expression  by  Hitchcock:  

Rflatten = R 1+CF

w hb − hf( )"

#$$

%

&''

Where    

C =161−ν 2( )πE

C = 2.3×10−11Pa−1 1.67×10−7 psi−1( ) for steel rolls

C = 4.57×10−11Pa−1 3.15×10−7 psi−1( ) for cast iron rolls

Page 22: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Example:  

Suppose  the  average  flow  stress  is  40  ksi  and  a  sheet  is  being  rolled  so  that  the  change  in  height  is  0.25  inches.  The  width  of  the  roll  is  10  inches  and  the  radius  of  the  roller  is  10  inches.  What  is  the  effec4ve    radius  R’  of  the  roller?  Roller  made  of  steel.  

C =1.67×10−7 psi−1 for steel rolls paverage =1.15 ⋅Yflow =1.15 ⋅ 40000 = 46000psi

L = RΔh = 10 ⋅0.025 = 0.5F = Lwpaverage = 0.5 ⋅10 ⋅ 46000 = 230000lb

Rflatten = R 1+CF

w hb − hf( )"

#$$

%

&''=10 ⋅ 1+1.67 ⋅10

−7 ⋅23000010 ⋅ 0.025( )

"

#$$

%

&''=11.5364in

again   L = RΔh = 11.5364 ⋅0.025 = 0.537F = Lwpaverage = 0.537 ⋅10 ⋅ 46000 = 247037lb

Rflatten = R 1+CF

w hb − hf( )"

#$$

%

&''=10 ⋅ 1+1.67 ⋅10

−7 ⋅24703710 ⋅ 0.025( )

"

#$$

%

&''=11.65in

Repeat……      it  converges  to:    

Page 23: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Types  of  Rolling  Process  •  Flat  Rolling  •  Con4nuous  Rolling  •  Shape  Rolling  •  Transverse  rolling  •  Ring  Rolling  •  Powder  Rolling  

Residual  Stresses  may  lead  to  warping  aAer  bar  is  machined  

Kalpakjian  

Page 24: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Example:  

Find  the  separa4ng  force  and  the  rolling  torque.  Data:  (a)  the  width  of  the  rollers  are  10in,  (b)  the  ini4al  and  final  thickness  are  0.125in  and  0.100in  respec4vely,  (c)  the  average  flow  stress  is  40ksi,  (d)  the  coefficient  of  fric4on  is  0.1  and  the  roller  radius  is  10in.    

haverage =0.125+ 0.10

2= 0.1125 Δh = 0.0250in

paverage =1.15 ⋅Yflow 1+ µL2haverage

#

$%%

&

'((=1.15 ⋅ 40000 1+

0.1⋅ 10( ) 0.0250( )2 ⋅0.1125

#

$

%%

&

'

((= 56222.1psi

F = Lwpaverage = 10( ) 0.0250( ) ⋅10 ⋅56222.2lb = 281111.1lb

Rflatten = R 1+CF

w hb − hf( )"

#$$

%

&''=10 ⋅ 1+1.67 ⋅10

−7 ⋅28111110 ⋅ 0.025( )

"

#$$

%

&''=11.878in

paverage =1.15 ⋅Yflow 1+µL

2haverage

"

#$$

%

&''=1.15 ⋅ 40000 1+

0.1⋅ 11.878( ) 0.0250( )2 ⋅0.1125

"

#

$$

%

&

''= 57140.8

F = Lwpaverage = 11.878( ) 0.0250( ) ⋅10 ⋅57140.8lb = 310183lb

Page 25: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Rflatten = R 1+CF

w hb − hf( )"

#$$

%

&''=10 ⋅ 1+1.67 ⋅10

−7 ⋅31018310 ⋅ 0.025( )

"

#$$

%

&''=12.072in

Hot  Rolling   Must  consider  the  strain  rate  effect  under  plain  strain  condi4ons  

AverageStrainRate = ε = εt=VRLln hb

hf

!

"##

$

%&&

2τ flow =1.15 ⋅Y flow =1.15 ⋅C ⋅ εm

Page 26: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Shape  Rolling   Work-­‐piece  is  deformed  into  a  contoured  cross  sec4on  instead  than  a  flat  (rectangular  sec4on).  Accomplished  by  progressively  bend  the  flat  slab  into  complex  shapes,  by  passing  it  through  a  series  of  driven  rolls.  Products  include:  Construc4on  shapes  such  as  I‑beams,  L‑beams,  and  U‑channels;  rails  for  railroad  tracks;  round  and  square  bars  and  rods  

Page 27: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

www.cometroll.com     www.safeair-dowco.com    

Page 28: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

www.mortonbuildings.com    

Page 29: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

A  series  of  rolling  stands  in  sequence  Tandem  Rolling  Mill  

At  each  stage  in  the  mill  the  strip  moves  at  a  different  velocity.  There  must  be  a  synchroniza4on  of  the  speed  of  each  roll,  such  that  the  input  speed  of  one  stand  must  be  equal  to  the  output  speed  of  the  preceding  stand.  Back  and  front  tensions  are  provided  by  the  uncoiler  and  windup  reel.  

Page 30: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

An  example  of  a  tandem/con4nuous-­‐rolling  opera4on.  

Page 31: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Roll-­‐Forging  

Two  examples  of  the  roll-­‐forging  opera4on,  also  known  as  cross-­‐rolling.    Tapered  leaf  springs  and  knives  can  be  made  by  this  process.    Source:    AAer  J.  Holub.  

Page 32: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

www.sendzimir.com  

www.elgiloy.com  

Mul4ple  backing  rolls  allow  even  smaller  roll  diameters    Cluster  Mill      

Page 33: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Thread  Rolling   Mass  producing  process  that  forms  threads  on  cylindrical  parts  by  forcing  (pressing)  them  between  two  dies.  The  process  is  cold  rolled.  It  produces  stronger  and  beHer  fa4gue  resistant  threads  due  to  cold  hardening  

Reciprocal method of thread forming

Cylindrical method of thread forming

Rolled  treads  are  produced  in  a  single  pass.  The  thread  is  formed  by  the  axial  flow  of  the  material.  The  root  is  formed  by  pressing  the  material  and  the  displaced  material  flows  radially  to  form  the  thread’s  crest.  

Page 34: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Ring  Rolling   During  ring  rolling  a  thick-­‐walled  ring  of  a  small  diameter  is  rolled  into  a  thin-­‐walled  ring  of  larger  diameter.  

Applica4ons:  ball  and  roller  bearing  races,  steel  4res  for  railroad  wheels,  and  rings  for  pipes,  pressure  vessels,  and  rota4ng  machinery      Advantages:  material  savings,  ideal  grain  orienta4on,  strengthening  through  cold  working  

The  process  can  be  cold-­‐worked  for  smaller  deforma4ons.  

Page 35: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Skew  Rolling  

Similar  to  roll  forging  and  used  for  making  ball  bearings  

Another  method  of  produc4on  is  to  cut  pieces  from  a  round  bar  and  upset  them  between  two  dies  with  hemispherical  cavi4es  

Rotary  Tube  Piercing  A  hot-­‐working  opera4on  for  making  long,  thick  walled  seamless  tubing  and  piping.  Also  known  as  the  Mannesmann  process.  The  round  bar  is  subjected  to  radial  compressive  forces,  while  tensile  stresses  develop  at  the  center  of  the  bar  

Page 36: DeformaonProcesses* Rolling* …academic.uprm.edu/pcaceres/Courses/ManufProc/MP-Deform-2.pdfDeformaonProcesses* Rolling* Rolling’–reducing’the’thickness’or’changing’the’cross3sec4on’

Residual  Stresses  AAer  the  deforma4on  process  has  concluded  and  all  the  external  forces  have  been  removed,  the  component  is  s4ll  subjected  to  internal  stresses  that  remain  aAer  the  deforma4on  process.    The  highest  value  of  these  internal  stresses  is  the  yield  point  of  the  material  and  therefore  these  internal  stresses  are  important  in  high  yield  point  materials.  The  internal  stresses  are  in  equilibrium  in  the  component.  These  can  cause  unexpected  deforma4on  if  the  component  is  cut  so  that  the  equilibrium  is  lost.  The  residual  stresses  can  be  reduced  by  a  thermal  treatment  known  as  stress-­‐relief  annealing.  The  treatment  does  not  cause  a  change  in  the  microstructure  of  the  material.