Deep Geothermal Resources: Estimated Temperatures on Top ... maps...2 T. 16 0. T. 1 9 N. T. 16 1N T....

1
North Dakota Geological Survey 100K Series: Bntu- g - MM Deep Geothermal Resources: Estimated Temperatures on Top of the Madison Group Carto graphic Compilatio n: Elroy L. Kadrmas Bottineau 100K Sheet, North Dakota Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Resources 1980 Magnetic North Declination at Center of Sheet Lorraine A. Manz 2011 11 o 30 ' E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Landa Upham Kramer Overly Souris Bant ry Newburg Gardena Dunseith e Bottineau Willow Cit y Oak Creek S t o n e Cr e e k Ox Creek M u d C r e e k M i l l e r C r e ek B o u n d a r y C r e e k D e e p R i v e r M ine r a l C r e e k L aP o rt e C o u l e e B o u n d a r y C r e e k n d a r y C r e e k S p r i n g C o u l e e W i l l o w C r e e k S n a k e C r e e k I n d i a n C r e e k W o l f C r e ek Mu Willow Lake Lord s Lake Souris Souris Wil low River Lake Metigoshe Lake Metigoshe Loo n Lake Deep R iver Lon g Lake Lyde La ke Duck Lake Bounda ry Lake River Ox Creek Wil low Ross Lake Ber ry Lake Grass Lake Creek Hartley Lake Butte Lake Lord s Lake Lake Tho mas Hemming Lake Rabb Lake Lo Pelican Lake Lee Lake Lag erq uist Lake Berg en Lake Grigg Lake Is land La ke Jun ea u Lake Hellick Lake Long Lake Klebe Lake Sand Lake Lake Klingenberg Bitt en er Lake Sivertso n Lake Cas sidy Lake Rose Lake Walker Lake Bigha m Lake Myer Lake Lon g Lake Lake Dana Lake Ben nett Sch utt e Lake Lake Cou thard Eldridge Lake Mu d Lake Mu d Lake Lake Francis Lake Bes sie Creek Lake Harman Smith srun d Lake Nor berg Lake Lake Ta yl or Plat te La ke Sch midt Lake Black Lake Lockhart Lake Stra wberr y Lake Harts Lake Gordon Lake Car lis le Lake -1500 -1100 -2000 £ ¤ ! ( BOTTINEAU CO PIERCE CO ROLETTE CO MCHENRY CO BOTTINEAU CO MCHENRY CO BOTTINEAU CO ROLETTE CO 3 ! ( 17 ! ( 5 ! ( 3 ! ( 60 ! ( 60 281 ! ( 5 ! ( 43 ! ( 43 ! ( 14 ! ( 14 ! ( 5 ! ( 14 " " 1 1 6 6 1 1 6 1 1 1 1 1 1 1 1 1 6 6 1 1 6 1 6 1 1 1 1 6 6 1 6 6 1 1 1 1 6 1 1 6 1 1 1 1 6 6 6 1 6 1 6 6 1 6 6 1 1 6 1 1 6 1 6 1 1 6 1 6 6 1 1 1 6 1 6 1 6 6 6 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 31 36 36 36 31 36 36 36 36 36 36 31 36 36 31 31 36 36 36 36 36 31 31 31 31 36 36 36 36 36 31 36 36 31 36 36 31 36 36 36 36 31 36 36 36 36 36 31 31 36 36 36 36 36 31 36 36 36 36 31 31 31 36 36 31 31 36 36 31 31 31 31 36 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 101 o 00 ' 49 o 00 ' 100 o 00 ' 49 o 00 ' 101 o 00 ' 48 o 30 ' 100 o 00 ' 48 o 30 ' R. 79 W. T. 1 64 N . T. 1 62 N . T. 1 60 N . T. 1 59 N . T. 1 61 N . R. 77 W. R. 76 W. R. 75 W. R. 74 W. R. 73 W. R. 80 W. R. 78 W. R. 79 W. R. 77 W. R. 76 W. R. 75 W. R. 74 W. R. 73 W. T. 1 63 N . R. 78 W. R. 80 W. T. 1 58 N . R. 72 W. T. 1 64 N . T. 1 62 N . T. 1 60 N . T. 1 59 N . T. 1 61 N . T. 1 63 N . T. 1 58 N . Geothermal energy is a renewable resource capable of producing an uninterrupted supply of electrical power and heat. In stable sedimentary basins, low-temperature geothermal energy (<40°C) is extracted from the shallow subsurface (~2-200 m [8-600 feet]) for use in domestic and commercial heating and cooling systems. Historically, deeper, hotter resources in these regions have not been developed because they typically lack one or more of the essential requirements that make high-temperature geothermal resources technically and economically viable. Conventional methods of electricity generation using geothermal energy rely on hot (>100°C) relatively shallow (<3,000 m [10,000 feet]), easily developed hydrothermal resources. Generally associated with active plate boundaries and/or volcanism, these high-grade hydrothermal systems are characterized by high thermal gradients, and highly fractured, porous reservoir rocks through which natural waters or steam can freely circulate. Large-scale, cost-effective electric power generation usually requires fluid temperatures above 150°C but smaller systems based on standard binary-cycle technology are capable of producing electricity using geothermal fluids at temperatures as low as 100°C. Natural sources of high-grade hydrothermal energy are geographically limited. In the U.S. they are restricted to the western states and currently represent less than 1% of the nation’s electrical power generating capacity. Yet the amount of heat at depths less than 10,000 m (30,000 feet) below the surface of the continental U.S. is substantial. By replicating natural hydrothermal conditions it is possible, in some regions, to turn this heat into an economically viable resource. In 2005 an 18-member MIT-led interdisciplinary panel conducted a comprehensive technical and economic assessment of geothermal energy as a viable source of energy for the U.S. (Tester and others, 2006). The study estimated that, based on current technology, geothermal energy could be producing more than 100GW of affordable electricity by 2050, equivalent to roughly 10% of the U.S.’ present-day capacity. Enhanced (or engineered) geothermal systems (EGS) are engineered reservoirs designed to produce energy as heat or electricity from geothermal resources that are otherwise not economical due to lack of water and/or permeability (U.S. Department of Energy, 2008). EGS technology uses adaptations of techniques developed in the oil and gas, and mining industries to fracture hot, low-porosity rocks in the deep subsurface and extract the heat with water via a system of injection and production wells. With infrastructures already in place and the abundance of horizontally drilled and/or artificially stimulated wells, hydrocarbon fields are prime candidates for the application of EGS technology. Of particular interest are those wells regarded as marginal or unproductive because they produce too much water. Geothermal waters that are coproduced with oil and gas are an expensive waste product that in North Dakota must be disposed of by re-injection into the subsurface. If sufficiently hot (>100°-150°C) and available in sufficient quantity, however, these waters may be capable of generating cost-effective electricity (McKenna and others, 2005). The Mississippian-age Madison Group is the second-shallowest of four major geothermal aquifers that occur in the Williston Basin. The map shows calculated temperatures (°C) for the top of the Madison Group in the vicinity of Bottineau in north-central North Dakota. There are no data sets for North Dakota that list accurate temperatures for Paleozoic rocks. Bottom hole temperatures from oil well logs are unreliable and to assume that a simple linear relationship exists between temperature and depth would be incorrect. Although grossly linear the geothermal gradient in the upper lithosphere is significantly affected by thermal variables (heat flow and thermal conductivity) in the earth’s crust and any method used to accurately calculate subsurface temperatures must take these factors into account. Provided the subsurface stratigraphy is known, Gosnold (1984) showed that at a given depth (Z) the temperature (T) can be represented by the following equation: Rock units and thicknesses were obtained from oil well log tops (July 2011 update). The map was compiled using approximately 630 data points (wells). Table 1. Thermal conductivity estimates for principal lithostratigraphic units overlying the Madison Group in the Williston Basin. 1 Thermal conductivities were estimated using data from temperature-depth logs for Hess Corporation’s Tioga-Madison Unit O-143HR well in SW4, NW4, Sec. 17, T158N, R94W (Kenmare 100k sheet). 57 56 58 59 60 Temperature/ o C 45 46 47 48 53 52 54 55 56 49 48 50 51 52 For the data set used to produce this map T o and K were assumed to be constants. Mean surface temperature n i 1 T = T o + Z i (Q/K i ) Where: T o = Surface temperature (in °C) Z i = Thickness of the overlying rock layer (in meters) K i = Thermal conductivity of the overlying rock layer N = Number of overlying rock layers Q = Regional heat flow Geologic Symbols Top of Madison Group (feet above sea level) Data Points ! References Blackwell, D.D., and R ichards, M., 2 004, Geother mal map of North America: American Associatio n of Petroleum Geologists, 1 sheet, scale 1:6,500,000. Gosnold,W.D. Jr., 198 4, Geothermal resource assessment for North Dakota. Final repo rt: U.S Dep artment o f Energy Bulletin No. 84-04 -MMRRI- 04. McKenn a, J., Black well, D., Mo yes, C., and Patterson, P.D., 2 005, Geoth er mal electric power supply possible from Gulf Coast, Midcontinent oil f ield waters: Oil & Gas Journal, Sept. 5, 2005 p . 34-40. Tester, J. W., Anderso n, B., Batch elor, A., Blackwell, D., DiPippo, R., Drake, E., Garnish, J., Livesay, B., Moore, M.C., Nicho ls, K., Petty, S., Tokso z, N., Veatch, R., Aug ustine, C., B ar ia, R ., Murphy, E., Neg rar u, P., R ichards, M., 2006., The future of geothermal energy: Impact of enhanced geoth er mal systems (EGS) on the United States in the 2 1st century : Massach usetts Institute of Technology, DOE Contract DE- AC07 -05ID14517, Final Repo rt. U.S. Department of En erg y, 2 008, Enhanced geothermal systems: http //wwwl.eere.energy.g ov/geothermal/enchanced _geothermal_systems.html (Ver sion 11 May 2 010 retrieved 24 October 2 011). http//ww w l.eer e.energy.go v/g eo th ermal/en ch an ced_g eo thermal_sy stems.html Other Features Water Coun ty Boundary Paved Road Water - Intermittent £ ¤ 28 1 US Highway State Highway ! ( 5 Unpaved Road Marsh/Wetland Waterway - Intermittent Waterway - Perennial Section Corners E Mercato r Projection 1927 Nor th American Datum Standard parallel 48 o 30 ' Centr al mer idian 100 o 30 ' 0 1 2 3 4 Miles Scale 1:100,000 Bottineau 1 00K Sheet, North Dakota Adjoining 100 K Maps Estimated regional steady state heat flow Q = 70.0 mW/m 2 (Blackwell and Richards, 2004). (http://www.ndsu.edu/ndsco) . Thermal conductivities (K) for formations overlying the Madison Group are shown in Table 1. (T o = 8.0°C [46.4°F]) was calculated from statewide average annual bare and turf soil temperatures at 79 North Dakota Agricultural Network climate monitoring stations for the period 1991 to 2010 http//wwwl.ndsu.edu/ndsco

Transcript of Deep Geothermal Resources: Estimated Temperatures on Top ... maps...2 T. 16 0. T. 1 9 N. T. 16 1N T....

North Dakota Geological Survey100K Series: Bntu- g - MM Deep Geothermal Resources: Estimated Temperatures on Top of the Madison Group

Carto graphic Compilatio n: Elroy L. Kadrmas

Bottineau 100K Sheet, North Dakota

Edward C. Murphy, State GeologistLynn D. Helms, Director Dept. of Mineral Resources

1980 Magnetic NorthDeclination at Cen ter of Sheet Lorraine A. Manz

2011

11 o 30'

EE EE E

E

E

E

EE

E

E E

E

E

E

E

E E

E E

E EE

EE

E

E

E

E

E

E E

E

E

E

E

E E

E E

E E E E

E

E

E

EE

E E

EEE

E E

E

E

E

E

E

E

E

EE

E

EE

E

EE

E

E

E E

E E E

E

E

E

E

E E

E

E EE

E E

E

E

E

E

E E E

EE

E E

E

E

E

E E

E E

E

E

E

E

EE

E

E E

E

E E E

E

E

E

E

E

E

E E

E

E E

E

EE

E

E

E

E

E

E

E

E E EE

E E

E

E

E

E

E

E E

E E

E

E

E

E

E E

E E

E

E E

E E

E

E

E

E

EE E E

E E

E

E

E

E

E

E

E

E

E

E

E

E E

E E E

E

E

E

E

EE

E

E

E E

E

E

EE

E

EE E

E

E

E E

E

E

E E

E

E

E

EE

E

EE

E

E E

E

E

E

E

E

E

E

E

E

E

EE

E

E E

E

E

E

E

E

E

E

E E

E

E

E E

E

E EE

E

E E

E

E E

E

E

E

E

E

E

E

E E

E

E

E

E

E E

E

E

E

E

E

E

E

E

E

EE

E

EE

E

E

E

E E EE E

EE

E

E

E

E

E

E

E E

E

E E

E E

E E

E

E

E

E E

EE

EEE

E

E

E

E E

E

E E

E

E

E

E

E

E

E

E

E

E

E

E E

E

E

E

EE

E

E E

E

E

E

E

E E

EE

E

EE

E E

E

E

E

E E

EE E

E

EE

E E

E E

E

E

E

EE

E E

E

E

E

E E

E

EE E

E

E

E

E E E

E

E EE

E

E

E

E

E

E

E

E

E

E

EEE

E

E

E

E

E

E

E E

E E

E E

E E

E

E

E

E

E

EE

E

E

E EE

E

EE E

E

E

E

E

E

E E

E E

E

E

E E

E

EE

E

E

E

E

E

E

E

E

E

E E

E

E

E E

E

E

E

E

E

EE E

EE E

E

E

E

E

E

E

E

EE

E E

E

E

E E

EE

E

E

E

E

E E

E E

E

EE E

E

E E

E

E

E

E E

E

E

E

E

E

E

EE

E

EE

E

E

E E E E

E

E

E

E

E E

E

E

E E E

E

E

E

E

E

E

E

E

E

E E

E

E E

E

E

E

E E

E E E

E

E

E

E

E

E

E E

E E

E

EE

E

E

E

E

E

E

E E E

E

EE

EE

E E E

EE

E

E

E

E E

E

EE

E

E

E

E

E

E EE

E E EE E

E

E

E

E

E E E

E

E

E E

E

E

E E

EE EE

E

E

E

E

EE

E

E

E

E

E

E E E

EEE

EE E

E

E

E

E E

E E E

E

E

E E

E

E

E E

E

E

E

E

E

E

E

EE

E

E

E

E

E

E E

E E

E E

E E

E E E

E

EE E E

E

E

E E

EE

E

E

E

E

E

E E

E

E

E

E E

E

E

E

E

EEE

E

E E E

E

E

E

E E

E E

E E

E

E

E

E

E

E

EEE

E E E

E

EE

EE

EE

EE

E

E

E

E

E

E

E

E E E

E EE

E

E

E

EE

E

E

E

E

E

E

E E

E

E

E

E

E

E

E E E

E

E E

E E

E

E

E

E

E

E

E E

E E

E

E EE

E E

E

E E

EE

E

E E

E

E

E

E

E

E E

E

E E

EEE

E

E

E E E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E E

EE

E

E

E EE

E

E

E

E

E

E

E E

E E

E E

EE

E

E

E

E

E

E

E

E

E E

E

E E

E E E

E E

E

E

E

E

E

E

E

E

E

E E

E

EE

E

E

E E

E E E

E

E

E

E

E E

E

E

E

E EE

E E E

E

E E

E

EE E

E

EE E

E

E

E E E

E

E

E

E

E

E E

E

E

E E E

E E

EE

E

E E

E

EE

E

E EE

E

E E

E

E EE

E

E

EE

E

E E

E

E

E

E

EE

E

E

E

E

E

E E

E

E E

E

E

E E E

E

E

E

E

E

EEE

E

E

E

EE

E

E

E

E

E

E

E

E

E E

E

EE

E E

E

EE E E

E

E

E

E

E

E

E

E

E

EE

E

E E E

E

E

E E

E

E

E E

E

E

E

EE

E

E

E

E

E

E

E

E

E E

E

E

E

E

E E EE

E

E E E

E

E

E

E E

E

E

E E

E

E

E EE

E

E

E E

E

E

E

E

EE

EE

E

E

E E

E

E

E

E

E

E E E

E

E E

E

E E E

E

E E

E

E E

E

EEE

E

E E

E

E

E

E

E

E

E

E E

E

E

E

E

E

E

E

EE

E

E

E

E

E

E

E

E

EE

E

E

E

E E

E

E

E E

EE

E

E E

E

E

E EE

EEE

E E

E

E

E

E

E

E

E E E

E

E

E

E

E E E

E E

E

E E

E

E

E

E E

EE

EE

E

E

E

E

E EE

E

EE

E

E

E

E EE

E E

E

E

E E

E

E E E E

E

E E

E

E

E E

E

E E

E

E EE

E

E

EE

E

EE EEE

E

E E

E E

E

E

E

E E

E

E

E

E EE

EEE

E

E

E

E

E

E

E E

E

E EE

E EE

E

E

E

E

E

E

E

E EE E

E

E

EE

E EE

E

E

E

E

E

EE

E

E

E

E

E

E E

E E E

E

E

E

E

E

E

E E

EEE

E

E EE E

E E

E

E

EE

E E E

E

E

E

E

E

E

E

E

E

E E

E

E

E

E

EE

E

EE

EE

E

E

E

E

E

E

E

E

E E

E

E E

E

E

E

E

E

E

E E

E

E

E

E E

E

E

EE E

E E

E E

E

E

E

E

EE

E

E E

E

EE

E

E

E

E

E

E

E E

E E

E

E

E E

E

E

E

E

E E

E

E

E

E

E

E

E

E

E

E

E

E

E

E E E

E

E

E E

E

E E E

E

EE E

E E E E

E E

E E

E

E

E

E

EE

E E

EEE

E

E

E E

E

E EE

E

E

E

EE E

E

E

E

E

E EE

EE

E

E E E

E

EE

E

E

E E

E

E E

E

E

EE

E

E

E

E

E

E E

E

E E E

E E

E E

E

E

E E

E E E

E E

E

E E E

E

E

E

E E

EE

E

E E

E

E E E

E

E

E

E

E

E

E

E E

E E

E

E

E E

E

E

E

E

E

E

E

EE

E

E

E E

E

E

E E E

E E

E

E

E

E

E

E E

E

EE

E

E

E

E

E

E

E E E E

E

EE E

E

E

E E E

E

E E

E

E

E

E

E E

E E

E

E E

EE

EE E

E

EE

E

E

E

E

E

E

EE

E

E E

E

E

E E

EE

E

E

E E

E

E

E E

E E

E

E

EE

E

E

E

E

E

EE

E E E

E

E

E

E

E

E

E E

E E EE

E E

E

E

E E

E

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Landa

Upham

Kramer

Overly

Souris

Bantry

Newburg

Gardena

Dunseith

Westhope

Bottineau

WillowCity

Oak Creek

Stone Cr ee k

Ox Creek

Mud Creek

Mi ller Creek

Boun

d ar y

Creek

De ep Ri v e r

Mineral Cre e k

L aPo rte C oul

ee

Boun da ry Creek

Bou ndary Cre ek

Sp ring C oulee

Wil low C

reek

Sna ke Cr eek

I ndi an

Creek

Wol f C reek

Mud C

reek

Wil low Lake

Carpenter Lake

LordsLake

Souris

SourisWillow

River

Lake Metigoshe

Lake Metigoshe

LoonLake

Deep R iver

LongLake

Lyde Lake

DuckLake

BoundaryLake

River

Ox Creek

Wil low

Ross Lake

BerryLake

Horseshoe LakeGrassLake

Creek

HartleyLake

Butte Lake

Lords Lake

LakeThomas Hemming

Lake

RabbLake

Long Lake

PelicanLake

LeeLake

Lagerquist Lake

BergenLake

GriggLake

Is land Lake

Juneau Lake

HellickLake Long Lake

Klebe Lake

SandLakeLake

Klingenberg

BittenerLakeSivertson

Lake

CassidyLake

RoseLake

Walker Lake

Bigham Lake

Myer Lake

LongLake

LakeDana

LakeBennett

SchutteLake

LakeCou thard

EldridgeLake

MudLake

MudLake

LakeFrancis

LakeBessie

Creek

LakeHarman

Smith srundLake

NorbergLake

Little H orseshoe Lake

LakeTaylor

Plat te Lake

SchmidtLake

BlackLake

Lockhar tLake

StrawberryLake

HartsLake

GordonLake

Car lis leLake

-1500

-1100

-2000

£¤

!(

BOTTINEAU COPIERCE CO

ROLETTE COMCHENRY CO

BOTTINEAU COMCHENRY CO

BOTT

INEA

U CO

ROLE

TTE

CO

3

!(17

!(5

!(3

!(60

!(60

281

!(5

!(43!(43

!(14

!(14

!(5

!(14

"

"

"

1

1

6

61

1

6

1

1

1

1

1

1

1

1

1

6

61

1

6

16 1

1

1

1

6

61

6

61

1 1 1

6

1

1

6

1

1

1

1 6

6

6

1

6

1

6

6

1

6

6

1 1

6

1

1

6

1

6

11

6

1

6

6

1

1

1

6

1

6

1

6

6

6

1

6

66

6

6

6

6

6

6

666 6

6

6

6

3136

3636

31

36

3636

36

36

36

31

36

36

31

31

36

36

36

36

36

31

31 31

31 36

36 36

36 3631

36

36

31

36

36

31

36

36

36

36

31

3636

36

36

36

31

31

36

36

36

36

36

31

36

36 36

36

31

31

31

36

36

31

31

36

36 3131

31 31 36

31

31

31

3131 31

31

31

31 3131

31

31

31

31

31

31

31

31

31

31

31

31

101o 00 '49o 00 '

100o 00 '49o 00 '

101o 00 '48o 30 '

100o 00 '48o 30 '

R. 79 W.

T. 16

4 N.

T. 16

2 N.

T. 16

0 N.

T. 15

9 N.

T. 16

1 N.

R. 77 W. R. 76 W. R. 75 W. R. 74 W. R. 73 W.

R. 80 W. R. 78 W.R. 79 W. R. 77 W. R. 76 W. R. 75 W. R. 74 W. R. 73 W.

T. 16

3 N.

R. 78 W.R. 80 W.

T. 15

8 N.

R. 72 W.

T. 16

4 N.

T. 16

2 N.

T. 16

0 N.

T. 15

9 N.

T. 16

1 N.

T. 16

3 N.

T. 15

8 N.

Geothermal energy is a renewable resource capable of producing an uninterrupted supply of electrical powerand heat. In stable sedimentary basins, low-temperature geothermal energy (<40°C) is extracted from theshallow subsurface (~2-200 m [8-600 feet]) for use in domestic and commercial heating and cooling systems.Historically, deeper, hotter resources in these regions have not been developed because they typically lack oneor more of the essential requirements that make high-temperature geothermal resources technically andeconomically viable.

Conventional methods of electricity generation using geothermal energy rely on hot (>100°C) relativelyshallow (<3,000 m [10,000 feet]), easily developed hydrothermal resources. Generally associated with activeplate boundaries and/or volcanism, these high-grade hydrothermal systems are characterized by high thermalgradients, and highly fractured, porous reservoir rocks through which natural waters or s team can freelycirculate. Large-scale, cos t-effective electric power generation usually requires fluid temperatures above150°C but smaller systems based on standard binary-cycle technology are capable of producing electricityusing geothermal fluids at temperatures as low as 100°C.

Natural sources of high-grade hydrothermal energy are geographically limited. In the U.S. they are restrictedto the western states and currently represent less than 1% of the nation’s electrical power generating capacity.Yet the amount of heat at depths less than 10,000 m (30,000 feet) below the surface of the continental U.S. issubstantial. By replicating natural hydrothermal conditions it is possible, in some regions, to turn this heat intoan economically viable resource. In 2005 an 18-member MIT-led interdisciplinary panel conducted acomprehensive technical and economic assessment of geothermal energy as a viable source of energy for theU.S. (Tester and others, 2006). The study estimated that, based on current technology, geothermal energycould be producing more than 100GW of affordable electricity by 2050, equivalent to roughly 10% of theU.S.’ present-day capacity. Enhanced (or engineered) geothermal systems (EGS) are engineered reservoirs designed to produce energy asheat or electricity from geothermal resources that are otherwise not economical due to lack of water and/orpermeability (U.S. Department of Energy, 2008). EGS technology uses adaptations of techniques developedin the oil and gas , and mining industries to fracture hot, low-porosity rocks in the deep subsurface and extractthe heat with water via a sys tem of injection and production wells.

With infrastructures already in place and the abundance of horizontally drilled and/or artificially stimulatedwells, hydrocarbon fields are prime candidates for the application of EGS technology. Of particular interestare those wells regarded as marginal or unproductive because they produce too much water. Geothermalwaters that are coproduced with oil and gas are an expensive waste product that in North Dakota mus t bedisposed of by re-injection into the subsurface. If sufficiently hot (>100°-150°C) and available in sufficientquantity, however, these waters may be capable of generating cost-effective electricity (McKenna and others ,2005).

The Miss issippian-age Madison Group is the second-shallowest of four major geothermal aquifers that occurin the Williston Basin. The map shows calculated temperatures (°C) for the top of the Madison Group inthe vicinity of B ottineau in north-central North Dakota.

There are no data sets for North Dakota that list accurate temperatures for Paleozoic rocks. Bottom holetemperatures from oil well logs are unreliable and to assume that a simple linear relationship exists betweentemperature and depth would be incorrect. Although grossly linear the geothermal gradient in the upperlithosphere is significantly affected by thermal variables (heat flow and thermal conductivity) in the earth’scrust and any method used to accurately calculate subsurface temperatures must take these factors intoaccount. Provided the subsurface stratigraphy is known, Gosnold (1984) showed that at a given depth (Z) the temperature (T) can be represented by the following equation:

Rock units and thicknesses were obtained from oil well log tops (July 2011 update). The map was compiledusing approximately 630 data points (wells). Table 1 . Thermal conductivity estimates for principal lithostratigraphic units overlying the Madison Groupin the Williston Basin.

1 T hermal conductivi ties were estimated u sing data from temperature-dep th logs fo r Hess Corporation’s Tioga-Madison Unit O-143HRwell in SW4, NW4, Sec. 17, T158N, R94W (Kenmare 100k sheet).

5756

585960

Temperature/oC

45464748

5352

545556

4948

505152

For the data set used to produce this map To and K were assumed to be constants. Mean surface temperature

n

i 1T = To + Zi(Q/Ki)

Where:To = Surface temperature (in °C) Zi = Thickness of the overlying rock layer (in meters)Ki = Thermal conductivity of the overlying rock layerN = Number of overlying rock layersQ = Regional heat flow

Geologic SymbolsTop of Madison Group (feet above sea level)Data Points!

ReferencesBlackwell, D.D., and R ichards , M., 2 004, Geother mal map of North America: American Associatio n of Petroleum Geologists , 1 sheet, scale 1:6,500,000.

Gosnold,W.D. J r. , 198 4, Geothermal resource assessment for North Dakota. Final repo rt: U.S Dep artment o f Energy Bulletin No. 84-04 -MMRRI- 04.

McKenn a, J. , Black well, D., Mo yes, C., and Patterson, P.D., 2 005, Geoth er mal electric power supply poss ible from Gulf Coas t, Midcontinent oil f ield waters:Oil & Gas Journal, Sept. 5, 2005 p . 34-40.

Tester, J. W., Anderso n, B., Batch elor, A., Blackwell, D., DiPippo, R., Drake, E., Garnish, J. , Livesay, B., Moore, M.C., Nicho ls , K., Petty, S ., Tokso z, N., Veatch, R., Aug ustine,C., B ar ia, R ., Murphy, E., Neg rar u, P., R ichards , M., 2006., The future of geothermal energy: Impact of enhanced geoth er mal sys tems (EGS) on the United States in the 2 1st century :Massach usetts Institute of Technology, DOE Contract DE- AC07 -05ID14517, Final Repo rt.

U.S. Department of En erg y, 2 008, Enhanced geothermal sys tems: http //wwwl.eere.energy.g ov/geothermal/enchanced _geothermal_systems.html (Ver sion 11 May 2 010retrieved 24 October 2 011).

http//wwwl.eer e.energy.go v/g eo th ermal/en ch an ced_g eo thermal_sy stems.html

Other FeaturesWater Coun ty Boundary Paved RoadWater - Intermit tent £¤281 US Highway

State Highway!(5Unpaved Road

Marsh/WetlandWaterway - Intermit tentWaterway - Perennial

Section CornersE

Mercato r Projection 1927 Nor th American DatumStandard parallel 48o 30' Centr al mer idian 100o 30'

0 1 2 3 4

Miles

Scale 1:100,000

Bottineau 1 00K Sheet, North Dakota Adjoining 100 K Maps

Estimated regional s teady state heat flow Q = 70.0 mW/m2 (Blackwell and Richards, 2004).

(http://www.ndsu.edu/ndsco) . Thermal conductivities (K) for formations overlying the Madison Group areshown in Table 1 .

(To = 8.0°C [46.4°F]) was calculated from statewide average annual bare and turf soil temperatures at 79North Dakota Agricultural Network climate monitoring stations for the period 1991 to 2010http//wwwl.ndsu.edu/ndsco