Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et...

70
Deep Generative Models Sebastian Nowozin Microsoft Research

Transcript of Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et...

Page 1: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Deep Generative ModelsSebastian NowozinMicrosoft Research

Page 2: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑥 𝑦𝑓

Page 3: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑦

𝜖

𝑓

Page 4: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑦

𝜖

𝑓𝑥

Page 5: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Taxonomy

Non-probabilistic Probabilistic

Generative Discriminative

𝑥 𝑦𝑓 𝑦𝜖 𝑓 𝑦𝜖 𝑓𝑥

“Conditionally Generative”

𝑥

Page 6: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑦

𝜖

𝑓

Page 7: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

NVIDIA’s Progressive GANs [Karras et al., 2018] Generating non-image data Representation learning[Zheng et al., 2018]

Page 8: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Learning Probabilistic Models

𝑄

𝑃

𝒫

Page 9: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Learning Probabilistic Models

𝑃

𝑄𝒫

Assumptions on P:

• tractable sampling• tractable parameter gradient with respect to sample• tractable likelihood function

Page 10: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Principles of Density Estimation

• Kernel MMD

• Wasserstein GANs

Integral Probability Metrics[Müller, 1997]

[Sriperumbudur et al., 2010]

𝛾ℱ 𝑃, 𝑄 = sup𝑓∈ℱ

න𝑓d𝑃 − න𝑓d𝑄

Proper scoring rules[Gneiting and Raftery, 2007]

𝑆 𝑃, 𝑄 = න𝑆 𝑃, 𝑥 d𝑄(𝑥)

• Variational Autoencoders

• Autoregressive models

• DISCO networks

f-divergences[Ali and Silvey, 1966],[Nguyen et al., 2010]

𝐷𝑓 𝑃 ∥ 𝑄 = න𝑞 𝑥 𝑓𝑝(𝑥)

𝑞(𝑥)d𝑥

• Generative adversarial networks

• 𝑓-GAN, 𝑏-GAN

Page 11: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Variational Autoencoders (VAE)[Kingma and Welling, 2014], [Rezende et al., 2014]

Page 12: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑦

𝜖

𝑓

Page 13: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

201020001990

1. Dayan et al. (1995). The Helmholtz machine. Neural Computation2. Kingma and Welling (2014). Auto-encoding Variational Bayes. NIPS3. Rezende et al. (2014). Stochastic backpropagation and approximate inference in deep generative models. ICML

Variational Autoencoders

Page 14: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

https://msrc-gitlab/senowozi/posevae/

Page 15: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Maximum Likelihood Estimation (MLE)[Fisher, 1929]

• MLE extremely successful:e.g. least squares and cross-entropy are MLE estimators

Page 16: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑝(𝑥|𝜃)

Page 17: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder
Page 18: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑝(𝑥|𝜃)

𝑝(𝑥1|𝜃)

𝑝(𝑥2|𝜃)

𝑝(𝑥3|𝜃)

𝑝(𝑥4|𝜃)

𝐿 𝜃 =ෑ

𝑖

𝑝(𝑥𝑖|𝜃)Maximize the likelihood function

log 𝐿 𝜃 = logෑ

𝑖

𝑝(𝑥𝑖|𝜃)

log 𝐿 𝜃 =

𝑖

log 𝑝(𝑥𝑖|𝜃)

Page 19: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder
Page 20: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder
Page 21: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder
Page 22: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

VAE: Model

z

x

𝑝 𝑥|𝜃 = නp x z, θ 𝑝(𝑧)d𝑧

Example• 𝑝(𝑧) is a multivariate standard Normal• 𝑝(𝑥|𝑧, 𝜃) is a neural network outputting

a simple distribution (e.g. diagonal Normal)

𝜃Latent code

Observation

Parameter

𝑥𝑧 𝑓

Page 23: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

VAE: Maximum Likelihood Training• Maximize the data log-likelihood, per-instance variational approximation

log 𝑝 𝑥|𝜃 = log p x z, θ 𝑝(𝑧)d𝑧

= logනp x z, θ𝑞(𝑧)

𝑞(𝑧)𝑝(𝑧) d𝑧

= logනp x z, θ𝑝(𝑧)

𝑞(𝑧)𝑞(𝑧) d𝑧

= log𝔼𝑧~𝑞(𝑧) p x z, θ𝑝(𝑧)

𝑞(𝑧)

≥ 𝔼𝑧~𝑞(𝑧) log p x z, θ𝑝(𝑧)

𝑞(𝑧)

= 𝔼𝑧~𝑞(𝑧) log p x z, θ − 𝐷KL 𝑞(𝑧) ∥ 𝑝(𝑧)

Page 24: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Inference networks

𝑥1 𝑥2 𝑥3

𝑞1(𝑧) 𝑞2(𝑧) 𝑞3(𝑧)

z

x 𝑤

Page 25: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Inference networks

• Amortized inference [Stuhlmüller et al., NIPS 2013]

• Inference networks, recognition networks [Kingma and Welling, 2014]

• “Informed sampler” [Jampani et al., 2014]

• “Memory-based approach” [Kulkarni et al., 2015]

Page 26: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

VAE: Maximum Likelihood Training• Maximize the data log-likelihood, inference network variational approximation

log 𝑝 𝑥|𝜃 = log p x z, θ 𝑝(𝑧)d𝑧

= logනp x z, θ𝑞(𝑧|𝑥, 𝑤)

𝑞(𝑧|𝑥, 𝑤)𝑝(𝑧) d𝑧

= logනp x z, θ𝑝 𝑧

𝑞 𝑧|𝑥, 𝑤𝑞(𝑧|𝑥, 𝑤) d𝑧

= log𝔼𝑧~𝑞(𝑧|𝑥,𝑤) p x z, θ𝑝(𝑧)

𝑞(𝑧|𝑥, 𝑤)

≥ 𝔼𝑧~𝑞(𝑧|𝑥,𝑤) log p x z, θ𝑝(𝑧)

𝑞(𝑧|𝑥, 𝑤)

= 𝔼𝑧~𝑞(𝑧|𝑥,𝑤) log p x z, θ − 𝐷KL 𝑞(𝑧|𝑥, 𝑤) ∥ 𝑝(𝑧)Jensen’s inequality

Page 27: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Autoencoder viewpoint

z

x 𝑤

x

𝜃max𝑤,𝜃

𝔼𝑧~𝑞(𝑧|𝑥,𝑤) log p x z, θ − 𝐷KL 𝑞(𝑧|𝑥, 𝑤) ∥ 𝑝(𝑧)

𝑞(𝑧|𝑥, 𝑤)

𝑝(𝑥|𝑧, 𝜃)

𝑥

𝑧

𝜃

𝑤

Page 28: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Reparametrization Trick

• [Rezende et al., 2014][Kingma and Welling, 2014]

z

x 𝑤

x

𝜃

Page 29: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Reparametrization Trick

• [Rezende et al., 2014][Kingma and Welling, 2014]

• Stochastic computation graphs[Schulman et al., 2015]

x 𝑤

x

𝜃𝜖 𝑧z

x 𝑤

x

𝜃

Page 30: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

(Live Azure Demo)https://notebooks.azure.com/nowozin/libraries/variational-autoencoder

Page 31: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Problems in VAEs

• Inadequate inference networks• Loose ELBO

• Limits what the generative model can learn

• Parametric conditional likelihood assumptions• Limits the expressivity of the generative model

• “Noise term has to explain too much”

• No control over latent representation that is learned

Page 32: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

“Blurry images” in VAE modelsfrom [Tulyakov et al., 2017]

Page 33: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Improving Inference Networks

• State of the art in inference network design:• NICE [Dinh et al., 2015]• Hamiltonian variational inference (HVI) [Salimans et al., 2015]• Importance weighted autoencoder (IWAE) [Burda et al., 2016]• Normalizing flows [Rezende and Mohamed, 2016]• Auxiliary deep generative networks [Maaløe et al., 2016]• Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016]• Householder flows [Tomczak and Welling, 2017]• Adversarial variational Bayes (AVB) [Mescheder et al., 2017]• Deep and Hierarchical Implicit Models [Tran et al., 2017]• Variational Inference using Implicit Distributions [Huszár, 2017]• Adversarial Message Passing for Graphical Models [Karaletsos, 2016]• Jackknife Variational Inference [Nowozin, 2018]

Page 34: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Generative Adversarial Networks[Goodfellow et al., NIPS 2014], [Nowozin, Cseke, Tomioka, NIPS 2016]

Page 35: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑦

𝜖

𝑓

Page 36: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

GAN = Implicit Models +Estimation procedure

Page 37: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Classic parametric models

• Density function available• Limited expressive power• Mature field in statistics and learning theory

Page 38: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝐺(𝜀)noise

Implicit Model / Neural Sampler / Likelihood-free Model

• Highly expressive model class• Density function not defined or intractable• Lack of theory and learning algorithms• Basis for generative adversarial networks (GANs)

Page 39: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

201020001990

1. Diggle and Gratton (1984). Monte Carlo methods of inference for implicit statistical models. JRSS B2. Goodfellow et al. (2014). Generative Adversarial Nets. NIPS3. Mohamed and Lakshminarayanan (2016). Learning in Implicit Generative Models. arXiv:1610.03483

Implicit Models

Page 40: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Implicit models as building blocks

• For inference (as in AVB), or

• As model component, or

• As regularizer

Page 41: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Implicit Models: Problem 1

𝐺(𝜀)

𝐺

𝑝(𝑥) = න𝑧∈𝐺−1(𝑥)

𝜇(𝑧) d𝑧

𝜇 𝑝

Page 42: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Implicit Models: Problem 2

𝐺

𝜇 𝑝

𝑝(𝑥) not defined a.e.

Page 43: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

GAN Training Objective [Goodfellow et al., 2014]

• Generator tries to fool discriminator (i.e. generate realistic samples)

• Discriminator tries to distinguish fake from real samples

• Saddle-point problem

Generator 𝑃𝜃

Adversary 𝐷𝜔

Binary classifierTraining set𝑥1, ⋯ , 𝑥𝑛 ~𝑄

min𝜃

max𝜔

𝔼𝑥~𝑃𝜃[log𝐷𝜔 𝑥 ] + 𝔼𝑥~𝑄[log(1 − 𝐷𝜔(𝑥))]

𝜖

Page 44: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder
Page 45: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Progress of GANs, 2013-2018

[Goodfellow et al., 2013]University of Montreal

[Radford et al., 2015]Facebook AI Research

[Roth et al., 2017]Microsoft and ETHZ

[Karras et al., 2018]NVIDIA

Page 46: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Natural Images (Radford et al., 2015, arXiv:1511.06434)

Page 47: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

“DCGAN” architecture

Page 48: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Linear interpolation in latent space [Radford et al., 2015]

Page 49: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Estimating 𝑓-divergences from samples

• Divergence between two distributions

𝐷𝑓 𝑃 ∥ 𝑄 = න𝒳

𝑞 𝑥 𝑓𝑝(𝑥)

𝑞(𝑥)d𝑥

f : generator function (convex & f(1)=0)

• Every convex function 𝑓 has a Fenchel conjugate 𝑓∗ so that𝑓 𝑢 = sup

𝑡∈dom𝑓∗

𝑡𝑢 − 𝑓∗(𝑡)

[Nguyen, Wainwright, Jordan, 2010]

“any convex f can be represented as point-wise max of linear functions”

Page 50: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder
Page 51: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Estimating 𝑓-divergences from samples (cont)

𝐷𝑓 𝑃 ∥ 𝑄 = න𝒳

𝑞 𝑥 𝑓𝑝(𝑥)

𝑞(𝑥)d𝑥

= න𝒳

𝑞 𝑥 sup𝑡∈dom𝑓∗

𝑡𝑝(𝑥)

𝑞(𝑥)− 𝑓∗(𝑡) d𝑥

≥ sup𝑇∈𝒯

න𝒳

𝑝 𝑥 𝑇 𝑥 d𝑥 − න𝒳

𝑞 𝑥 𝑓∗ 𝑇 𝑥 d𝑥

= sup𝑇∈𝒯

𝔼𝑥~𝑃 𝑇(𝑥) − 𝔼𝑥~𝑄[𝑓∗(𝑇(𝑥))]

[Nguyen, Wainwright, Jordan, 2010]

Approximate using: samples from P samples from Q

Page 52: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑓-GAN and GAN objectives

• GANmin𝜃

max𝜔

𝔼𝑥~𝑃𝜃[log𝐷𝜔 𝑥 ] + 𝔼𝑥~𝑄[log(1 − 𝐷𝜔(𝑥))]

• 𝑓-GANmin𝜃

max𝜔

𝔼𝑥~𝑃𝜃 𝑇𝜔 (𝑥) − 𝔼𝑥~𝑄[𝑓∗(𝑇𝜔(𝑥))]

• GAN discriminator-variational function correspondence: log𝐷𝜔 𝑥 = 𝑇𝜔 𝑥

• GAN minimizes the Jensen-Shannon divergence (which was also pointed out in Goodfellow et al., 2014)

Page 53: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

𝑓-divergences

Page 54: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Difficulties and Recent Progress

• GANs have been known to be difficult to train• “mode collapse”: degenerated generators

• 2018: largely a solved issue• Stabilized GANs [Roth et al., NIPS 2017]

• Consensus Opt [Mescheder et al., NIPS 2017]

Page 55: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

ImageNet 1000 classes, 128x128, unconditional generation, ResNet 55 [Mescheder et al., ICML 2018], arXiv:1801.04406

Page 56: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

ImageNet conditional generation [Mescheder et al., ICML 2018], arXiv:1801.04406

papillon weevil

Page 57: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

ImageNet conditional generation [Mescheder et al., ICML 2018], arXiv:1801.04406

dock pizza

Page 58: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Playing around with GANs

• https://github.com/rothk/Stabilizing_GANs

• Paper [Roth et al., NIPS 2017] https://arxiv.org/abs/1705.09367

• NIPS 2017 state of the art GAN models• Allows 150 layer ResNet GANs

• TensorFlow implementation

• New state of the art: [Mescheder et al., ICML 2018], code https://github.com/LMescheder/GAN_stability

Page 59: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Thanks!

[email protected]

Page 60: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Additional Material

Page 61: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Maximum Likelihood

• Fisher, 1928:Estimate model parameters by maximizing the likelihood function

𝑝 𝑋; 𝜃 = ෑ𝑖𝑝(𝑥𝑖; 𝜃)

• Equivalently, maximize the log-likelihood (more convenient)

log 𝑝 𝑋; 𝜃 =

𝑖

log 𝑝(𝑥𝑖; 𝜃)

Page 62: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Representation Learning

x

z z z z z

Page 63: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

VAEs for Representation Learning

Diane Bouchacourt, Ryota Tomioka, Sebastian Nowozin

arXiv:1705.08841, NIPS 2017

Page 64: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder
Page 65: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Two parts latent code

𝜃 𝑥

𝑠 𝑐• Style 𝑠

• Content 𝑐

Page 66: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder
Page 67: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Control over the latent space

Page 68: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Reparametrization Trick

• [Rezende et al., 2014][Kingma and Welling, 2014]

z

x 𝑤

x

𝜃

Page 69: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

Reparametrization Trick

• [Rezende et al., 2014][Kingma and Welling, 2014]

• Stochastic computation graphs[Schulman et al., 2015]

x 𝑤

x

𝜃𝜖 𝑧z

x 𝑤

x

𝜃

Page 70: Deep Generative Models - microsoft.com€¦ · •Auxiliary deep generative networks [Maaløe et al., 2016] •Inverse autoregressive flow (IAF) [Kingma et al., NIPS 2016] •Householder

From highly-recommended tutorial: [Doersch, “Tutorial on Variational Autoencoders”, arXiv:1606.05908]