Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on...

90
Master of Science Thesis KTH School of Industrial Engineering and Management Department of Energy Technology / Division of Energy and Climate Studies SE-100 44 STOCKHOLM Decarbonising Public Bus Transport – a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017

Transcript of Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on...

Page 1: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

Master of Science Thesis KTH School of Industrial Engineering and Management

Department of Energy Technology / Division of Energy and Climate Studies SE-100 44 STOCKHOLM

DecarbonisingPublicBusTransport–acasestudyonCuritiba,Brazil

JoanaLenaDüllmannVasquesPereira

2017

Page 2: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-2-

MasterofScienceThesisEGI2017:EGI_2017_0112MSC

DecarbonizingPublicBusTransport–acasestudyonCuritiba,Brazil

JoanaLenaDüllmannVasquesPereira

Approved

13thofNovember2017

Examiner

Prof.Dr.SemidaSilveira

Supervisor

MariaXylia Commissioner

Contactperson

Prof.Dr.KeikoV.O.Fonseca

Page 3: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-3-

Abstract

Airpollutionisbecomingamajorissueincitiesacrosstheworld,itscommoncausebeingtheuseoffossilfuelcombustionenginesinbothprivateandcollectivetransportmodes.However,alternativetechnologies,suchasbiofuels,hybridandbatteryelectricvehicles,areontherise.

Theobjectiveofthisthesisistoassesstheoptimalsystem’sconfiguration–acombinationofelectrictraction and the use of biofuels – in a sub-group of Curitiba’s public bus network through theapplicationof twooptimisationmodels– leastenergyconsumptionand leastcost.Basedon thesemodels, total energy, cost and greenhouse gas (GHG) emissions can be calculated for differentscenariostoidentifytheadvantagesofswitchingtoalow-carbonsystem.Furthermore,thesemodelscanbeusedbyplannersanddecisionmakersasastartingpointindefiningthepathtowardsacleanertransportsystem.

Theresultsfromtheenergyoptimisationindicatethatelectrificationiskeyinreducingtotalenergyconsumption,asthistechnologyisbyfarthemostenergyefficient.A12%reductioncouldbeachieved,whencomparedtothecurrentscenario(onlyusingdieselB7),andCO2emissionscouldbecutby74%.

Thecostoptimisationshowsthatelectrificationisnotyetcostcompetitivecomparedtootherbiofuels(biodiesel,bioethanolandbiogas),asbiodieselistheonlytechnologyselectedbythemodelduetoitsoveralllowercost.Nonetheless,ifelectricitycostsarereduced,whichcanbeachieved,forexample,throughareductionorabolitionoftaxes,electrificationbecomesanattractivealternativetobiofuels.Undertheseconditions(40%lowerelectricityprice),energyconsumptionisreducedby5%andGHGemissionsarecutdownto30%.

Politicalwill and strategies to decrease the cost of vehicles turn out to be essential in supportingelectrificationinpublictransport.Furthermore,adaptationsinthetimeschedulesandtheorganisationofthemaintransporthubsarerequiredtoaccommodatebatteryelectricbuses.Thenumberoffastchargingstationsisusuallyonaparwiththenumberofbusroutestobeelectrified.Costsynergiesachievedbysharingthecostofachargeramongelectrifiedrouteswithacommonstart/endstoparecrucial to secure the attractiveness of e-mobility. This underlines the importance of analysinginfrastructureneedsinpublictransportnetworksholistically.

Keywords: Battery electric bus, Brazil, Charging station, Curitiba, Greenhouse gas emissions,Opportunitycharging,Optimisation,Publictransportnetwork

Page 4: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-4-

Resumo

Apoluiçãoatmosféricaéumproblemasérioempraticamentetodasasgrandescidadesdomundo,sendoasuaorigemmaiscomum,ousodecombustíveisfósseisemmotoresdecombustão,tantoemveículosdeusoprivadocomoemveículosdetransportecoletivo.Noentanto,tecnologiasalternativas,taiscomoousodebiocombustíveis,eautilizaçãodeveículoshíbridoseelétricos,estãoemexpansão.

Estatesetemcomoobjectivoavaliaraconfiguração idealdosistema,utilizando,numsubgrupodarededetransportesdeCuritiba,umacombinaçãodetraçãoelétricaedeusodebiocombustíveis.Estaavaliçãoéfeitaatravésdaaplicaçãodedoismodelosdeoptimização:menorconsumoenergéticoemenorcustoglobal.Combasenestesdoismodelos,oconsumoenergéticoeoscustosglobais,bemcomoasemissõesdegasesdeefeitodeestufa(GEE),podemsercalculadosparaosdiferentescenários,demodoaseidentificaremasvantagensdatransiçãoparaumsistemadebaixocarbono.Acrescequeestesdoismodelospodemserusadosporplaneadoresedecisores,comopontodepartidanadefiniçãodocaminhoaseguirparaatransiçãoparaumsistemadetransportemaisecológico.

Osresultadosdaotimizaçãodoconsumoenergético,indicamqueaeletrificaçãoéfundamentalparareduzir o consumo total de energia, pois esta tecnologia é, de longe, amais eficiente em termosenergéticos.Umareduçãodoconsumototaldeenergiaem12%poderáseralcançadaemrelaçãoaocenárioactual(queuseapenasodieselB7)easemissõesdeCO2poderãoserreduzidasem74%.

Naotimizaçãodecustos,osresultadosmostramqueaeletrificaçãoaindanãoécompetitivaemtermosdecustos,quandocomparadacomousodebiocombustíveis(biodiesel,bioetanolebiogas),umavezqueobiodieseléaúnicatecnologiaselecionadapelomodeloportermenorescustosassociados.Noentanto, se os custos da eletricidade forem reduzidos, nomeadamente, através da diminuição ousupressãodeimpostos,aeletrificaçãotorna-seumasoluçãoatrativa.Numasituaçãodereduçãodopreçodaenergiaelétricaem40%,oconsumodeenergiaéreduzidoem5%easemissõesdeGEEsãoreduzidaspara30%.

Vontade política e estratégias destinadas a diminuir o custo dos veículos elétricos, tornam-seessenciais para promover a eletrificação dos transportes públicos. Acresce que, a adaptação doshorárioseaorganizaçãodosprincipais terminaisde transporte, sãonecessáriosparapossibilitar aoperacionalidadedosônibuselétricos.Deacordocomosresultadosdosdoismodelos,onúmerodeestações de recarga rápida é aproximadamente igual ao número de rotas de ônibus a seremeletrificadas.Areduçãodecustosalcançada,partilhandoumcarregadorentrerotaselectrificadascomparagens inicial/final comuns, é crucial para garantir a atratividade da mobilidade eléctrica. Istosublinhaaimportânciadosbenefíciosdeumaanáliseholísticadainfrastruturaderecarganasredesdetransportepúblicocoletivo.

Palavraschave:Brasil,Carregamentodeoportunidade,Curitiba,Estaçãoderecarga,Gasescomefeitodeestufa,Ônibuseléctricosabaterias,Otimisação,SistemadeTransportePúblico

Page 5: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-5-

Sammanfattning

Luftföroreningar är en stor utmaning i städer runt om i världen. Den gemensamma orsaken äranvändningenavförbränningsmotorermedfossilabränslenibådeprivataochkollektivatransportsätt.Dockalternativtteknik,såsombiobränslen,hybrid-ochbatterielektriskafordon,haruppmärksammatsochderasanvändningökar.

Syftetmeddennaavhandlingärattbedömadetoptimalasystemetskonfiguration-enkombinationav elektrisk drivkraft och användningen av biobränslen - i Curitibas allmänna bussnät genomtillämpning av två optimeringsmodeller – en som minimiserar energiförbrukning och en somminimizerarkostnader.Baseratpådessamodeller,detotalautsläppochenergiförbrukningen,samtderasrespektivakostnaderkanberäknasförolikascenarier.Pådettasättfördelarnamedattbytatillettkolfrisystemidentifieras.Dessutomkandessamodelleranvändasavplanerareochbeslutsfattaresomutgångspunktförattdefinierastrategiermotenrenaretransportsystem.

Resultaten från energioptimering indikerar att elektrifiering är nyckeln till att minska systemetsenergiförbrukning, eftersom denna teknik är överlägsetmest energieffektiv. Enminskning på 12%skullekunnauppnås,jämförtmeddetutgångsscenariot(endastmeddieselB7)ochkoldioxidutsläppenskullekunnaminskamed74%.

Kostnadsoptimeringen visar att elektrifiering ännu inte är kostnadseffektiv jämfört med andrabiobränslen(biodiesel,bioetanolochbiogas).Idettascenarioärbiodieseldenendateknikensomvaltsavmodellenpå grundavdess lägre kostnad.Menomelkostnadernaminskasblir elektrifiering ettattraktivtalternativtillbiobränslen.Dettaskullekunnauppnås,tillexempel,genomskattebefrielse.Underdessaförutsättningar (40% lägreelpris)minskasenergiförbrukningenmed5%ochutsläppenminskarmed30%.

Politisk viljaoch strategier för attminska fordonskostnadenvisar sig vara avgörande för att stödjaelektrifiering av kollektivtrafiken i Curitiba. Dessutom anpassningar av tidstabellerna ochorganisationenavdeviktigastebytespunkterärnödvändiga.Antaletsnabbaladdstationerärvanligtvisi linje med antalet busslinjer som ska elektrifieras. Kostnadssynergier uppnås genom att delakostnaden för en laddare bland elektrifierade linjer med ett gemensamt start / slutstopp. Det äravgörande för att säkerställa e-mobilitetens attraktivitet. Det visar också vikten av att analyserainfrastrukturbehovenikollektivtrafiknätetholistiskt.

Nyckelord: Batteribuss, Brasilien, Laddstation, Curitiba, Växthusgas utsläpp, Opportunity Charging,optimering,kollektivtrafik

Page 6: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-6-

Acknowledgements

IwouldliketostartbythankingmysupervisorMariaXylia.Herfeedbackandhelpwerecrucialforthedevelopmentofthismasterthesis.Igreatlyappreciatedherdedicationtoalwaysanswermyquestionsfastandefficiently.Icouldnothaveaskedforabettersupervisor.Thanksalot,Maria.

Iwouldalsoliketothankmyfriendswhosupportedmethroughoutthisworkandhelpedmewiththeirknowledgeandexperiencewithcertaintoolsthatwereusedinthisthesis,aswellastheiropiniononmyassumptions.SpecialthankstomyfriendsEmaRodrigues,LucaLongoandWarrenMoyseyfortheirunconditionalhelp,theydidsomuchmorethantheyhadto.

ThankyoualsoprofessorSemidaSilveira forhavingmentionedCuritibaand its involvement in the“SmartCityConcepts”,atriplehelixprojectbetweenacademia(KTH,UTFPR),business(Volvo,Scania,Siemens,SAABCombitech)andthepublic(URBS,IPPUC,CityofCuritiba)whichledmetothisthesistopic and the opportunity to visit Curitiba and see their public transport system from a closeperspective.

Iwould liketothankprof.KeikoVerônicaFonsecaandprof.RicardoLüders fromUTFPRforhavingreceivedmeinCuritibaandUTFPR,fortheirsupportinbureaucraticaspectstomystayandfeedbackontheprogressofmythesis.

MyspecialthankstoRenanSchepanskifromVolvoLatinAmerica,thathelpedmegettingalotofthenecessarydata for thedevelopmentof themodelandmaking itasclose to theBrazilian realityaspossible. He helped me understand better the conditions of the Brazilian market which enabledstrongerconclusionsofmyresults.ThankyouaswellfortheopportunitytovisitVolvoLatinAmerica’sheadquartersandfactoryinCuritiba.

Many thanks to SilviaMara Santos Silva,Olga Prestes and Elcio Karas for their valuable input andinsightsfromthePublicTransportationcompany.ThedataobtainedfromURBSwascrucialtodevelopamodelfittoCuritiba’sPublicTransportNetwork’scharacteristics.

Thank you as well, Francisco Malucelli from IPPUC, Eduardo Pinto from Scania Brazil and theinterviewed collaborators of the operator companies Viação Cidade Sorriso and Redentor foransweringmyquestionsabouttheplanningandoperationofCuritiba’sPublicBussystem.

Iwouldalsoliketothankmyfamily,whoseattentionandcuriosityonmythesistopichelpedmeintimesofmoredespair.TheymotivatedmetocontinueworkinghardandbepassionateaboutwhatIamdoing.

Last,butnotleast,IwouldliketothanktheamazinggroupofpeopleofroomM68intheKTHCampus,whichmadethesemonthsofworkalotmorefun,thelunchesoutsideandthecoffeeupstairswereessentialtokeepupthespiritandmotivatedeveryonetocontinueworking.

Page 7: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-7-

TableofContents

Abstract...................................................................................................................................................3

Resumo...................................................................................................................................................4

Acknowledgements.................................................................................................................................5

ListofFigures..........................................................................................................................................9

ListofTables..........................................................................................................................................10

ListofAbbreviationsandNomenclature...............................................................................................11

ListofDefinitions..................................................................................................................................13

1 Introduction..................................................................................................................................15

1.1 Motivation.............................................................................................................................15

1.2 Thesisobjectivesandresearchquestions.............................................................................16

1.3 Thesisstructure.....................................................................................................................18

2 LiteratureReview..........................................................................................................................19

3 Methodology.................................................................................................................................21

4 BackgroundInformation...............................................................................................................24

4.1 Advancedpowertrains..........................................................................................................24

4.1.1 Hybridelectricvehicles..................................................................................................24

4.1.2 Batteryelectricvehicles................................................................................................25

4.2 Energystoragesystems.........................................................................................................26

4.2.1 Batteries........................................................................................................................26

4.2.2 Capacitors......................................................................................................................27

4.3 Chargingtechnology..............................................................................................................27

4.3.1 Conductive.....................................................................................................................28

4.3.2 Inductive........................................................................................................................29

4.4 CharacterisationoftheBusNetwork....................................................................................29

4.4.1 BusLinecategoriesandbusfleet..................................................................................30

5 Developmentofoptimisationmodel............................................................................................35

5.1 Selectionofbusroutes..........................................................................................................35

5.2 Geospatialanalysis................................................................................................................38

5.3 Energyconsumption..............................................................................................................38

5.3.1 Electricbusesandbatterysizing...................................................................................39

5.3.2 Biofuelbuses.................................................................................................................42

5.4 Definitionofmodel’sparameters.........................................................................................43

5.4.1 Costs..............................................................................................................................44

5.4.2 Emissions.......................................................................................................................47

5.5 DefinitionofBAUScenario....................................................................................................48

Page 8: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-8-

5.6 Optimisation..........................................................................................................................49

6 ResultsandDiscussion..................................................................................................................52

6.1 Feasibility...............................................................................................................................52

6.2 Energyoptimisation..............................................................................................................54

6.3 Costoptimisation..................................................................................................................56

6.3.1 Basescenario.................................................................................................................56

6.3.2 Reducedelectricitypricescenario.................................................................................58

6.3.3 Favourablescenario......................................................................................................59

6.3.4 Sensitivityanalysis.........................................................................................................60

7 Policyandplanningrecommendations.........................................................................................62

7.1 Sustainabilityofbiofuels.......................................................................................................62

7.2 Logistics.................................................................................................................................64

7.3 Policybarriersandinstruments.............................................................................................67

8 ConclusionsandFuturework........................................................................................................74

8.1 Futurework:..........................................................................................................................76

Bibliography..........................................................................................................................................77

Annex....................................................................................................................................................82

Appendix1–BusNetworkcharacteristics........................................................................................82

Appendix2-Identificationcodeforterminalsandadditionalstart/endstops................................86

Appendix3–Chassistypecharacteristics........................................................................................87

Appendix4–Indices,variablesandparameters..............................................................................88

Appendix5–TimetableofbusroutesinTerminalBairroAlto.........................................................89

Page 9: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-9-

ListofFigures

Figure1-Evolutionofbatteryenergydensity(Wh/L)andcost(USD/kWh)........................................24 Figure2–Ragonediagramplot-specificenergy(Wh/kg)vs.specificpower(W/kg)ofdifferentenergystoragesystems.....................................................................................................................................26 Figure3-SOC........................................................................................................................................27 Figure4–Fast-chargingsystemforVolvo7900ElectricHybrid...........................................................28 Figure5–Wirelesscharging.................................................................................................................29 Figure6-Integrationterminal..............................................................................................................33 Figure7-ChargingstationofPHEVlocatedonRuaMenezesDória.....................................................34 Figure8-MapofcollectivetransportinCuritiba'scitycentre..............................................................35 Figure9-AllyearclimateandweatheraveragesinCuritiba................................................................40 Figure 10 - Examples of battery electric buses: articulated from Solaris (top), standard fromVolvo(right)andmicrofromSolaris(left).......................................................................................................41 Figure11-Representationoftheselectedbusroutesandtheirinitialandfinalbusstopingraphform...............................................................................................................................................................50 Figure12-Impactofdifferentparameterchangeonthenumberofbuslinesfeasibleforelectrificationwithconductivecharging......................................................................................................................53 Figure13-Selectionofbustechnologiesandelectricbuschargingstationlocation-resultsfromtheenergyoptimisation..............................................................................................................................55 Figure14-Resultsfromthecostoptimisation.....................................................................................56 Figure15-Selectionofbustechnologiesandelectricbuschargingstationlocation-resultsfromthecostoptimisationinascenariowheretheelectricitycostisreducedby40%......................................59 Figure16-Selectionofbustechnologiesandelectricbuschargingstationlocation-resultsfromthecostoptimisationinathirdscenario.....................................................................................................60 Figure17-Impactofparameterchangeonthenumberofelectrifiedroutes.....................................61 Figure18-Impactofparameterchangeontotalannualcost..............................................................61 Figure19-TerminalBairroAlto(left)andbusstopsatPraçaSantosAndrade(right).........................66 Figure20-TubestationGuadalupe–frontview(left)andbackview(right).......................................67 Figure21 -Mainbarriers identifiedby thestakeholders for the implementationofelectricvehicles(left)andinstrumentsandincentivesthatwouldassistthetransitiontoanelectrifiedsystem(right)................................................................................................................................................................71

Page 10: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-10-

ListofTables

Table1-Listofbuscategoriesandbusfleetcomposition....................................................................31 Table2-Selectedbuslinesinthemodel).............................................................................................37 Table3-Busfleet’scharacteristics.......................................................................................................39 Table4-Energyconsumptionofelectricvehicles................................................................................40 Table5-Weightofbatterypackaccordingtobustopology................................................................41 Table6-EnergyconsumptioninL/kmorNm3/km.............................................................................43 Table7-Summaryofinputparameters...............................................................................................44 Table8-Summaryofcosts...................................................................................................................44 Table9-Feedstock,energydensityandemissionfactors(grCO2eq/MJandgrCO2eq/L).................47 Table10-EmissionfactorsofGHGingrCO2eq/km.............................................................................48 Table11-SummaryoftheBAUScenario'sparameters.......................................................................48 Table12-CostinR$/kmofdifferentfuelsandelectricity....................................................................56 Table13-Model'sresultsforthecost(base)andenergyoptimisationcomparedtoanindicativefossildieselB7BAUScenario.........................................................................................................................57 Table14-MaximumemissionlevelsadmittedbyCONAMAP5andCONAMAP7...............................68 Table15-Buslinecharacteristics.........................................................................................................82 Table16-DifferentbusesemployedinCuritiba'sPublicTransportanditsmaincharacteristics........87 Table17-Listofallindices,variablesandparametersusedintheoptimisationalgorithm................88

Page 11: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-11-

ListofAbbreviationsandNomenclature

AC Airconditioning

B7 BiodieselblendB7(93vol.%diesel,7vol.%biodiesel)

B100 Biodiesel(100vol.%biodiesel)

BAU Business-as-usual

BEV Batteryelectricvehicle

BRT Busrapidtransit

C40 C40CitiesClimateLeadershipGroup

CO Carbonmonoxide

CO2 Carbondioxide

CO2eq Carbondioxideequivalent

ESS Energystoragesystem

EV Electricvehicle

FAME Fattyacidmethylesters

FCV Fuelcellvehicle

FFV Flexiblefuelvehicle

GEE Gasesdeefeitodeestufa

GHG Greenhousegas

GIS Geographicinformationsystems

HC Hydrocarbon

HEV Hybridelectricvehicle

ICE Internalcombustionengine

IPPUC Research and Urban Planning Institute of Curitiba (IPPUC: Portuguese acronym forInstitutodePesquisaePlanejamentoUrbanodeCuritiba)

LCA Lifecycleassessment

LCC Lifecyclecost

Li-ion Lithiumion

MSW Municipalsolidwaste

NOx Nitrogenoxides

O&M Operationandmaintenance

PHEV Plug-inhybridelectricvehicle

PM Particulatematter

R$ BrazilianReal(BRL:ISOCode)

RED RenewableEnergyDirective

Page 12: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-12-

RIT IntegratedTransitNetwork(RIT:PortugueseacronymforRedeIntegradadeTransporte)

SOx Sulfuricoxides

SOC State-of-charge

TOD Transit-orienteddevelopment

TTW Tank-to-Wheel

URBS Urbanization Company of Curitiba (URBS: Portuguese acronym for Companhia deUrbanizaçãoeSaneamentodeCuritiba)

WTT Well-to-Tank

WTW Well-to-Wheel

Page 13: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-13-

ListofDefinitions

Auxiliarypower Powerconsumedbyauxiliarydevices,i.e.notinvolvedwiththemotionofthevehicle.

Articulatedvehicle Vehicle composedof two rigid sections linkedby a pivoting joint. Thelengthofthesevehicles inCuritiba’sbus fleetvaries from18.6to20.3metersandtheycancarry142to165passengers.

Chassis Consists of an internal vehicle frame which supports the engine, thetransmission, drive shaft, differential and the suspension. Sometimesreferredtoascoachwork.

BusRapidTransit Collectivebussystemcharacterisedbyhighfrequencyandhighcapacityvehiclesrunningondedicatedbuslanes,whichcanbesegregatedfromcommon traffic. This type of public transport can achieve a ridershipsimilartoanundergroundsystematreducedcost.

Dailyridership Numberofpassengerboardingsperday.

Drivingcycle Seriesofdatapointsrepresentingthespeedofavehicleversustime.

Dwelltime Timeabusspendsatascheduledstop(e.g.finalstop)withoutmoving.

Enroute Duringtheoperationofaroute.

Energyefficiency Energy consumption per transport volume measured in kWh/pkm(passenger-km)orkWh/vkm(vehiclekm).

Fuelconsumption Distancetravelledperunitoffuelvolume(measuredinkm/l).

Fuelefficiency Volumeoffuelconsumedtotravelaunitofdistance(measuredinL/km).

Integrationterminal Alsonamedterminalstations.

Internalcombustionengine Heatenginewhichburnsfuelinacombustionchambertoreleaseheatandwhichconvertsitintomechanicalenergy.

Life-cycleanalysis Techniquetoassessenvironmental impacts, suchasemissions,energyconsumptionandwaterconsumptionassociatedwithallthestagesofaproduct'slifefromrawmaterialextractiontodisposalorrecycling.

Life-cyclecostanalysis Toolusedtodeterminethemostcost-effectiveoptionamongdifferentalternativestopurchase,own,operate,maintainand,finally,disposeofanobjectorprocess.

Microvehicle Vehicleofreducedlengthtobeusedinrouteswithlowerridership.Thelengthofthesevehiclescanbe8or10.30metersandtheycarryupto67passengers.

Mileage Numberofmiles (or kilometres) travelledduring aperiodof time, forexample,adailymileageorannualmileage.

Padron/standardvehicle Vehicleofnormalsize.Curitiba’sstandardvehiclesare12.5to13metreslong which can carry up to 85 or 102 passengers, depending on thechassistype.

Page 14: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-14-

Opportunitycharging Fast charging system that allows the charging of the vehicle’s batteryseveral times during a day of operation, i.e. charging is performedwheneverpossible,atintermediateorfinalstops.

State-of-charge Energy level of a battery system at a specific point. It is expressed inpercentagetoitstotalcapacity.

Tank-to-Wheel Analysis of energy consumptionor theemissionof a certainpollutantoccurred during the operation of a vehicle, i.e. resulted from the fuelcombustion.

Tubestation DistinctivebusstopdesignoriginalfromCuritiba,intheformofatube.

Well-to-Tank Analysis of energy consumptionor theemissionof a certainpollutantoccurredduringallprocessesfromtheplantationofthefeedstockorrawmaterialextractionuntilthefuelreachesarefuellingstation.

Well-to-Wheel Analysis of energy consumptionor theemissionof a certainpollutantoccurred from raw material extraction/collection until the fuel iscombustedinthevehicle’sengine.

Page 15: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-15-

1 Introduction

Thischapter introducesthetopicofmobilityand its impacts,underliningtheurgencyformoresustainablesystems.ThemotivationbehindfocusingonthePublicBusTransportofCuritibaisdiscussed.Thethesis’purposeandresearchquestions,aswellasaplanofthethesis'structure,arepresented.

1.1 Motivation

Astheworldpopulationcontinuestogrow,oneofthemegatrendsobservedinthenewmillenniumistheshiftfromruraltourbansettlements(UN,2005).Thisputshugepressureoncities,whichlacktheresources and infrastructure to sustain such huge concentrations of population.Worldwide citiesaccountforovertwothirdsofprimaryenergydemandandtheyareresponsibleforover70%oftheGHGemissions(IEA,2016).

Notonlyisthetransportsectorresponsiblefor23%oftheglobalenergyrelatedGHGemissionsbutitisalsothenumberoneuserofoilproducts-64.5%ofoilconsumedin2014(IEA,2016).InLatinAmericatransporthasanevenalargerimpact,producingaround35%ofGHGemissions,being90%ofthemrelatedtoroadtransport(C40,2013).Thishascauseddamagesbothonagloballevel,suchasclimatechangeanditsrepercussions,andonalocallevel,forexamplebypollutingtheairofcities.AccordingtotheWorldHealthOrganization(WHO,2017),higherconcentrationsofpollutantsintheairincreasetheriskofcardiovascularandrespiratorydiseases,cancerandprematuredeath.InBrazil,thisnumberisevenhigher;around40%ofthecountry’senergyrelatedGHGemissionsarecausedsolelybythetransport sector (UNFCCC,2005). This canbe justifiedby the fact that thepower sector is largelygoverned by hydropower, a renewable technology with no direct CO2 emissions. Nevertheless,transportationrepresentsoneofthechallengesofBrazilforthenearfuture.Roadcollectivetransport(municipalandmetropolitanbuses)caused21%oflocalemissionsofCO,HC,NOx,SOxandPMand34%ofGHGemissionsintheyearof2014duetothecontinueduseofstandarddieselpoweredbuses(ANTP,2016).Thiscorrespondstocirca30thousandtonsperyearoflocalpollutantsand2.77milliontonsperyearofGHGreleasedtotheatmosphereonlyduetometropolitanbuses(ANTP,2016).

To tackle the rapid increase in population, 1.85 million in 2009 compared to only 609 thousandinhabitantsinthe1970s,andconsequentriseinmobilitydemand,thecityofCuritibaintroducedthefirstbusrapidtransit(BRT)systemoftheworldin1974andithasbeenexpandingitsbusnetworkeversince(Curitiba,2010).Inthisway,thecitymanagedtoavoidhighlevelsoftrafficcongestion,healthrelatedissuesandnoisepollution.

In 2009, the BRT system was upgraded once more to include the Green Line (Linha Verde inPortuguese),thesixthBRTcorridorofthecity.ItdisplaysallthefeaturesofamodernBRTsystemwith100%biodiesel(B100)busesrunningonitslanesandaccommodatingthetrinaryconceptdevelopedin Curitiba, i.e. a display of lanes for local access, fast traffic and segregated bus lines as well asdedicatedareasforgreeneriesandtrees,pedestriansandcyclists(Lindau,etal.,2010).

Categorizedas InnovatorCity, Curitiba is partof theC40CitiesClimate LeadershipGroupand it iscommittedtoreduceemissionsandimprovetheairqualitybyintegratingmodernvehicletechnologiessuchashybridelectricvehicles(HEV),plug-inhybridelectricvehicles(PHEV)andpureelectricbusesintheirpublicbusfleet.Oneoftheprogram’sinitiativeistheHybridandElectricBusTestProgram,whichaimed to evaluate how low carbon buses performed technical and economically in four SouthAmericancities.Theresultsshowedaclearimprovement,withCO2emissionsreductionupto35%and

Page 16: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-16-

localemissionslevelsreducedby60to70%whenusinghybridbuses(C40,2013).Inthecaseofelectricbuses, which emit no exhaust gases, local emissions were completely neutralised and energyconsumptioncouldbereducedupto77%(C40,2013).ApartfromthemitigationofGHGemissionsand reduced energy consumption, other identified advantages were lower noise pollution andenhancedsocialequalityduetoabetterserviceandimprovedenvironment.Thefirstbarrieridentifiedfortheimplementationofhybridandelectricbuseswasahigherupfrontcostforthepurchaseofthesevehicles.However,inthelongrun,hybridandelectricbusesshouldbecomecompetitiveduetoloweroperationalcostsintermsoffuelling(C40,2013).

Thecharacteristicsof theBRTsysteminCuritiba,whichcomprises76.6kmofexclusivelybus lanes(BRTData, 2017), pre-boarding payment andhigh level platform stations for quick embarking anddisembarking,highfrequencyandhighcapacitybuses(includingbi-articulated)thatledtoacurrentdaily ridership of around 1.62 million on a regular weekday in 2016 (URBS, 2016), underline theenormousimpactthatthetransitiontoanelectricbusfleetwouldhaveonbothenergyandemissionsavings.

Electrification of the system is only justified if the supplied electricity is produced primarily byrenewablesources.ThisisassuredintheBraziliancase–in2016,approximately75.5%ofthesuppliedelectricityoriginatedfromrenewablesources,predominantlyhydropower(EPE,2016).

Aselectricbusesaregainingmomentuminseveralregionsaroundtheworld,withChinaleadingwitha fleet of around 170 000 vehicles (IEA, 2016), and several cities in Europe testing differenttechnologiesonongoingdemonstrationprojects,thisworkaimstostudytheinfrastructureneedsandchallengesofthetransitiontoanelectricbusfleetcombinedwithbusesrunningonbiofuels intheBraziliancityofCuritiba.

1.2 Thesisobjectivesandresearchquestions

The core objective of the thesis is to plan the implementation of electric buses and its charginginfrastructureinasub-groupofthecurrentbusnetworkofCuritiba,bydevelopingtwooptimisationscenarios-costandenergyconsumptionminimisation.Acombinationofdifferentkindsofbuses–electricorrunningonbiofuels-inanoptimisedway(hereaftermentionedassystem’sconfiguration)maybethesolutiontomakethecitymoreenergyefficientandreduceitscarbonfootprintinacost-effectivemanner.

Up to date, several bus manufacturers have developed electric buses, both regular-sized andarticulated versions.When it comes to bi-articulated, also called double-articulated buses, electricversions are still in an early research and demonstration phase, with polish manufacturer Solarisworkingonthedesign,buildingandeventuallytestingofafullelectricbi-articulatedvehicleofover20metres(Solaris,2015).GermanmanufacturerVosslohKiepehaslaunchedahybridmodelof24metresinlength(VosslohKiepe,2017).Itisexpectablethatinthefuture,improvedelectricvehicleswillbelaunchedonthemarket,andasuitablealternativewillbeavailableforthecurrent27.6metreand40.5tons1bi-articulatedbususedinCuritiba’sBRTsystem(URBS,2015).

Hybridelectricvehicleshavebeenidentifiedasattractivealternativesintheperiodofmaturationofpureelectricvehicles(Tzeng,etal.,2005),however,itsmanyandcomplexconfigurations(parallelandin-serieshybrid,plug-inhybrid)demandacautiousselectionbetweentopologies.Adecisionfortheappropriatetopologyshouldresultafteracarefulanalysisofroutespecificcharacteristics(Lajunen,

1Sumofvehicleandpassengers’weightconsideringmaximumcapacity.

Page 17: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-17-

2014).Moreover,inordertocorrectlyaccountfortheenergyconsumptionduringelectricandnon-electricoperationmode, case-specificdata isdesirable,which isoftenunavailableornotdetailed,hindering the analysis. For all these reasons, it was decided not to consider HEVs in this study.Furthermore, pure battery electric vehicles (BEV) require substantially more electricity than analternativeplug-in-hybridvehicle.Therefore,byconsideringonlyBEVsinthemodel,thisstudycoverstheworstcasescenariointermsofenergydemandofchargersinstalledinthenetwork.

Afeasibilitystudyisconductedtoassesswhichbuslinescanbeelectrified.Abusrouteisconsideredfeasibleforelectrificationwhenthebatterycapacityofthebuses,rechargedattheendstopofeachtrip,issufficienttooperatethroughoutthedaywithoutfallingbeneathacertainthreshold.Dependingonthechargingpower,allowedtimeforchargingandenergyconsumption,differentscenariosarebuilt.Theoptimisedsystem’sconfiguration,proposedbythemodel,isdiscussedaccordingtothesescenarios. If electrification is concludednot tobe feasibleorattractive (in termsof cost), thebestalternative,consistingeitherofbiodiesel,bioethanolorbiogasfuelledvehicles,isselectedintermsofleastcostorleastenergyconsumption,dependingwhichparameterisbeingminimised.

Thestudyalsoaddressesthepreferentialplacementofchargingstations,consideringthatchargingisonlypossibleattheendstops,ateitherreducedcostorreducedenergyconsumption,includingtotalavoidedCO2emissionswhencomparedtoafulldieselbusfleet.Therefore,thepurposeistodeterminetheoptimalsystem’sconfigurationfromaholisticpointofview,includinglogisticalrecommendationson charging stations and necessary political and legislative conditions to support electricmobility.Sustainabilityofbiofuelsisaddressedasameanstocriticallylookintoothernon-technicalaspectsofthesefuels,suchasenvironmentalandsocialimpactsoftheexplorationofthefeedstockofsugarcaneandsoybean,forexample.Policyandeconomicbarriers,affectingtheadoptionornon-adoptionofalternativebus technologies, arediscussedandpotential instruments and incentives areproposedwhichwouldhelptoovercomethementionedsystem’slimitations.

TheresultsareattainedbytwooptimisationmodelsdevelopedasasimplifiedversionofthemodelproposedbyXyliaet.al(2017)forStockholm.ThisprojectaimedtoprovethatthelogicofthetoolisadaptabletoothercitiesandthatitcanhelppolicymakersinCuritibadefinethepaththecityshouldfollowtoachieveacarbon-freepublictransportsystem.

Inconclusion,themainobjectiveofthisthesisistoobtaintheoptimalsystems'configurationbymeansofasimulationoftheoverallselectedbusnetworkinareducedenergyconsumptionscenarioandinacost-optimalscenario.Energydemand,requiredcharginginfrastructureandalternativebiofuelswillbeassessedinthissimulation.Thisentailsthefollowingresearchquestions:

Howwould thedifferent technologies (electricpowertrainandbiofuels)beallocated toeachof theselectedbuslines,inordertoachievethegreatestbenefits,intermsofenergyefficiencyandavoidedCO2emissions,atminimumcost?

Sub-questions:

§ Whichistheoptimallocationofthechargingstationswhichresultsinmaximumelectrification(costandenergyoptimisation)?

§ WhicharethemostimportantbarriersandlimitationsthatinfluencethetransitiontoalowcarbonPublicBussysteminCuritiba?

§ Whichpoliticalandeconomicinstrumentscouldassistthistransition?

Page 18: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-18-

1.3 Thesisstructure

Page 19: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-19-

2 LiteratureReview

Thischaptercomprisesarevisionoftheexistingstudiesbyvariousauthorsonelectricandhybrid bus development and, most importantly, studies on the optimised placement ofchargingstationsintheurbanenvironmentfromasystem’sperspective.

TransportationisoneofthefewsectorswhereGHGemissionscontinuetoincreasesteeply(D'Agosto,etal.,2013).Severaltechnologies,suchasBEV,PHEVandfuelcellvehicles(FCV)areseenaspromisingsolutionstotackleclimatechange,localairpollutionanddepletionoffossilfuels,consideringthattheyrunonrenewableorcleansourcesandemitfewerpollutants.D’Agostoet.al(2013)identifiednaturalgas,bioethanolandbiodiesel(severaltypesofblends)aspotentialalternativefuelsforuseinpublictransportationinBrazil.TheyemitlessCO2andarewidelyavailableinthecountry.Especially,ethanolproductionfromsugarcaneisawell-establishedbiofuelandthankstotheBrazilianAlcoholProgram,launchedin1975bytheFederalGovernment,thecountryhasyearsofexperiencewithitsuseinbothflex-fuelvehiclesandinadaptedOttocycle(gasoline)engines(Velázquez,etal.,2012).Biogasisnotmentioned as a potential fuel by the author. However, Nadaletti et al. (2015) conclude that thepotentialproductionofbiogas frommunicipal solidwaste (MSW)of sanitary fields in thedifferentstatesinBrazilisenoughtomeettheenergyneedsofthecurrentbusfleet.Unfortunately,thecountrylacks in infrastructuretoconvert landfillgas intobiogasandtherefore its feasibilitywilldependonfinancialincentivesandpoliciesimplementedbythegovernment(Nadaletti,etal.,2015).

Theavailableenergystoragesystems(ESS)andthevehicle’srangearestillthetwomainlimitationsthathinderthespreadofPHEVandBEVintheurbancontext.Hybridisationhasbeenidentifiedasanalternativesolutionwhilepureelectricvehiclesmature(Tzeng,etal.,2005).However,thebenefitsofHEVandPHEVhighlydependentonengineoperationandthedegreeofhybridisation(Lajunen,2014).Theamountofenergyusedbypublicbusesduringtheirlifetime,consideringthattheyoperatemostdaysoftheyearovertypical rangesof240km(caseofCuritiba), ismuchhigherthanaprivatecarwouldconsumehencetheattractivenessofelectricpowertrainsforcollectivepublictransportation(Lajunen,2014).Moreover,typicalurbandrivingcycles,characterisedbyastop-and-gooperation,donotaffect theefficiencyofelectricenginesasmuchascombustionengines,becauseenergy lossesduringidleoperationareverylow.Littleorzerotailpipeemissions,lowernoiselevels,longerlifeduetolowwearandrecuperationofbrakingenergy,whichincreasetheoverallefficiency,supporttheuseofelectricdrivetrainsindenselypopulatedareas(Kühne,2010).

The importanceofchoosingthepropertechnology,accordingtotheoperationscheduleandrouteplanning, iswelldocumentedbyLajunen(2014).Additionally,busnetworksfeatureastabledepot,fixedroutesandtimetables.Asaresult,thestudyoftheoptimaldistributionofcharginginfrastructure,necessaryforthedeploymentoflarge-scaleelectricbusfleets,isofhighinterest.Adaptationofcurrentschedules, lengthening dwell times at bus stops, allow for opportunity charging, i.e. buses can berecharged several times a day, and thus bus operation is securedwithout the need for very largebatterysystems.AccordingtoXyliaetal.(2017),anelectricbusnetworkinStockholmwouldonlyhaveslightlyhigherannualisedcoststhanasystemdominatedbydieselbusesbecausefuelsavingsbalanceouttheextrainvestmentsininfrastructure.Additionally,51%savingsinGHGemissionsand34%lessenergyconsumptionaresomeof thebenefits thatcanbeexpectedalsomotivating investments inelectromobility(Xylia,etal.,2017).Eventhoughcapitalcostsofhybridandbatteryelectricbusesarehigher,fromalifecyclecost(LCC)perspective,fuelsavingscompensatelargeupfrontinvestments.AnLCCanalysis indicates thatdiesel hybridbuses are already competitivewithdiesel andnatural gasbusesandthatopportunitychargingBEBwillbecosteffectiveby2023(Lajunen&Lipman,2016).

Page 20: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-20-

Thereisaconsiderableamountofstudieswhichaddresstheoptimalplacementofchargersofelectricvehicles(EV)incities,butthesameisnottrueforelectricbuses.Itisimportanttoanalysethisfromasystem’sperspectiveandnotbyfocusingonindividualroutes,toallowcostsynergies.

Roggeet.al(2015)simulatesenergyconsumption,batterysizeandpowerprofilesforchargingpointsthroughaspatiallyresolvedanalysisofthegridintheGermancityMünster.ThestudyhighlightstheimportanceofpropersizingtheESS,consideringthatthelargerthebattery’scapacity,themorespaceandweightitaddsonthevehicle,potentiallycompromisingpassenger’scapacityandfuelefficiency.Availablepowerforchargingisalsoaddressedindetailandresultsshowthatthehigherthepower,lesstimeisneededforchargingpurposesandthusmoreroutescanbeelectrified.Onthedownside,highpowerpeakscancauseinstabilitiesintheelectricgridandtheauthorssuggestthepossibilityofhaving stationary storage systems. No optimisation simulation is performed on the preferentialplacementofchargingpointsasthestudyonlyassumesterminalsstationsaspotentiallocations.

Charginginfrastructureandbatterycapacitywasstudiedjointlybyacapacitatedsetcoveringproblemin(Kunith,etal.,2016).Theauthorsapplyamixed-integerlinearoptimisationmodeltodeterminethelocationandnumberofchargingstations,aswellasadequatebatterysize,inasub-networkofBerlin’spublic bus system. Considering that one third of the electric vehicle’s purchase cost is due to thebattery(includingbatteryreplacement),theauthorstressesthatpropersizingoftheESSisneededforeachbusroutetoavoidevenhighercosts.

Lund’s bus network is analysed by Lindgren (2015), which addresses the selection of charginginfrastructure and its placement by a combinatorial search problem. Each simulation considers adifferent set of technologies, conductive and inductive, with and without dynamic charging andlocationforthechargers(fromadefinedsubsetoflocations)andassessesthebattery’slifeandyearlycosts.Ifthecostislowerthantheprevioussimulation,theprogramsavesthechangesandperformsanewsimulation.Resultsshowthattheinstallationofsmallsectionsofdynamiccharging,alsocalledelectricroadsystems,iseconomicallyadvantageousinasmallcitylikeLund.InnovativesolutionsarecurrentlybeingdevelopedtomakeusersofERSpayfortheelectricitytheyuseand,inthisway,othermodesoftransportation,e.g.taxisandgarbagetrucks,cansharethecostofsuchinfrastructure.

A tooldevelopedbyXyliaet.al (2017)combinesgeospatialanalysis inArcGISandenergyandcostoptimisedscenariosinGAMSforStockholm’snetwork(143busroutesand403busstopswereselectedforanalysisinthisstudy).Majortransportationhubs,whichallowforcostsynergiesandoccasionallyprovideaccesstothehigh-voltagegrid,duetotrains,aswellasstartandendstations,areconsideredaspotentialcharginglocations.Electrificationisassumedtobemostattractiveinthecitycentre,wherehigherlevelsofairandnoisepollutionarefound,aswellasdenserbusservice,i.e.moreoverlappingbusroutesandshorterdistancesbetweenpotentialchargingstations.Future improvementstothemodelwillincludethetimedependencyaspect,accountforotherbustopologiesaswellascalculateenergyconsumptions,bearinginmindaltitudeandtrafficconditions.

Furthermore,theimportanceoffinancialincentivesfromgovernmentsandinstitutions,intheformofnewbusinessmodelsandregulatorypolicies,suchaspollutionfreezones,taxexemptionsonbiofuelsandelectricity,isaddressedinsomestudies(Lajunen,2014);(Xylia,etal.,2017).

A study on the demonstration project inMilton Keynes - wireless charging for the uninterruptedoperationofroute7-introducestheconceptofanenablingcompany.Suchcompanywouldrecognise,allocateandmanagetheinvolvedrisk(mainlyfinancial),shieldingoperatorsandotheractorsoftheinitialriskassociatedwithinnovativeprojects(Miles&Potter,2014).

Page 21: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-21-

3 Methodology

Thissection introducestheadoptedmethodology,namelydescribingthemainsteps, theassumptionsandlimitationsofthestudy.Itdescribesthetoolsanddifferentcomponentsused inthemodel inordertoattainresults.Acomprehensivedescriptionofthemodel ispresentedinChapter0.

ThismasterthesisaimsatdevelopingamodelforthePublicTransportsystemofCuritiba,basedonthe tool described in (Xylia, et al., 2017).Theprogramsused areArcGIS, aGeographic InformationSystem(GIS)softwareusedtomanagethedatafromtheUrbanizationcompany(URBS)andrepresentit spatially, and the programming software MATLAB, to develop the optimisation model. Inputparametersaredefinedandthecosts,energyconsumptionsandemissionsforeachtechnologyandbuslinearecalculatedinMicrosoftOfficeExcel.Inthisway,thisstudyprovidesasimplifiedversionoftheoriginalmodeldevelopedforStockholm,andcanthusbeused inaneasywaybyplannersandpublic transportation companies to obtain an optimal system’s configuration of their bus networkconsideringseveraltechnologies.

Duetoalackoftime,certainaspectscouldnotbecoveredinamorecomprehensiveway.Forexample,acompleteenergyconsumptionanalysisspecifictoeachroute’scharacteristics.Moreover,thefieldtrip was performed after attaining results so a poor knowledge of the bus network may havecompromisedthequalityandassumptionsmadethroughoutthestudy.Furthermore,thereisalackofcasestudies relatedtoelectromobility inBrazilandSouthAmerica ingeneral,making itdifficult toobtaindataoncosts.The limitationsofthisstudycomprise: lackofadetailedenergyconsumptionprofile for the selected bus lines, average bus consumption is considered constant thus ignoringelevation,trafficconditionsandvelocityprofiles;timedependencyisnotaccountedfor,meaningthatadetailedstudyonchargingpatterns,queuingpoliciesandotherlogisticshavetobefiguredoutinordertoassessthecompletefeasibilityofthechargingstationsites.

Thefollowingstepsdescribethemethodology:

1. Selectionofbusroutes

Curitiba’sbusnetworkiscomprisedof250busroutes,categorisedinto9groups,accordingtothetypeofservice,bustopologyandifitbelongstotheBRTornot.Thereare21integrationterminalswhichconcentratebus linesandthuswerechosenaspotentialchargingstations.Other342tubestationsandthousandsofregularbustopsaredispersedaroundthecitywherecirca1.62millionpassengersin-boardonaregularweekday.

Theselectionofbuslinesisbasedontwomaincriteria:(i)thebuslineshouldcrossthecitycentre(orcircleit);and(ii)thebuslineshouldhaveatleastoneintegrationterminalasinitial/finalstopofitsrouteandincludemoreintegrationterminalsonitsitinerary.

Tenbus lineswereselected fromtheDirect line,eight fromthe Inter-neighbourhood,six fromtheTrunkcategoryandtwofromDowntownCircular,totallinganumberof26buslinestobeanalysedinthemodel.Thecandidatelocationsforchargingstationswere:

Terminals (16): Bairro Alto, Barreirinha, Boqueirão, Cabral, Caíua, Campina do Siqueira, CampoComprido,CapãoRaso,Centenário,Fazendinha,Guadalupe,Pinheirinho,SítioCercado,SantaCandidâ,SantaFelicidade,ValeOficinas;

Tubestations(8):EstaçãotuboMuseuOscarNiemayer,EstaçãotuboMarechalDeodoro,Praça19deDezembro,PraçaCarlosGomes,PraçaSantosAndrade,PraçaTiradentes,RuaTapajosandPrefeitura.

Page 22: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-22-

Necessaryparameters,specificallytotallengthoftheroute(𝐿#),totalnumberoftripsinadayandinayear(𝑇𝐷𝑇# and𝑇𝐴𝑇#,respectively),typeandnumberofvehiclesoperatingeachbusline(𝑁#)*+,-#*),are collected and assigned to eachbus route anddirection (forthcoming and returning).DatawasobtainedfromURBS’sopendirectoryforatypicalworkday(3rdofMay2017).

2. Geospatialanalysis(ArcGIS)

ThegeospatialanalysiswasperformedonArcGIS,asoftwaredevelopedforworkingwithmapsandinformationsystems.Afterdefiningeachbusroute(forthcomingandreturningdirection)andlinkingtheir respective bus stops to the routes, the distance between consecutive candidate stops forchargingpurposeswascalculated.Allstartandendstopswereconsideredascandidatelocationsforchargers.

3. Energyconsumption

Insub-chapter5.3.1,energyconsumptionandbatteryrelatedtechnicalaspectsarediscussedforBEV.Energyconsumptionisdefinedasafixedvalueperunitof lengthandweightofthevehicle-0.072kWh/km.tonasproposedbySinhuberet. al (2012).Additionally, theweightof theESSandpowerconsumptionfromauxiliarydevicesistakenintoaccount.

ThebatterycapacityisdefinedforeachofthethreeBEVtopologiesbasedonavailablesolutionsonthemarket.Theminimumstate-of-charge(SOC)isdefinedasbeing30%andthemaximumas90%,thiswillresultinaneffectiveuseof60%ofthebattery’scapacity.

In sub-chapter 5.3.2, the key characteristics of the considered alternative biofuels are introduced.Three engine technologies are considered: biodiesel (B100) from soybean, hydrated ethanol fromsugarcaneandbiogasfromMSW.Theirfuelefficiency(inlitres/km)andenergydensity(inMJ/litre)are defined. With these values, energy consumption in kWh/km was calculated. This allows thecomparisonofenergyconsumptionbetweenalltechnologies.

Insub-chapter5.4.2,theemissionfactorsoftheseveralenergysources(electric,biodiesel,bioethanolandbiogas)aredefinedingramsofCO2eqperMJandthenconvertedtokilogramsofCO2eq/kmforeachthebussizes.Allemissionsoccurredduringthefuel’slifetime,namelyfromfeedstockharvesttofuel production (or conversion of energy source, in the case of electricity), transportation anddistribution,tothecombustioninthebuses’engine,areconsidered;henceacompleteWell-to-Wheelanalysisisperformed.

4. Definitionofmodel’sparameters

Theinputparameterscanbecategorisedintothreemainareas:technology,costandemissionbased.Insub-chapter5.4.1,allcostsrelatedtoinfrastructure,vehiclepurchase,operationandmaintenance(O&M)(maintenanceofvehiclesanddriversalaries)andfuelcosts,aredetermined,whichareentirelyspecifiedintheBraziliancurrencyReal(R$).Wheneveravailable,Brazilianliteratureand/orresultsoffieldtestsinCuritibawereprioritisedduetohigherrelevancetothisstudy.Costofinfrastructureandvehiclesareannualisedconsideringadepreciationperiodof30and12years(10yearsforcombustionenginevehicles),respectively,andaninterestrateof5%forchargingstations,7%forBEVandESS,and10%forothervehicles.

5. DefinitionofBAUScenario

Thebusiness-as-usual(BAU)scenarioisdefinedassumingthatallvehiclesoperatingonthe26buslinesrun on diesel blend B7 (93 vol. % diesel, 7 vol. % biodiesel). This is the most realistic scenario,consideringthatcurrently,95.3%ofthevehiclesoftheRIToperatewiththisfuel(URBS,2016).Annual

Page 23: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-23-

energyconsumption,totalcostandtotalemissionsarecalculated.ThesevalueswillbeusedasabaseforcomparisonwithotherscenariosobtainedinthechapterResultsandDiscussion(seeChapter6).

6. Optimisation

Themainobjectiveistodeveloptwooptimisationmodelsforasub-groupofbuslinesofCuritiba’sbusnetwork.Therefore,energyconsumption,costsandemissionsarecalculatedforeachroutewithExcelandthetwoobjectivefunctionsareminimizedwithMATLAB.Firstly,afunction isbuiltonMATLABcheckingwhichbuslinesarefeasibleforelectrification,i.e.whichbuslinesguaranteeanuninterruptedbusoperationthroughoutthedayassumingafullchargepriortothefirsttripandfastchargesattheendofeachtrip.Thetimeofchargingissettobe5minutes,thechargingefficiency90%andtheSOCofthebatteryisaconstrainttobealwaysintherange 𝑆𝑂𝐶1,2×𝐶𝑎𝑝678, 𝑆𝑂𝐶1:;×𝐶𝑎𝑝678 .

Only those lines that are proven to be feasible by themodel described above are considered forelectrification.Theseundergoanoptimisationprocessinwhichtheoptimalsystem’sconfigurationisselectedtakingintoconsiderationthatthecostofthechargingstationscanbesplitbetweenlinesthatsharethesamebusstop.

Theoptimisationmodelwasdesignedinawaythatallsetsofpossibletechnologycombinationsforthebuslinesaredefined.Then,thepossibilitywiththelowestcostisdeterminedanditscostsaved.

All others bus lines are directly assigned to the biofuelwith the lowest cost or the lowest energyconsumption.

Page 24: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-24-

4 BackgroundInformation

Thischapterintroducesthemostimportantadvancedpowertrainstechnologies(hybridandbattery electric configurations), energy storage systems and charging technologies. Itprovidesinformationaboutthekeyconceptsandelementsrelatedtothedeploymentandplanningofcharginginfrastructure(seeSub-chapter4.3).Sub-chapterCharacterisationoftheBusNetwork4.4thereaderwithagoodoverviewofthecurrentbusnetworkofthecity,introducing its main characteristics which will further justify the chosen bus lines foranalysis.

4.1 Advancedpowertrains

Hybridsandelectricvehicleshavebeenidentifiedaspromisingsolutionstoabateemissionsbothonalocalandonagloballevel,duetolowerorevenzeropipelineemissions,higherefficiencyoftheelectricmotor in stop-and-go urban transit cycles as well as harvested energy from regenerative brakingresultinginlowerornoconsumptionoffossilfuels(Lajunen,2014).

Historically,hybridsandelectricvehicleconfigurationshavebeendevelopedalongtimeagoandpublicbusesarethemostcommonapplicationofelectrificationofheavydutyvehicles(Lajunen,2014).TheESSstillrepresentsthemainbarrier,intermsoftechnicalandfinancialinadequately,forawidespreadofthesetechnologies.Nonetheless,thepriceofbatteriesdecreasedtolessthanaquarterofitsoriginalpricein2008andisexpectedtocontinuetodecline,whiletheirenergydensityisincreasing(IEA,2016).AuthorsNykvistandNilsson (2015) concluded the same trend for lithium ion (Li-ion)batteriesandshowedthatintheperiod2007-2014industrywidecostsdecreasedapproximately14%peryear,from1 000 USD/kWh to 410 USD/kWh. The cost of Li-ion battery packs used by market leading BEVmanufacturersrevealedtobeaslowcostsas300USD/kWhin2014andacontinueddeclinepermitsanoptimisticoutlookfortheelectricmotorisationindustry.

Figure1-Evolutionofbatteryenergydensity(Wh/L)andcost(USD/kWh).Source:(IEA,2016)

4.1.1 Hybridelectricvehicles

Thisdenominationisgiventovehicleswhichusetwodistinctpowersources.Theyareequippedwithaheat/combustionandanelectricalengineandbothprovidetrackingforcetothewheels.Theonlyexternalsourceofenergyisthefuel introducedinthecombustionengine,e.g.diesel inaninternalcombustionengine(ICE).Ontheotherhand,PHEVshavetheparticularityofallowingthebatteriestoberechargedbyanexternalelectricitynetwork.

Page 25: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-25-

Themain elements of hybrid vehicles are electrochemical batteries and/or capacitors, an electricmotor,anICE,anelectriccurrentgenerator,acouplingsystemtoconnectmechanicalandelectricalsystemsandamanagementsystemwhichallowsthecommutationbetweenelectricandcombustionenginemodes(Varga,etal.,2016).

Withinthehybridpowertrains,severaltopologiescanbefound.Themainonesareparalleland/oramixedseriessystem.Serieshybridbusesarethemostcommonlyfoundcommercialsolutions(Lajunen,2014).Anon-boardgen-set,acombinationofaninternalcombustionengine(primemover)andanelectric generator, produces electrical energy at highest efficiency (high speed and low coupling),whichchargestheESS.Thestoredelectricitythenflowstotheelectricalengine(propulsion)toproducetrackingforce.Inthisway,thereisnomechanicalconnectionbetweentheICEandthewheeldriveshaft,whichallowsforaflexibleplacementofthecomponentsandefficiencyisnotdependentonthevehicle’s speed (Varga, et al., 2016). In theparallel configuration,bothenginesare coupled to thewheel’saxleviatwogearboxes.Therefore,thepowerflowcanbeoriginatedfromtheelectricalengine,thecombustionengineorboth.Thisresultsinahighlyvaryingdegreeofhybridisation,dependingonthenominalcapacityoftheelectricalandthemechanicalengine.Moreover,becausetheICEisdirectlylinkedtothewheel’sshaft,paralleltopologieshavehigherefficienciesthantheseriestopology(Varga,etal.,2016).

Inconclusion,itisarguableifHEVpresentthebestsolutiontoreduceGHGemissions,consideringthecomplexityoftheirconfigurationandthatthesevehiclesstillrunonfossilfuels.Nevertheless,hybridsconsumelessfuelandthusemitless.TheyaremoreefficientthanconventionalvehicleswhileensuringalongerrangeandflexibilitythanBEV,atalowercost.CoelhoBarbosa(2014)considershybridelectrictransitbusestobethebestshort-timeopportunitytodevelopelectromobility.

4.1.2 Batteryelectricvehicles

Abatteryelectricvehicleoperatesfullyonelectricityanditsmainelementsaretheelectricmotorandarechargeableenergystoragepack,whichcaneitherbeabattery,asupercapacitororacombinationofboth.Electricmotorshavehigherefficiencies,higherthan90%inmostofitsoperatingrangewhencomparedtoconventionaldieselengines(CoelhoBarbosa,2014).Moreover,electricalmotorscanbereversed and function as generators enabling the conversion of the energy released duringdeceleration,whichwouldbeotherwiselost,intoelectricalenergythatcanbestoredinthebatterypack.Thisprocessiscalledregenerativebraking.

Electricpowertrainscanbedesignedaccordingtotheapplicationandoperationconditionsinordertobestadjustedtotheoperationconditions(Lajunen,2014).Zerotailpipeemissions,lessnoiseandnoenergylossesduringidleoperationsmaketheelectricbustheperfectvehicleforurbantransportationoperations.

Themainbarrier toa large-scaledeploymentofelectricvehicles still is theenergystoragesystem,whosedurability, cost andenergydensity need tomature. Theoperation range remains themainchallengetodefeat;however,scheduleandroute,whicharewelldefinedinbusoperation,canandshouldbeadaptedtoincorporatechargingneedsofBEV(Lajunen,2014).

Finally, trolleybusesare fullelectricbuseswhichdonot require largelysizedenergystoragepacksbecauseelectrical energy is constantlybeing fed via catenaries lines installedalong thebus route,similar to the infrastructureof tramnetworks.There isaclearcompromisebetween lowervehiclepurchase costs,which don’t require large battery packs, and high infrastructure andmaintenanceexpenses(Kühne,2010).Anothercommonreasonforcitiesnottoinvestintrolleybusesisthefairly

Page 26: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-26-

unattractiveoverheadwiresystemwithsuspensions,switchingandcrossingswhichboundscitybusroutestopredefinedtracks,decreasingthelevelofflexibilityofthesystem(Rogge,etal.,2015).Inthecaseofwell-definedroutes,suchascorridorsofBRTsystems,thetrolleybustechnologymaybeaveryinteresting solution forelectrification considering that it is easier to integrate this into thealreadyexistinginfrastructureinacost-effectivemanner.

4.2 Energystoragesystems

Theenergystoragesystemisthemostcriticalcomponentofelectricbusesbecauseof itstechnicalshortcomingsindurabilityandenergydensity.Itshighassociatedcosts,whichhaveahugeimpactontheperformanceandefficiencyofcitybuses,affecttheoperationsreliability(Lajunen,2014).

4.2.1 Batteries

Batteries are electrochemical devices consisting of one ormore electrochemical cells which storeelectrical energy and convert it into chemical energy through reversible reactions that releaseelectrons through an external circuit. A cell is constituted by two electrodes, a cathode (positiveterminal)andananode(negativeterminal),andanelectrolyte,whichallowsionstoflowbetweenbothelectrodes.Asetofbatterycells iscalledmoduleswhichtogetherwithothermodulesconstituteabatterypack.

Figure2–Ragonediagramplot-specificenergy(Wh/kg)vs.specificpower(W/kg)ofdifferentenergystoragesystems.Source:(CoelhoBarbosa,2014)

TheRagoneplot,depictedinFigure2Figure1demonstratesthetrade-offbetweenenergyandpowerdensity.Thedashedlinesindicatethetimeneededtochargeordischargethedifferentenergystoragesystems.Dependingon theapplication,highdensitiesofenergyorpowermightbe required.Highenergybatteriesprovidelongerranges,hencetheyarepreferredforbuseswhichtravelthewholedayon a single charge (depot charging), while high power batteries are necessary to store efficientlysuddenburstsof energy (highaccelerationor regenerativebraking), useful inBEVor trolleybuseswhicharechargedseveraltimesaday(opportunitycharging).Forthelatterapplication,capacitorsareanappropriatestoragesystemandcanbecoupledwithbatteries,asdiscussedinthenextsub-chapter.

The main characteristics to consider are the energy density (Wh/kg), power density (W/kg), thenumberofcharging/dischargingcycles,chargingefficiencyandstateofcharge(SOC),whichrepresentsthelevelofchargeinabattery(inpercentage).

Page 27: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-27-

Thebattery’s capacityhas tobedimensioned taking intoaccount that during a charge/discharge cycle the SOCshouldnotexceednorgobelowpredefinedlevels.Thiswillconsiderably increase the lifetime, i.e. number ofcharge/discharge cycles, of the battery (Karlsson, 2016).ThedifferencebetweentheupperandlowerSOClevel isalsocalledSOCwindow,asdepictedinFigure3.TheexactsizeoftheSOCwindowvariesgreatlydependingonauthorandbatterytype.

Battery management systems are included in the ESSaiming at increasing the battery’s lifetime by controllingSOC as well as heating issues (resulted from their innerresistance) from high charge and discharge rates, aproblemoffast-chargingapplications.

Figure3-SOC.Source:(Karlsson,2016)

Currently,state-of-the-artbatterytechnologiesusedinelectricvehiclesaretopologiesoflithium-ionbatteriesbecauseoftheirmanyfavourablefeatures.Lithiumbatteriesarelighterandtakelessspaceduetohigherenergydensity,lowerself-discharge,nomemoryeffectandprolongedlifecycle(CoelhoBarbosa, 2014). The performance of these batteries highly depends on thematerials used for theelectrodes. Lithium Iron Phosphate batteries, because of their low cost, high discharge potential(around3.4V),largespecificcapacity(170mAh/g),goodthermalstabilityandabundantrawmaterialwithlowenvironmentalimpact,areconsideredpromisingfortransitbusapplicationsimpact(CoelhoBarbosa, 2014). Lithium titanate technology is another battery type especially interesting foropportunitychargebusesbecausetheyenableaveryhighnumberofcharge/dischargecycleswithoutsignificantdegradation(CoelhoBarbosa,2014);(DeFilippo,etal.,2014).

4.2.2 Capacitors

Capacitorsarecharacterisedbyveryhighpowerdensities,i.e.energycanbereleasedorabsorbedinvery short periods of time (seconds), making it the perfect candidate for opportunity chargingapplicationswherebusesarechargedeveryfewkilometres.Onthedownside,theenergydensityofcapacitors is very low and therefore these are usually used in a dual-source ESS, i.e. paired withbatteriesprotectingthemfromburstsofhighpowerfromregenerativebrakingortoassistacceleration(Lajunen,2014).

Capacitors storeelectrical energy in anelectric field inwhichelectrical currentdrawspositive andnegative ions apart into the electrolyte, causing positive ions to accumulate on the surface of thenegativeelectrodeandvice-versa.Theporouselectrodesdonotchemicallyreactwiththeelectrolyte,as in batteries, causing little wear out and hence increase their lifespan and charging/dischargingefficiency(CoelhoBarbosa,2014).

4.3 Chargingtechnology

Theultimategoalofelectricmobilityistoachievereliable,emissionfreeandlownoiseoperationofelectric vehicles within public transportation. The most common storage units used areelectrochemicalbatterypacks.Thesepackscanberechargedinseveralways:

Page 28: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-28-

i. Depotcharging(slow-charging).Conventionalchargingmodeatlow/mediumpower,usuallyemploying a one phase electric power outlet of 230 V, for several hours during the night(rechargedwithcheaperoff-peakelectricity);

ii. Opportunity charging (fast-charging). TheESS is recharged several timesduring thedayenrouteatchargingstationsinpredefinedbusorterminalstops,athighpowerforshortperiodsoftime(minutes)dependingoncurrentSOCandavailabledwelltimeThisapproachdemandshighelectricalpoweratpeakhourswhichcanoverloadtheelectricalgridandthusincurhighoperationalcosts(CoelhoBarbosa,2014);

iii. Exchangeablebatterypacks(batter-swapping).Thisoptionrequiresextrabatterypacksandadditionalinfrastructureneeds,resultinginhigheroperationalrequirements.

Additionally,chargingcanbeperformedwhilethebusismoving-dynamiccharging–orstoppedatachargingstation-stationarycharging-andelectricalenergycanbeharvestedthroughconductiveorinductivecouplingtechnologies.

4.3.1 Conductive

Conductive charging requires a physical connection between the electric vehicle and the chargingstation,usuallydoneviaapantographsystem,aproventechnologyusedintrains,tramsandmetros,whichisbroughtdownautomaticallywhenthebusarrivesatthechargingstation.Thistypeofcouplingpermitsveryhighpowertransfers,upto500kW(Rogge,etal.,2015).Therearethreewaysonhowconductivechargingcanbeperformed:

1. Off-board top-downpantographs. In this design, the chargingequipment is locatedon thechargingstationwhichenablescostssynergies,i.e.onechargingstationcanbeusedforseveralbusroutes.ThepantographmovesdowntoconnectwiththecontactbarslocatedonthebuswhichthenconductstheelectricitytotheESS.BothSiemensandABB(TOSAsystem)offerthissolution,withpowercapacitiesof150,300or450kW(Siemens,2017).

2. On-boardbottom-uppantographs.Inthisconfiguration,thechargingequipmentislocatedonthebus,whichcomesatahighercost,butenablestheconnectiontoexistingcatenarylinesfordynamiccharging(solutionofferedbySiemensat60or120kWpowercapacity).

3. Plug-inDCcharging.Thisprocessallowsforthetransmissionofhighpoweratlowlossesduetotheconnectingareaandtheshortcablelength(CoelhoBarbosa,2014).

OthercompaniesofferingconductivechargingareOprid,SchunckorProterra’sFastFillsystem(500kW)(Rogge,etal.,2015).

Figure4–Fast-chargingsystemforVolvo7900ElectricHybrid.Source:(VolvoBuses,2017)

Page 29: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-29-

4.3.2 Inductive

Ininductivecharging,thereisnoconnectionbetweentheESSon-boardthevehicleandtheelectricitysource. It is commonly knownas “wireless charging”. Induction coils areembedded in the roadatselectedstretchesofbusroutes(dynamiccharging)oratbusstops(staticcharging)creatingamagneticfield,i.e.anelectricconductorplacedunderneaththesurfacegeneratesamagneticfieldwhichtheninducesanelectriccurrentinanotherconductorlocatedatthebaseofthebus.Dynamiccharging,stillindevelopment,mayallowinthefuturepureelectricvehiclestobechargedwhileonthegowithouttheneedforheavyandcostlyESS.Asthetwomagneticcoilsareseparatedbyanairgap,lossesareinevitable, thereforetheefficiencyof inductivecharging is lowerthanforconductivecharging.Thecharging efficiency is enhanced by higher frequencies (Karlsson, 2016); (Lindgren, 2015). If thefrequencyisincreasedtosometensorhundredsofkHz(asopposedtothetypical50-60Hzgivenbythegrid)upto95%oftheelectricalenergycanbetransferred(CoelhoBarbosa,2014).

Themainadvantageofinductivechargingisthatitisextremelyconvenient,notinvolvinganyvisibleinfrastructure,suchascablesoroverheadpantographssystems,theprocessistotallyautomaticanditoccupiesnospace,makingitaperfectsolutionforpackedcitycentres.Thischargingmodealsoworksforanytypeofweather,notbeingaffectedbyrainandsnow.

Thechargingpowerofinductivestationsisnotashighasinconductivetechnologies:thePrimemovesystem by Bombardier offers chargerswith a power supply of 200 kW and ConductixWampfler’sInductivePowerTransfersystemhasachargingpowerof60,120or180kW(Rogge,etal.,2015).

Ametalreceiverplate,alsocalledpick-upsystem,locatedunderneaththebus(seelabel2inFigure5),dropsdowneverytimethebusstopsatachargingstationinordertoreducetheairgapbetweenbothcoilswhichasaresultimprovesthechargingefficiencyofthesystem.

Figure5–Wirelesscharging.1–Chargingstationembeddedinthefloor;2–receiver(pick-up)mountedonthefloorofthebus;3–batteries.Source:(Scania,2014)

4.4 CharacterisationoftheBusNetwork

CuritibaisthestatecapitalofParanáandhas1.89millioninhabitants,whichmakesitthe8thlargestmunicipalityinthecountryintermsofpopulation(IBGE,2016).Itsmotorisationrate,around52.8carsper 100 inhabitants of the metropolitan area, ranks as the highest in the country (the averagemotorisationrate inmetropolitanregions is35.4cars/inhabitant) (IPPUR,2015).Themodalsplitofpublictransportationis46%andtheremaining54%isdividedintoprivatetransportation(26%)andnon-motorizedtransportmodes(24%)(BRTData,2017).

Page 30: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-30-

Thebusnetwork,baptisedasIntegratedTransitNetwork(RIT:PortugueseacronymforRedeIntegradadeTransporte),ismanagedbytheUrbanizationCompany(URBS:PortugueseacronymforUrbanizaçãode Curitiba S.A.) and it is the backbone of the transit-oriented development (TOD) solutionsimplemented in thecity.The trinarysystem,a largelyexploredconcept inurbangrowthalongcitycorridorsconsistsofthreeparallelstreets,inwhichtheexternalroadways(one-waystreets)providefast anddirect access to the city centre and city periphery.Differently, the central streets includesegregated lanes forbus transitand lanes for low-speed traffic toaccess themixedusedandhighdensitybuildingssurroundingthecentralroadway.Inthisway,publictransportdemandshapedlanduse and streets hierarchy allowing linear urban development (Lindau, et al., 2010). URBS is theresponsible entity for the regulation, management, operation, planning and inspection of thecollective transport system and oversees the contracts with the operating companies throughconcessionsbasedontransportedpassengers(URBS,2016).

Curitibahadplanstostarta lightrailsystemtoovercomethemobilityproblemsfacedbythelargeincreaseinpopulation(9.3timesoverthepast50yearsand2.1timesoverthelast20years)(Lindau,etal.,2010). Instead,because this solutionwas toocostly,Curitiba’sResearchandUrbanPlanningInstitute(IPPUC)developedatrunk-and-feederbussystemoperatingalongsegregatedlanesinaxialcorridorscrossingthecitywhichlaterconstitutedthefirstfullbusrapidtransitsystemimplementedintheworld.Thetwofirstcorridorswerebuiltin1974(EixoNorteandEixoSul),EixoBoqueirãowasintroducedin1977andthreeyearslater,EixoLesteandEixoOestewereinaugurated.In1991,thesecorridorsreceivedsubstantialimprovementsandbecametooperateintheBRT.Finally,theGreenLinewasintroducedin2009includingovertakinglanes,whichallowapartialmixedusedofBRTandnonBRTlines,aswellasenvironmentalfriendlybusesrunningwithB100.OtherbusesofthenetworkrunondieselB7(dosSantosRamos,2017).ThetotallengthoftheBRTis76.6kmincludingtheCircularSulcorridorandRuaXVdeNovembro(BRTData,2017).

4.4.1 BusLinecategoriesandbusfleet

In2016,15210tripsonaregularworkingdayresultedinadailyridershipof1.62millionpassengers,operatedbyafleetof1320buses(averagelifetimeis7years)travelling320090kilometres.TheRITconsistsof250buslines,342tubestationsand21integrationterminals.93%ofthebusesareequippedwiththerequiredinfrastructuretoenableaccesstoreducedmobilitypassengers(URBS,2016).Thestandardfareis4.25R$2.

Buslinesarecategorizedaccordingtotendifferenttypesofservice,differentiatedbyanidentificationcolour.Table1summarisesvehicle’stypeandcapacity,numberofoperatingbusesandbusroutespercategory.

1. Superexpress(ExpressoLigeirãoinPortuguese)andexpress(ExpressoinPortuguese)operateontheBRTcorridors,i.e.onexclusivelanesconnectingterminalstothecitycentrestoppingsolely at terminals and tube stations. These two service categories are characterised bytransporting large amounts of passengers in high capacity vehicles (bi-articulated andarticulatedbuses),athighservicefrequencyandhighaveragespeeds.Thesuperexpresshasfewerstops,whichallowsforhigherspeeds,anditsidentificationcolourisblue;theexpressbusesarered.

2. Directlines(LinhaDiretainPortuguese)operatewithsilvercolouredarticulatedandstandardbusesandtheaveragedistancebetweenstopsis3km.Embarkinganddisembarkingisdone

21R$=0.32USD=2.88SEK=0.30€Eur.AccordingtoOandaonthe03/04/2017.

Page 31: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-31-

at tube stations. These lines are complementary to the express services and inter-neighbourhood.

3. Inter-neighbourhood (Interbairros in Portuguese) bus routes connect differentneighbourhoods to each other and with terminals of the BRT without passing by the citycentre.Theyoperatewithgreenarticulatedandstandardvehicles.

4. Feeder(AlimentadorinPortuguese)servicebusroutesconnectneighbourhoodstotheclosestintegrationterminalshencefeedtheBRT/expressserviceswithpassengers.Theyareoperatedbymicro,conventionalandarticulatedorangevehicles.

5. Trunk(TroncalinPortuguese)operatewithyellowbusesthatconnecttheterminalswiththecitycentreusingsharedtrafficlanes.

6. Regular (Convencional in Portuguese) bus routes are operated by micro or conventionalvehiclesandconnectradiallyneighbourhoodsandthecitycentrewithoutallowingintegration(i.e.donotstopatintegrationterminals).

7. Downtown circular (Circular in Portuguese) bus route operates with white micro busesbetweenthemostimportantattractionpointsandcommodities(hospitals,markets,shoppingcentresandthemunicipallibrary)ofthecitycentre.

8. Tourist line (Turismo inPortuguese) isoperatedbydouble-deckbusespassingby themainattractionsandparksaswellasthecitycentre.Thisservicehasadifferentiatedfare.

9. Special(SITES:PortugueseacronymforSistemaIntegradodeTransportesdoEnsinoEspecial)arebusroutesthattransportstudentswithspecialneeds,physicalandmentaldisabilities.

The RIT’s bus fleet is composed by bi-articulated, articulated, conventional two-axle (padron) andmicrovehicles.

Table1-Listofbuscategoriesandbusfleetcomposition.ThereisnoinformationavailableforSITESbuslines,thereforeitisomittedinthetable.Source:(URBS,2016)

Buslinecategory Colour Chassistype CapacityOperatingbusfleet

Numberofbusroutes

SuperExpressExpressoLigeirão

Blue Bi-articulated 250 29 2

ExpressExpresso

RedBi-articulated 230/250 116

5Articulated 170 34

DirectlineLinhaDirecta(Ligeirinho)

SilverArticulated 150 40

15Padron 110 208

Inter-neighbourhoodInterbairros

Green

Articulated 140 99

8Padron 100 2

Hybrid 79 10

FeederAlimentador

Orange

Articulated 140 78

129Conventional 85 341

MicroSpecial 70 30

Trunk Yellow Articulated 140 5 15

Page 32: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-32-

Integrationterminals,depictedinFigure6,enableintegrationbetweenthedifferentservicetypes,i.e.commuterscanchangebetweendifferentlinecategories,forexample,disembarkfromafeederbusand embark in an express bus, with one single ticket (flat fare). These terminals have a highconcentrationofbuslinesandthuspromotetheorganisationofneighbourhoodsaroundthem.

Troncal Conventional 85 73

MicroSpecial 70 4

Hybrid 79 5

RegularConvencional

Yellow

Conventional 85 101

74Hybrid 79 15

MicroSpecial 70 112

Micro 40 3

DowntowncircularCircular

White Micro 40 7 1

TouristlineTurismo

Green/colourful Double-deck 65 8 1

Total 1320 250

Page 33: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-33-

Figure6-Integrationterminal.Source:(URBS,2016)

MaincharacteristicsoftheBRTare:

o Segregatedbuslanes;o Stationboardinglevel(highlevelplatforms);o Highcapacitybuses:bi-articulatedandarticulatedvehicles,withmaximumcapacitiesof250

and170passengers,respectively;o Pre-boardingfarecollectionintheexpressanddirectservices(feederlineshaveboardticket

validationordirectpaymenttothedrive);o Electronicticketing;o OvertakinglanesintheLinhaVerdeandEixoBoqueirão;o Brandandlogo(RIT).

Curitiba, the cradle of the BRT system, has continuously worked on expanding its bus networkinfluencing urban growth and land-use making it a worldwide reference for urban planning andsustainablemobility.Associetiesare facingnewchallenges, relatedtopoorairqualityandclimatechange,Curitibahasbeenimplementingalternativefuelsandtechnologiesaimingatimprovingenergyefficiencyandtheenvironment’squality.

Busesrunningonethanol(bothhydrousandanhydrous)havebeentestedinthecity,butbiofuelsonlystartedgainingimportanceafter2009,when100%biodieselbuseswereintroducedintheGreenLine.Testswithhybridandpureelectrictractionsystemshavealsobeenperformedfrom2012on.Athree-phaseprogrammeevaluatedtheperformanceofstandardhybridvehicles(phase1),articulatedhybrid

Page 34: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-34-

vehicles(phase2)andplug-inhybridelectricvehicles(phase3)withtheutilisationofanopportunitychargingstation.Thejointprogramme,acooperationbetweenVolvoBuses,Siemens,localcompanies,suchastheMunicipality(PrefeituradeCuritibainPortuguese),URBSandsomeinvolvedbusoperators,aimedatassessingthetechnical,economicandenvironmentalviabilityofthesetechnologies.

Usingthehybridpowertrain,areductionin86%oftheemissionsofPM,80%ofNOxand22%ofCO2

couldbeattained,aswellasadecreaseof28% in fuel consumption.Moreover, thePHEVhad thepotential to decrease by 93% the emissions of PM, 84% of NOx and 34% of CO2, and reduce theconsumptionof fuelby62%whencomparedtoaconventionalvehicle, i.e. runningon fossildieselsolely(Schepanski,2017).Thechargingstation,providedbySiemens,waslocatedatoneoftheendstationsofbuslineJuvevêAguaVerde(busline285),buthasbeendismantled(seeFigure7).ApureelectricbuswasalsooperatingfortwomonthsinParana’scapital,whichtechnologywasprovidedbyBYDBusmanufacturer.

Figure7-ChargingstationofPHEVlocatedonRuaMenezesDória(neighbourhoodHugoLangue,closetotheFederal

UniversityofParaná).Source:GazetadoPovo(2016).

Currently,thereare30vehicleswithaparallelhybridconfiguration,runningpartiallyondieselB7(28buses)orpurebiodiesel(B100)producedfromsoybeans(2buses)andpartiallyonelectricity(URBS,2016).Other32vehicles,26bi-articulatedand6articulated,operatewithbiodiesel(B100),whichhavepositively impacted the air quality of Curitiba and fostered job creation in the countryside (URBS,2016).

Intotal,theRIToperateswith62cleanbuses,outof1320,whichamountto4.7%ofthetotalfleet.ThecityisamemberoftheC40initiativeandsignedtheCityCleanBusDeclarationofIntent,andisthereforecommittedtoincreasingtheshareofrenewableenergyandhigh-efficiencybusesintheiroperatingfleet(URBS,2016).

Page 35: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-35-

5 Developmentofoptimisationmodel

Thischapterdescribesindetailtheoptimisationmodeldevelopedforthisthesis.ItstartsbyexplainingthecriteriausedforbuslinesselectionandhowthedistancesbetweencandidatecharginglocationswereobtainedusingArcGIS.Afterwards,thesimulationparametersthatserveasinputinthemodelaredefinedandthenecessaryassumptionsarelisted.Finally,themodelitselfispresentedandthelogicandstructureareexplainedindetail.

5.1 Selectionofbusroutes

Thefirststepinthemodeldevelopmentistodefineasub-groupofbuslinestobeselectedaspotentialroutesforelectrification.Wheneverelectrificationisnotfeasible,inotherwords,theextensionofaroute istoo longforthebattery’scapacitytocovertheroute’senergyconsumption,analternativebiofuel will be proposed. Only a combination of electric and biofuel buses in an integrated andoptimisedwaycanachievethereductioninenergyconsumptionandemissionsofpollutantsdesiredinbothshortandlong-term.

Itwasconsideredthatthemostsuitablelocationsforchargingstationswillbe:(i)majorbustransporthubs,specificallyintegrationterminalswhichservemanybuslines,and(ii)initialandfinalstopsofbuslines,whichofferalongerdwelltimebetweenservices.

Thesespaciousintegrationterminals,asdescribedinsub-chapter4.4,concentratebusservice,whichallows higher utilisation rates, and are unlikely to change location in the future. Therefore,implementingchargingstationsattheseterminalsguaranteesthattheinfrastructure,whoselifetimeisexpectedtobelongerthantheoneofvehicles,willbemaximised.Moreover,thesestationshavethehighestamountofdailypassengerboarding’sanditcanbearguedthatthedwelltimeislongerthaninotherbusstops.Forthementionedreasons,busrouteswhichstartandendorpassthroughseveral terminal stationswereprioritised in thebus line selectionprocess to allowcost sharingofinfrastructure.

Another decisive factor was that the busesroutescrossed thecitycentreornearby.Theheart of a city is characterised by a higherdensityofpublictransportation(seeFigure8),which results in shorter distances betweenconsecutivechargingstationsandwillleadtoareduction in infrastructure needsdue to costsynergies.

Additionally,thecitycentreismostaffectedbyhigh traffic volumes. Typical stop-and-gooperationmode,characterisedbylowspeeds,is highly inefficient in combustion engines.However,theelectricengine’sefficiencyislessaffectedbyspeedandthusthesevehiclesaremore appropriate for high traffic conditions(Coelho Barbosa, 2014). Furthermore, it iscommontofindahigherconcentrationofairandnoisepollutioninthedowntownarea.City

Figure8-MapofcollectivetransportinCuritiba'scitycentre.Source:(URBS,2016)

Page 36: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-36-

mayorsaretryingtoreversethissituationbyimplementingspeciallyregulatedzonesasthe30zone,wherethemaximumallowedvehicle’sspeedis30km/h.

Towardsthesuburbs,busroutestendtobelongerandstationsfurtherdistancedfromeachother,amoresuitablesituationforbiofuelbuses.

ThebuslinesofcategoriesSuperExpressandExpress,runningalongtheBRTcorridors,arepropitiouslinesforelectrification.Highfrequencyandlargecapacityvehiclescanleadtohighconcentrationofpollutantstrappedbythehigh-risebuildingsalongthecorridors.Aproject,conductedbytheSwedishMeteorologicalandHydrologicalInstitute(SMHI)andthelocaluniversities(UTFPR,UFPR,PUCandUP),isstudyingthequantitiesoftwofineparticles-blackcarbonand2.5particulatematter(PM2.5)–andtwogases-NOandNO2,-intheso-calledurbancanyons(Piva,2016).IPPUCbelieveselectricvehicleswouldbehighlybeneficialinthesecorridorsasthepollutionlevelsarebeingprovedtobehigherthanelsewhere (Malucelli, 2017). Other beneficial characteristics of the BRT lines are: running onsegregated lanes with large buses passing by in less than a minute interval which justifies largeinvestmentsincharginginfrastructure;thereisusuallymorespaceforchargingstations(segregatedlanes allow the installation of inductive charging infrastructure). The current BRT system has thefollowingcharacteristics:

® Operated81%bybi-articulatedvehicles;onlybuslines502and602(CircularSul)operatewitharticulatedbuses.URBShasplanstosubstitutederemaining34articulatedbuseswithnewdouble-articulatedbuses(dosSantosRamos,2017);

® Thereisonlyonemajorterminalinthecitycentre(TerminalGuadalupe);however,BRTbusesdonotstopatthisstation.Therearetubestations,likeEstaçãoCentral,whereBRTbusesstop,butthesedon’tallowforlongdwelltimespotentiallycompromisingcharging;

® Highfrequencyofbusesduringpeakhours,makingitimpossibletostopforcharging;® TheaveragelengthoftheBRTroutesis24km,resultinginhighenergyconsumptions.Hence,

thebattery’scapacitywouldneedtoveryhigh,possiblycompromisingspaceandpassengercapacity.

Currently,thereisnopureelectricalternativeforbi-articulatedbuses.Consequently,thesewouldhavetobesubstitutedbytwosmallerarticulatedbuses.Thismaynotbefeasibleintermsoftimeduetothehighfrequencyofbusesduringpeakhours,nottomentionthatthiswillimplymoreexpensesinvehiclepurchase,driver’ssalaries,licensingandinsurancetooperatetheextraamountofbuses.ItcanbeconcludedthatinthecurrentsituationbuslinesofthecategoriesExpressandSuperExpressareimpracticaltoelectrifyandwillnotbeconsideredforanalysisinthemodel.

Bus lines from the Direct Line, Inter-neighbourhood, Trunk and Downtown circular categories areexaminedandtheircharacteristicsarelisted(seeTable15inAppendix1).

BuslinesfromthecategoriesFeeder,Regular,TouristlineandSpecialaredisregardedduetolowerrelevance,eitherbecauseitsroutesarelocatedmoretowardsthesuburbs(caseofFeederlines),donotallow integration (caseofRegular)orbecausetheschedulesareshort (Tourist lineandSpecialservice). Direct and Trunk lines are complementary bus lines of the Express service and connectintegrationterminalsandthecitycentre.Ontheotherhand,Inter-neighbourhoodandtheDowntownCircularroutescirclethecitycentre.

Onlybuslinesthatstartand/orendinaterminalareconsidered(excludingInterbairrosIandCircular).TheselectedlinesarelistedinTable2togetherwithitsmostrelevantcharacteristics:linecategory,codeofbus line,nameofbus line,startandendstops, terminalstationsthatbelongtothebuses’

Page 37: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-37-

route(eachterminalstationisrepresentedbyanidentificationnumberlistedin),lengthofthetotalbusroute(𝐿#)inkilometers,totalannualnumberoftrips(inbothforthcomingandreturningdirection)(𝑇𝐴𝑇#),andtypeandnumberofvehicles(𝑁#)*+,-#*)operatingthebusline.Thetotalnumberoftripswasobtainedconsideringthenumberofdailytripsonweekdays,SaturdaysandSundaysmultipliedbythenumberofdaysofeachtypeinayear.

Table2-Selectedbuslinesinthemodel.Source:compiledbytheauthorusingdatafrom(URBS,2016)LineCategory Code BusLineName Start/endstations Terminal

Stations 𝑳𝒍(km) 𝑻𝑨𝑻𝒍Vehicletype 𝑵𝒍

𝒗𝒆𝒉𝒊𝒄𝒍𝒆

DirectLine(10)

307 B.Alto/Sta.Felicidade

TerminalBairroAlto/TerminalSantaFelicidade 1,20 17.648

/17.927 55080 Padron 10

256 Barreirinha/Guadalupe

TerminalBarreirinha/EstaçãotuboGuadalupe 2,15 7.705/

8.478 57107 Padron 6

505 Boqueirão/C.Cívico

EstaçãotuboMuseuOscarNiemayer/TerminalBoqueirão

4,11,15,16

13.392/13.320 75493 Padron 15

305 CentenárioEstaçãotuboMarechalDeodoro/TerminalCentenário

12 8.512/9.119 54364 Padron 5

705 Fazendinha/Guadalupe

TerminalCaiua/EstaçãotuboGuadalupe 6,14,15 12.762/

13.226 59619 Padron 14

022 Inter2(Horário) TerminalCabral5,7,9,

10,16,18

37.804 49087Articulated 21

37Padron 16

023 Inter2(Anti-horário) TerminalCabral 37.609 47783

Articulated 1725

Padron 8

507 SítioCercado(horário) EstaçãotuboGuadalupe

4,10,11,15,17,22

31.372 28853 Padron 12

508 SítioCercado(anti-horário) EstaçãotuboGuadalupe 32.221 27804 Padron 13

204 Sta.Candidâ TerminalPinheirinho/TerminalSantaCandidâ

3,5,17,18,19

21.421/20.406 78200 Padron 28

Inter-neighborhood(8)

010 InterbairrosI(horário) R.Tapajos,1000 - 17.617 17158

Padron(hybrid)

5

011 InterbairrosI(anti-horário) Prefeitura - 19.540 17158

Padron(hybrid) 5

020 InterbairrosII(horário) TerminalCabral

5,7,9,10,16

41.277 31181 Articulated 14

021 InterbairrosII(anti-horário) TerminalCabral 42.727 32285 Articulated 16

030 InterbairrosIII TerminalSantaCândida/TerminalCapãoRaso

1,10,11,19,23

29.903/29.530 48665 Articulated 19

040 InterbairrosIV TerminalPinheirinho/TerminalSantaFelicidad

8,13,14,17,20

23.697/22.193 71190 Articulated 24

050 InterbairrosV TerminalFazendinha/TerminalVilaOficinas 14,18,23 18.343/

16.459 50758 Articulated 13

060 InterbairrosVITerminalCampoComprido/TerminalPinheirinho

6,8,17 18.711/20.568 22746

Articulated 45

Padron 1

Page 38: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-38-

Trunk(6)

182 Abranches TerminalBarreirinha/PraçaTiradentes 2 11.304/

11.348 27487 Padron 4

371 Higienópolis TerminalBairroAlto/PraçaSantosAndrade 1

8.997/8.330

46002 Padron

(hybrid) 4

372 Tarumã TerminalBairroAlto/PraçaCarlosGomes 1 9.796/

10.345 53158 Padron(hybrid) 8

373 AltoTarumã TerminalBairroAlto/PraçaCarlosGomes 1 9.207/

9.232 19561 Padron 2

374 HugoLange TerminalBairroAlto/PraçaSantosAndrade 1 8.653/

9.232 33688 Padron 4

375 SagradoCoração

TerminalBairroAlto/PraçaSantosAndrade 1 10.480/

10.555 20652 Padron 2

DowntownCircular

(2)

001 CircularCentro(horário) PraçaSantosAndrade - 4.469 17744 Micro 2

002 CircularCentro(anti-horário) Praça19deDezembro - 8.216 16229 Micro 3

5.2 Geospatialanalysis

Inthissection,theArcMaptoolfromArcGISsoftwarewasusedtobothcalculatethetotalextensionofeachrouteperdirectionandrepresentthemonamapofCuritiba.Inthisway,itispossibletodisplaytheresultsinavisualanduser-friendlyway(seeFigure13toFigure16).

Availabledataonbusoperationfromanopendirectorywasretrievedforaregularweekday,the3rdofMay20173sinceitrepresentsatypicaloperationday.ThisdirectoryincludedJSONfilesonbusstops(pontoslinha);ontheshapeoftheroutes,representedbyaseriesofpointswithX(longitude)andY(latitude)coordinateswhichfollowthepathoftheroutes(shapelinha);onthetimetableofthebuslines(tabelalinha)andonvehicle’sinformation(tabelaveículo),suchasitsidentificationcode,usedto determine the vehicle’s type, and respective schedule of operation, as well as continuousinformationonspecificvehicle’spositioning(veículos).

UsingthetoolsPointtoPolylineandSplitLineatPointinArcMap,shapefileswitheachofthebusrouteswerecreatedand split into thewhished segments (separatingoutboundand inbound routes). ThecoordinatesystemusedwasWGS1984fromtheGeographicCoordinateSystemsavailableinArcMap,giventhatthedatausedisthesameprovidedtoGoogleMapsfortheGoogleTransitapplication.

5.3 Energyconsumption

Definingcorrectenergyconsumptionvaluesisacriticalstepandwillthusbeoneoftheparametersundergoing a sensitivity analysis, presented in Chapter 5.6. The main factors influencing energydemandare,firstly,thetypeoffuel(electricityorbiofuels),giventhatdistinctengineshavedifferentefficiencies and each fuel has a different energy content. Secondly, vehicle’s weight and auxiliarydevices, as well as routes characteristics - topography, traffic and speed - also impact energyconsumption.

Energy demand for the traction system is based on the driving resistance, which entails air dragresistance, rollingresistanceandclimbingresistance (Rogge,etal.,2015).Differentbus typeshavedifferentweights,dragcoefficientsandcross-sectionalareasinfluencingallthreeresistanceforces.On

3Theopendirectoryisupdatedonceperday.

Page 39: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-39-

the other hand, average travel speed only has a minor effect on the consumption of electricallypoweredbuses.Additionally,energydemandbyauxiliarydevicesneedstobetakenintoconsideration.Air conditioning (AC) and heating, steering assistance, compressors for the pneumatic system andcoolingofcomponentssuchasthetractionmachine,powerelectronicsandthebatterymanagementsystemsconsumealargeshareoftheenergyandshouldnotbeneglected(Sinhuber,etal.,2012).

5.3.1 Electricbusesandbatterysizing

Energy consumptiondepends on several factors but themost important one is the vehicle’smass(Sinhuber,etal.,2012).ThetablebelowsummarisesthemaincharacteristicsofsomeofthevehiclescurrentlyemployedinCuritiba’spublictransportnetwork.Inthisstudy,threetypeswereconsidered:the 18.8-marticulatedbus, the 13-m standard (padron) vehicle and the 8-mmicrobus. There aredistincttopologiesundertheclassificationofarticulated,standardandmicrobusesdependingonthelinecategoryandrequiredcapacity.Inordertoaccountforallcases,thelargesttopologywaschosenforeachofthebustypes.

Table3-Busfleet’scharacteristics.Source:Compiledbytheauthorusingdatafrom(URBS,2015)

Khan&Clark(2010)proposeacorrectionfactor,toreflecttheimpactofslopeonenergyconsumption,fordieselvehicles.Althoughanapproximationcouldbemadeforbiofuelvehicles,thelatterstudydidnotcapturethefactthatduringdownhillthebattery’sSOCinanelectricvehicleincreasesthankstoregenerativebraking.Inordertoproperlyaccountfortopography,itwouldbenecessarytoanalysestretch by stretch, a complex and time-consuming task, which is not the objective of this study.Therefore,topographywasdisregardedwhendefiningenergyconsumption.

Furthermore, higher travel speeds, whichmay result from less braking and re-acceleration (lowertraffic levels), can reduce the energy consumption, but overall the impact of speedon the energyconsumptionofelectricmotorsisrathersmall(Sinhuber,etal.,2012).Forthisreason,speedprofileswereneglectedintheenergyconsumption.

Inconclusion,energyconsumptionperunitof length (kilometre) is considered tobea fixedvalue,regardless of elevation and traffic, for each type of vehicle. Sinhuber et. al (2012) proposes aconsumption of 0.072 kWh/km per tonne for the traction and some auxiliaries withoutcooling/heating.Usingthisreferencevalueandtheweightoffully loadedbuses5,withandwithoutincludingtheweightof thebattery,energyconsumption(inkWh/km) iscalculatedanddepicted inTable4.Contrarytowhatisexpected,theeffectoftheweightoftheESSontheenergyconsumption

4Sumofvehiclekerbweightandpassengers’weight.5Sumofthekerbweight(emptyvehicle)plusthepassengers’weight(seeTable3)consideringmaximumcapacityaccordingtothemaximumcapacitiesdefinedinURBS’norms.

ChassistypeTotalcapacity

(seated)Weight4(kg) Length(m)

Minimumheight(m)

Crosssectionalarea(m2)

Articulated(Directline)

158(42) 28000 18.8 2.1 5.25

Standard(Directline)

102(29) 18000 13 2.1 5.25

Micro 40(18) 8500 8 1.9 4.37

Page 40: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-40-

israthersmall.Thiscanbejustifiedbythefactthatthechosenbattery’scapacitiesarenotveryhigh,hencethebatterypacksonlyaddlittletothevehicle’sweight.

Onthe5thcolumnofTable4,theauxiliarypowerforeachbustypeifdefined.Sinhuberet.al(2012)proposes9kWofmaximumpowerforanarticulatedbusinoperationinGermanyonamildday.Onacolderwinterdayoraveryhotday, theauxiliarypowercangoup to21kW.However,given thatCuritiba’s average temperatures are within a comfortable range (see Figure 9), with a minimumregisteredtemperatureof9ºCandahighestoneof27ºC,itcanbeassumedthattheairconditioningneedsarenotveryhigh.

Figure9-AllyearclimateandweatheraveragesinCuritiba.Source:(timeanddate,2017)

Agraduatedecreaseinauxiliarypowerwasconsideredforthedifferentbussizes–9kWforarticulatedbuses,6kWforstandardand4kWformicrotopologies.Theaveragevelocityisapproximately17km/h(Schepanski, 2017), which leads to a consumption of 0.53 kWh/km (articulated), 0.35 kWh/km(standard)and0.24kWh/km(micro)solelydueauxiliarydevices.

Thefinalenergyconsumption,depictingthecaseofa fully loadedbusplus thebatteryweightandconstantpowerconsumptionduetoauxiliariesforthedifferentbuses,correspondstothevaluesinthelastcolumnandweretheonesconsideredinthemodel.

Table4-Energyconsumptionofelectricvehiclestakingintoaccountthebattery’sweightaswellasauxiliarydevices.

ChassistypeWeight(ton)

Energyconsumption(kWh/km)withoutauxiliarydevices Pauxiliary

(kW)

TotalEnergyconsumption(kWh/km)Withoutbattery Withbattery

Articulated18m 28 2.016 2.097 9 2.63

Standard13m 18 1.296 1.364 6 1.72

Micro 8.5 0.612 0.653 4 0.89

Page 41: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-41-

Alternatively,auxiliarydevicescanbepoweredbyafossilfuelbasedengineandthusnoextraelectricalpowerneedstobeconsidered(Rogge,etal.,2015).Insuchcase,thefinalenergyconsumptionistheonedepictedinthe4thcolumn.

Batterysizing

RegardingtheESS, threedifferentbatterycapacitiesaredefined,90kWh,76kWhand45kWhforarticulated,standardandmicrobuses,respectively.Thesecapacitieswereadaptedfromthecurrentlyavailablebatteryelectricvehicletopologiesavailableonthemarket.

ThepolishbusmanufacturerSolarishasintheirportfolioarticulated,standardandmicroBEV.Batterysizing varies according to the application.On the other hand, Volvo Buses,which supplies around37.81%ofthebusesinCuritiba(dosSantosRamos,2017),hasdevelopedastandardsizedelectricbus,the7900Electricbus.ThisbushasanESSof4modulesof19kWh,totalling76kWh.

Thetablebelowdepictstheconsideredcapacityandtheresultedweightofthebatterypacks,takenintoconsiderationwhencalculatingenergyconsumptionvalues.

Table5-Weightofbatterypackaccordingtobustopology.

ChassistypeMaximumbatterycapacity(kWh)

Specificenergy(Wh/kg)6Weightofbattery

pack(ton)

Articulated18m 90 80 1.125

Standard 60 80 0.950

Micro 45 80 0.563

TheSOCofthebatteriesshouldnotexceed90%ofitscapacityduringthechargingperiod,norgounder30%duringdischarging,meaningthat40%ofthebattery’scapacityisnotavailabletouse.

In this model, battery capacities are assumed to be equal regardless of the route’s length andcharacteristics.Therefore,someroutesmaynotbeusingfullytheirbatterycapacity.InordertoavoidoversizingoftheESSandpreventinghighcosts,thebatterycapacityshouldbedeterminedindividuallyforeachroute.Inafuturestudy,properbatterysizingaccordingtotheneedwouldbecrucialtoreduce

6Specificweightisconsideredtobe80Wh/Kg(Sinhuber,etal.,2012)alowervaluethancurrenthigh-energylithium-ioncellbatteries.Thisspecificenergycorrespondstohigh-powerlithium-ionbatteries.

Figure10-Examplesofbatteryelectricbuses:articulatedfromSolaris(top),standardfromVolvo(right)andmicrofromSolaris(left).Source:(SolarisBus,2016),(VolvoBuses,2017).

Page 42: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-42-

overallsystems’costs.Onthepositiveside,thisapproachresultsinahighlyflexiblesystem,sincethevehicleswouldnotbepredestinedtospecificlinestheywereoriginallyassignedto,i.e.differentbusescanbeusedindifferentroutesasnecessary.

5.3.2 Biofuelbuses

Besideselectrictraction,threecombustionenginetechnologiesareconsidered,andtheirrespectivefuelsarebiodieselfromsoybean(B100),ethanolfromsugarcane(ED95)andbiogasfromMSW.

Biodiesel

Biodiesel is a liquid fuel produced from renewable sources such as animal’s fats or vegetable oilsthroughaprocess termed transesterification,originating fattyacidmethylesters (FAME). InBrazil,soybeanisthemostcommonlyusedfeedstock,andabout70%ofthebiodieselisproducedbythisrawmaterial,althoughotherplantsandanimalfatscanbeused-16%ofthebiodieselproductionusedtallowasfeedstock.BiodieselinBrazilneedstofollowthephysicandchemicalregulationsofNationalPetroleum,NaturalGasandBiofuelsAgencyANP(ANP:PortugueseacronymforAgênciaNacionaldePetróleo,GásNaturaleBiocombustíveis)inordertobeallowedinDieselcycleengines,eitheraspurebiodiesel(B100)orblendedwithfossildiesel(ANP,2017).

TheblendingoffossildieselandbiodieselB100startedin2004,withavoluntaryblendratioof2%.In2008, itbecamemandatorytoadd2%ofbiodieselandtheshareofB100hasincreasedeversince.Currently,withthematurationoftheBrazilianmarket,theNationalCouncilforEnergyPolicies(CNPE:PortugueseacronymforConselhoNacionaldePolíticaEnergética)obligesablendof7%biodieseland93%diesel,calledtheB7.Accordingtothelaw(Leinº13.623/2016)theshareofB100isplannedtoincreaseto8%,9%and10%inMarch2017,March2018andMarch2019(ANP,2017).Brazil’seffortsarenoteworthy,however, it isstill laggingbehindcountries likeSweden,whichdonotpossessthecapabilitiestobeself-sustainable intermsofbiofuelproductionyetalmost30%of itsdiesel isbio-based(Sherrard,2017).InBrazil,biodieselaccountedfor3.2%ofthetotalenergyuseinthetransportsector,arathersmallamountwhencomparedtothe43.4%ofconsumptionfromfossildieselin2016.Gasolineandethanolarethesecondandthirdbiggestsourcesofenergyintransport,however,theseareusedinprivatecars.Diesel,ontheotherhand,ismostlyusedintrucksandbuses(EPE,2016).

Bioethanol

Ethanol(CH3CH2OH)isanalcoholobtainedviafermentationofsugarcane,maize,beetroot,potato,etc.(ANP,2017).InBrazil,sugarcaneisthemostcommonfeedstock,plantedmainlyintheSouthernregionforsugarandethanolcommercializationand,givenitsoptimalconditions–warmtemperaturesandabundantrainfall–,itsannualisedyieldsareextremelyhigh(JRC,2014).

Governmentalprograms,suchastheBrazilianEthanolPrograminitiative,andtheintroductionofthecommercial Flexible FuelVehicles (FFVs) in 2003propelled theethanolmarketmaking it a leadingcountryinbothproductionandconsumptionofethanol.Presently,atleastonehydrousethanolpumpcanbefoundatallgasstationsacrossthecountry.

Ethanol isdivided intotwomajorcategories:hydrated(61.8%of thetotalethanolproduction)andanhydrous.Hydratedethanolcanbeuseddirectlyindieselenginesadaptedforsuchpurposeorinflex-fuel engines in any proportion (EPE, 2016).On the other hand, anhydrous ethanol is blendedwithgasolineAtoproducegasolineCusedinOttocycleengines.TheMinistryofAgriculture,LivestockandFoodSupply(MAPA:PortugueseacronymforMinistériodaAgricultura,PecuáriaeAbastecimento),isresponsibleforestablishingthemandatoryblendofethanolingasoline,currentlyintheorderof25%and27%inpremiumgasolineandregulargasoline,respectively(Abreu,2015).

Page 43: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-43-

Two commercially available fuels used in Brazil are E85 and ED95. E85 is constituted by 85% ofanhydrousethanoland15%gasolineandit isappliedisspark-ignitionengines(gasolineengines)oflight-dutyflexiblefuelengines.ED95,ontheotherhand,consistsof95%hydratedethanoland5%ofadditivewhich allows its use in diesel engines of heavy-duty vehicles. Scania is currently the onlymanufacturer producing buses adapted for this fuel. In this study, ED95 is chosen for analysisconsideringitsapplicationoncitybuses.SãoPaulowasthefirstcityinSouthAmericatointroduceasignificantfleetofsuchvehiclesin2007,promotedbytheprojectBioEthanolforSustainableTransport(BEST)(Velázquez,etal.,2012).

Biogas

Biogasisagasobtainedfromthedecompositionoforganicmatterviaanaerobicdigestion.Biogascanbeproducedfrommunicipalorindustrialorganicwaste,sanitarysewageorfromenergycrops.Inorderto be used in transportation, it has to be purified to biomethane. Biomethane can be introduceddirectlyintothenaturalgasdistributionsystem.

In2014, the first testswithbiogas fuelledbuseswereperformed in Fozdo Iguaçu, in the stateofParaná.Theusedfeedstockwaschickenmanurefromalocalchickenfarm.Thesebuses,providedbytheSwedishmanufacturerScania,werefurthertestedinotherregionsofthecountrytodemonstratetheapplicabilityofsuchtechnologyinmetropolitanandmunicipalroutes(G1,2014).

EnergyconsumptionvaluesarepresentedinL/kmorNm3/km(seeTable6).ThesevalueswerepartiallyobtainedfromVolvoBusesLatinAmerica’ssalesengineerRenanSchepanski.AsVolvoBusesdoesnotproducebiogasvehiclesnormicrobuses,valueswereadaptedfrom(Xylia,etal.,2017).Availabledatafrom São Paulo’s public bus transportation system (SPtrans) was used to estimate bioethanolconsumption(Velázquez,etal.,2012).

Table6-EnergyconsumptioninL/kmorNm3/km.

Chassistype Diesel(L/km) Biodiesel(L/km) Bioethanol(L/km) Biogas(Nm3/km)

Articulated18m 0.769 0.820 1.377 1,073

Standard 0.500 0.541 0.900 0.701

Micro 0.250 0,270 0.450 0.351

Using the values for energydensities (see Table 9) and a conversion factor kWh/MJ= 0.2778, theenergyconsumptioninkWh/kmiscalculated(seeTable7).

5.4 Definitionofmodel’sparameters

Inthisstudy,onlyopportunitychargingisconsidered,i.e.busesarerechargedseveraltimesduringthedayatthestartandendstations.Depotchargingisnotconsideredbecausetheassociatedcostsofinfrastructure and energy are very different. Nevertheless, it could be an option to recharge thebatteriesataslowchargingstationinthedepotduringthenight,toguaranteeafullSOConthenextday. Conductive technology is considered with a power capacity of 300 kW and 90% chargingefficiency.Theallowedtimeforchargingis5minutes.

No additional infrastructure is considered needed for biodiesel, bioethanol and biogas buses. Thisassumption is reasonable for biodiesel, because Curitiba’s public transportation system alreadyemploys a large fleet of 100% biodiesel buses, making it easier and cheaper to expand its

Page 44: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-44-

infrastructure.Similarly,thisassumptionisacceptableforbioethanolbusesconsideringthatethanolisawidespreadfuel.Asforbiogas,anon-exploredtransportationfuelinBrazil,itwasdifficulttoassessconsumptions,emissionsandrelatedcosts.Undoubtedly,ifbiogasisconcludedasagoodsubstituteforfossildiesel,amorethoroughanalysismustbedonetoassesstheneedsofinfrastructureanditsassociatedcosts.

Table7-Summaryofinputparameters.Parameter Value Source

Energyconsumption(kWh/km)

Biodieselbus Articulated(18.8m) 7.55Adjustedfrom(Schepanski,2017)Standard(13m) 4.98

Micro(8m) 2.49Bioethanolbus Articulated(18.8m) 8.17

Adjustedfrom(Velázquez,etal.,2012)

Standard(13m) 5.34Micro(8m) 2.67

Biogasbus Articulated(18.8m) 9.18Adjustedfrom(Xylia,etal.,2017)Standard(13m) 6.00

Micro(8m) 3.00Electricbus Articulated(18.8m) 2.63

Adjustedfrom(Sinhuber,etal.,2012)

Standard(13m) 1.72Micro(8m) 0.89

Batterycapacity(kWh)

Articulated(18.8m) 90 (SolarisBus,2016)Standard(13m) 76 (VolvoBuses,2017)Micro(8m) 45 Adjustedfrom(SolarisBus,2016)Minimumstate-of-charge(SOC)ofbattery(%)

Electricbus(opportunitycharging) 30 (Kunith,etal.,2016)

Maximumstate-of-charge(SOC)ofbattery(%)

Electricbus(opportunitycharging) 90 (Kunith,etal.,2016)

Powercapacitychargingstation(kW)

Electric-Conductive 300 (Siemens,2017)

5.4.1 CostsTable8-Summaryofcosts.

Parameter Value Source

Infrastructurecosts

Chargingstationcosts(R$)Electric-Conductive 500000 Adjustedfrom(Schepanski,2017)

Battery(R$/kWh) ElectricvehicleESS 2.5 Adjustedfrom(Lajunen,2014),

(Lajunen&Lipman,2016)

Fixedinstallationcosts(R$) Gridconnection 61000 Adjustedfrom(Xylia,etal.,2017)

Page 45: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-45-

Gridconnectionannualfee 14000Buildingcostsandpermits 120000

Vehiclecosts(R$)Biodieselbus Articulated 800000

Adjustedfrom(Schepanski,2017)Standard 585000Micro 320000

Bioethanolbus Articulated 920000

Adjustedfrom(Pinto,2017),(Schepanski,2017)

Standard 672000Micro 368000

Biogasbus Articulated 1040000Standard 760500Micro 416000

Electricbus Articulated 1438500Author’sassumption,(Schepanski,2017)

Standard 1050000Micro 560000

Operation&Maintenance(O&M)costs(R$/km)

Operationalcost Salarycosts,insurance,etc. 3.753 (URBS,2016)

Maintenance Biodieselbus Articulated 0.66

(Schepanski,2017)Standard 0.43Micro 0.33 Author’sassumption

Bioethanol Articulated 0.72(Pinto,2017)

Standard 0.47Micro 0.36 Author’sassumption

Biogasbus Articulated 0.92(Pinto,2017)

Standard 0.60Micro 0.46 Author’sassumption

Electricbus Articulated 0.6Adjustedfrom(Lajunen,2014)

Standard 0.39Micro 0.3 Author’sassumption

Fuelcosts(R$/kWh)Biodiesel 2.981 (URBS,2016)Bioethanol 2.635 (ANP,2017)Biogas 2.425 Author’sassumption,(ANP,2017)Electricity 0.691 (COPEL,2017)

In this model, a simplified lifecycle cost (LCC) is conducted in order to proceed with the costoptimisation, as well as to compare annual expenses in different scenarios. This LCC includesinfrastructurecosts (chargingstationsandrelated installationcosts), thepurchasecostofvehicles,operationcosts(fuelsandpersonnel)andmaintenancecosts.Theinfrastructure,ESSandvehiclecostsareannualizedaccordingtotheequationbelow.Theinterestrate(r)is5%forinfrastructure,7%forelectricvehiclesanditsESSand10%forothervehiclesasstatedbytheNationalBankforEconomicand Social Development (BNDES: Portuguese acronym for Banco Nacional de DesenvolvimentoEconómicoeSocial)(BNDES,2015).Thedepreciationperiod(t)is30yearsfortheinfrastructure,12

Page 46: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-46-

yearsforelectricvehicles,aswellastheirESS,and10yearsfortheotherbuses,asadvisedbyURBS(Karas,2017).

𝐴𝑛𝑛𝑢𝑎𝑡𝑦𝑓𝑎𝑐𝑡𝑜𝑟 𝑟, 𝑡 =1 − 1

(1 + 𝑟)6𝑟

AllcostsarepresentedinBrazilianReais,consideringanexchangerateof1R$=2.87SEK=0.32USD=0.300EUR(Oanda,2017).

Thecostoftheconductivechargingstation,aswellthecostsrelatedits installationandcontractedpowerwereadapted from thevaluesusedbyXyliaet. al (2017) forStockholm.Thisassumption isratherinaccurate,duetoalackofprojectsinfastchargingbusfleetsinBrazilorLatinAmerica,itwasimpossibletoobtainmoreprecisedata.

Thevehicle’scostsweredefinedbasedoninterviewswithRenanSchepanski(SalesEngineeratVolvoBusesLatinAmerica)andEduardoMonteiroPinto(BusSalesatScaniaCommercialOperationsBrazil).AccordingtoSchepanski(2017),thepriceofdifferentbustypescanvaryalot,dependingonthelengthof the coachwork, vehicle’s specifications, such as including or not AC system, and negotiationconditions.Unfortunately,sincetherehavenotbeenanyrecentpurchasesfromURBS,theavailablecostsarebasedonassumptionsforotherBraziliancities.Dieselandbiodieselvehiclescanhaveverysimilar prices because their powertrains are the same and only the maintenance interval differs.Therefore,thesamecostfordieselandbiodieselwasconsidered(Schepanski,2017).

Regardingethanolandbiogasbuses, thecostsof thesevehicleswereestimated tobe15and30%higher than a diesel bus of the same size, respectively. These considerations were based onconversations with Eduardo Pinto (2017) from Scania, the manufacturer commercialising thesetechnologiesinLatinAmerica,as(Pinto,2017).ThecostofthestandardelectricvehiclewasadaptedfromEuropeanprices,afterconfirmingwithSchepanski(2017)itsreasonability.

Operation costs comprise the cost of fuels, aswell as costs related to drivers and otherworkers’salaries,insurance,etc.AlloperationandmaintenancecostparametersweredefinedinR$/km.

ThecostofalitreofdieselandbiodieselisavailableonURBSwebpageforFebruary2017(URBS,2016).ThecostofhydratedethanolwasretrievedfromANPalsoforFebruary2017.Thecostofbiogaswasassumedtobe20%higherthannaturalgasvehicle(NGV)fuel(2.021R$/m3duringFebruary2017inCuritiba),asthistechnologyisveryunmaturedinBrazil(ANP,2017).ThecostofelectricitywasderivedfromCOPEL,Parana’senergyutility(CompanhiaParanaensedeEnergia inPortuguese),consideringtheratesandfeesofclassB3(commercialconsumptionunitswithcontractedpowerlowerthan2.3kVincludingthetaxesPIS/COFINS)(COPEL,2017).

Other operational costs were obtained from URBS and include expenses in operational andadministrative personnel, such as the salaries of bus drivers, ticket collectors, cleaning andmaintenance,etc.(URBS,2016).

Maintenance expenses for diesel and biodiesel vehicles were derived from the interview withSchepanski(2017).Eachtopologyhasanindividualcostofmaintenanceduetodistinctconfigurationsand items thatdemanddifferentiated care. The costofmaintenanceof ethanol andbiogas fueledvehicleswereproposedbyEduardoPinto(2017)fromScania.

Whenitcomestoelectricvehicles,itcanbearguedthatthereisalessfrequentneedformaintenanceof theelectricpowertrainbecause therearenomovingparts. Less frequent lubricantchangesandincreasedlifetimeofthebrakingsystemdecreasethecostsofmaintenance(C40,2013).Thus,slightly

Page 47: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-47-

lowerO&Mcosts couldbe justified forhybridandelectricbuses in relation to conventionaldieselbuses(Lajunen,2014).However,asthisisanewtechnologyandCuritibalacksintheknow-howofitsoperationandmaintenance,thesamecostswereassumedforanelectricvehicleasforadieselvehicle.Inthecaseofmicrobuses,sincetherewasnoavailabledata,itwasconsideredthattheywouldhave50%ofthecostofmaintenanceofarticulatedbuseswithineachtechnology.

5.4.2 Emissions

In order to assess the overall environmental benefit, total GHG emissions are calculated for eachscenario.Table9depictsthedifferentfuelsconsidered,theirfeedstock,energydensity(MJ/L)valuesandemissionfactors(ingrCO2eq/MJ).EmissionfactorsarebasedonaWell-to-Wheelanalysis,whichcomprisesthewholefuelpathway,fromproductiontofinaluse,coveringallstagesofthelifecycle.WTWiscommonlydividedinWell-to-Tank,coveringfeedstockplantingandcollection,treatmentandconversiontoafueluntil itarrivesattherefuellingstation,andTank-to-WheelconsidersemissionsreleasedduringcombustioninanICE,i.e.emissionsproducedduringoperation.

Table9-Feedstock,energydensityandemissionfactors(grCO2eq/MJandgrCO2eq/L).Fueltype DieselB7 Biodiesel Bioethanol Biogas Electric

Feedstock soybean sugarcane MSW96.4%

renewablesources

Emissions(grCO2eq/MJ)

80 23.1-25.87 11 22 -

Energydensity(MJ/L)

35.50 33.168 21.35 34.99 -

Source(Dreier,etal.,2016),(EPE,2016)

(PellegrinoCerri,etal.,2017),(EPE,

2016)

(Velázquez,etal.,2012),(EPE,2016)

(Uusitalo,etal.,2014),(Xylia,et

al.,2016)

(COPEL,2017)

Paraná’senergyutilityCOPELoperates21powerplants,ofwhich19arehydropowerplants,oneisthermalelectricandone isawind farm.The total installedcapacity is4.76GW. In2013, the totalproducedenergywas24.420GWhand99.7%ofitoriginatedfromrenewablesources(hydropowerandwindenergy)(COPEL,2017). In2016,96.39%oftheelectricityproducedinthestateofParanáoriginatedfromrenewablesources,ofwhichhydropowerhadashareof94.4%(EPE,2016).Duetoavery high share of renewables in the electricity mix, the emission factor of electric energy wasconsideredtobenull.

Usingtheemissionfactor(EF)perenergyunit,energydensityandenergyconsumptionvalues(seefiguresinTable9)itwaspossibletocalculatetheEFperkmforthedifferentbustopologiesandsourcesofenergy(seeTable10).

𝐸𝐹6*-+(𝑔𝐶𝑂V 𝑘𝑚) = 𝐸𝐹(𝑔𝐶𝑂V 𝑀𝐽)×𝐸𝑛𝑒𝑟𝑔𝑦𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑀𝐽 𝐿)×𝐶𝑜𝑛𝑠6*-+(𝐿 𝑘𝑚)

7TheliteraturedoesnotconsiderlandusechangeanditassumesthatbiogenicCO2emissionsarecarbonneutral.Theaveragevaluewasconsideredinthemodel.8ThisvaluecorrespondstoanaverageenergydensityforalltypesoffeedstockutilizedinBrazil.ConsideringthatmostbiodieselisproducedfromsoybeanitisvalidtoassumethisdensityforB100originatedfromthisfeedstock.9InMJ/Nm3.

Page 48: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-48-

Table10-EmissionfactorsofGHGingrCO2eq/km.Parameter Value Source

𝐸𝐹6*-+-Emissions(kgCO2eq/km)

Biodieselbus Articulated 0.701(PellegrinoCerri,etal.,2017)Standard 0.462

Micro 0.231Bioethanolbus Articulated 0.323

(Velázquez,etal.,2012),Standard 0.211Micro 0.106

Biogasbus Articulated 0.727(Uusitalo,etal.,2014),Standard 0.475

Micro 0.238Electricbus Articulated 0

(COPEL,2017)Standard 0Micro 0

5.5 DefinitionofBAUScenarioCurrently,themajorityofthebusesemployedinthepublicbustransportofCuritibaarefuelledwiththe diesel blend B7. Hence, in the Business-as-Usual scenario, it was considered that all busesoperatingonthe26selectedbusesrunondieselblendB7.Inthefollowingtable,theparametersusedto calculateoverall energy consumption, cost andemissions are listed.No infrastructure costs areconsideredsinceitisalreadyinplace.

Table11-SummaryoftheBAUScenario'sparameters.Parameter Value Source

Energyconsumption(kWh/km)

Dieselbus Articulated 7.59Adjustedfrom(Schepanski,2017)Standard 4.93

Micro 2.47Vehiclecosts(R$)Dieselbus Articulated 800000

Adjustedfrom(Schepanski,2017)

Standard 585000Micro 320000

Operation&Maintenance(O&M)costs(R$/km)

Drivercost Salarycosts,insurance,etc. 3.753 (URBS,2016)

Maintenance Dieselbus Articulated 0.60

(Schepanski,2017)Standard 0.39Micro 0.30 Author’sassumption

Fuelcosts(R$/kWh) 2.374 (URBS,2016)Emissions(grCO2eq/MJ) 80 (Dreier,etal.,2016)

Page 49: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-49-

5.6 OptimisationFeasibility

Priortotheassessmentoftheoptimalconfigurationofthenetwork,animportantpreliminarystepisto assess which bus routes are feasible for electrification. A bus line is considered feasible forelectrificationifthenumberofvehiclesthatservetheline(𝑁#)*+,-#*)canoperatethroughoutthedaywithoutinterruptions.Inotherwords,thefleetofvehiclesallocatedtoabusrouteneedtocoverthetotal number of trips of one day without letting the SOC of the battery go below the minimumallowed(𝑆𝑂𝐶1,2×𝐶𝑎𝑝678), 𝐶𝑎𝑝678correspondstothebattery’scapacityforacertainbustopology.

It is assumed that the batteries of all vehicles are fully charged at the beginning of the day(𝑆𝑂𝐶,2,6,:# = 𝑆𝑂𝐶1:;×𝐶𝑎𝑝678)andthatattheendofeachtrip

10theSOCofthebatteryistopedupwithafastcharge.Inrealconditions,itismorelikelythatabuses’batteryisonlychargedforaslongasrequirestobeabletocompletethenexttrip.Whilecheckingthefeasibility,however,afixedchargeof300kWfor5minutes,withachargingefficiencyof90%(Rogge,etal.,2015), isconsidered.ThemaximumandminimumallowedSOCcorrespondto90and30%,respectively,ofthetotalcapacityofthebattery.

Theenergyconsumed(𝐸#)inonetripiscalculatedforthedifferenttechnologiesaccordingto:

𝐸# = 𝐿#(𝑘𝑚)×𝐶𝑜𝑛𝑠6*-+(𝑘𝑊ℎ 𝑘𝑚)

where𝐿# representsthelengthofthebusrouteinkilometersand𝐶𝑜𝑛𝑠6*-+istheparameterwhichdefinesthedifferentconsumptionsaccordingtotheseveraltypesoffuelanalysed.

ThisiscomputedinMATLAB,inwhichthestate-of-chargeofonebusisassessedthroughoutonedayofoperation.Priortothefirsttripoftheday,theSOCofthebatterycorrespondsto𝑆𝑂𝐶,2,6,:#,whichaftercompletingatripndecreasesto𝑆𝑂𝐶2 = 𝑆𝑂𝐶,2,6,:# − 𝐸#.If,attheendofthetrip,thebattery’senergycontentislowerthan𝑆𝑂𝐶1,2×𝐶𝑎𝑝678,thecyclestopsandtheprogramconcludesthatthebuslineisnotfeasibletobeelectrified.Ifthebattery’sSOCisstillintheacceptablerange,thenthebatteryischarged.TheSOCafterthechargeis𝑆𝑂𝐶2 = 𝑆𝑂𝐶2 + 𝑃-+:bc,2c×𝑡-+:bc,2c×𝜂-+:bc,2c,butitcannotexceed𝑆𝑂𝐶1:;×𝐶𝑎𝑝678.

Thisprocedureisrepeatedinacycleforthetotalnumberofindividualtrips,i.e.thenumberoftripsonebusalonemustdoperday.IftheSOCofthebatterydoesnotgobelowtheminimumallowedthenthebusroutesisfeasibleforelectrification.Thiswasdoneforeachbusline,eachdirectionandforeachtypeofbusconsidered,assomebusroutesareoperatedwitharticulatedandstandardbuses.

Theassumptionsstatedabovecorrespondtothebasescenario.Asensitivityanalysisisperformedtoassesshowthenumberoffeasibleroutesforelectrificationisimpactedbythechangeofsomeoftheparametersmentionedabove.

Optimisation

Theenergyandcostoptimisationmodels,whichassesstheoptimalsystem’sconfigurationintermsofleastenergyconsumptionorleastcost,weredevelopedseparatelyinMATLAB.

Theobjective functionofeachof theoptimisations,energyandcost,aredepicted in the followingequations:

10Fromthefirststoptothelastofitsitinerary.

Page 50: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-50-

𝐸676:# = 𝐶𝑜𝑛𝑠6*-+×𝐿#×𝑇𝐴𝑇#

efgh

6*-+ij

k

#ij

𝐶676:# = 𝐶#,6*-+,2lb:m6bn-6nb* + 𝐶#,6*-+

ln*# + 𝐶#,6*-+o&q ×𝐿#×𝑇𝐴𝑇# + (𝐶#,6*-+)*+,-#*efgh

6*-+ij

k

#ij

+ 𝐶#,6*-+frr ×𝐶𝑎𝑝#,6*-+)×𝑁#)*+,-#*

𝐿 is the number of routes and its corresponding set 𝐿 = 1, … , 26 . 𝑇𝐸𝐶𝐻is the number oftechnologiesthatcanbeimplementedforthebusesanditscorrespondingsetis𝑇𝐸𝐶𝐻 = 1,… , 4 .

Theinfrastructurecostisdependentonthenumberofelectrifiedbusroutesthatstartorendatthesameterminal,asthecostofthechargercanbesharedamongallelectrifiedlines.Thismeansthateachbusroutecannotbeconsideredseparatelywhenperformingthecostoptimisation,butmustbeevaluated inconjunctionwithallconnectedroutes.Theseconnectionsareshown inthemindmapbelow (see Figure11),where theedges represent thebus routes and thenodes represent thebusterminals.

Figure11-Representationoftheselectedbusroutesandtheirinitialandfinalbusstopingraphform.Source:Author

ThenumbersinsidethenodescorrespondtothecodeslisteninAppendix2.

Amatrixwascreatedforeachgroupofconnectedbusroutestoevaluatethemtogether(thereare8matrices in total). Each column represents a bus route, and each row represents a possiblecombinationofthetechnologieschosenforeachroute,whereallpossibletechnologycombinationsarerepresentedineachmatrix.Theentriesintothematricescanbea1,2,3,or4,correspondingtoelectric-conductive,biodiesel,bioethanol,orbiogastechnology,respectively.

Asecondarygroupofmatriceswascreatedtocountthenumberofbusroutesthatwouldsharethesame terminal stop (node),hence share the costof infrastructure, ineachoneof thepossibilities.Thesematriceshavethesamenumberofrowsasthefirstsetofmatrices(equaltothenumberofpossiblecombinationsoftechnologies)andeachcolumnrelatestoanodethatiscommontomore

Page 51: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-51-

thanonebusroute.Forexample,busnode15isacommoninitial/finalstopofbusroutes705,507,508and256,andifroute705and508areelectrifiedinacertainpossibility,then2willberecorded.

Thetotalcostofeachpossibilityisobtainedbyaddingupthetotalcostsassociatedwitheachroute.Thisisthencheckedagainstitselftodeterminethesmallestvalueanditsrespectivecombinationoftechnologies.Thetotalcostofthesystem’sconfigurationcorrespondstothetechnologycombinationofeachmatrix thathas the lowestcost.Through this,avectorX is created inwhicheachelementindicatesthetechnologychosenintheoptimisation.Withthisinformation,totalenergyandemissionscouldbecalculated.

Thetotalemissionsofthesystemarecalculatedinasimilarwayasthetotalenergyconsumptionandtotalcosts,assumingdifferentemissionfactors(𝐸𝐹6*-+)perfuelandbustype.

𝐺𝐻𝐺676:# = (𝐸𝐹6*-+×𝐿#×𝑇𝐴𝑇#)efgh

6*-+ij

k

#ij

Page 52: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-52-

6 ResultsandDiscussion

In this chapter, all the results from the feasibility analysis and the energy and costoptimisation are presented. Different scenarios are compared to each other and to anindicativebusiness-as-usualscenario,whichconsideredthatall26busroutesareoperatedwith diesel blend B7. Furthermore, the impact of several parameters on the number ofelectrifiedroutesandthetotalcostisanalysedthroughasensitivityanalysis.

6.1 Feasibility

A bus line is considered feasible for electrification if both routes (outbound and inbound) and,wheneverapplicable,bothtopologiesofbuses-standardandarticulated–anditsrespectivebatterycapacitiesmeettheenergydemandsduringonedayofoperation.

Inthebasescenario,12buslinesarefeasibleforelectrificationwithconductivetechnology.Itcanbeseenthatlineswithmorethan17kmarenotfeasibleforelectrification,astheenergyobtainedduringonecharge(22.5kWh,consideringachargingpowerof300kW)isapproximatelyorlessthanwhatthebuswouldconsumeinonetrip.Atsomepoint,aftercompletingafewtrips,theSOCofthebatterywouldgoundertheminimumallowedastheenergyofachargeisnotenoughtorestorethebatterycapacityaftereachtrip.

Eightbuslinesarenotfeasibleforelectrificationregardlessofthetimeorpowerduringchargingsincetheenergyconsumedinonetripexceedstheusablebatterycapacity.TheseroutesaremostlycircularbelongingtothecategoriesDirectandInter-neighbourhood(022,023,507,508,020and021),whoserouteextension is very large,and twomore Inter-neighbourhoodbus lines (030and040).Onlybydecreasingtheenergyconsumptionofelectricbusesorincreasingthebatterycapacityofthevehicle,itispossibletoelectrifytheseroutes.

Asensitivityanalysiswasperformedonthefollowingparameters:chargingtime,chargingpowerandenergyconsumption.Inordertocomparetheimpactthattheseparametershaveonthenumberoffeasible bus routes for electrification, the same change ratewas applied to all parameters. Thesechangesrangefrom50%to150%,inintervalsof10%,ofitsoriginalvalue.TheresultsareshowninFigure12.

Page 53: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-53-

Figure12-Impactofdifferentparameterchangeonthenumberofbuslinesfeasiblefor

electrificationwithconductivecharging.

Since charging timeand chargingpowerhaveanequal influenceon the total energy charged (seeequationbelow)theimpactonthenumberoffeasibleroutesforelectrificationisthesame.Hence,the charging time and charging power lines would appear overlapped (only charging power isrepresentedinthegraph).

𝐸-+:bc* = 𝑃-+:bc,2c(𝑘𝑊)×𝑡-+:bc,2c(ℎ)×h-+:bc,2c

Itcanbeseenthatdecreasingthechargingpower(ortimeallowedforcharging),highlyimpactsthenumberoffeasible linesforelectrification.Hence, inthiscase, it isnotadvisableto installchargerswithlowerpowercapacity.

Thetwoverticallinesinorangerepresenttheexpectedrangeinenergyconsumption[80%,120%]ofthebasevalue.Thisparameterisveryuncertain,asitdependsonconditionsoftherouteandeventimeofthedaythebusisoperated,forexample,highertrafficintensitiesinthemorningsandevenings,aswellasincreasedoccupancyrates,impacttheenergyconsumption.However,inthebasescenario,itissafetoassumethat10to13busroutesarefeasibleforelectrification.

Toconclude,twootherscenariosaredefinedtoexemplifyafavourableandanunfavourablescenarioforelectrification.

Inthefavourablescenario,theallowedtimeforchargingandthechargingpowerareincreasedto7minutes and 450 kW, respectively. Energy consumption is decreased by 20%. In this scenario, thenumberofbusroutesfeasibleforelectrificationincreasesto20buslines.

Intheunfavourablescenario,theallowedtimeforchargingandthepowercapacityofthechargerareset to 3minutes and 210 kW, respectively. Energy consumption is increased by 10%.With theseconditions,only2busroutesarefeasibleforelectrification.Despitetheveryharshconditions,thetwocircularlinesoperatedbymicrovehiclesconsumeconsiderablylessenergyperkmasthevehiclesarea lot smaller. An opportunity to decrease the costs associated with the charging infrastructure is

0

2

4

6

8

10

12

14

16

18

40 60 80 100 120 140 160

No.offeasib

lebusro

utesfo

relectrifica

tion

Parameterchange(%)

Conductivecharging

Chargingpower Energyconsumption

Page 54: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-54-

presented,asalowerchargingcapacity,forexample,210kW-70%oftheoriginalvalue-,isenoughtocovertheenergyneedsoftheseroutes.

6.2 Energyoptimisation

Theresultsoftheenergyoptimisationsuggestthat12conductivechargingstationscouldelectrify12bus routes,considering theparametersdefined in thebasescenario (seesub-chapter5.6).For theremaining14busroutes,biodieselistheproposedasthealternativebiofuel.

The routes that were proven not to be feasible for electrification (see Sub-chapter 6.1) wereconstrained in the model to the three biofuel alternatives, i.e. in those lines, the lowest energyconsumptionvaluewassearchedonlyforthethreebiofuels.Sinceelectrictractionisbyfarthemostenergyefficienttechnology,alllinesfeasibleforelectrificationwereassignedtothistechnology.

Bioethanolandbiogasarenotselectedinthemodelbecausetheirefficiencyislowerthanofbiodiesel-astandardbusconsumesonaverage4.98kWh/kmofbiodiesel,5.34kWh/kmofethanoland6.00kWh/kmofbiogas.

Thetotalenergyconsumption is111GWh/year,12%lowerthan inthe indicativebusiness-as-usualscenario.Sincemorethanhalfofthebus linesoperateonbiodiesel,whichconsumesslightlymoreenergythandiesel,theenergyconsumptionreductionisnotasgreat.However,ifmorelineswhichwouldactuallybefeasibleforelectrification(e.g.shorterbusroutes)wereconsideredinthestudy,thisreductioncouldbemuchgreater.

Thetotalannualcostis164.3MR$/year,dividedinvehicle,fuelandO&Mexpenses(163.8MR$/year)andcharginginfrastructureforelectricbuses(0.5MR$).Only0.33%ofthetotalcostswouldresultfrom the additional infrastructure needed and, as more routes would be electrified, more costsynergies could be obtained, further diluting the infrastructure cost. High upfront costs are oftenpointedout as themainbarrier to thepenetrationof electric buses in public transportation (C40,2013).Yet,itisimportanttotakeintoconsiderationthatwhenthefirstcombustionenginecarsandbusesappeared,infrastructurefordieselandgasolinedistributionnetworkswasinexistentaswellanda considerable amount ofmoney had to be invested in it. This could be used as a justification tocontinueusing ICEvehiclesas the infrastructure isalready inplaceand its cost covered.However,fossil-depletion,increasingcostsofpetrol,pollutionandlowenergyefficiencyarecounterargumentsthat support the investment in electric mobility and its required infrastructure. It is pointless tocontinueinvestinginanoutdatedtechnologysupportingitsexpansioninacontextofdiminishingoilreservesandclimatechange.

Nevertheless,itisimportanttopointoutthatthetotalcostincreases9%whencomparedtotheBAUscenario.Thereasonforthisincreaseincostisrelatedtounavoidablehighervehiclecostsandalsotothe fact that biodiesel andelectricity are not as cost efficientwhen compared to fossil diesel. Forexample,biodieselhasacostof1.61R$/kmwhiledieselonly1.19R$/km.Thisisexpectedasitscostperlitreishigherandefficiencylower.Furthermore,thecostofelectricityconsideredinthestudyisveryhighandthehigherefficiencyofelectrictractionisnotenoughtocompensatethis.Accordingtothesevalues,thecostofdieselandelectricityperunitoflengthisthesame–1.19R$/km.However,thereissomepotentialtodecreasethecostofelectricity,eitherbyfindingabetterdealwithanotherelectricityproviderthanParaná’sstate-ownedCOPELorbydemandingtaxexemptions.Thisaspectisfurtherdiscussedinthecostoptimisationchapter.

Page 55: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-55-

Finally,GHGemissions canbe cut bymore than 70% compared to the business-as-usual scenario,totallingareductionofaround27000tonsofCO2peryear.Thisreductionisextremelypositiveduetothefactthattheemissionfactorconsideredforelectricityiszeroandforbiodieselismuchlowerthanfordiesel.

In Figure 13, a visual representationof the results is shown. Still,most bus routes are selected tooperateonbiodiesel,representedingreen.Thismayindicatethatthemajorityofthebuslinesselectedinthisstudyaretoolongandtheconsideredcapacityofthebatterypacksisnotenoughtocovertheenergyrequirements.Thelinesinreduseelectric-conductivetechnology.Asitcanbeobserved,mostchargersare installed in thecitycentre,where themain transporthubsare locatedandmostcostsynergiescanbeobtainedreducingthetotalinfrastructurecost.

Thetotalenergyconsumption,totalcostandtotalGHGemissionsaredepictedoncemoreinTable13togetherwiththeresultsofthecostoptimisationandtheBusiness-as-Usualscenario.

Figure 13 - Selection of bus technologies and electric buscharging station location - results from the energyoptimisationshowingall26buslines(left)andazoomofthecitycentre,wherethemajorityofchargersarelocated(right).

Page 56: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-56-

6.3 Costoptimisation

6.3.1 Basescenario

Theresultsofthecostoptimisationsuggestthatall26busroutesoperateonbiodiesel,sonolinesareelectrified.

Asexpectedthetotalcost(162MR$/year)islowerthan in the energy optimisation, as the objectivefunctioniscost.However,anincreaseof7.6%canstillbeobservedwhencomparingtothecostoftheBAU Scenario, as the cost of biodiesel and themaintenanceofitsvehiclesishigherthanfordiesel.

Also,aspredicted,theenergyandgreenhousegasemissionsavingsarenotaspositiveasintheenergyoptimisation, especially because electric-conductive technology is not considered for anyline. Actually, energy consumption slightlyincreases (0.17% compared to the indicativescenario),sinceenergyconsumptionofbiodieselisa little higher than diesel consumption, 4.98kWh/km over 4.93 kWh/km, respectively, for astandardbus.Intotal,the26busroutesconsume126GWhperyear.TheCO2equivalentemissionsare68%lowerthanintheBAU,whichtranslatesto24600tonofCO2avoidedeveryyear.

It canbe concluded that,with the current conditions, electricbusesarenot cost-competitivewithinternalcombustionengines.Severalreasonsforthiscanbepointedout,forexample,averyhighcostofelectricity,especiallywhencomparedtootherfuels–0.691R$/kWhofelectricityincomparisonfor0.324R$/kWhofbiodiesel.Eventhoughelectrictractionismoreefficient,thefuelcostperkmforastandardbusisonly26%lowerforabiodieselbusandithasequalfuelcostsasthedieselbuses.ThecostsinR$/kmcanbeseeninthetablebelow:

Table12-CostinR$/kmofdifferentfuelsandelectricity.

Costs($Reais/km) Diesel Biodiesel Bioethanol Biogas Electricity

Articulated 1.83 2.44 3.63 2.30 1.82

Standard 1.19 1.61 2.37 1.50 1.19

Micro 0.59 0.81 1.19 0.75 0.61

Inreality,biogashasthelowestcostperkmofthethreebiofuels,butsinceit’svehicleandO&Mcostsaremuchhigher,thistechnologyisnotchosen.Asforbioethanol,allcostsarehigher.Especiallythehighfuelcostmakesitanunattractiveoptionastheslightlylowercostperlitredoesnotcompensatethefactthattheefficiencyismuchlower.Otherreasonsforthemodelneverselectingelectrictractionarehighervehiclepurchasecosts,extracostsofenergystoragesystemsandcharginginfrastructure.

Figure14-Resultsfromthecostoptimisationshowingall26buslinesoperatedbybiodiesel.

Page 57: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-57-

As the overall cost of electric traction is higher than the cost of biodiesel for all buses, it is notinterestingtoanalysedifferentscenarios,withmoreorfewerfeasiblelinesforelectrification,asinallcasesbiodieselwouldbetheonlychosenfuel.

Onthecontrary,understandingwhichcostparametersmostinfluencethenumberofelectrifiedlinescangivesomevaluableinsightonwhichcostsneedtobereducedinorderforelectrificationtobecomecost-effective.Hence,asensitivityanalysiswasperformedonthecostofelectricity,costofelectricbuses,costofbiodieselandthecostofmaintenanceofelectricbuses.Thecostparameter’sinfluencewasonlyanalysedforexpectedandreasonablevalues.

Thecostofelectricvehiclesanditsrespectivemaintenancecostweredecreasedby10and20%anddid not have an influence, individually, on the number of electrified routes. Itwas decided to notdecreasefurtherthesecostsasa20%reductionalreadyisveryoptimistic.Witha20%highercostofbiodiesel,2busroutesareelectrified,however,mostinterestingistodecreasethecostofelectricity.The results show 3, 6 and 9 electrified bus routes could be obtained when the electricity pricedecreasedto0.484R$/kWh(-30%),0.415R$/kWh(-40%)and0.346R$/kWh(-50%),respectively.

ElectricitypricesarequiteexpensiveinthestateofParaná,abigshareofitduetotaxes.AsstatedinCOPEL’sweb page, theNational Electrical Energy Agency (ANEEL) defines a cost of 0.441 R$/kWhwithouttaxes,whichwithtaxesincreasesto0.691R$/kWh.Thissurchargeisdividedintothreetaxes:29% corresponding to the ICMS (Tax on Operations Related to the Circulation of Goods and onProvision of Haulage Services) and 9.25% to PIS/PASEP (contribution to the Program of SocialIntegrationinthePublicSector)andCOFINS(aContributiontoSocialServices)(COPEL,2017).

InCuritiba,ICMSisexemptedfromalldieselconsumedbypublicbuses.Thesamecouldhappenforother fuels such as biodiesel and electricity, assuring 30% lower fuel costs. Furthermore, a totalexemptionoftaxes, i.e.exemptionof ICMS,PIS/PASEPandCOFINS inthecaseofelectricity,wouldimprove the attractiveness of cleaner technologies and a tool of the government to support thedecarbonisationofpublic transport.Hence, ifCuritiba’smunicipalityand itspublic transportentityintend to implement electric buses in their public bus transportation system, then the price ofelectricityneedstobenegotiated.Asastart,taxescouldbereducedorevenbeeliminatedtosupporttheintroductionofcleanertechnologiesinthePublicTransportNetwork.

Asalowelectricitypriceisessentialtosafeguardthecostattractivenessofelectrificationintransport,it is interestingtopresentascenario, inwhichthecostofelectricity isdecreased. In thenext sub-chapter,anewscenarioispresentedinwhichthecostofelectricityisequalto0.415R$/kWh,inlinewithANEEL’snorms,toshowcasethebenefitsofswitchingtoalowcarbonsystem.

Table13-Model'sresultsforthecost(base)andenergyoptimisationcomparedtoanindicativefossildieselB7BAUScenario.

GeneralDieselB7(BAU)

Costoptimisation(basescenario)

Energyoptimisation

Totalcosts(millionR$/year) 150.445 161.91 164.30

Totalenergyuse(GWh/year) 126.169 126.39(+0.17%) 110.80(-12.17%)

Totalemissions(ktonCO2eq/year) 36.338 11.74(-67.69%) 9.53(-73.77%)

Costbreakdown

Infrastructure(millionR$/year) 0 0 0.54

Page 58: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-58-

Vehicle(millionR$/year) 32.349

161.91(+7.62%) 163.76(+8.85%)O&M(millionR$/year) 87.719

Fuel(millionR$/year) 30.377

Chargingstation

Conductive 0 0 12

Busroutetechnology

DieselB7 26 0 0

Biodiesel 0 26 14

Bioethanol 0 0

Biogas 0 0 0

Electric(conductivetechnology) 0 0 12

6.3.2 Reducedelectricitypricescenario

In this scenario,allparametersbut theelectricityprice (decreased to0.415R$/kWh),arekept thesameasinthebasescenario.Asseeninthesensitivityanalysis,itisexpectedthat6busroutesareelectrifiedintheseconditions.

Infact,theresultsfromthecostoptimizationsuggestthat5chargingstationselectrify6routes.Theremaining 20 routes run on biodiesel, meaning that only a third of the routes are selected forelectrification. This is partially due tohigher vehicle costs andadditional infrastructure for electrictechnology. However, it is important to remember that almost half of the bus routes (12) areconstrained to work on one of the biofuels, as they have been proven not to be feasible forelectrification.Thismotivatedthedefinitionofathirdandlastscenarioinwhichthechargingpowerand charging time is increased to 450 kW and 7 minutes, respectively and energy consumptiondecreasedby20%.

Page 59: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-59-

InFigure15,arepresentationoftheresultsinageospatialwayisshown.Itcanbeseeninthemapthatmosttheofthebusroutesselectedforelectrificationsharethesameterminalstops,suggestingthatcostsharing in infrastructure iscrucial fortheselectionofmoreroutesusingelectricitybytheoptimisationmodel. If someof these routesdidnot share the costof the charger, installedat the

common initial/final stop, thenelectrificationwouldnothavethelowestcost.

The total cost is 162 M R$ peryear,7.3%higherthanintheBAU.The infrastructure accounts for0.2MR$annuallyoronly0.1%ofthe total cost. Even though theelectricitycostisdecreasedwhichisreflectedinthetotalfuelcosts,biodiesel is still the prevalenttechnology, whose costs arehigherthanitsdieselcounterpart,henceacostreductioncomparedtotheBAUisnotpossible.

Energy consumption slightlydecreasesinrelationtotheBAU(-5.3%), thanks to the6electrifiedroutes, totalling 112 GWh peryear. In terms of emissions, 25600tonsofCO2areavoidedeachyear,a reductionofaround70%.Nevertheless, 10.76 kton of CO2are emitted into the air everyyear.

6.3.3 Favourablescenario

Lastly,afavourablescenarioispresentedinwhichchargingpowerandtimeareincreased,andenergyconsumption decreased to 80% of its original value: 2.10, 1.37 and 0.71 kWh/km for articulated,standardandmicrobuses, respectively. These values are very similar to theonesobtainedbeforeaddingtheconsumptionbyauxiliarydevices(see4thofTable4).Chargingcapacityisincreasedto450kW,areasonablevaluesinceconductivechargerswithachargingpowerupto600kWcanbefoundinthemarket.Chargingtimeisincreasedto7minutes.Thisscenarioreflectswhatcouldhappeninthefuture,whenelectrificationisacommonpracticeandpublictransportmanagementhaschangedandbeen adapted to it, for example by including charging in the timetable. It reflects an optimisticapproachtoelectrification.

Figure15-Selectionofbustechnologiesandelectricbuschargingstationlocation- results from the cost optimisation in a scenariowhere the electricity cost isreducedby40%.

Page 60: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-60-

The6busroutesunfeasibleforelectrificationobtainedinSub-chapter in6.1areconstrainedinthemodeltooneofthealternativebiofuels.Theaimwastoseehowmanybuslineswouldbeelectrifiedinascenariowheremostlinesarefeasibleforelectrification,from12buses(inthebasescenario)linesto20.

Inthisscenario,16buslinesareelectrifiedusing17conductivechargers.Thetotalcostofthissystem’sconfigurationis160MR$peryear,ofwhich0.8correspondtoinfrastructure.Itisaround5.7%costlierthantheBAUscenario.Thetotalenergyconsumptionis88GWhinayearwhichisareductionof27.4%fromtheBAUscenario.Oncemore,itisproventhatthebestwaytoachievehighenergyconsumptionreductionsisbyimplementingelectrictechnologiesasthesearemuchmoreefficient.29500tonsofCO2equivalentareavoidedeveryyear;however,6800tonsarestillemitted.Thiscorrespondstoareductionof81%comparedtothebusiness-as-usualscenario.

6.3.4 Sensitivityanalysis

Asensitivityanalysisisperformedforthecostofelectricity,thecostofbiodiesel,thecostofelectricvehicles, the cost of infrastructure and finally the maintenance costs of electric buses. The samechange rate is applied; from70% to 130%, in intervals of 10%, of theoriginal values. This is doneconsideringtheconditionsofthereducedelectricityscenario,sothecostofelectricityconsideredhereis0.415R$/kWh,astheideaistoassesshowtheseparametersimpactedthenumberofelectrifiedroutes(Figure17)andtotalannualcosts(Figure18).Iftheoriginalpriceofelectricitywouldhavebeenusedthenthenumberofelectrifiedrouteswouldbezeroinmostcases.

Figure 16 - Selection of bus technologies andelectric bus charging station location - resultsfromthe costoptimisation ina third scenario,showingall26buslines(left)andazoomofthecitycentre,wherethemajorityofchargersarelocated(right).

Page 61: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-61-

Figure17-Impactofparameterchangeonthenumberofelectrifiedroutes.

Theparameterswhichmostinfluencethenumberofelectrifiedroutesarethecostofbiodiesel,thecost of electric vehicles and the cost of electricity. On the other hand, cost of infrastructure andmaintenance of electric vehicles have the least impact on howmany lines are electrified. This isexpected aswhatmostly differentiates both selected technologies are the fuel and vehicles costs.Infrastructure is only a fractionof the total cost, so it hardly influences ifmoreor fewer lines areselectedforcharging.

Figure18-Impactofparameterchangeontotalannualcost.

Intermsoftotalannualcosts,thepriceofbiodieselhasthehighestimpact,asmostbuslinesusethisfuel,moreprecisely20busroutes.Whenthecostofbiodieseldecreasesby20%ormore,nobusroutesareelectrifiedasthecostofelectricitybecomestoounattractiveincomparisontobiodiesel,hencethelargeimpactonthetotalcost.Asthiscostincreases,amaximumof10busroutesareelectrified,stilllessthanhalfoftheconsideredlinesandtherefore,alsotheincreaseinbiodieselpricehighlyimpactsthe cost of the system. Operation and maintenance costs are the costliest component in publictransportationsystems,asitisalabour-intensiveservice.However,thisparameterwasnotexploredinthesensitivityanalysisasonlythemaintenancecostofelectricvehicleswaschanged(yellowline).

0

2

4

6

8

10

12

70 80 90 100 110 120 130

No.ofe

lectrifiedbu

srou

tes

Parameterchange(%)

Costofbiodiesel

Costofinfrastructure

Costofmaintenance(electric)Costofelectricity

Costvehicles(electric)

148

152

156

160

164

168

172

70 80 90 100 110 120 130

Totalcost(MR$/year)

Parameterchange(%)

Costofbiodiesel

Costofinfrastructure

Costofmaintenance(electric)Costofelectricity

Costvehicles(electric)

Page 62: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-62-

7 Policyandplanningrecommendations

In thischapterpolicyandplanning recommendationsarepresentedwhichcouldassistafasterpenetrationofcleantechnologiesinthepublicbussystemofCuritiba.Interviewswereconductedwhichledtogoodinsightintothecurrentsituationandlimitationsofthesystem.Highcostsandlackofpoliticalwillarepointedoutbyallstakeholders,asthemainfactorshindering a faster transition to electrification and the use of other “green” fuels. Thischapter is divided into three areas: sustainability of fuels, logistics regarding chargingstationsandpolicyinstrumentsandinstruments.

7.1 Sustainabilityofbiofuels

Brazilhasalltheconditionswhenitcomestoresourcestoachievefossil-freetransport.Ontheonehand, its electricity mix is very clean – in 2016 approximately 75.5% of the supplied electricityoriginated fromrenewablesources,mainlyhydropower (EPE,2016),making itworth it to invest inelectrification.Ontheother,thecountrypresentsaseriesofadvantagessuchasgoodsoil,suitableclimate,availablelandandlowlabourcosts,perfectforbiofuelproduction.Currently,BrazilmaintainsitspositionasbiggestethanolproducerinLatinAmerica,andoneofthebiggestonesintheworld,anditsbiodieselmarkethasbeengrowinginthepastyears(Janseen&Rutz,2011).

It’slongandsuccessfulexperiencewithbiofuelswaslargelyledbythefederalgovernment,thedrivingforce behind the National Alcohol Programme (Proálcool in Portuguese). Motivated by economicreasons,theNationalAlcoholProgrammeaimedtodemonstratethetechnicalandeconomicfeasibilityofbioethanol.Nowadays,consumersbuycarswithflex-fuelenginetechnologyandchoosetofueltheirtankswithethanolwheneveritspriceisatleast75%lowerthanthepriceofpetrol.Eventhoughthecostperkmoftheethanolmaybehigher,enhancedperformanceofthemotoralsoencouragestheuseofthealternativefuel(Zapata&Nieuwenhuis,2009).

Thesuccessof theNationalAlcoholProgrammewasduetoacombinationofveryspecific internalfactors, such as large sugarcane plantations, know-how and experience with ethanol production,improvedproductivityduetotechnologicaladvances,cheaplandinhighlyproductiveareasanddirectmarket intervention,forexamplebypricefixingandmonopolisationofBrazil’sstate-ownedoilandgascompanyPetrobras(PetróleodoBrasilS.A. inPortuguese),aswellasabundantcheapsupplyoflabour(Zapata&Nieuwenhuis,2009).

Bioethanolfromsugarcanehasonethegreatestpotentialofgreenhousegassavings(upto90%ofsavingsfromaWTWperspectivecomparedtodiesel.Otherbenefitsarelowerlevelsoftoxicity,bettercombustionand lowerexhaustemissions,no sulphuremissions, loweremissionsofphotochemicalsmogprecursors,biodegradabilityandhigher-octanerating.

Thesavingsobtainedfromtheuseofbiodieselaremuchlower,50%forpalmoil-basedbiodieseland30%whensoybean11isusedasfeedstock(Zapata&Nieuwenhuis,2009).Nevertheless,theBraziliangovernment launchedasecondnationalprogrammetosupporttheproductionofbiodiesel (PNDB:ProgramaNacionaldeProduçãoeUsodoBiodieselinPortuguese),aimingatjobcreationinsomeruralandpoorerareasofthecountry.Someincentivesusedweretheintroductionofbiodieselinthedieselmatrix,subsidiesforproducersoffeedstockandthecreationofaSocialFuelSeal,certifyingfairtrade11Itisdifficulttofindconsensualemissionfactors,asdifferentauthorsincludedifferentaspectsinthewell-to-wheelanalysisandusedistinctassumptions.Thevalueusedinthismodelismuchmoreoptimisticthanthis30%,butitwasbasedonthemostcompletestudyavailablefortheareaandfeedstockinquestion.

Page 63: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-63-

principles.Sincemostbusesandtrucksusedieselasfuel,thisprogrammeisimportanttosupporttheuptakeofbiodieselinbuses(Zapata&Nieuwenhuis,2009).

Biofuelspresent several benefits. Theyare renewable fuels andhave thepotential to reduceGHGemissions,astheburningofbiomassderivedfuelsdoesnotleadtoanetincreaseinCO2emissions,considering that the releaseof CO2happens at the same rate as the absorptionbynewlyplantedfeedstock. The establishment of the biofuel sector offers opportunities for economic growth,decreasesthedependenceonoilimportsandemploysthousandsofpeople.

Nevertheless,therearealsonegativeimpactsthatshouldnotbedisregarded,andwhichareimportanttotakeintoconsiderationtoenhancetheoveralllong-termbenefitsofbiofuels(Janseen&Rutz,2011).Biofuelshighlyimpactlanduse,potentiallycausingfood-fuelconflictsandmayleadtoincreasedfoodprice,oftendegradingimportantecosystems,suchastheAmazonForestortheCerrado.

According to Janseen&Rutz (2011),ethanolproduction fromsugarcanehasa lowerprobabilityofcausingdeforestation,becausethesuitableclimateforitsgrowthisfoundinthestateofSãoPaulo,thecoreareaforsugarcaneplantations,ratherthantheAmazonforest.However,theexpansionofsugarplantationsdisplacessoybeanandcorncrops,aswellaslivestock,totheCerradoortheAmazon,causingindirectlandusechange.Usingset-asidelandorpasturesfortheexpansionofsugarcaneneedstofurtherbepromoted.

BiodieselderivedfromsoybeancanhaveamuchmoredirectimpactondeforestationoftheAmazon,though the whole soy production industry needs to be blamed since a large part of soybean iscultivated for fodder production. If land use change is accounted in the lifecycle analysis of CO2emissions,theintendedreductionsofbiofuelsmaybecompromised.Therefore,ifthemotivationforbiofueluseistoprotecttheenvironmentthenitiscrucialtolookatthesourceofthefuel.

Ontheotherhand,municipalsolidwasteisagreatsourceforbiofuelproduction,namelybiogas,asitis largely available in big cities like Curitiba and it does not need to be planted. On the contrary,transformingorganicwasteintoabiofuelanditsuseastransportationfuel,forexample,notonlyhelpsinthemitigationofairpollutionaswellassolvestheproblemofoverloadedlandfills.Oneobstacleoftenpointedoutisthattheseparationoforganicandnon-organicistimeconsumingandexpensive,however,Curitiba’spopulationhasbeenseparatingitsorganicandnon-organictrashforalongtime.AninitiativepromotedbytheMunicipality,underthebannerGarbagethatisn’tGarbage(Lixoquenãoé lixo inPortuguese), incentivisesCuritiba’spopulationtoseparaterecyclables fromorganicwaste.ThiscouldpresentanopportunitytoexplorearathernewtechnologyinBrazil.

Other consequences of 1st generation biofuels, i.e. directly produced from energy crops, are thepossibledisplacementofindigenouscommunitiesandlossofbiodiversityduetohabitatdestructionaswell theuseofmonocultures.Otherproblemsassociatedwith the sugarcane industry arepoorlabour conditions for sugarcaneharvesters, lowwage levels, stimulationof seasonality labour andinternalmigration.Practicesofsugarcaneburningtofacilitateharvestandexcessiveuseoffertilizesalsocompromiseitsenvironmentalbenefit.

There are several initiatives to promote sustainable growth of energy crops, whichwould benefitBrazil, Latin America and other continents like Europe. If Brazil adopts more sustainable biofuelproduction practices, public acceptance will grow, and the country could increase its exportationlevels, for example to Europe (Janseen & Rutz, 2011). The European Renewable Energy DirectivecontainssustainabilitycriteriaonimportedbiofuelsfromLatinAmerica,demandingforexamplethat

Page 64: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-64-

biofuel’s raw material shall not be obtained from land with recognized high biodiversity value(Turcksin,etal.,2011).

Inconclusion,biofuelscanandshouldbeseenasacleaneralternative,butonlyiftheeconomic,socialand environmental sustainability is guaranteed. It is crucial to analyse the impacts of biofuelproductioninanin-depthlifecycleanalysis.Initiativespromotingsustainablegrowthcurrentlyoperateonavoluntarylevel,yet,theseareimportantschemesfortheimprovementofthebiofuelindustryinLatinAmerica(Janseen&Rutz,2011).

7.2 Logistics

Utilisingfastchargingequipmentforelectricbusoperation isarelativelynewconceptandthere islittleexperienceforitsimplementationinCuritibaandotherBraziliancities.Conductivechargingistheonly considered technology, as it has lower costs and higher efficiency than inductive charging.Becausethecostispointedoutasthemostimportantfactorfordecisionmaking,andterminalstationshavethespacetoaccommodatethecharginginfrastructure,boththepublictransportentity(URBS)andtheplanninginstitute(IPPUC),aswellasthebusmanufacturerVolvo,agreethatthistechnologywouldbeprioritisedoverinductivecharging(Malucelli,2017),(Prestes,2017),(Schepanski,2017).

In this study, it is assumed that chargers are located at initial/final stops. Bus routes whose tripstarts/endsinanintegrationterminalwereprioritisedduringthebuslineselection.Theseterminalsconcentratebusservicethusmaximisingtheuseofthechargingstations.Ontheotherhand,ancillarycosts,suchasupgradestodistribution-leveltransformers,couldbeminimisedasmorechargersareinstalledinthesameterminal.ThisdecisionissupportedbyURBSandIPPUCastheterminalstationisaninfrastructureofthecity’spublictransportnetworkthatoffersasafeandprotectedlocationforacharger.Itislessexposedtovandalismorstealingofelectricalequipment.Atthesametime,itisvisibleforalargernumberofpeople,whichincreasesawarenessofthenewtechnologyandthebenefitsitbringstosociety(Malucelli,2017).Space,inthecaseofachargerbeinglocatedoutsideanintegrationterminal,andimpactontheelectricalgridaretwoaspectstoovercome,mentionedby(Prestes,2017)whenimplementinganewchargingstation.

Anindepth-studyontheimpactontheelectricalgridandthesecurenessofsupplyofelectricitytotheneighbourhoodwherethechargingstationisimplementedisessential.Onewaytoovercometheseproblemsisbyusingstationarystorageonsite.Thiswouldreduceeventualpeaksonthegrid,asbuseswouldrechargeusingtheenergyavailableinthestoragesystemwhichdidnothavetobetakenfromthegridatsuchhigh-power levels.Usingstationarystoragealsopresentsanopportunitytoreducecostsascontractedpowerislowerandthebatteriesofthestationarystorageunitscanberechargedduringthenightwhenthepriceofelectricityislower.

Interestingsolutionsareavailableonthemarket,suchasDaimler’sproject“E-mobilitythoughttotheend”,inwhicholdEVbatteries,thatarenolongeroperatingincarsorbusesareusedinstationaryenergystoragefor10ormoreyears.Thisreducescostsandimprovestheenvironmentalperformanceofelectricvehicles,therebyhelpinge-mobilityhavingapositiveeconomicimpact.Recyclinglithium-ionbatteriesfromelectriccarswillpracticallydoubletheircommercialservicelifeaswellasdecreasetheenvironmentalimpactonitslifecycle(DaimlerAG,2015).

TerminalBairroAltowasanalysedabitmoreindetail,asthisterminalhasthehighestnumberofbusroutesutilisingthesamecharginginfrastructure,asproposedbythemodel.Accordingtotheresultsofthefavourablescenario,buslines307,3731,372,373,374and375shareachargingstationinthislocation.

Page 65: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-65-

A field visit to this terminal gave some insight onwhichproblems can arisewhen implementing achargingstationinaterminal.First,eachbuslinehasanassignedlocationwherepassengersdisembarkandembark:busroutes371,373and375werelocatedononesideoftheterminalwhile374and372ontheother;theline307BairroAlto/Sta.Felicidadeisadirectline,soallitsstopsaretubestations,thereforeinTerminalBairroAlto,thislinestopsatthetubestationlocatedattheentranceofit,asseeninFigure19(left)inthebackground.

Inordertoproposeacommonchargerforseveralbusroutes,theorganisationoftheterminalhastobechanged.Furthermore,itisessentialthatthebusischargedassoonasitarrivesattheterminal,thereforedisembarkingandembarkingshouldhappenduringcharging,sonotimeiswasted.Spaceforqueueingshouldbeavailableinthecaseachargerisoccupied,soonceitbecomesavailablethenextbuscanquicklystartcharging.

Inordertoproposeonesinglechargerfor6routeswithoutimpactingthescheduleofthebus,eachbuslineshouldtechnicallyarriveevery30minutesormore(6x5minutes),whichdoesnotcorrespondtothereality. InAppendix5,atimetable ispresentedaccordingtothescheduleavailableatURBS’website(URBS,2016).Thisscheduleindicateswhenacertainbusdepartstheterminal,butnotwhenitisexpectedtoarrive.Previoustodeparture,5minutesofchargingareaddedwhichisrepresentedbythecolouredbars.

Ifallrouteswouldbeelectrified,itcanbeconcludedthatatleasttwochargerswereneeded.Evenso,duringcertainperiodsoftheday,forexamplefrom06:45to06:50,twochargerswouldnotbeenoughandsomebuseswouldhavetowait forothers to finishcharging,causingadelay in the timetable.Lastly,inthisanalysis,itisconsideredthatthebusesarestoppedattheterminalfor5minutes,butthisisseldomtrue.Accordingtotheexperienceoftwobusdrivers,interviewedatTerminalBairroAlto,most of the times high traffic congestion in the city does not allow for long dwell times. Often,especiallyduringmorningsandafternoonswhenpeoplecommutefromhometoworkorviceversa,busesleavetheterminalassoonasallpreviouspassengershavevacatedandnewpassengershavegottenon.ThesameissueispointedoutbyacollaboratoroftheoperatorViaçãoCidadeSorrisoLtda,asextradwelltimeisnotaccountedforintheoperationscheduleofthebuses.Usually,thebusarrivesjustontimetostartanewtrip. Inhisopinion,depotchargingwouldbepreferentialas itdoesnotinterfere with the operation times of the buses. Otherwise, significant changes in the schedulingcombinedwithanincreaseofthefleetassignedtoeachelectrifiedroutearenecessary.AccordingtoGelson(2017),subsidiesareindispensabletosupportelectrification,astheusersshouldnotbetheonestosupportthisextracost,asitisrightnow.

Alternatively, during rush hours, a bus could skip one chargewhenever the queueing timewouldsurpassa certainacceptable threshold. Forexample, thehighestenergy consumption for the linesmentionedabove is18.126kWhtocompleteonetrip.Astheenergysuppliedduringonecharge ishigher(22.5kWh=300kW*(5/60)h*0.9),thebattery’sSOCcanberestoredtoitsmaximumcapacityattheendofeachtrip.Hence,abuscanomitonechargecycle,asthebatterycanhandletwotripsina row (76kWh*0.6 = 45.6kWh - 2*18.126kWh = 9.36kWh). A more detailed study on the energyconsumption isnecessarytoguaranteetheviabilityof this,astheriskof theSOCgoingbellowtheadvisableishigh.

Anotherpossiblesolutionwouldbetoapplyultra-fastcharges,ofafewseconds,atdifferentbusstopsalong the route. This is already a reality in certain cities, such as Geneva in Switzerland, whereconductiveflash-chargingstations,atechnologydevelopedbyABB,provideashort(15-20seconds)butveryhighpowerboostof600kW.Inthisway,mostbusstopsarefeasiblechargingstations,where

Page 66: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-66-

embarkinganddisembarkingallowsforenoughtimetochargetheon-boardESS.Atterminalstopsprolongedchargesat400kW,during4to5minutes,top-upthebattery’sSOC(ABB,2017).

Lastly,itcanbearguedthatthebusdoesnotneedtoberechargedforawhole5minutes.In5minutes,thebattery’sSOCisincreasedby22.5kWh,butmosttripsconsumeless,sobusescouldbechargedonlyforaslongneededtobeabletocompletethenexttrip.

Timeconstraintsareoneofthebiggestchallengestoovercome.Ononehand,itisimportantthatachargingstation’sutilisationrateismaximised,minimisingstandby.Ontheother,planningofchargingtimesfordifferentlinescanbeproblematic.Severalapproachescanbeadoptedtodecidewhichbushastherighttobechargedfirst.First-in/first-outisthenaturalanswer,asabusentersinthechargingqueueinthesameorderasitarrivesatthestation,howeveritmaybemoreadvantageoustoprioritisethebuswiththelowestorthehigheststate-of-charge,forexample.

DeFilippoet.al(2014)developedanenergymodelandasimulationmodel,whichdeterminesenergyusageandchargingpatternsbyelectricbusesinaCampusAreaBusService(OhioStateUniversity).Theauthorsconcludethatratherthanafirst-in/first-outpolicyforcharging,ahighestattributevalue,a policywhichprioritises thebuswith thehighest state-of-charge, achieves the shortest queueingtiming.Nevertheless,anelectricbusfleetalwaysaddsonqueueingandchargingtimetoeachtrip,decreasingserviceandincreasingpassengerwaittimes.Thisadditionaldelayneedstobetakenintoconsiderationinacompletefeasibilitystudy(DeFilippo,etal.,2014).

Figure19-TerminalBairroAlto(left)andbusstopsatPraçaSantosAndrade(right).Source:Author.

TheinstallationofachargerinaterminalstoporevenaregularstopasPraçaSantosAndradecanbeeasilyachieved,asexemplifiedbyasmallsketchinFigure19(right).

Otherinitial/finalstopsaretubestations(asseeninFigure20),atypeofstationdesignedforafastembarkinganddisembarking,whichallowsintegrationbetweendifferentbuslines.

Page 67: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-67-

Figure20-TubestationGuadalupe–frontview(left)andbackview(right).Source:Author

Installingachargerinatubestationcanbelessoptimalgivenitsspecificdesign,soimportantforthecityofCuritiba.Also,thebusroutesthatstart/finishatGuadalupe,forexample,stopindifferenttubestationssoacommonchargerwouldnotbefeasible.Apossibilitywouldbetohavethechargingstationnotlocatedinthetubestationor,similarlytoothertubestationsofthecity,haveonecommonlongtubeforalllinesstoppingatacertainlocation.

7.3 PolicybarriersandinstrumentsCuritiba’sPublicTransportation isnotsubsidisedbythegovernmentandgiventhecurrentpoliticalandeconomicpanorama,inwhichallpublicsectorsarefacingdifficulties,Curitiba’sPublicTransportsystemisstrugglingwiththeabandonmentofusers.Until2014,theaveragedailypassengerridershipwasaround2.2millionpassengersbut in2015 thisnumberdroppedto1.62millionpassengers. In2016,thenumberfellonceagaintothecurrentvalueof1.51millionusers(URBS,2016).Severalfactorsareinfluencingthistrendandthereisnotonesinglecause.Nevertheless,twoaspectscanbepointedout:thehighpriceofthetariff,currentlyat4.25R$,andthedeterioratedqualityofthevehicles,asquitealotofbusesoperatingonthestreetsofCuritiba,arereachingtheirendoflife.Moreandmore,usersswitchtocheaperandmoreconvenienttransportmodes.Therefore,URBS’smainpriorityistodecreaseoratleastmaintainthepriceofthefare,asitisalreadytooexpensiveforalargepartofthepopulation,while,atthesametime,answertotheever-increasingdemandformobility(Karas,2017).Asaresult,projectsthataimtoimprovetheenvironmentalsustainabilityoftransportarebeingleftaside.

Ingeneral,publictransportischaracterisedbyhighoperationalcosts,asitislabourintensive,andlowfares do not succeed in covering them. It is of utmost importance to improve Public Transport’sefficiency,bycontrollingoperatingcostseitherthroughdesigningthesupplyinamoreefficientwayand/orthroughincreasingitsattractiveness.Evenwiththesupportfromthegovernment,thisdeficitisoftennot sustainable in financial termsandcompromises thevoluntaristpolicies for sustainableurbanmobility(Faivred'Arcier,2014).

Page 68: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-68-

When itcomes to thepurchaseofenvironmentally friendlybuses,oranyotherbuses,URBS is theresponsibleentityfordefiningwhenandwhichbusroutesshouldusethesenewvehicles,whichthenreflectsonwhichoperatorsshouldacquirethem(Travain,2017).Theexpensesofnewvehiclesarecoveredbythetechnicaltariff,calculatebyURBS(equationsbelow)basedontheremunerationsfrombustickets.

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑡𝑎𝑟𝑖𝑓𝑓 =𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡/𝑘𝑚

𝐼𝑃𝐾

𝐼𝑃𝐾 =𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑝𝑎𝑦𝑖𝑛𝑔𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑚𝑖𝑙𝑒𝑎𝑔𝑒

Operatorsclaimthatthetechnical tariffhasnotbeenenoughtocoveroperationandmaintenanceexpensesaswell as theacquisitionofnewvehicles,as thenumberofpayingpassengershasbeenoverestimated by URBS at times (Gelson, 2017). Therefore, imbalances between revenues andexpenditureshavecausedastagnationofthefleetrenewalsince2012,asoperatorswenttocourtstatingthattheydidnothavethefinancialmeanstopurchasenewvehicles.Thishasfurtherincreasedthemaintenancecostsanddeterioratedthequalityofpublictransport,resultinginadeclineofusers(Gelson,2017).

Asaresult,thepriceoftheticketincreasedtothecurrently4.25R$,asbothsideswishtosolvethisjudicial fight. Unfortunately, URBS does not believe that, once this disagreement is solved, morehybridswillbepurchasedsinceitistooexpensive.Thetariffcannotcontinuetoriseorthelow-incomepopulationwillstruggletocommute.

Additionally,asthemajorityofvehiclesoperating inthenetworkwerepurchasedbefore2012,theemissionlevelsfrompublicbusesintheBraziliancityaremuchhigherthanifaregularrenewalofthefleetwashappening.InTable14,thedifferentemissionslevelsadmittedarepresentedfortwonormsCONAMAP5andCONAMAP7.ThecurrentnormsforengineemissionsareundertheCONAMAP7,which corresponds to the Euro 5 norm, however,most buses operating in Curitiba still fall underCONAMAP5,astherehasnotbeenafleetrenewal.Proconve(ProgramadeControledePoluiçãodoArporVeículosAutomotoresinPortuguese),theprogrammethatcontrolsairqualityinurbanareas,stipulatesthesevaluesadaptinginternationalnormstotheBrazilianreality.

Table14-MaximumemissionlevelsadmittedbyCONAMAP5andCONAMAP7.Source:(URBS,2016)

PollutantCONAMAP5

Jan2004-Dec2011(EURO3)

CONAMAP7Jan2012–(EURO5)

CO(g/kWh) 2,10 1,50HC(g/kWh) 0,66 0,46NOx(g/kWh) 5,00 2,00PM(g/kWh) 0,13 0,02Opacity(m-1) 1,14 0,50

Inordertobetterunderstandthecurrentsituation,namelywhichdriversandbarriersinfluencethedevelopmentofsustainabletransport,aswellasunderstandwhichpoliciesarealreadyinplaceandwhichcouldassistthedecarbonisationofthetransportsystem,severalinterviewswereconducted.

In total, six interviewswere conductedwith two employees of the Public Transportmanagementcompany(URBS),oneoftheresearchandurbanplanninginstitute(IPPUC),oneengineeratVolvoBrazil

Page 69: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-69-

andtwoemployersoftheoperatorcompaniesViaçãoCidadeSorrisoLtdaandAutoViaçãoRedentor.Thequestionsaskedweremostlyopenquestionsastheideawastogetnewinsights;someinterviewsweredoneinpersonandothersoverthephone.DividedintoBiofuelsandE-mobility,thissub-chapterpresentstheinsightsobtainedduringtheinterviews.

Biofuels

Curitibahasalonghistoryofenvironmentalawarenesswhenitcomestoitspublictransportsystem.Testswithbiofuelsstartedinthe1990swiththeuseofanhydrousethanolinthebuslineLinhaVoltaaoMundo,followedbytestswithbiodieselB20andanhydrousalcoholMAD8(89.4%vol.diesel,8%vol.anhydrousalcohol,2.6%vegetableadditive)between1998and2004.In2009,theimplementationoftheGreenLineaimedatemployingonlycleantechnologies.Vegetationwasalsoplantedtoreducethe air pollution levels along this major ex-roadway. Elcio Karas (2017), the fleetmanager at theUrbanisationCompany,pointedoutthatthesetestswerecrucialtogainthenecessaryknow-howtoimplementB100intheGreenLineandinothercorridors.Apartnershipwiththefederalgovernmentand busmanufactures, such as Volvo and Scania, facilitated the success of the project andmadeCuritibaapioneerintheuseofpurebiodieselinpublictransportinBrazil.

ThemaindriversofthisprojectwerereducingtheuseoffossilfuelssinceitisamajorsourceofairpollutionandGHGemissions.Nevertheless,economicsustainabilityisequallyimportant,thereasonwhybiodieselistheonlyemployedbiofuelinCuritiba’sPublicTransport.Theprice/consumptionratioofbiodieselismuchlowerthanforotherfuels.Forexample,ethanol,whosefuelconsumptioncanbemorethandoubleofbiodiesel,isaveryunattractiveoption(Karas,2017).Thesamewasobservedintheresultsofthemodel,asbiodieselwastheonlyalternativeselectedbothintheenergyandcostoptimisation.

Currently,biodieselissubsidisedbythegovernmentwith50centavosofRealperlitre,correspondingtocirca17%ofitscost.Furthermore,biodieselproductionisbeingpromotedastheobligatoryblendratiohasbeenincreasing.Atthestartofthisyearitwassetat7%,thereasonwhyitisconsideredintheBusiness-as-Usualscenario,thoughcurrently,itisalready8%.ByMarch2019Brazilaimstohavea10%biodieselinalldieselsoldinthecountry.

ThemainbarrierpointedoutbyURBSfortheexpansionofbiodieseluseintheirfleetisstillmonetary,asthecostperlitreofbiodieselisslightlyhigheranditsefficiencyslightlylowerwhencomparedtodiesel.Moreover,theuseofbiodieseldemandshighlevelsofcontrolandverificationofthequalityofthe fuel, in order to guarantee its effectiveness.More regular need for changing filters and othermaintenanceissuesfurtherincreasethecostofthisoption(Karas,2017).Atthebeginning,operatorsweresceptical,asthelackofknowledgeaboutthisfuelleadtomisconceptionssuchasthatthebiofuelwoulddamagethevehicleanditscomponents.ThisisalsoconfirmedbythemaintenancemanagerofAutoViaçãoRedentorthatseeshighercostsasthemaindisadvantageofbiodiesel,which,however,positivelyreducesemissionsofPMandsoot(Travain,2017).

TheexemptionoftheICMS,alreadyinplaceforfossildieselusedintheCuritiba’scollectivetransport,ispointedoutbyKaras(2017)asalegislativeinstrumentthatwouldhelptheexpansionofthisfuel.

Finally,Prestes(2017)mentionedthatadeficitinbiodieselproductioncapacityisalsohamperingtheexpansionofthisfuelinCuritiba.Thisindicatesthatthesupportbythegovernmentisnotenough,asitsfocusisgeneralandnotapplicationbased.Inotherwords,theuseofbiodieselorotherbiofuelsincollective transportneeds tobe supportedby thegovernmentusing specific (directed)policies forPublicTransportationsystems.Forexample,nationaltargetsforallcitiesandregionsinthecountryonaminimumpercentageofrenewablefuelsinitspublictransportcouldincentivisethegrowthofthe

Page 70: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-70-

biodiesel industry. It is very important to apply sanctions or fines if these targets are not met.Nowadays, therearenonationalor federal lawsenforcingaminimumshareof renewableused inpublic transport, for example.Nonetheless, Curitiba, amember city of theC40, announced that iswilling to reach the targetof11%ofclean technologyby2020.However, theseare just intentionswhicharenotenforcedbyahigherentity,thusnoconsequencesareappliedifthecitydoesnotfulfilthetarget.Forthisreason,otherproblemsfacedbythecityhavebeenprioritisedandoncemore,theimpactonenvironmentalandclimatechangequestionshavebeenabandoned.

Furthermore,itcouldbeimportantforCuritibatolookintodiversifyingthefuelsusedintheirpublictransport in order to increase its resilience to geopolitical and climatic changes. In the currentconditions,biogas’availabilityisratherscarcebuttogetherwithincentivesfromthegovernmentorfederalstateanewtechnologycouldbeexploredbythecity.Presently,ethanoldoesnotseemtobeanattractivefuelbutiftheproductioncostofthefuellargelydecreasesand/oritsengineefficiencyincreases,itmaybecomeaviablefuel.

Inconclusion,commonvisionandstrategyareindispensablefactorsforthesuccessfulmarketuptakeofbiofuels,asmentionedby(Turcksin,etal.,2011).

E-mobility

Whenitcomestoe-mobility,Curitibadoesnothavethesameexperienceasithaswithbiofuels,sinceitisamorerecenttechnology.However,Volvo,inpartnershipwiththemunicipality,URBS,Siemens,Ericsson,operatorsandtheacademia(UTFPR)hadtheopportunitytotestthestandardhybrid,thearticulatedhybridandtheplug-inelectrichybrid(EuroVI)inthePublicTransportsystemofCuritiba.Atpresent,afleetof30standardhybridsoperatesinCuritibabutunfortunately,URBSbelievesthisnumberwillnotincreasemuchinthecomingyearsasthecostismuchhigherandsubsidiesarenotavailable.Theadvantagesofthesevehicleswereidentified,andtheusersarehappywiththecomfortandsilence itbringstotheride.Oneof the learningoutcomeswasthat thebusdriver'sbehaviourhighlyinfluencesfuelconsumptionandthattrainingisessential,asdrivingahybridorelectricvehicleisquitedifferentthandrivingadieselone,i.e.fuelefficiencycouldbeimprovedifbettermanoeuvringofthevehiclewasaccomplished(Schepanski,2017).

Asfortheplug-intechnology,thesameinfluenceonfuelconsumptionbythedriver’sbehaviourwasidentified.Moreover, theopportunitycharging infrastructurewasnotproperlysized–onechargerwasnotenoughforsuchalongroute(22.5km)–andalsonottakenadvantageofsince97%ofthetimeitwasonstandby(Schepanski,2017).Thisprecludedaproperlifecyclecostanalysis,asonlyoneplug-in bus was using the charging station. Nevertheless, the technical, financial (considering fuelexpendituresonly)andenvironmentalfeasibilitywereproven.

Apureelectricvehicle,fromtheChinesecompanyBYD,wasalsotestedduringonemonthinthelineBarreirinha.Thisvehiclewaschargedduringthenightfor4hoursandithadanautonomyof250km(URBS,2015).

Page 71: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-71-

Theinterviewssuggestatendencythathighercostsandlackofpoliticalwillarethemainbarrierstothe implementation of electric vehicles in Curitiba. Figure 21 summarises the main barriers andlimitations (left) towardsthe implementationofhybridandelectricbusesandthe instrumentsandincentives(right)thatwouldsupportthetransitiontoanelectrifiedsystem.

Thehighcostofhybridandelectricvehiclesismentionedbyallstakeholdersasthemainlimitationforitsimplementation.Inthecurrentfinancingscheme,allcostshavetobecoveredbytherevenuesfrombusticketsales.Legislativeschemesdonotsupportthepurchaseofalternativepowertrains,asapublicentitylikeURBSisobligedbylawtosearchforlowestoffer.Notonlydoesthecurrentlegislationnotsupport the purchase of a hybrid or electric vehicles, but instead of acknowledging the publicauthorities’ effort in investing in technologies that reduce the emissions of GHG and decrease airpollution levels impacting public health, it questions their decisions as they resulted in higherexpenditures(Prestes,2017).Achangeinthelegislation,togetherwithsubsidiesfromthegovernmentareessentialtomakee-mobilityareality.

Also,betterfinancingschemesareneeded,suchaslowerinterestrates(alreadyinpracticebyBNDES)andlongerpaybacktimes.Allstakeholdersagreethattheusercannotbetheonetosupportthisextracost as the population is either not willing or, more importantly, not capable of paying forbetter/cleanertechnologies.GreenPublicProcurement,aninstrumentinplaceinEurope,isproposedbySchepanski(2017)asawaytomakeelectricvehiclesmoreeconomicallyattractive.

Reductionsinpollutantemissionsaswellasnoiseemissions,whichnegativelyimpactpublichealth,areaccountandquantified,forexample,foreachavoidedkgofCO2eqacertainamountissubtractedoffthepriceofthevehicles.Inthisway,indirectbenefitsarerecognisedandincludedinthecostofthe bus. There is a lack of political will (from higher entities) to invest in sustainablemobility, asmonetaryissuesarethepriorityinpolitician’sagenda.However,healthandenvironmentshouldbeaprioritytoo.

Alreadytoday,governmentsmustallocateresourcestoremediateaneverincreaseofrespiratoryandheartdiseases,partiallycausedbypoorairqualityincities,wherethemajorityofthepopulationlives.Iftheseresourceswereinsteadinvestedincleantechnologies,publichealthissuescouldbetosome

Figure21-Mainbarriersidentifiedbythestakeholdersfortheimplementationofelectricvehicles(left)andinstrumentsandincentivesthatwouldassistthetransitiontoanelectrifiedsystem(right).

Page 72: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-72-

extentpreventedand,atthesametime,climatechangeandpollutionwouldbemitigated.Ingeneral,long-termthinkingismissingaspoliticalpartiesareonlyinterestedinwhattheycanachieveintheirrespectivemandates.ThiswasalsomentionedbyMalucelli(2017),thatbelievesthatmorepowertopublic entities such as URBS and IPPUC is crucial for the successful implementation of cleantechnologies.Currently,wheneveranewmayor,fromadifferentpoliticalparty,startsitsmandate,majorchangesslowdownorevensetasideprojectsthattookalongtimetobeplanned.Lastly,themaximumage allowed for a bus inCuritiba is 10 years andoften, in normal conditions, buses aresubstitutedbefore.Inordertoachievebreak-even,electricbusesshouldbeallowedtooperatelongerinordertoextendthepaybacktime,astheirlifetimeishigherthanadieselbusduetolessmovingpartsinthemotor.

Averyhighelectricitypriceisalsoidentifiedasamajorbarriertosafeguardtheeconomicsustainabilityofelectrification(Schepanski,2017).Thisisalsooneoftheconclusionsofthemodel,aselectricitycosthighlyimpactsthenumberofelectrifiedbusroutes–from0inthebasescenarioto6electrifiedroutesinthereducedelectricitycostscenario.Volvoproposesdepotcharging,aslowerpricesofelectricityoccurduringthenight.However, this isnotapossibilitywhen implementing largefleetsofelectricbusesastheywouldallhavetochargeduringthenight,causingaveryhighpeakintheelectricgrid.

Furthermore,theautonomyofovernightbusesisoftennotenoughtocoverawholedayofoperation,whichwasoneof theconclusionsof theBYDelectricbus test inLinhaBarreirinha (URBS,2015).Abettersolutionandonethataimsto improve long-termconditionsforelectrification is throughtaxreductionsorexemptionsofelectricityusedforpublicservicesthatimprovethecitizens’qualityoflife.AsdescribedintheBaseScenarioofthecostoptimisation,a40%reductionintheelectricitypriceisrealisticifalltaxeswouldbeexempted.AsthedieselconsumedbypublicbusesisalreadyfreefromtheICMStaxitisplausibletoassumethatthesamethingcouldhappenforelectricity.Furthermore,URBS,asapublicauthority,shouldnegotiatewiththegovernmenttoobtainedfulltaxexemptionstosupportcleanerfuels.Karas(2017)alsomentionedthatabetterdealcouldbeachievedwhenbuyingenergyfromthefreemarketinsteadofthelocaloperatoratafixedprice.

Nevertheless, if a national plan would enforce cities and regions to take responsibility for theiremissions, assisting with supportive laws and subsidies to ease high initial investments in cleantechnologies solutions, the market for hybrid and electric vehicles in Brazil would grow faster. Alearningcurvecanbeexpectedwhichwilllowerthecostofvehicles,forexample,duetoadvancementsinthebatterysystems.Moreover,asbatteriesarenearlyalwaysproducedoutsideofBrazilandhaveto be imported, high taxes are applied (C40, 2013). The government should invest in the internalproduction of this expensive component or reduce its tax as it is a critical component for thedevelopment of electro-mobility. Alternatively, if a businessmodel inwhich the batteries and theelectricenginearepricedseparatelythroughaleasingcontract,thenthecostofthevehicleitselfcanbethesameasofadieselequivalent(C40,2013).Thefuelsavingsobtainedshouldthenbalancetheleasingofthebatteriesandelectricmotor.

Other barriers mentioned are the adaptation of infrastructure to accommodate battery chargingstations. The timetable organisation would also have to suffer deep changes, as currently, busoperation does not allow for opportunity charging due to time constraints (Gelson, 2017). Morevehicles and thusmore bus drivers are eventually needed, which is another important barrier toovercome.

Also,high infrastructurecostsofchargingequipmentareabarrier.Prestes(2017),Malucelli (2017)andSchepanski(2017)agreethatinfrastructureneedstobelongtothemunicipality,i.e.bepublicly

Page 73: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-73-

owned, as its management and maintenance should also be done by a public entity. However,exploringpartnershipswithprivatecompanies,likeutilitiesorthetechnologyproviders(Siemens,ABB)wouldbeinterestingandessentialtofindalternativefinancingsourcesasthiscostcannotfallwithintheticketfare.Stationscanbesponsored,forexample,bythesecompanies,inexchangeforpublicityspace.TheutilityCOPEL,alsoownedbythestate,couldbeaninterestingpartnerastheyhavethefinancialmeanstobackupaprojectlikethis(Malucelli,2017).Finally,cogenerationisaninterestingand innovative solution to explore, as available renewable sources could provide the necessaryelectricity.By installingPVpanelsontheroofsof theterminals, forexample, thecostofelectricitycouldbereduced.Onthedownside,theinitialcostwouldincreaseevenmore,whichisnotdesirable.

Lack of knowledge and scepticism from operators is also referred by Karas (2017) regarding theoperationandmaintenanceofelectricbuses.Inbothinterviewswiththeoperators,fuelsavingswerenotmentionedasanadvantageofthehybridbusoverthedieselequivalent.Areasonforthismaybethatthesesavingsarefarfrombeingenoughtocompensatethehigherpurchaseandmaintenancecosts,hencetheyarenotseenasadvantages.

Inconclusion,achangeofviewpointfrommayorsofallmunicipalitiesacrossthecountryisneeded.Only through long-term visioning and the establishment and follow-up of short and mid-termstrategiesandtargets,cleantechnologiescanthrive.Itisimportantthatthesetargetsareenforcedbylawandthatfinesareappliedtomunicipalitieswhichdonotcomplywiththem.However,financialassistance from higher entities (government) is essential to support these technologies until theybecomecostcompetitive.

Cityleadershavetosittogether,takeadvantageoftheknowledgeandgoodpracticeseachhastoofferandconstructaplanfavouringcleantechnologies.Atthesametime,incentivesandpoliciesfavouringfossilfuelshavetobeeliminatedovertime.Stricterenvironmentalperformanceandfuelperformancestandards to increaseenergyefficiencyanddecrease theemissionsofCO2, coupledwith financingincentives,cansafeguardtheeconomic,socialandenvironmentalsustainabilityofelectric-mobility.

Page 74: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-74-

8 ConclusionsandFutureworkThisstudyassessestheoptimalsystem’sconfiguration–combinationofelectricandbiofuelbuses–inasub-groupof26busroutesofCuritiba’sPublicTransportationnetwork,throughthedevelopmentoftwooptimisationmodels:aleast-energyandaleast-costoptimisation.Thetotalnumberandlocationofchargingstationsarealsoobtainedinthemodel.Priortotheoptimisation,thebusrouteswhicharenotfeasibleforelectrificationaredeterminedaccordingtodifferentchargingtimesandpowers,aswellasenergyconsumption.Thesebusroutesareconstrainedtooneofthethreebiofuelalternativesintheoptimisationmodel.

Intheenergyoptimisationscenario,12chargingstationscanelectrify12busroutes-allfeasiblebuslinesareselectedforelectrificationsinceitisthemostenergyefficienttechnology.Theremaining14bus routes operate on biodiesel, the least energy consuming biofuel. In this scenario, energyconsumption is reducedby12%whencomparedtoan indicativebusiness-as-usualscenario,whichconsidersallbuslinesoperatingonB7,ablendofbiodieselanddiesel(7vol.%biodiesel,93vol.%diesel).Asmostroutesoperateonbiodieselandthisfuelislessefficientthandiesel,theenergysavingsarenotashighasdesired.Thetotalcostis9%higherthantheBAUscenariobecauseofthehigherfueland vehicle costs and the additional infrastructure needs for electric vehicles. A GHG emissionreductionof74%couldbeobtained,whichtranslatesinto27000tonsofCO2eqavoidedeachyear.

Theresultsofthecostoptimisationsuggestthat,forthesetofparametersdefined,onlybiodieselisselectedbythemodel,aselectrictechnology isnotcost-competitive.Asexpected,thetotalcost islower than in the energy optimisation scenario but still higher than for the BAU (7.6%higher), asbiodiesel’soperation(fuelexpenditures)andmaintenancearecostlier.Forthesamereason,thetotalenergyconsumptionisslightlyhigherwhencomparedtotheBAUscenario(+0.2%).

Asnobusroutesareselectedforelectrification,asensitivityanalysisonthemaincostparameterswasperformedtounderstandwhichcostshouldbereducedtomakeelectrificationacost-efficientsolutioninCuritiba.Itisconcludedthatthelargerthegapbetweenbiodieselandelectricitycost,morerouteswillbeselectedforelectrification.Indeed,theconsideredpriceofelectricityisveryhighmeaningthatabetterdealwithanenergyproviderisneededand/ortaxreductionsshouldbecomeavailableforthisapplication.Theuseofelectricityasasourceofenergyfortransportationshouldbepromotedasitdoesnotdegradetheenvironmentandtheairquality in thecity.Thus, ifpublicauthoritiesaimtointroduceelectric buses in their cities then tax reductionsor exemptions, for exampleof theVAT, shouldbepursued.Thismotivatedthecreationoftwonewscenariosinwhichthecostofelectricityisdecreasedby40%.

Asthecostofelectricityisdecreased,6busroutesareelectrifiedusing5chargingstations.Thisnumbercouldbeincreasedifmorebuslineswerefeasibleforelectrification,reasonwhyathirdscenarioisbuilt. Under these favourable conditions (higher charging power and time and decreasedconsumption),17chargerselectrify16busroutes,outofatotalof20feasiblebusroutes.

Inconclusion,electrificationiskeytoimprovetheenergyefficiencyandreduceGHGemissionsfrompublic transportation and, under certain conditions (scenarios 2 and 3) it can be consideredeconomicallysustainable,asitselectedinboththeenergyandcostoptimisation.Furthermore,itcanbeconcludedthatmostchargersarelocatedinthecitycentreandaresharedbetweendifferentbusroutes.Thisunderlinestheimportancetoassesslargernetworksasmorecostsynergiescanbefound.The annualised infrastructure cost is relatively low and asmore bus routes are considered in theanalysis,thiscostfurtherdilutesthetotalannualcosts.

Page 75: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-75-

HighinfrastructureandvehiclecostsareseenasmajorbarrierstotheimplementationoflargefleetsofBEV.Therefore,properfinancingschemes,suchaslowerinterestrates,longerpaybackperiodsandsubsidies from the government are crucial to overcoming high upfront costs. Public-privatepartnershipsasanewbusinessmodelofinfrastructureownershipshouldbeexploredandlocalpowergeneration from renewable sources presents an opportunity to alleviate high costs from publictransportauthorities.

The integration terminals are identified by stakeholders as the most suitable location to installchargers,astheutilisationrateismaximisedandancillarycostsminimised.Italsooffersprotectionaswell as visibility to the population. From what was observed in Terminal Bairro Alto and fromdiscussionswithbusdriversandoperators,timeforchargingisamajorconstraintasmostbusesdepartsoonafterarrivingattheirterminal,hencedwelltimesareveryshort.Inordertomakeopportunitychargingwork,profoundchangesintheorganisationoftheterminalsandthetimetableareneeded.Eventually,morebusesarerequiredtomaintaintheservicesupplyandallowenoughtimeforcharging,whichfurtherrisesoperationalcosts.

Costsandlackofpoliticalwillarethemainbarrierstoelectrification.Especiallyachangeofviewpointisnecessaryamongstmayorsandpoliticiansthatcurrentlydonotprioritisehealthandenvironmentalquestions.A lackof strategicplanningand supportive instrumentsmake it veryhard forCuritiba’sPublic Transport system, which is already struggling with the abandonment of users and rise ofoperational costs, to adopt cleaner technologies. Can a public transport system transit to cleanersolutions,suchase-mobility,withoutthesupportfromgovernment/state?Inthiscase,theanswerisprobablynosinceacontinuedincreaseinthetariffwouldonlyresultinmoreusersleavingthepublictransportsystem.

Electricbusescanreducetheoperationandmaintenancecostsofpublictransportation,airandnoisepollution,eliminatetheemissionsofGHG,iftheelectricityisoriginatedfromarenewablesource,andimprovethequalityoflifeofcitizens,especiallyinacitylikeCuritiba,wherebusesaretheonlymeansof collective transport. It is crucial that these benefits are properly recognised and quantified tosupport theadditional investmentneeded.Greenpublicprocurement is a verygood tool inwhichemissionsreductionstranslateintopricereductions.Furthermore,theutilisationoffossilfuelsshouldnotbesupportedanylongerandactionstophaseitoutshouldbeimplemented.

Often,newtechnologiestakealongtimetopenetratethemarketasuncertaintyandscepticismslowdown its uptake. Nonetheless, as larger sums are being invested into electrification, a substantialdecline in costs canbeexpected. Thehigh investments in charging infrastructurealso scarepublictransportauthorities.Itisimportanttorememberthatconventionaltechnologiesoncerequiredlargeinvestmentsaswell.Thisisoftenforgottenasitisconsideredanecessity.Whenanalysingtheimpactsof fossil fuel use, e.g. geopolitical conflicts, economic dependency, air pollution, noise pollution,degradation of ecosystems, loss of biodiversity, climate change and all its repercussions, just tomentionafew,itisobviousthatcleanerandmoreefficientalternativesareneededandtherequiredinfrastructure should be considered a necessity. Lack of knowledge and fears concerning newtechnologiesareoftencitedbytransportauthoritiesandoperatorsasthemainfactorhinderingtheuse of advanced technologies. In order to attract investment, these need to be clarified anddemystified,forexamplebydoingtestphasesandassessingtheadvantagesanddisadvantagesaswellasbarrierstoovercome.

Page 76: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-76-

8.1 Futurework:Inthisstudy,theenergyconsumptionanalysiswassimplified,usingfixedconsumptionvaluesperunitof length. Elevation, road grade and traffic conditionsweredisregarded, despite being key factorsaffectingconsumption.Afutureimprovementofthismodelwouldbetoincludeenergyconsumptionprofilesdependentonthebusroute’scharacteristics.

Theintegrationofbusschedulesinadynamicversion,i.e.seehowcharginginfrastructurewouldbesharedinreallifeconditionsthroughtheday,isalsoimportant.Thiswouldanswerquestionsashowmany chargers are needed in a certain location? When can more congestions and queueing beexpectedatthesecharginglocations?Howwouldthisimpactthetimetableofthebuslines?Orhowcanthetimetablesofthesebuslinesbeadjustedtothechargingneeds?

Moreover,specificbatteryrequirementsaswellasthesizing(ofpower)ofchargingstationsshouldbeexploredforindividuallinesinordertoreducecosts,aslowerenergyneedsandchargingpowersmaybereasonableforcertainlines.

Lastly,anindepth-studyoftheimpactontheelectricalgridandthesecurenessofpowersupplycausedby the charging stations energy andpower demand is essential to guarantee the feasibility of thechargers’ locations obtained by the model. This impact should be analysed locally on theneighbourhoodthatsharesacommondistributionnetworkwiththechargersinstalledintheareatoguaranteeacontinuoussupplyofelectricityforbothhomesandchargingstations.Inordertoproperlyaddressthisissue,thetimeaspectshouldalsobeinvestigated.Thegridshouldbemonitored24hours,as thedemandon theelectrical grid varies throughout thedayand ishigherduringmorningsandeveningswhenpeopleareathomeconsumingmostelectricity.Asthechargingstation’spowerisveryhigh(300kW),sporadicpowerpeakscancauseproblemsinthegridwhichcanbeovercomethroughpeakshavingstrategies,suchastheuseofstationarystorage.Furthermore,thissolutioncanloweroperation costs as contracted power can be reduced and the batteries recharged with cheaperelectricityduringthenight.Theoptimalsizeofsuchastoragesystemcanbedeterminedbyalifecyclecostanalysis,takingintoaccountinvestmentsinthegridconnection,stationarybattery,themonthlyfeeforgridconnectionandelectricitydemandofthebusesusingthisinfrastructure,comparingitwithascenariowithnostationarystorageunits,wherebuses’batteriesarerechargeddirectly fromthegrid.

Page 77: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-77-

BibliographyNasa:NationalAeronauticsandSpaceAdministration,2017.ShuttleRadarTopographyMission.[Online]Availableat:https://www2.jpl.nasa.gov/srtm/[Accessed3May2017].

ABB,2017.ABB-powergrids-technologyandinnovation-TOSA.[Online]Availableat:http://new.abb.com/grid/technology/tosa[Accessed22March2017].

Abreu,K.,2015.LegisWeb.[Online]Availableat:https://www.legisweb.com.br/legislacao/?id=281775[Accessed25May2017].

ANP,2017.AgênciaNacionaldePetróleo,GásNaturaleBiocombustíveis-Productionandsupplyofbiofuels.[Online]Availableat:http://www.anp.gov.br/wwwanp/producao-de-biocombustiveis[Accessed8May2017].

ANP,2017.AgênciaNacionaldePetróleo,GásNaturaleBiocombustíveis-SistemadeLevantamentodePreços.[Online]Availableat:http://www.anp.gov.br/preco/[Accessed8May2017].

ANTP,2016.ANTP(AssociaçãoNacionaldeTransportesPúblicos).Relatório2014–SistemadeInformaçõesdaMobilidadeUrbanadaANTP–julho/2016,s.l.:s.n.

BNDES,2015.BNDES-Obanconacionaldodesenvolvimento.[Online]Availableat:http://www.bndes.gov.br/wps/portal/site/home[Accessed08May2017].

BOMBARDIER,2015.PRIMOVECHARGING200-Changethewaytocharge.[Online]Availableat:http://primove.bombardier.com/[Accessed17May2017].

BRTData,2017.GlobalBRTData.[Online]Availableat:http://brtdata.org/location/latin_america/brazil/curitiba[Accessed22February2017].

C40,2013.C40CitiesClimateLeadershipGroup.LowCarbonTechnologiescantransformLatinAmerica’sbusfleets,s.l.:Inter-AmericanDevelopmentBank.

CoelhoBarbosa,F.,2014.PureElectricBusTractionTechnologyOverview-APathTowardsEhancedEnvironmentalPerformanceandEfficiencyforTransitBusFleets.SãoPaulo,Brazil,SAEInternational.

COPEL,2017.COPEL-PuraEnergia.[Online]Availableat:http://www.copel.com/hpcopel/root/index.jsp[Accessed23May2017].

Curitiba,2010.PrefeituraMunicipaldeCuritiba.GuiadoInvestidor.[Online]Availableat:http://www.agencia.curitiba.pr.gov.br/multimidia/PDF/00000074.pdf[Accessed3February2017].

Page 78: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-78-

D'Agosto,M.d.A.,Ribeiro,S.K.&Souza,C.D.R.d.,2013.OpportunitytoreducegreenhousegasbytheuseofalternativefuelsandtechnologiesinurbanpublictransportinBrazil.Energysystems,Volume5,pp.177-183.

DaimlerAG,2015.Daimler.[Online]Availableat:http://media.daimler.com/marsMediaSite/en/instance/ko/E-mobility-thought-to-the-end-Worlds-largest-2nd-use-battery-storage-unit-set-to-connect-to-the-grid.xhtml?oid=9920193[Accessed09October2017].

DeFilippo,G.,Marano,V.&Sioshansi,R.,2014.SimulationofanelectrictransportationsystematTheOhioStateUniversity.AppliedEnergy,Issue113,pp.1686-1691.

DeFilippo,G.,Marano,V.&Sioshansi,R.,2014.SimulationofanelectrictransportationsystematTheOhioStateUniversity.AppliedEnergy,Volume113,pp.1686-1691.

dosSantosRamos,S.,2017.InstitutionalrelationscoordinatoratURBS[Interview](28March2017).

Dreier,D.,2015.AssessingthepotentialoffuelsavingandemissionsreductionofthebusrapidtransitsysteminCuritiba,Brazil,s.l.:KTHDepartmentofEnergyTechnologies.

Dreier,D.,Silveira,S.&dosSantosRamos,S.M.,2016.EnergyandGreenhouseGasEmissionsScenariosfortheBusRapidTransitsysteminCuritiba,Brazil.Shanghai,China,s.n.

EPE,2016.EmpresadePesquisaEnergética(EPE),MinistryofMinesandEnergy(MME).BrazilianEnergyBalance2016,s.l.:s.n.

Faivred'Arcier,B.,2014.Measuringtheperformanceofurbanpublictransportinrelationtopublicpolicyobjectives.ResearchinTransportationEconomics,Volume48,pp.67-76.

G1,2014.G1Globo.[Online]Availableat:http://g1.globo.com/pr/oeste-sudoeste/noticia/2014/11/onibus-movido-gas-biometano-e-apresentado-em-foz-do-iguacu.html[Accessed25May2017].

Gelson,2017.EmployeeatViaçãoCidadeSorrisoLtda.[Interview](11October2017).

IBGE,2016.InstitutoBrasileirodeGeografiaeEstatística.[Online]Availableat:http://cidades.ibge.gov.br/xtras/perfil.php?codmun=410690[Accessed28March2017].

IEA,2016.EnergyTechnologyPerspectives2016ExecutiveSummary,s.l.:InternationalEnergyAgency(IEA).

IEA,2016.GlobalEVOutlook2016,s.l.:InternationalEnergyAgency(IEA).

IEA,2016.Keyworldenergystatistics,s.l.:InternationalEnergyAgency(IEA).

IPPUR,2015.EstadodamotorizaçãoindividualnoBrasil–Relatório2015,RiodeJaneiro:s.n.

Janseen,R.&Rutz,D.D.,2011.SustainabilityofbiofuelsinLatinAmerica:Risksandopportunities.EnergyPolicy,Volume39,pp.5717-5725.

JRC,2014.JointResearchCentreoftheEuropeanComission.Well-to-wheelsanalysisoffutureautomotivefuelsandpowertrainsintheEuropeancontext,Luxembourg:s.n.

Karas,E.,2017.FleetmanageratURBS[Interview](15September2017).

Karlsson,E.,2016.Charginginfrastructureforelectriccitybuses-Ananalysisofgridimpactandcost,s.l.:KTHSkolanförElektroochSystemteknik.

Page 79: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-79-

Khan,S.&Clark,N.,2010.AnEmpiricalApproachinDeterminingtheEffectofRoadGradeonFuelConsumptionfromTransitBuses.SAEInt.J.Commer.Veh.,3(1),pp.164-180.

Kühne,R.,2010.Electricbuses-Anenergyefficienturbantransportationmeans.ElsevierEnergy,Issue35,pp.4510-4513.

Kunith,A.,Mendelevitch,R.&Goehlich,D.,2016.Electrificationofacitybusnetwork-Anoptimizationmodelforcost-effectiveplacingofcharginginfrastructureandbatterysizingoffastchargingelectricbussystems.DeutschesInstitutfürWirtschaftsforschung(DIW)DiscussionPapers,Issue1577.

Lajunen,A.,2014.Energyconsumptionandcost-benefitanalysisofhybridandelectriccitybuses.TransportationResearchPartC,Issue38,pp.1-15.

Lajunen,A.&Lipman,T.,2016.Lifecyclecostassessmentandcarbondioxideemissionsofdiesel,naturalgas,hybridelectric,fuelcellhybridandelectrictransitbuses.Energy,Volume106,pp.329-342.

Lindau,L.A.,Hidalgo,D.&Facchini,D.,2010.CuritibatheCradleofBusRapidTransit.JSTORArts&SciencesXI,4(3).

Lindgren,L.,2015.FullelectrificationofLundcitybustraffic,Lund:s.n.

Malucelli,E.F.,2017.ResearcherintransportmodellingatIPPUC[Interview](28September2017).

Mercier,J.,Duarte,F.,Domingue,J.&Carrier,M.,2015.UnderstandingcontinuityinsustainabletransportplanninginCuritiba.UrbanStudies,Volume52,pp.1454-1470.

Miles,J.&Potter,S.,2014.Developingaviableelectricbusservice:TheMiltonKeynesdemonstrationproject.ResearchinTransportationEconomics,Volume48,pp.357-363.

Nadaletti,W.C.etal.,2015.PotentialuseoflandfillbiogasinurbanbusfleetintheBrazilianstates:Areview.RenewableandSustainableEnergyReviews,Volume41,pp.277-283.

Nykvist,B.&Nilsson,M.,2015.Rapidlyfallingcostsofbatterypacksforelectricvehicles.NatureClimateChange5,p.329–332.

Oanda,2017.Oanda-Currencyconverter.[Online]Availableat:https://www.oanda.com/currency/converter/[Accessed4March2017].

PellegrinoCerri,C.E.etal.,2017.AssessingthegreenhousegasemissionsofBraziliansoybeanbiodieselproduction.PLOSone,pp.1-14.

Pinto,E.M.,2017.BusSalesEngineer-UrbanBusesDevelopmentatScania[Interview](2October2017).

Piva,N.,2016.GazetadoPovo.[Online]Availableat:http://www.gazetadopovo.com.br/vida-e-cidadania/futuro-das-cidades/pesquisadores-vao-pedalar-para-medir-poluicao-em-curitiba-9xz7z4fnpyctezl2rgy1nl2bz[Accessed25092017].

Prestes,O.,2017.MobilitymanageratURBS[Interview](22September2017).

Rogge,M.,Wollny,S.&Sauer,D.U.,2015.FastChargingBatteryBusesfortheElectrificationofUrbanPublicTransport-AFeasibilityStudyFocusingonChargingInfrastructureandEnergyStorageRequirements.Issue8,pp.4587-4606.

Page 80: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-80-

Scania,2014.WirelesslychargedcitybustestedforthefirsttimeinSweden.[Online]Availableat:https://www.scania.com/group/en/wirelessly-charged-city-bus-tested-for-the-first-time-in-sweden/[Accessed22March2017].

Schepanski,R.,2017.SalesEngineeratVolvoBusesLatinAmerica[Interview](15May2017).

Sherrard,A.,2017.Bioenergyinternational.[Online]Availableat:https://bioenergyinternational.com/markets-finance/sweden-surpasses-20-percent-biofuels-transportation-first-half-2017[Accessed4October2017].

Siemens,2017.Siemens-Electromobility-Chargingsystemsforebuses.[Online]Availableat:http://w3.siemens.com/topics/global/en/electromobility/Pages/charging-ebuses.aspx[Accessed22March2017].

Sinhuber,P.,Rohlfs,W.&Sauer,D.U.,2012.StudyonPowerandEnergyDemandforSizingtheEnergyStorageSystemsforElectrifiedLocalPublicTransportBuses.Seoul,Korea,2012IEEEVehiclePowerandPropulsionConference.

SolarisBus,2016.SolarisBus&Coach.Company&zero-emissionbuses.[Online]Availableat:https://www.solarisbus.com/vehicles_group/urbino-electric[Accessed4May2017].

Solaris,2015.ElectricVehiclesResearch.Solarisandpartnersdevelopbi-articulatedelectricbus..[Online]Availableat:http://www.electricvehiclesresearch.com/articles/7234/solaris-and-partners-develop-bi-articulated-electric-bus[Accessed22February2017].

timeanddate,2017.TimeandDate.[Online]Availableat:https://www.timeanddate.com/weather/brazil/curitiba/climate[Accessed8May2017].

Travain,J.C.,2017.MaitenancemanageratAutoViaçãoRedentor[Interview](11October2017).

Turcksin,L.etal.,2011.Amulti-actormulti-criteriaframeworktoassessthestakeholdersupportfordifferentbiofueloptions:ThecaseofBelgium.EnergyPolicy,Volume39,pp.200-214.

Tzeng,G.-H.,Lin,C.-W.&Opricovic,S.,2005.Multi-criteriaanalysisofalternative-fuelbusesforpublictransportation.EnergyPolicy,Issue33,pp.1373-1383.

UN,2005.UnitedNations.WorldUrbanizationProspects:The2005Revision.[Online]Availableat:http://www.un.org/esa/population/publications/WUP2005/2005wup.htm[Accessed3February2017].

UNFCCC,2005.EmissionsSummaryforBrazil.[Online]Availableat:https://unfccc.int/files/ghg_data/ghg_data_unfccc/ghg_profiles/application/pdf/bra_ghg_profile.pdf[Accessed3February2017].

URBS,2015.AvaliaçãoComparativadeNovasTecnologiasparaOperaçãonoTransporteColectivodeCuritiba,Curitiba:URBS-UrbanizaçãodeCuritibaS.A..

URBS,2015.Manualdeespecificaçãodefrota.Revisão1901/12/2015,s.l.:s.n.

Page 81: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-81-

URBS,2016.UrbanizationCompanyofCuritiba(URBS:PortugueseacronymforCompanhiadeUrbanizaçãoeSaneamentodeCuritiba).[Online]Availableat:https://www.urbs.curitiba.pr.gov.br/institucional/urbs-em-numeros[Accessed3February2017].

Uusitalo,V.etal.,2014.GreenhouseGasEmissionsofBiomethaneforTransport:UncertaintiesandAllocationMethods.Energyfuels,Issue28,p.1901−1910.

Varga,B.O.,Iclodean,C.&Mariasiu,F.,2016.ElectricandHybridBusesforUrbanTransport-EnergyEfficiencyStrategies,s.l.:SpringerInternationalPublishing.

Velázquez,S.M.S.G.,Moreira,J.R.&ApolinariodosSantos,S.M.,2012.EvaluationoftheGreenhouseeffectgasesemissionsfromethanolbuses.SãoPaulo,SAEBrasil.

VolvoBuses,2017.IntroducingtheVolvo7900ElectricHybrid.[Online]Availableat:http://electrichybrid.volvobuses.com/[Accessed22March2017].

VosslohKiepe,2017.VosslohKiepe.Electricbuses–Double-articulatedhybridbus.[Online]Availableat:http://www.vossloh-kiepe.com/electric-buses/hybrid-buses/diesel-electric-drive/double-articulated-hybrid-bus[Accessed22February2017].

WHO,2017.WorldHealthOrganization(WHO).AirPollution.[Online]Availableat:http://www.who.int/sustainable-development/transport/health-risks/air-pollution/en/[Accessed3February2017].

Xylia,M.,Ibrahim,O.&Silveira,S.,2016.Fossil-freePublicTransport:PrescriptivePolicyAnalysisfortheSwedishBusFleets.Porto,Portugal,IEEEXPlore.

Xylia,M.etal.,2017.LocatingcharginginfrastructureforelectricbusesinStockholm.TransportationResearchPartC,Volume78,pp.183-200.

Xylia,M.&Silveira,S.,2016.Ontheroadtofossil-freepublictransport:ThecaseofSwedishbusfleets.EnergyPolicy,Volume100,pp.397-412.

Zapata,C.&Nieuwenhuis,P.,2009.DrivingonLiquidSunshine-theBrazilianBiofuelExperience:aPolicyDrivenAnalysis.BusinessStrategyandtheEnvironment,Volume18,pp.528-541.

Page 82: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

No.

Code

Bu

sLineNam

eVe

hicletype

Start/en

dstations

No.

stop

sLeng

th

(km)

Time

1 (m

in)

Corridor

Term

inal

Stations

127

550

Ligeirã

oPinh

eirin

ho/C.

Gomes

Biarticulated

(29)

Term

inalPinheirinh

o/PraçaCa

rlos

Gomes

10

22.484

30

Linh

aVe

rde

17

128

500

Ligeirã

oBo

queirão

Term

inalBoq

ueirã

o/PraçaCa

rlos

Gomes

610

.3

25

Boqu

eirão

4,11,16

030

503

Boqu

eirão

Biarticulated

(116

)Articulated

2 (34)

Term

inalBoq

ueirã

o/PraçaCa

rlos

Gomes

19

20.599

33

Bo

queirão

4,11,16

059

303

Centenário/C.

Comprido

Term

inalCentená

rio/TerminalCam

po

Comprido

35

36.367

59

Oeste,

Leste

7,8,9,

12,23

065

502

CircularSul(h

orário)

Term

inalBoq

ueirã

o–

24.149

Sul,

Boqu

eirão,

CircularSul

4,10,11,

16,17,

18,22

602

CircularSul

(anti-h

orário)

Term

inalHau

er

–24

.424

164

603

Pinh

eirin

ho/Rui

Barbosa

Term

inalPinheirinh

o/PraçaRu

iBa

rbosa

21

20.061

36

Sul

10,17,18

201

203

Sta.Cân

dida

/C.R

aso

Term

inalSan

taCan

didâ

/Terminal

Capã

oRa

so

32

33.017

56

Norte,Sul

3,5,10,

18,19

005

208

Aeropo

rto

Articulated

(40)

and

Padron

(208

)

AvenidaCâ

ndidodeAbreu/Aerop

orto

641

.180

56

018

307

B.Alto/Sta.Felicidad

eTerm

inalBairroAlto/TerminalSan

ta

Felicidad

e9

17.648

/17

.927

46

1,20

019

506

BairroNovo

RuaGu

acui/PraçaRuiBarbo

sa

835

.453

45

Linh

aVe

rde,

Boqu

eirão

22

025

256

Barreirin

ha/G

uada

lupe

Term

inalBarreirinh

a/Estaçãotubo

Gu

adalup

e7

7.70

5/

8.47

853

2,15

1 Averagetimeon

aweekday.

2 URB

Sintend

stosubstitutearticulated

busesbybi-articulated

busesru

nningon

theBR

T.

-82-

Page 83: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

No.

Code

Bu

sLineNam

eVe

hicletype

Start/en

dstations

No.

stop

sLeng

th

(km)

Time

1 (m

in)

Corridor

Term

inal

Stations

031

505

Boqu

eirão/C.Cívico

Estaçãotubo

MuseuOscar

Niemayer/TerminalBoq

ueirã

o10

13

.392

/13

.320

42

Bo

queirão

4,11,15,

16

057

305

Centenário

Estaçãotubo

Marecha

lDe

odoro/Term

inalCentená

rio

48.51

2/

9.11

923

12

062

469

CentroPolité

cnico

Estaçãotubo

CírculoMilitar/Estação

tubo

Jardim

dasAméricas

312

.430

25

063

210

CIC/Ca

bral

3 Term

inalCab

ral/T

erminalCIC

–35

.390

–5,10,13

080

705

Fazend

inha

/Gua

dalupe

Term

inalFazendinh

a/Ca

iua/Terminal

Guad

alup

e7

12.762

/13

.226

–6,14,15

097

022

Inter2

(horário)

Term

inalCab

ral

18

37.804

11

2–

5,7,9,

10,16,18

023

Inter2

(anti-h

orário)

Term

inalCab

ral

17

37.609

11

3

149

520

Osterna

ck/S.C

ercado

L.D.

Term

inalCitioCe

rcad

o/Estaçãotubo

Osterna

ck

–7.24

1–

–22

159

304

Pinh

as/C.C

omprido

Estaçãotubo

CICNorte/Terminal

Pinh

ais

842

.681

54

7,8,9

163

527

Pinh

eirin

ho/Boq

ueirã

oTerm

inalPinheirinh

o/Term

inal

Boqu

eirao

–18

.617

–4,17,22

196

507

Sítio

Cercado

(horário)

Estaçãotubo

Gua

dalupe

13

31

.372

–4,10,11,

15,17,22

508

Sítio

Cercado

(anti-h

orário)

Estaçãotubo

Gua

dalupe

12

32

.221

202

204

Sta.Can

didâ

Term

inalPinheirinh

o/TerminalSan

ta

Cand

idâ

10

21.421

/20

.406

–3,5,17,

18,19

098

010

InterbairrosI(horário)

Articulated

(99),Pad

ron

R.Ta

pajos,100

046

17

.617

––

011

InterbairrosI

(anti-h

orário)

Prefeitura

54

19.540

3 Onlyon

Sun

days.

-83-

Page 84: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

No.

Code

Bu

sLineNam

eVe

hicletype

Start/en

dstations

No.

stop

sLeng

th

(km)

Time

1 (m

in)

Corridor

Term

inal

Stations

099

020

InterbairrosII(h

orário)

(2)a

ndHy

brid(1

0)Term

inalCab

ral

110

41.277

–5,7,9,

10,16

021

InterbairrosII

(anti-h

orário)

Term

inalCab

ral

114

42.727

100

030

InterbairrosIII

Term

inalSan

taCân

dida

/Terminal

Capã

oRa

so

82

29.903

/29

.530

93

1,10,11,

19,23

101

040

InterbairrosIV

Term

inalPinheirinh

o/TerminalSan

ta

Felicidad

e65

23

.697

/22

.193

82

8,13,14,

17,20

102

050

InterbairrosV

Term

inalFazendinh

a/Term

inalVila

Oficinas

50

18.343

/16

.459

68

14,18,23

103

060

InterbairrosVI

Term

inalCam

poCom

prido/Term

inal

Pinh

eirin

ho

42

18.711

/20

.568

57

6,8,17

003

182

Abranches

Articulated

(5),

Conven

tiona

l(73),Spe

cial

Micro(4

),Hy

brid(5

)

Term

inalBarreirinh

a/PraçaTira

dentes

40

11.304

/11

.348

–2

012

373

AltoTarum

ãTerm

inalBairroAlto/PraçaCarlos

Gomes

28

9.20

7/

9.23

235

1

024

205

Barreirin

ha

RuaPerfeitoJo

ãoM

oreira

Garcez/TerminalBarreirinh

a20

22

–2

042

207

Cabral/O

sório

Term

inalCab

ral/P

raçaOsório

21

25

–5

044

703

Caiuá

Term

inalCaiuá

/PraçaRuiBarbo

sa

33

–37

6

048

801

Camp.Siqueira

/Batel

LargoDo

utorTheod

oro

Baym

a/Term

inalCam

pina

doSiqu

eira

16

–10

7

067

778

Cotoleng

oTerm

inaldaFazend

inha

/PraçaRui

Barbosa

36

–35

14

076

701

Fazend

inha

Term

inaldaFazend

inha

/PraçaRui

Barbosa

28

–30

14

093

371

Higienóp

olis

Term

inalBairroAlto/PraçaSan

tos

Andrad

e23

8.99

7/

8.33

029

1

-84-

Page 85: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

No.

Code

Bu

sLineNam

eVe

hicletype

Start/en

dstations

No.

stop

sLeng

th

(km)

Time

1 (m

in)

Corridor

Term

inal

Stations

094

374

Hugo

Lan

ge

Term

inalBairroAlto/PraçaSan

tos

Andrad

e32

8.65

3/

9.23

227

1

115

972

JD.Itália

TravessaNestord

eCa

stro/Terminal

SantaFelicidad

e34

33

–20

186

375

Sagrad

oCo

ração

Term

inalBairroAlto/PraçaSan

tos

Andrad

e34

10

.480

/10

.555

38

1

189

965

SãoBe

rnardo

PraçaRu

iBarbo

sa/Rua

De

semba

rgad

orJo

séCarlosR

ibeiro

Riba

s

––

––

203

901

Sta.Felicidad

eTravessaNestord

eCa

stro/Terminal

SantaFelicidad

e27

29

–20

212

372

Tarumã

Term

inalBairroAlto/PraçaCarlos

Gomes

30

9.79

6/

10.345

29

1

064

001

CircularCentro

(horário)

Micro(7

)PraçaSantosAnd

rade

13

4.46

9–

––

002

CircularCentro

(anti-h

orário)

Praça19

deDe

zembro

24

8.21

6–

-85-

Page 86: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-86-

Appendix2-Identificationcodeforterminalsandadditionalstart/endstops1. BairroAlto132. Barreirinha3. BOAVISTA144. BOQUEIRÃO5. CABRAL6. Caiuá7. CAMPINADOSIQUEIRA8. CAMPOCOMPRIDO9. CAPÃODAIMBUIA10. CAPÃORASO11. CARMO12. CENTENÁRIO13. Cic14. Fazendinha15. GUADALUPE16. HAUER17. PINHEIRINHO18. PORTÃO19. SANTACÂNDIDA20. SantaFelicidade21. Sites22. SÍTIOCERCADO23. VILAOFICINAS24. EstaçãoTuboMarechalDeodoro25. EstaçãoTuboMuseuOscarNeimayer26. Praça19deDezembro27. PraçaCarlosGomes28. PraçaSantosAndrade29. PraçaTiradentes30. Prefeitura31. RuaTapajosnº.1000

131to23areterminals.24to31areregularortubestations.14TerminalswritteninuppercasebelongtotheBRTsystem,i.e.theseterminalsarelocatedontheBRTcorridors.

Page 87: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-87-

Appendix3–Chassistypecharacteristics

Table16-DifferentbusesemployedinCuritiba'sPublicTransportanditsmaincharacteristics.Source:(URBS,2015)

15Sumofvehicleandpassengers’weightconsideringmaximumcapacity. 16Foroperationinfeeder,inter-neighbourhoodandtrunklines.17Foroperationinfeeder,inter-neighbourhood,trunkandconventionallines. 18Foroperationinfeeder,trunkandconventionallines.

ChassistypeTotal

capacity(seated)

Weight15(kg)

Length(m)

Width(m)

Minimumheight(m)

Crosssectionalarea(m2)

Bi-articulatedBRT

250(57) 40500 27.6 2.6 2.2 5.72

Articulated(ExpressBRT)

165(44) 30000 20.3 2.6 2.2 5.72

Articulated(Directline)

158(42) 28000 18.8 2.5 2.1 5.25

Articulated16 142(38) 28000 18.6 2.5 2.1 5.25

Padron(Directline)

102(29) 18000 13 2.5 2.1 5.25

Padron17 100(28) 18000 13 2.5 2.1 5.25

Conventional18 85(29) 17000 12.25 2.5 2.1 2.1

MicroSpecial 67(19)12000–15000

9.5/10.3 2.5 1.95 4.88

Micro 40(18) 8500 8 2.3 1.9 4.37

Page 88: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-88-

Appendix4–Indices,variablesandparametersTable17-Listofallindices,variablesandparametersusedintheoptimisationalgorithm.

Indices

𝑙 Busline

𝑡𝑒𝑐ℎ Bustechnology(electricity,biodiesel,bioethanolorbiogas)

𝑡𝑜𝑝 Buschassistype(articulated,standard,micro)

Variables

𝐶676:# Totalcosts(millionR$/year)

𝐸676:# Totalenergyconsumption(GWh/year)

𝐺𝐻𝐺676:# TotalGHGemissions(thousandtonsCO2eq/year)

Parameters

𝐶#,6*-+,2lb:m6bn-6nb* Annualisedinfrastructurecost(millionR$/year)

𝐶#,6*-+frr Annualisedenergystoragesystemcost(millionR$/year)

𝐶#,6*-+,ln*# Fuelcost(millionR$/year)

𝐶#,6*-+o&q Operationalandmaintenancecost(millionR$/year)

𝐶#,6*-+)*+,-#* Annualisedvehiclecost(millionR$/year)

𝐶𝑎𝑝#,6*-+ Batterycapacityinbuslinelandtechnologytech(Wh)

𝐶𝑎𝑝678Maximumenergystoredinthebus’sbatterypackortankforthedifferentbustopologiestop(kWhorL)

𝐶𝑜𝑛𝑠6*-+ Energyconsumptionvaluesofeachtechnology(kWh/km)

𝐸# Totalenergyconsumptionofbuslinelduringonetrip(kWh/km)

𝐸𝐹6*-+ Emissionfactoroftechnologytech(kgCO2eq/km)

𝐿 Numberofbuslines

𝐿 Setofbuslines

𝐿# Lengthofbuslinel(km)

𝑁#)*+,-#* Numberofvehiclesoperatingonbuslinel

𝑃-+:bc,2c Powercapacityofconductivechargingstation(kW)

𝑆𝑂𝐶,2,6,:# Initialstate-of-charge,i.e.state-of-chargeatthebeginningoftheday,beforethestartofthefirsttrip(kWh)

𝑆𝑂𝐶1:;Maximumallowedstate-of-chargeoftheenergystoragesystem(%)

𝑆𝑂𝐶1,2Minimumallowedstate-of-chargeoftheenergystoragesystem(%)

𝑆𝑂𝐶2 State-of-chargeaftercompletingtripn(kWh)

𝑇𝐴𝑇# Numberoftotalannualtripsofbuslinel

𝑇𝐸𝐶𝐻 Numberoftechnologies

𝑇𝐸𝐶𝐻 Setoftechnologies

Page 89: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-89-

𝑡-+:bc,2c Chargingtime(min)

𝜂-+:bc,2c Chargingefficiency(%)

Appendix5–TimetableofbusroutesinTerminalBairroAlto

Time 307 371 372 373 374 37506:15:00 06:16:00 06:17:00 06:18:00 06:19:00 06:20:00 06:21:00 06:22:00 06:23:00 06:24:00 06:25:00 06:26:00 06:27:00 06:28:00 06:29:00 06:30:00 06:31:00 06:32:00 06:33:00 06:34:00 06:35:00 06:36:00 06:37:00 06:38:00 06:39:00 06:40:00 06:41:00 06:42:00 06:43:00 06:44:00 06:45:00 06:46:00 06:47:00 06:48:00 06:49:00 06:50:00 06:51:00 06:52:00 06:53:00 06:54:00 06:55:00

Thisappendixshowsthebuslines’(307,371,372,373, 374, 375) arrival and departure from busterminal Bairro Alto. The colour bars representthebusstopped(dwell time=5minutes)at theterminal.Theobjectiveofthistableistoshowthatthebuses operating on those lines arrive at theterminal within seconds/minutes of each other,hence more than one charger is needed if allroutes are electrified. Alternatively, the buses’schedulecouldbeadaptedsothatbusesarriveatdistinct times and the dwell time should beextendedsothatabuscanenteraqueueincasethechargerisoccupied.

Page 90: Decarbonising Public Bus Transport – a case study on ...1199275/FULLTEXT01.pdf · a case study on Curitiba, Brazil Joana Lena Düllmann Vasques Pereira 2017 -2- Master of Science

-90-

06:56:00 06:57:00 06:58:00 06:59:00 07:00:00 07:01:00 07:02:00 07:03:00 07:04:00 07:05:00 07:06:00 07:07:00 07:08:00 07:09:00 07:10:00 07:11:00 07:12:00 07:13:00 07:14:00 07:15:00