Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich...

28
Hideyasu SHIMADZU Ritei SHIBATA Toshinobu SHIMOI Kotaro OKA (Keio University, JAPAN) Cherry Bud Workshop 2006 Building Models from Data Keio University, Yokohama, JAPAN Data Modelling of Data Modelling of Neuron Neuron Membrane Membrane Potential Potential

Transcript of Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich...

Page 1: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

Hideyasu SHIMADZURitei SHIBATA

Toshinobu SHIMOIKotaro OKA

(Keio University, JAPAN)

Cherry Bud Workshop 2006Building Models from Data

Keio University, Yokohama, JAPAN

Data Modelling ofData Modelling ofNeuron Neuron MembraneMembrane PotentialPotential

Page 2: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 2

Neuron membrane potential

First part of observed data

Page 3: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 3

Outline

BackgroundAction potential

DataIdeas for data modelling

Instantaneous change, gradual change

ModelConclusion

Page 4: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 4

Overview

Membrane potential change are caused by exchange of ions across the neuron membrane.

Neuron Membrane

K+

Na+

Page 5: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 5

Hodgkin-Huxley model(Hodgkin & Huxley 1952)

Their ideas:Membrane Condenser;Ion channel Resistance and Battery.

http://nobelprize.org/

K+

Na+

Page 6: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

Izhikevich (2003, 2004), Rose and Hindmarsh (1989), Wilson (1999) etc.

Membrane potential changes conductance

Page 7: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 7

Data

Earthworm’s neuronMembrane potential 879000 observations (44 s per 0.05 ms)

Electrode

Page 8: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 8

Words

Spike(s): instantaneous jumpCluster: dense spikesTrend: gradual change

Spike(s) Cluster Trend

Page 9: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 9

Appearance of whole data

Page 10: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 10

Basic ideas for modelling

Trend (second)Dynamic model

A spike (mili second)Dynamic model

Occurrence points of spikes(in a wink)

Stochastic model

Time scale

long

short

Page 11: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 11

Trend

=+

Page 12: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 12

Spike

Page 13: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 13

Electric circuit model

Page 14: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.
Page 15: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 15

Parameter estimation

Page 16: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 16

Occurrence points of spike

Point process model (Cox and Isham 1980)

↓occurrence point of activation

(Kass and Ventura 2001, Ventura et al. 2002 etc.)

Point process model is applied for each cluster

Page 17: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.
Page 18: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.
Page 19: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 19

Estimation of intensity function

Intensity function

Likelihood

↓occurrence point of activation

Page 20: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 20

Estimated intensity (ex. Cluster 2)

Intensity

Page 21: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 21

Simulation

Page 22: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 22

What the model tells us?

Relationship between intensity and trend

Parameter changes of intensity function among clusters

Page 23: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 23

Relationship between intensity and trend

1500 2000 2500 3000

-2

02

46

8

time (ms)

membrane potential (mV)

1500 2000 2500 3000

-1

01

23

4

time (ms)

Trend

1500 2000 2500 3000

0.00

0.02

0.04

0.06

0.08

time (ms)

intensity

Trend

Intensity

Page 24: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 24

Parameters changes of intensity function among clusters

Page 25: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 25

Future works

We just have a model for a cluster

What is the trend?

How build a model of relationship between clusters?

Page 26: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 26

References (1)Cleveland and Devlin (1988). Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. Journal of the American Statistical Association, 83(403):596-610.Cox and Isham (1980). Point Processes. Chapman and Hall, London.Hodgkin and Huxley (1952). A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. Journal of Physiology, 117:500-544.Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.Izhikevich (2004). Which model to use for cortical spiking neurons? IEEE Transactions on neural networks15(5):1063-1070.

Page 27: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

30 March 2006 27

References (2)Ogata (1981). On Lewis’ Simulation Method for Point Processes. IEEE Transactions on Information Theory IT-27(1):23-31.Kass and Ventura (2001). A spike-train probability model. Neural Computation, 13: 1713-1720.Rose and Hindmarsh (1989). The assembly of ionic currents in a thalamic neuron I. the three-dimensional model. Proceedings of the Royal Society of London. Series B, Biological Sciences 237:267–288.Ventura et al. (2002). Statistical analysis of temporal evolution in single-neuron firing rates. Biostatistics 3(1): 1-20.Wilson, H. (1999). Simplified dynamics of human and mammalian neocortical neurons. Journal of Theoretical Biology 200:375–388.

Page 28: Data Modelling of Neuron Membrane Potential · Journal of Physiology, 117:500-544. Izhikevich (2003). Simple model of spiking network. IEEE Transactions on Neural Networks 14(6):1569–1572.

Thank you for kind attention.Thank you for kind attention.Comments and suggestions are welcomed!Comments and suggestions are welcomed!

Hideyasu SHIMADZU(Keio University)