Dark Matter and Dark Energy: gases that dominate the...

37
Dark Matter and Dark Energy: gases that dominate the Universe Dragan Huterer University of Michigan

Transcript of Dark Matter and Dark Energy: gases that dominate the...

  • Dark Matter and Dark Energy:

    gases that dominate

    the Universe

    Dragan Huterer

    University of Michigan

  • http://hetdex.org/dark_energy/

    http://hetdex.org/dark_energy/http://hetdex.org/dark_energy/

  • Edwin Hubble and the

    Expansion of the Universe

    (1929)

    In 1929 Hubble measured the red

    shift (or, redshift) of nearby

    galaxies and found that they nearly

    all move away from us ⇒

    The Universe is Expanding!

    100 inch Hooker telescope

    (Mt Wilson, CA)

  • •Velocity is easy: from the Doppler recession of galaxy spectra (first done by astronomer Vesto Slipher, whom Hubble never credited)

    •Distance is hard: from Cepheid variable stars

    Baking the raisin bread: the farther two raisins are, the faster they are

    receding

    Expanding spaces: bread & universe

  • Redshift: shift of galaxy light wavelength (due to galaxy’s motion relative to us)

    Light from almost all galaxies is redshifted (and not blueshifted)- the galaxies are receding away from us!

    larger wavelength

    observed (receding)

    smaller wavelength

    observed (approaching)

  • http://hyperphysics.phy-astr.gsu.edu/

    Cepheids

    (variable stars)

    • Empirical finding: Cepheids’ period of pulsation is proportional to intrinsic luminosity

    • Measure period

    • Measure apparent luminosity (or, flux)

    • Then, can get distance:

    f = L / (4πd2) (f = flux

    L = luminosity)

    How do you get distances to galaxies?

    http://hyperphysics.phy-astr.gsu.edu/Hbase/astro/cepheid.htmlhttp://hyperphysics.phy-astr.gsu.edu/Hbase/astro/cepheid.html

  • The original Hubble diagram (1929)

    H0 ≈ 70 km/sec/megaparsec

    Slope of this relation (velocity vs. distance) is called the Hubble constant H0.

    Modern value:

    distance

    velo

    city

    (will return to H0 later!)

  • Three key questions

    in cosmology

    InflationDark

    Matter

    Dark

    Energy

  • Cosmological components as fluids

    Pressure p, energy density !

    The continuity equation is

    with

    ρ̇+ 3H(p+ ρ) = 0

    AAACBXicdZDLSgMxFIYzXmu9VV3qIliESqEktdh2IRTddFnBXqAzlEyatqGZC0lGKEM3bnwVNy4Uces7uPNtzLQVVPRA4OP/z0lyfjcUXGmEPqyl5ZXVtfXURnpza3tnN7O331JBJClr0kAEsuMSxQT3WVNzLVgnlIx4rmBtd3yV+O1bJhUP/Bs9CZnjkaHPB5wSbaRe5sjuB9qWowDm4Vk9F+YTPoUXENl2upfJogJCCGMME8Dlc2SgWq0UcQXixDKVBYtq9DLv5joaeczXVBCluhiF2omJ1JwKNk3bkWIhoWMyZF2DPvGYcuLZFlN4YpQ+HATSHF/Dmfp9IiaeUhPPNZ0e0SP120vEv7xupAcVJ+Z+GGnm0/lDg0hAHcAkEtjnklEtJgYIldz8FdIRkYRqE1wSwtem8H9oFQu4VKhel7K1y0UcKXAIjkEOYFAGNVAHDdAEFNyBB/AEnq1769F6sV7nrUvWYuYA/Cjr7RPCXZYz

    d ln ρ

    d ln a+ 3(1 + w) = 0

    AAACD3icdZDNSgMxFIUz/tb6N+rSTbAoilASFdsuhKIblxWsFjqlZDKZNjSTGZKMUoa+gRtfxY0LRdy6defbmNEKKnoh8HHOvdzc4yeCa4PQmzMxOTU9M1uYK84vLC4tuyurFzpOFWVNGotYtXyimeCSNQ03grUSxUjkC3bpD05y//KKKc1jeW6GCetEpCd5yCkxVuq6W16oCM0C6AnpqX48ygJLkIzgLtzfxrvXO/AIomLXLaEyQghjDHPAlUNkoVar7uEqxLllqwTG1ei6r14Q0zRi0lBBtG5jlJhORpThVLBR0Us1SwgdkB5rW5QkYrqTfdwzgptWCWAYK/ukgR/q94mMRFoPI992RsT09W8vF//y2qkJq52MyyQ1TNLPRWEqoIlhHg4MuGLUiKEFQhW3f4W0T2xAxkaYh/B1KfwfLvbK+KBcOzso1Y/HcRTAOtgA2wCDCqiDU9AATUDBDbgDD+DRuXXunSfn+bN1whnPrIEf5by8A06dmkQ=

    H ≡ ȧ/a

    AAAB+XicdVDLSgMxFM34rPU16tJNsAiualKKbXdFN11WsA9oh5JJM21oJjMmmUIZ+iduXCji1j9x59+YaSuo6IHA4Zx7uDfHjwXXBqEPZ219Y3NrO7eT393bPzh0j47bOkoUZS0aiUh1faKZ4JK1DDeCdWPFSOgL1vEnN5nfmTKleSTvzCxmXkhGkgecEmOlges2+uw+4dP+MDIpmV+SgVtARYQQxhhmBFeukCW1WrWEqxBnlkUBrNAcuO82S5OQSUMF0bqHUWy8lCjDqWDzfD/RLCZ0QkasZ6kkIdNeurh8Ds+tMoRBpOyTBi7U74mUhFrPQt9OhsSM9W8vE//yeokJql7KZZwYJulyUZAIaCKY1QCHXDFqxMwSQhW3t0I6JopQY8vK2xK+fgr/J+1SEZeLtdtyoX69qiMHTsEZuAAYVEAdNEATtAAFU/AAnsCzkzqPzovzuhxdc1aZE/ADztsn8/OT5w==

    the Hubble parameter and a is scale factor

    or:

    Solutions for w = const:

    with eq. of state w = p/ρ

    AAAB73icdVBNSwMxEM3Wr1q/qh69BIvgqSal2PYgFL14rGBtoV1KNs22odlkTbJKKf0TXjwo4tW/481/Y7atoKIPBh7vzTAzL4gFNxahDy+ztLyyupZdz21sbm3v5Hf3boxKNGVNqoTS7YAYJrhkTcutYO1YMxIFgrWC0UXqt+6YNlzJazuOmR+RgeQhp8Q6qX1/Fp909VD18gVURAhhjGFKcOUUOVKrVUu4CnFqORTAAo1e/r3bVzSJmLRUEGM6GMXWnxBtORVsmusmhsWEjsiAdRyVJGLGn8zuncIjp/RhqLQraeFM/T4xIZEx4yhwnRGxQ/PbS8W/vE5iw6o/4TJOLJN0vihMBLQKps/DPteMWjF2hFDN3a2QDokm1LqIci6Er0/h/+SmVMTlYu2qXKifL+LIggNwCI4BBhVQB5egAZqAAgEewBN49m69R+/Fe523ZrzFzD74Ae/tEw3KkAQ=

    ρ(a) ∝ a−3 (w = 0; matter)

    ρ(a) ∝ a−4 (w = +1/3; radiation)

    ρ(a) ∝ const (w = −1; vacuum energy)

    AAACp3icdVHbbhMxEPVuubThFspjXywCKBE0rNuIJqqQKnhBvFBEk0aKQzTrdRKra3uxvaXRan+Nj+CNv8GbBBWqMJalozNzZuwzcZYK66LoVxBu3bp95+72Tu3e/QcPH9Uf7w6szg3jfaZTbYYxWJ4KxftOuJQPM8NBxik/jy/eV/nzS26s0OrMLTI+ljBTYioYOE9N6j+omesmtPALmhmdOY3ha7F/WNJvOST0VXVw8/vb6Bh7KGN9VUhwjpuyRWlto7ZzU/uSvD68lhtIxHL25g4FNRIzraxbtaka7JNr+SWwPJeYK25mi7I1qTeidhRFhBBcAXL0JvKg1+sekC4mVcpHA63jdFL/SRPNcsmVYylYOyJR5sYFGCdYyssazS3PgF3AjI88VCC5HRdLn0v83DMJnmrjr3J4yf6tKEBau5Cxr/Quze3NXEVuyo1yN+2OC6Gy3HHFVoOmeYq9IdXScCIMZy5deADMCP9WzOZggPlN2Jo34c9P8f/B4KBNOu3e507j5N3ajm20h56iJiLoCJ2gD+gU9RELngUfgy/BWdgKP4WDcLgqDYO15gn6J0L4DRFozBA=

  • Matter

    Vacuum energy

    NowCMBNucleosynthesisInflation

    Energy/volume

    Time>1

    00

    ord

    ers

    of

    ma

    gn

    itu

    de

    How components scale with time

    10-35 sec 1 minute 380,000 yr 13.7 Gyr

    Radiation a is scale factor a=0: Big Bang

    a=1: today

    a ≡ 1/(1+z)

    ρmat(a) ∝ a−3

    ρrad(a) ∝ a−4

    ρvac(a) ∝ a0

    AAACT3icdVHJTsMwFHTKXrYCRy4WFQgOVAmUpbcKLhxBogWpCdWL41CrThzZDlIV9Q+5wI3f4MIBhHBLWMryJEujmbGeZ+wnnClt2w9WYWx8YnJqeqY4Oze/sFhaWm4qkUpCG0RwIS99UJSzmDY005xeJpJC5HN64XePB/rFDZWKifhc9xLqRXAds5AR0IZql0JXdkQ7c2WEI9D9TdjCG24iRaIFhqtse7fvusUvj4Tgt6c66rkB8tNjt0tlu7JnO7V9B9sVezj4k3FypozyOW2X7t1AkDSisSYclGo5dqK9DKRmhNN+0U0VTYB04Zq2DIwhosrLhn308bphAhwKaU6s8ZD9fiODSKle5BunCd1RP7UB+ZfWSnV46GUsTlJNY/K+KEw5NiEH5eKASUo07xkARDLzVkw6IIFo8wVFU8JHUvw/aO5UnGqldlYt14/yOqbRKlpDm8hBB6iOTtApaiCCbtEjekYv1p31ZL0WcmvBysEKGpnCzBuvQbKD

  • 4%

    22%

    74%

    Makeup of universe today

    Dark Matter(suspected since 1930sestablished since 1970s)

    Dark Energy(suspected since 1980sestablished since 1998)

    Also: radiation (0.01%)

    Baryonic Matter(stars 0.4%, gas 3.6%)

  • Three big questions in cosmology

    Dark

    Matter

    Inflation

    (Early Univ)

    Dark

    Energy

    What is the DM

    particle?

    What are its

    interactions,

    decay modes..?

    What is the

    physics behind

    the accelerated

    expansion?

    At what energy?

    How many

    fields?

    With what

    interactions?

    “Who is this

    inflaton field?”

  • Dark Matter

    Fritz Zwicky

    “Dunkle Materie”,1933

    Vera Rubin

    flat rotation curves, 1970s

    Coma cluster

    of galaxies

    Illustration:

    Jessie Muir

  • X-ray light mass (does the lensing)

    Modern evidence for Dark Matter

    Bullet cluster

    Mass profile around a galaxy cluster

    Grillo et al 2015

    (CLASH team)

    Mass

    surface

    density

    Markevitch et al

    Clowe et al

  • Strongest evidence for Dark Matter

    Ωdark matterh2= 0.1193± 0.0014

    Ωbaryons h2 = 0.0222 ± 0.0001

    Planck full-sky map

    Planck 2015

    cosmic microwave background (CMB)

    anisotropy sky map

    its angular power spectrum

    baryons ≠ dark matter

    at ~50 sigma!

  • M. Deliyergiyev, 2016

    Worldwide quest to (in)directly detect DM

  • 1 10 100 1000 10410!50

    10!49

    10!48

    10!47

    10!46

    10!45

    10!44

    10!43

    10!42

    10!41

    10!40

    10!39

    10!38

    10!37

    10!14

    10!13

    10!12

    10!11

    10!10

    10!9

    10!8

    10!7

    10!6

    10!5

    10!4

    10!3

    10!2

    10!1

    WIMP Mass !GeV"c2#

    WIMP!nucleoncrosssection!cm2#

    WIMP!nucleoncrosssection!pb#

    CDMS II G

    e (2009)

    Xenon100

    (2012)

    CRESST

    CoGeNT(2012)

    CDMS Si(2013)

    EDELWEISS (

    2011)

    DAMA SIMPLE (2

    012)

    ZEPLIN-III

    (2012)COU

    PP (2012)

    LUX (2013

    )

    DA

    MIC (2012)

    CD

    MS

    lite (2

    013)

    DarkSide G

    2

    PIC

    O250-C

    3F

    8

    DarkSide 50

    Xenon1T

    DEAP3600

    LZPICO

    250-CF3I

    LUX 300d

    ay

    SuperCDM

    S SNOLAB

    Sup

    erCDMS S NOLAB

    8BNeutrinos

    Atmospher

    ic and DSN

    B Neutrinos

    7BeNeutrinos

    COHERENT N

    EUTRIN O SCATTERIN

    G

    C

    OH

    ER

    EN

    T N

    EU

    TRI NO SCATT

    ERING

    COHE

    RENT N

    EUTRINO

    SCATT

    ERING

    J. Cooley, arXiv:1410.4960

    Direct searches:

    Cross-section vs mass constraints

    No direct detection yet!!

  • • …),

    Indirect detection

    p

    e+

    _

    The Milky Way in gamma-rays as measured by Fermi-LAT

    Numerous alarms about “bumps” in spectra seen from Galaxy,

    and from dwarf galaxies (Reticulum, etc)

    So far, none are convincing or truly statistically significant

    Exciting and fast-developing field, but will be hard to have a

    convincing detection of DM just from indirect detection

  • Three big questions in cosmology

    Dark

    Matter

    Inflation

    (Early Univ)

    Dark

    Energy

    What is the

    physics behind

    the accelerated

    expansion?

  • SNe Ia are “Standard Candles”

    If you know the

    intrinsic brightness

    of the headlights,

    you can estimate

    how far away the

    car is

    (car headlights example)

    A way to measure (relative) distances to objects far away

  • But how do you find SNe?

    Rate: 1 SN per galaxy per 500 yrs!

    Solution:

    1. use world’s large telescopes,

    2. schedule them to find, then “follow-up” SNe

    3. put in heroic hard work

    Motivation: to measure geometry of the universe

    2011 Physics Nobel Prize (Perlmutter, Riess, Schmidt)

  • Evidence for Dark energy

    from type Ia Supernovae

    0 0.5 1Redshift z

    -0.5

    0

    0.5

    1

    ∆ (

    m-M

    )

    SNBAO

    always accelerates

    accelerates nowdecelerated in the past

    always decelerates

    flatopen

    closed

    Huterer & Shafer, Rep. Prog. Phys.; arXiv:1709.01091

  • 0.0 0.5 1.0

    0.0

    0.5

    1.0

    1.5

    FlatBAO

    CMB

    SNe

    Supernova Cosmology Project

    Kowalski, et al., Ap.J. (2008)

    m

    Union 08SN Ia

    compilation

    Constraints on dark energy

    ρDE / ρcritical

    ρmatter / ρcritical

    Diverse

    methods

    agree!

  • 4%

    22%

    74%

    Makeup of universe today

    Dark Matter(suspected since 1930sestablished since 1970s)

    Dark Energy(suspected since 1980sestablished since 1998)

    Also: radiation (0.01%)

    Baryonic Matter(stars 0.4%, gas 3.6%)

  • Huterer & Shafer, Rep. Prog. Phys.; arXiv:1709.01091

    Ωm = 1− ΩDE

    ΩDE ≡ρDE

    ρcrit

    w ≡pDE

    ρDE

  • Fine Tuning Problem:

    “Why so small”?

    Vacuum Energy: Quantum Field Theory

    predicts it to be determined by cutoff scale

    60-120 orders of magnitude smaller than expected!

    Planck scale:

    SUSY scale:

    (1019 GeV)4(1 TeV)4 }(10−3eV)4Measured:

    ρVAC =1

    2

    fields

    gi

    0

    k2 + m2d3k

    (2π)3�

    fields

    gik4max

    16π2

  • Matter

    Dark Energy

    NowCMBNucleosynthesisInflation

    Energy/volume

    Time

    >1

    00

    ord

    ers

    of

    ma

    gn

    itu

    de

    10-35 sec 1 minute 380,000 yr 13.7 Gyr

    Radiation

    The coincidence problem

    Time after Big Bang:

  • V

    φ

    Lots of theoretical ideas, few compelling ones:

    Very difficult to motivate DE naturally

    E.g. ‘quintessence’

    (evolving scalar field)

    mφ ≃ H0 ≃ 10−33 eV

    φ̈+ 3Hφ̇+dV

    dφ= 0

  • String landscape?

    0 10−120 MPL4 MPL4 ρΛ

    Among the ∼10500 minima,

    we live in one that allows structure/galaxies to form(selection effect) (anthropic principle)

    Pam Jeffries

    Kolb & Turner, “Early Universe”, footnote on p. 269:

    “It is not clear to one of the authors how a concept as lame

    as the “anthropic idea” was ever elevated to the status of a principle”

    Landscape

    “predicts” the

    observed ΩDE

  • A difficulty: DE theory target accuracy, in e.g. w=p/ρ,

    not known a priori

    (Δm2)sol ≃ 8×10−5 eV2

    (Δm2)atm ≃ 3×10−3 eV2

    Contrast this situation with:

    1. Neutrino masses:

    ∑mi = 0.06 eV* (normal)}∑mi = 0.11 eV* (inverted)

    *(assuming m3=0)

    vs.

    2. Higgs Boson mass (before LHC 2012):

    mH ≲ O(200) GeV(assuming Standard Model Higgs)

  • •Ground photometric: ‣Kilo-Degree Survey (KiDS)

    ‣Dark Energy Survey (DES)

    ‣Hyper Supreme Cam (HSC)

    ‣Large Synoptic Survey Telescope (LSST)

    •Ground spectroscopic: ‣Hobby Eberly Telescope DE Experiment (HETDEX)

    ‣Prime Focus Spectrograph (PFS)

    ‣Dark Energy Spectroscopic Instrument (DESI)

    •Space: ‣Euclid

    ‣Wide Field InfraRed Space Telescope (WFIRST)

    Ongoing or upcoming DE experiments:

  • Dark Energy Survey

    • New camera on 4m telescope in Chile

    • Observations 2013-2019

    • ~700 scientists worldwide

    • Analyses in progress (first major results Aug 2017)

  • Dark Energy Survey (DES)

    Cerro Tololo, ChileBlanco

    Telescope

  • 0�+10�+20�+30�+40�+50�+60�+70� +340�+350�

    −50�

    −40�

    −30�

    κE; 0.2 < z < 1.3

    −3

    −2

    −1

    0

    1

    2

    3

    S/N

    0�+10�+20�+30�+40�+50�+60�+70� +340�+350�

    0.24 0.30 0.36 0.42

    Ωm

    0.72

    0.78

    0.84

    0.90

    0.96

    S8

    DES Y1Planck

    DES Y1 + Planck

    101

    102

    0.0

    2.0 11

    101

    102

    0.0

    2.0 21

    101

    102

    22

    101

    102

    0.0

    2.031

    101

    102

    32

    101

    102

    33

    101

    102

    θ (arcmin)

    0.0

    5.0 41

    101

    102

    θ

    42

    101

    102

    θ

    43

    101

    102

    θ

    44

    DES Y1 fiducial

    best-fit model

    scale cuts

    θξ +

    (10−

    4arcm

    in)

    DES Year-1 results (August 2017)1350 sq. deg., 35 million galaxies, “double pipeline” for everything

    Abbott et al, arXiv:1708.01530

    Year-3 data coming out “any month now”, 3x area (close to

    5000 sqdeg), 200-300 million galaxies, leading galaxy survey

  • Brea

    king

    news

    : Hubble tension!

    Type Ia supernovae + Cepheid distances give

    H0 = 74.0 ± 1.4 (km/s/Mpc)

    Cosmic Microwave Anisotropies give

    H0 = 67.4 ± 0.4 (km/s/Mpc)

    These two measurements are discrepant at about five sigma!*

    * once strong-lensing constraints are added, which come out high (H0 ~ 73)

  • Verde, Treu & Riess arXiv:1907.10625

    •Currently the most

    exciting thing in field

    of cosmology

    •Difference between

    early- and late-

    universe meas. (?)

    •Many hundreds of

    papers on topic, no

    compelling solution

    •Weird systematics?

    New properties of DM

    or DE? ….

    Hubble tension!

  • Conclusions

    •Huge variety of new observations in cosmology,

    particularly in the large-scale structure

    •3 big questions: dark matter, dark energy, inflation

    •The current Hubble tension may be a signature of

    such a “bump”

    •Like particle physicists, we would really like to

    see some “bumps” in the data - signatures of new

    physics

    •Tremendous successes (DM, DE, inflation “proven”),

    yet challenges (what is the physics behind them?)