Dark and Its Optical Network Applications - CESNET · PDF fileand Its Optical Network...

18
© National Institute of Information and Communications Technology Hiroaki Harai ([email protected]) Director at Network Architecture Lab. National Institute of Information and Communications Technology Koganei, Tokyo, Japan Sep 15, 2014 8 th CEF Networks Workshop 1/18 Dark Fibre Testbed in Japan and Its Optical Network Applications

Transcript of Dark and Its Optical Network Applications - CESNET · PDF fileand Its Optical Network...

© National Institute of Information and Communications Technology

Hiroaki Harai ([email protected])Director at Network Architecture Lab.

National Institute of Information and Communications Technology Koganei, Tokyo, Japan

Sep 15, 20148th CEF Networks Workshop

1/18

Dark Fibre Testbed in Japan and Its Optical Network 

Applications

© National Institute of Information and Communications Technology

Contents of This Talk JGN‐X ‐ A nation‐wide R&D network testbed Dark fibres on JGN‐X Advanced optical applications on the dark fibres JGN‐X useful facilities for optical network experiments Conclusion and Next step

2/18

© National Institute of Information and Communications Technology

Where is Japan? –JGN‐X International Circuits

Tokyo

CA*net4(Canada)

SURFnet(Netherland)

Internet2(USA)

NLR(USA)

MREN(USA)

AARNet(Australia)

IEEAF(USA)

UKLight(UK)

ThaiSarn(Thailand)

SingAREN(Singapore)

StarLight(USA)TransPAC3

(USA)

LA

HK

GEANT(Europe)

APAN(Asia)

PacificWave(USA)

CERNET(China)

CSTNET(China)

BKKUniNet(Thailand)

KOREN(Korea)

KR

SG

US‐JP line             : Tokyo‐Los Angeles, 10GbpsKR‐JP line (APII)  : Tokyo‐Seoul, 10GbpsHK‐JP line : Tokyo‐Hong Kong, 10GbpsHK‐SG line            : Hong Kong – Singapore 2.4GbpsSG‐TH line            : Singapore –Thailand 1Gbps

TEIN4(Asia, Europe)

http://www.jgn.nict.go.jp/ 3/18

JGN-X Network (planned for Oct. 2014)Realizing multiple New Generation Network Planes on virtual JGN‐X network. Also made it available to interconnect  with other Testbeds.

FukuokaHiroshima

Okayama

Sendai

NICT Koganei

SouthKorea

USA Thailand Singapore HongKong

Bandwidth International

Wireless Testbed

Kanazawa

Kagawa

Okinawa

Nagoya

Kochi

DCNDCN

DCNDCN plane

OFOF

OFOF

OFOpenFlow plane

VN

VN

Virtual Node planeVN

VN

Optical TestbedWireless Testbed

VLAN-based testbed network

Osaka

Iwate

Tokyo

Sapporo

100G10G

DF

VN Virtual Node

OF Openflow

DCN DCNEx

1GVirtual Storage

StarBED

Japan- USA: 10GJapan - Korea: 10GJapan – Hong Kong: 10GHong Kong - Singapore 2.4GSingapore - Thailand: 1G

Optical TestbedKoganei -- OtemachiOtemachi -- Hakusan

DCNVN

OF

VN OF

DCNVN

OF

VN

OF

OF OF OF

VN

OF

OF

VN

OF

DCNVN

OF

OF 4/18

© National Institute of Information and Communications Technology

Dark Fibres

G.652 single mode fibres (SMFs) are installed16 SMFs (45km, < 20dB@1550nm) Koganei<‐> Otemachi4 SMFs  (12km, < 12dB@1550nm) Otemachi<‐>Hakusan)

Total length approximate 768 km No amplifiers (Installed by users)

HakusanTOKYO

KoganeiTOKYO

OtematchiTOKYO

SMF 16 fibers (2 fibers x 8) SMF  4 fibers (2 fibers x 2)

(Approx. 45km)

(Approx12km)

http://www.jgn.nict.go.jp/ 5/18

© National Institute of Information and Communications Technology

Advanced Applications for Dark Fibre Testbed Time and Frequency Transfer Quantum Communications (Quantum Key Distribution Network) 1.28 Tbps Optical Packet Transmission and Switching System Optical Packet and Circuit Integrated Network Commercial 100Gigabit Ethernet Line

6/18

© National Institute of Information and Communications Technology

Highly Stable Time and Frequency (T&F) Transfer

NICT has primary responsibility of National T&F Metrology in Japan. Japan Standard Time, Atomic Frequency Standards, Satellite Link, etc..

New technique for T&F transfer using optical fiber linkActive cancellation of imposed fiber noise during transmission

Direct frequency comparison of two high accurate optical clocksDetected a few Hz difference due to the elevation (relativistic effect)

Source: Space‐Time Standards Laboratory of NICT

7/18

8

Quantum key distribution (QKD)

Photons

Eavesdropper X

By encoding the signal into photons, one can detect any hacking attacks. Thus one can ensure unbreakable security even by future technologies.

- The world fastest QKD systems are installed into a Tokyo area of JGN-X.

- Reliability test and security certification are going on.

Tokyo QKD Network

Quantum-enhanced secure network is now under operation in JGN-X.

Source: Masahide Sasaki (NICT)

© National Institute of Information and Communications Technology

Optical Packet Transmission & Switching System

Demonstration of optical packet switching and buffering for 1.28 Tbit/s (64ch×20 Gbit/s DQPSK) optical packets after transmitting over 100‐km long field fiber (JGN).

~100 km

1.28 Tbit/sOptical Packets 2x2 OPS

TX1

TX2

RX

RXKOGANEI KOGANEIOTEMACHI (Loop-back)

Transmitter

QPSK(Data 1)LN-IM

TX1

TX2

Label Generator

QPSK(Data 2)LN-IM

13

5

63

24

6

64

64ch, 50-GHz spacing64 x 10 Gbaud-DQPSK

1.28Tbit/s WDM/DQPSK packets

Ref. S. Shinada et al., Optics Express 2011.Source: Satoshi Shinada (NICT) 

with label-A

with label-B

2x1 Buffer with 3-FDLs(for label-B)

2x2 OPSLabel Processor Buffer Manager

1x4 PLZTSwitch

RX

RX

1x2 PLZTSwitch

1x2 PLZTSwitch

Electro-optic switch with low-polarization-dependence

1x4 PLZTSwitch

(for label-A)

9/18

© National Institute of Information and Communications Technology

Optical Packet Trans. & Switching System (Cont’d)

Low-polarization-dependence OPS system succeeded in handling optical packets with time-varying polarization (after field-fiber transmission).

DGD/ PMD

100-km field fiber in JGN testbed

1530 1540 1550 1560 1570

2.5

2.0

1.5

1.0

0.5

60

45

30

15

0

Tim

e [m

in]

Wavelength [nm]

DGD [ps]

1530 1540 1550 1560 1570

60

45

30

15

0

Tim

e [m

in]

Wavelength [nm]

2.5

2.0

1.5

1.0

0.5

DGD [ps]After Transmitter

-45 -43 -41 -39 -37 -35 -33

-4

-10

-9-8

-7

-6

-5

Power [dBm]

Log(

BE

R)

Back to Back(w/o Transmissionand OPS process)

1540 1550 1560

1540 1550 1560

Wavelength [nm]

64 ch(50-GHz spacing)

WDM Packets

TX-2

< 7 dB (time-varying)

After OPS process

TX-1

Out

put [

5 dB

/div

.]O

utpu

t Pow

er [5

dB/

div.

]

After Field Transmissionand OPS process

100-km bobbin fiber on the benchSpectra of WDM packets Bit Error Rate (64ch x I/Q)

1.28 Tbit/s (64ch x10 Gbaud DQPSK)

10/18Ref. S. Shinada et al., Optics Express 2011.Source: Satoshi Shinada (NICT) 

© National Institute of Information and Communications Technology

Optical Packet & Circuit Integrated Network User view: A “high‐speed, inexpensive” service and                                

“low delay, low data‐loss” service on a single optical network Network provider view: Large switch capacity (>100Gbps 

Optical Packet), energy saving, and flexible & efficient resource use under a simple control

packets circuits

Sensors, tags

Packet sequence

11/18

© National Institute of Information and Communications Technology

Features: New Optical Integrated Node

World‐first integrated implementation of best‐effort 100Gbps optical packet switching and quality‐guaranteed optical circuit switching

Only take 10 minutes from power‐off state to stable operation stateStable operation by Packet Error Rate less than  10‐4  (cf: ITU‐T Y.1541) Immediate switch from/to optical packet switching to/from optical circuit 

switching with Layer 2 SW

Previous experiment tools Newly integrated node

H. Furukawa et al., Optics Express, Vol. 19, Issue 26, pp. B242‐B250 (2011) 12/18

© National Institute of Information and Communications Technology

Optical Integrate Node 100GHz spacing, 40Wavelengths (1531.9—1563.05nm)

For packet switching, only 1 of 10 wavelengths is converted into electric signals for header processing

Performance of packet error rate is compliant with ITU‐T Y.1541

Circuits Wavelengths 30 C‐bands

Clients 7 10BASE‐LR Can insert other alien wavelengths

Net 7 OTU2e

Packets Wavelengths 10 C‐bands

Clients 10 10BASE‐LR 64‐9,604 byte frame

Net 1 100Gbps

Switching Layer 3

13/18

© National Institute of Information and Communications Technology

Two “Optical Packet & Circuit Nodes” Connected to JGN‐X at InteropTokyo 2011

14/18

© National Institute of Information and Communications Technology

Make OPCInet Stable, Operational, and SDN‐capable 5‐hop, 244 km 100Gbps optical packet switching  8 fiber‐delay‐line buffer embedded Longest prefix matching of optical packet header confirmed Management system connected Optical testbed experiments (below)

Our lab net is accessible to the Internet via OPCInodes

OpenFlow/OPCI node interwork on JGN‐X (RISE)

T. Miyazawa et al., SDN Workshop at IEEE Globecom 2013.H. Harai et al, IEEE/OSA JLT, 32 (16), 2751‐2759 (2014).

15/18

© National Institute of Information and Communications Technology

Other JGN‐X Facilities for Optical Network R&DRISE ( Research Infrastructure for large‐Scale network Experiments) OpenFlow network environment  Ver. 2.0: multi‐user model

(April 2012) OpenFlow‐based user‐slices

in which users can use their own controllers

Virtualized IP Services VMs, virtual routers, 4Gbps FC 

capable storages Tailor‐made network computing 

environment with computers, storages, and networks  for each user slice

Source: Eiji Kawai 16/18

© National Institute of Information and Communications Technology

Conclusion JGN‐X: nation‐wide R&D network testbed in Japan Dark fibres installed in Tokyo for advanced application 

verificationTime and Frequency TransferQKD (Quantum key distribution) network 1.28Tbps Optical Packet Transmission and Switching SystemOPCInet (Optical packet & circuit integrated network)

Users want a variety of services (dark fibre, L2, OpenFlow, VM, …) for advanced trials

We are promoting OPCI net into the deployment stage on R&D network testbed

Next page is final. 17/18

© National Institute of Information and Communications Technology

Next Steps: OPCInet Deployment

Future JGN

    We are promoting OPCInet deployment     in R&D network testbed

18/18