D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*!...

41
MARSite (GA 308417) D5.3 1 This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No [308417]”. New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite Grant Agreement Number: 308417 cofunded by the European Commission within the Seventh Framework Programme THEME [ENV.2012.6.42] [Longterm monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept] D5.3 Performance assessment of finitefault inversion codes in the Marmara configuration Project Start Date 1 November 2012 Project Duration 36 months Project Coordinator /Organization Nurcan Meral Özel / KOERI Work Package Number WP5 Deliverable Name/ Number Performance assessment of finitefault inversion codes in the Marmara configuration/D5.3 Due Date Of Deliverable 2015 April 30 Actual Submission Date Organization/Author (s) INGV, GFZ, BRGM/ Cirella A., Piatanesi A.,Diao F., Wang R., Aochi H. Dissemination Level PU Public PP Restricted to other programme participants (including the Commission) RE Restricted to a group specified by the consortium (including the Commission) CO Confidential, only for members of the consortium (including the Commission)

Transcript of D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*!...

Page 1: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    1  

 

This  project  has  received  funding  from  the  European  Union’s  Seventh  Programme  for  research,  technological  development  and  demonstration  under  grant  agreement  No  [308417]”.  

       

New  Directions  in  Seismic  Hazard  Assessment    through  Focused  Earth  Observation    

in  the  Marmara  Supersite    

Grant  Agreement  Number:  308417  co-­‐funded  by  the  European  Commission  within  the  Seventh  Framework  Programme  

THEME  [ENV.2012.6.4-­‐2]  [Long-­‐term  monitoring  experiment  in  geologically  active  regions  of  Europe  prone  to  natural  hazards:  the  

Supersite  concept]    

D5.3  Performance  assessment  of  finite-­‐fault  inversion  

codes  in  the  Marmara  configuration    

Project  Start  Date   1  November  2012  Project  Duration   36  months  Project  Coordinator  /Organization   Nurcan  Meral  Özel  /  KOERI  Work  Package  Number   WP5  Deliverable  Name/  Number   Performance  assessment  of  finite-­‐fault  

inversion  codes  in  the  Marmara  configuration/D5.3  

Due  Date  Of  Deliverable   2015  April  30  Actual  Submission  Date    Organization/Author  (s)   INGV,  GFZ,  BRGM/  Cirella  A.,  Piatanesi  A.,Diao  

F.,  Wang  R.,  Aochi  H.    Dissemination  Level      

PU                                  Public    

PP     Restricted  to  other  programme  participants  (including  the  Commission)      

RE     Restricted  to  a  group  specified  by  the  consortium  (including  the  Commission)      

CO     Confidential,  only  for  members  of  the  consortium  (including  the  Commission)      

 

Page 2: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    2  

 

TABLE  OF  CONTENTS    

1.  Introduction………………………………………………………………………………………………3  

2.  Checker  board  test…………………………………………………………………………………….3  

2.1  Description  of  checker  board  test……………………………………………………………………………….3  

2.2  GFZ’  TEAM  RESULTS……………………………………………………………………………………………………5  

2.2.1  Methodology…………………………………………………………………………………………………………..5  

2.2.2  Geometrical  setting-­‐  Fault  parametrization  -­‐  Data  processing……………..…………………..6  

2.2.3  Results………..…………………………………………………………………………………………………………..7  

2.3  INGV’  TEAM  RESULTS………………………………………………………………………………………………..12  

2.3.1  Methodology………………………………………………………………………………………………………….12  

2.3.2  Geometrical  setting-­‐  Fault  parametrization  -­‐  Data  processing……………..………………….12  

2.3.3  Results………..………………………………………………………………………………………………………….13  

3.  Conclusions………..……………………………………………………………………………………23    

 

 

Page 3: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    3  

 

1.  Introduction    

Two  different  finite-­‐fault  techniques  have  been  proposed  and  tested,  from  BRGM,  INGV  and  GFZ  researchers’  team.  In  order  to  assess  the  performances  of  the  inversion  codes,  in  term  of  accuracy  of  the  solution  for  the  Marmara  Sea  tectonic  setting  and  observational  network;  BRGM’   team   formulated   a   checker-­‐board   test   and   produced   two   synthetic   datasets,   by  taking  into  account  a  planned  stations  configuration  (strong  motion,  cGPS,  GPS,  BB),   in  the  Marmara  region  and  by  assuming  a  given  velocity  1D  profile  and  a  3D  crustal  structure.  INGV  and  GFZ  teams  used  this  datasets  to  perform  kinematic  inversion  of  the  slip  distribution  on  the  corresponding  finite-­‐fault.  These  tests  have  the  principal  aim  to  assess  the  performance  of  the  inversion  codes  in  the  Marmara  configuration.        

2.  Checker  board  test  

2.1  Description  of  checker  board  test  The   area  of   interest   is   prepared   for   a   dimension  of   200   km   (East-­‐West)   x   120   km   (North-­‐South)   around   the   Sea   of   Marmara,   including   the   region   of   Istanbul   (WP5.3).   The   wave  propagation  in  the  elastic  medium  is  calculated  using  a  3D  finite  difference  method  (Aochi  et  al.,   2013).   Any   finite   source   scenario   can   be   included   anywhere   in   the   model.   For   the  verification   test,  we   prepare   a   kinematic   source  model  whose   slip   distribution   is   checker-­‐board-­‐like  feature  on  a  fault  plane.  The  given  parameters  are  in  the  following  (also  informed  to   the   participants).   In   particular,   the   distribution   of   four   asperities   and   rupture   time   are  shown  in  Figure  1.  

Parameter   Value  

Hypocenter   28.3965°E,  40.8549°N,  7  km  depth  

Fault  Plane   96  km  (length)  x  24  km  (width)  

Mechanism   Strike  N86°E,  Dip  90°,  Rake  180°  

Eastern  end  of  fault  plane   28.870°E,  40.880°N  

Top  of  fault  plane   0.5  km  

Asperity  size     16  km  x  8  km  

Slip  amount   1  m  on  asperities/  0  m  elsewhere  

Rupture  velocity   2.1  km/s  

Rise  time  (triangle  function)   2.5  s  

 

Page 4: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    4  

 

 

Figure  1.  The  given  slip  distribution  (left)  and  rupture  time  (right)  on  a  fault  plane.    

 

Figure2.     Illustration   of   the   hypocenter,   the   fault   position   (strike   N86°E)   and   the   47   receiver  positions.   The  eastern  part  of   the   fault   (running   to   SE)   is  not  used   in   this   inversion   test.   The   color  presents  a  Peak  Ground  Velocity  (PGV)  from  the  simulation  using  a  3D  structure.  

For  the  purpose  of  the  inversion,  the  synthetic  ground  motions  are  calculated  and  saved  for  the  47  receivers  according  to  the  real  locations  from  the  observation  network  of  the  region  (Figure   2).   The   seismograms   (velocity   in   m/s)   are   not   filtered,   with   a   time   step   of   0.01  seconds   for   a   duration   of   120   seconds   for   the   three   components.   These   data   can   be  downloaded   from   http://aochi.hideo.perso.neuf.fr/marmara/   (scenario   7).   The   ground  motions  are  calculated  in  the  two  structure  models:  

1. 1D  layered  structure,  

2. 3D  structure.    

The  used  1D  layered  structure  is  the  following:  

Page 5: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    5  

 

Top   of   layer  (km)  

Vp  (m/s)   Vs  (m/s)   Density  (kg/m3)   Q*  

0   2250   1100   2150   300  

-­‐1   5700   3200   2700   300  

-­‐6   6100   3600   2750   300  

-­‐20   6800   3850   2800   300  

-­‐33   8000   4550   2850   300  

*  Qualitiy  factor  Q  is  included  as  a  dumping  factor  in  the  finite  difference  formulation.  

The   3D   structure   (Figure3)   was   prepared   in  WP5.3,   by   a   combination   of   3D   tomography  result  around  the  Sea  of  Marmara  (Bayrakci  et  al.,  2013)  and  a  regional  1D  model  (Karabulut,  personal  comm.).  We  also  adjusted  the  bathymetry  from  the  30  seconds-­‐model  of  GEBCO  so  that  we  introduce  a   layer  of  Sea  of  Marmara,   letting  Vp  =  1500  m/s  and  Vs  =  0  m/s  (Aochi  and  Ulrich,  ECEES,  2014;  Aochi  and  Ulrich,  BSSA,  2015).  

 

Figure3.    The  used  3D  structure  model  (Vp  structure).  

The  two  cases  allow  each  partner  to  check  the  resolution  in  their  inversion  procedure.    

2.2  GFZ’  TEAM  RESULTS  

2.2.1  Methodology  To  reduce  user’s  subjective  influence  on  the  inversion  results,  Zhang  et  al.  (2014)  proposed  a  new   kinematic   inversion   scheme,   called   the   iterative   deconvolution   and   stacking   (IDS)  method.   We   use   this   method   for   all   of   our   inversions   in   the   Marsite   Project.   In   the   IDS  method,  synthetic  Green’s  function  deconvolution  is  applied  to  the  waveform  data  to  obtain  apparent   subfault   source-­‐time-­‐functions   from   different   stations.   In   most   cases,   the  

Page 6: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    6  

 

deconvolution  and  stacking  procedure  needs  to  be  applied   iteratively  to  resolve  a  complex  multiple   rupture   process.   In   fact,   the   IDS   method   benefits   from   the   complementary  advantages   between   the   traditional   least-­‐squares   inversion   and   the   array   back-­‐projection  techniques.   The  work   flow   that   shown   in   Fig.   4   draw   the  main   steps   of   the   IDS   inversion  method:  

 

                                                   Figure4.  Simple  work  flow  of  the  IDS  inversion  method.  

The   IDS  method  aims  at   robust  and   rapid  estimation  of   the  main  character  of   the   rupture  process.  Because  it  is  largely  free  of  empirical  constraints  such  as  rupture  velocity,  rise  time  and  shape  of  subfault  source  time  function,   the   inversions  by  using   IDS  don’t  give  a  direct  estimation  of  rupture  velocity  and  rise  time.    

2.2.2  Geometrical  setting-­‐  Fault  parametrization  -­‐  Data  processing  Based  on  the  1D  model  provided  by  H.  Aochi,  a  Green’s  function  database  is  prepared  using  the   code   QSEIS   developed   by   Wang   (1999).   The   fault   plane   (120   km   ×   24   km)   that  constructed   based   on   the   focal   mechanism   (strike=86°,   dip=90°)   was   discretized   to   180  subfaults  of  4  km  ×  4  km  size,  each  being  treated  as  a  point  source.  We  fixed  the  rake  angle  to  be  180°.  We  did  not  constraint   the  rupture  velocity,   rise  time  and  the  shape  of   the  rise  time.  Firstly  we  filter  the  original  synthetic  data  in  form  of  velocity  seismograms  first  with  a  3rd-­‐order  Butterworth  high-­‐pass  filter  of  0.02  Hz  to  remove  the  influence  caused  by  the  low-­‐frequency  numerical  drift  in  the  data,  and  then  with  a  causal  low-­‐pass  filter  corresponding  to  Brunes  near-­‐field  velocity  spectrum;  

   

                                                                                                         𝐿 𝑓 = !(!!!"/!!)

!                                                                                                          (1)                                

                                             

Page 7: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    7  

 

 where  𝑓!  is   called   the   corner   frequency.   Thus,   our   waveform   data   trend   to   the   velocity  seismograms  only   for  𝑓 ≪ 𝑓!.  They  become  proportional   to  the  displacement  seismograms  when  𝑓~𝑓!  and  to  the  integral  of  displacement  seismograms  when  𝑓 ≫ 𝑓!.  The  advantage  of  using   the   low-­‐pass   filter   defined   by   Eq.   (1)   is   that   no   sharp   high-­‐frequency   cutoff   is  necessary.  With  higher   corner   frequencies  used,  more  high-­‐frequency   components  will   be  used   in  our   inversion.  So,   the   frequency  band  used   in  our   inversion   is  different  with  many  previous  studies  of  kinematic  source  inversions.      

2.2.3 Results  The  results  by   inverting  different  synthetic  data  are  shown   in  Fig.  5,   from  which  we   found  that  the  input  four  asperities  are  clearly   identified.  Based  on  the  data  processing  approach  used   in   our   study,   inversions   were   carried   out   by   using   the   three   different   corner  frequencies   (0.05   Hz,   0.10   Hz   and   0.20   Hz).   The   inverted   results   (Fig.   5)   indicate   that   the  input  asperities  can  be  well  captured,  although  different  corner   frequencies  were  used  for  the   inversions.   Moreover,   it   is   not   surprising   to   find   a   better   resolution   by   using   higher  corner  frequencies.    

               

Figure  5.    Rupture  model  inverted  based  on  IDS  method  and  synthetic  datasets  that  simulated  from  1D  and  3D  earthquake   structure.     (a)   –   (c)   show   rupture  models   inverted  based  on   synthetic   data  generated  from  1D  earth  structure,  while  (d)  –  (f)  show  rupture  models  inverted  based  on  synthetic  data  generated  from  3D  earth  structure.  (g)  shows  the  input  model  of  the  checkerboard  test.  

 

 

Page 8: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    8  

 

           As   an   accurate   1D   earth   structure   was   applied,   the   data   fit   is   very   good   for   rupture  models   inverted  by  using   synthetic  data   that  generated   from  the  same  1D  earth   structure  (Fig.   6   –   Fig.   8).     However,   the   data   fit   decrease  when   synthetic   data   generated   from   3D  earth   structure   was   used   (Fig.   9   –   Fig.   11),   which   perhaps   mainly   induced   by   3D   wave  propagation  effect.  The  computation  time  used  for  inversion  of  the  six  rupture  models  varies  between  75   second   to  200   seconds,   which   increase   as   higher   frequencies  were   used.   All  inversions  were  done  with  a  PC  (Intel(R)  Core  (TM)  i7-­‐3770  CPU  @3.4G  Hz,  32  GB  RAM).    We  highlight   the   good   efficiency   of   the   IDS   inversion,   which   may   play   an   important   role   in  earthquake  rapid  response.      

 

Figure  6.  Waveform  comparison  between  synthetic   (blue)  and   inverted  (red)  velocity  seismograms,  corresponding  to  rupture  model  shown  in  Fig.  5(a).    

 

Page 9: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    9  

 

 

Figure  7.  Waveform  comparison  between  synthetic   (blue)  and   inverted  (red)  velocity  seismograms,  corresponding  to  rupture  model  shown  in  Fig.  5(b).    

 

Figure  8.  Waveform  comparison  between  synthetic   (blue)  and   inverted  (red)  velocity  seismograms,  corresponding  to  rupture  model  shown  in  Fig.  5(c).    

 

Page 10: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    10  

 

 

Figure  9.  Waveform  comparison  between  synthetic   (blue)  and   inverted  (red)  velocity  seismograms,  corresponding  to  rupture  model  shown  in  Fig.  5(d).    

 

 

Figure  10.  Waveform  comparison  between  synthetic  (blue)  and  inverted  (red)  velocity  seismograms,  corresponding  to  rupture  model  shown  in  Fig.  5(e).    

 

Page 11: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    11  

 

 

Figure  11.  Waveform  comparison  between  synthetic  (blue)  and  inverted  (red)  velocity  seismograms,  corresponding  to  the  rupture  model  shown  in  Fig.  5(f).    

   

 

 

 

 

 

 

 

 

 

 

Page 12: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    12  

 

 

2.3  INGV’  TEAM  RESULTS  

2.3.1  Methodology  The   inversion   methodology,   developed   at   INGV,   is   a   two-­‐stage   nonlinear   technique  (Piatanesi   et   al.,   2007,   Cirella   et   al.,   2012),   which   involves   the   joint   inversion   of   strong  motion   records   and   geodetic   data.   To   account   for   rupture   complexity,   the   model   is  described   by   four   spatially   variable   fault   parameters   -­‐   peak   slip   velocity,   slip   direction,  rupture  time  and  rise  time.  The  final  slip  distribution  is  derived  by  the  inverted  parameters.  The   finite   fault   is   divided   into   sub-­‐faults   with  model   parameters   assigned   at   the   corners,  whereas   the   parameters   within   each   sub-­‐fault   are   allowed   to   vary   through   bilinear  interpolation  of  the  nodal  values.  Each  point  on  the  fault  can  slip  only  once  (single  window  approach)   and   the   source   time   function   can   be   selected   among   different   analytical   forms  (box-­‐car;   cosine;   regularized   Yoffe   function).   The   forward   modeling   is   performed   with   a  discrete  wavenumber  technique  (Compsyn,  Spudich  and  Xu,  2003),  whose  Green's  functions  include  the  complete  response  of  the  vertically  varying  Earth  structure.  The  nonlinear  global  inversion   consists   of   two   stages.   During   the   first   stage   of   the   inversion,   a   heat-­‐bath  simulated-­‐annealing  algorithm  explores  the  model  space  to  generate  an  ensemble  of  models  that   efficiently   sample   the   good   data-­‐fitting   regions.   In   the   second   stage   (appraisal),   the  algorithm  performs  a  statistical  analysis  of  the  model  ensemble  providing  us  the  best-­‐fitting  model,  the  average  model  and  the  associated  standard  deviation,  computed  by  weighting  all  models  of  the  ensemble  by  the  inverse  of  their  cost  function  values.  

2.3.2  Geometrical  setting-­‐  Fault  parametrization  -­‐  Data  processing    We   used   the   47   synthetic   seismograms   provided   for   Scenario7  (http://aochi.hideo.perso.neuf.fr/marmara/).   Original   ground   velocity   time   histories   are  band-­‐pass  filtered  in  two  different  frequency  ranges;  between  0.01  and  0.5  Hz  and  between  0.01  and  0.25Hz,  by  using  a  two-­‐pole  and  two-­‐pass  Butterworth  filter.  We  invert  60  seconds  of  each  waveform,  including  body  and  surface  waves.  We  assumed  a  fault  plane  consistent  with   the   hypocentre   location   and   the   focal   mechanisms   given   for   Scenario7   (strike:   86°;  dip=90°;   strike=180°).   The   fault   plane   is   100   km   long   and   24   km   width,   along   strike   and  down-­‐dip   direction,   respectively.   We   invert   simultaneously   for   kinematic   parameters   at  nodal   points   equally   spaced   (4.0   km)   along   strike   and   down-­‐dip   directions.   During   the  inversion,  we   fix   a   given   range   of   variability   for   each  model   parameter.   Peak   slip   velocity  values  can  range  between  0  and  1.5  m/s  at  0.25  m/s  interval;  the  rise  time  between  1.5  and  3  sec  at  0.25  sec  interval.  Rupture  velocity  is  fixed  to  2.1  km/s  and  rake  angle  is  fixed  to  180°.  In  this  study,  the  adopted  source  time  function  is  a  modified  cosine  function  (Ji  et  al.  ,  2002).  

 

 

 

Page 13: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    13  

 

2.3.3  Results  

We  performed  eight  different  inversions:  

1. by  using  the  dataset  given  for  the  1D  velocity  model  and  by  inverting  for  peak  slip   velocity.   Rise   time   is   fixed   to   2.5   s;   the   inversion   is   performed   in   the  frequency  band  0.01-­‐0.25Hz  (results  are  referred  as  case  ‘1DonlySlip_0.25Hz’);  2. by  using  the  dataset  given  for  the  1D  velocity  model  and  by  inverting  for  peak  slip  velocity  and  rise  time;  the  inversion  is  performed  in  the  frequency  band  0.01-­‐0.25Hz  (results  are  referred  as  case  ‘1DSlipRise_0.25Hz’);  3. by  using  the  dataset  given  for  the  1D  velocity  model  and  by  inverting  for  peak  slip   velocity.   Rise   time   is   fixed   to   2.5   s;   the   inversion   is   performed   in   the  frequency  band  0.01-­‐0.5Hz  (results  are  referred  as  case  ‘1DonlySlip_0.5Hz’);  4. by  using  the  dataset  given  for  the  1D  velocity  model  and  by  inverting  for  peak  slip  velocity  and  rise  time;  the  inversion  is  performed  in  the  frequency  band  0.01-­‐0.5Hz  (results  are  referred  as  case    ‘1DSlipRise_0.5Hz’);  5. by  using  the  dataset  given  for  the  3D  velocity  model  and  by  inverting  for  peak  slip   velocity.   Rise   time   is   fixed   to   2.5   s;   the   inversion   is   performed   in   the  frequency  band  0.01-­‐0.25Hz  (results  are  referred  as  case    ‘3DonlySlip_0.25Hz’);  6. by  using  the  dataset  given  for  the  3D  velocity  model  and  by  inverting  for  peak  slip  velocity  and  rise  time;  the  inversion  is  performed  in  the  frequency  band  0.01-­‐0.25Hz  (results  are  referred  as  case    ‘3DSlipRise_0.25Hz’);  7. by  using  the  dataset  given  for  the  3D  velocity  model  and  by  inverting  for  peak  slip   velocity.   Rise   time   is   fixed   to   2.5   s;   the   inversion   is   performed   in   the  frequency  band  0.01-­‐0.5Hz  (results  are  referred  as  case    ‘3DonlySlip_0.5Hz’);  8. by  using  the  dataset  given  for  the  3D  velocity  model  and  by  inverting  for  peak  slip  velocity  and  rise  time;  the  inversion  is  performed  in  the  frequency  band  0.01-­‐0.5Hz  (results  are  referred  as  case    ‘3DSlipRise_0.5Hz’).    For  each  inversion  we  show  (see  Figures  12-­‐14-­‐16-­‐18-­‐20-­‐22-­‐24-­‐26)  the  retrieved  rupture  model,  given  in  terms  of  rise  time  and  slip  distribution  on  the  fault  plane  (bottom   and   upper   panel,   respectively)   and   the   corresponding   comparison  between  synthetic  (blue  lines)  and  inverted  (red  lines)  velocity  time  histories  (see  Figures  13-­‐15-­‐17-­‐19-­‐21-­‐23-­‐25-­‐27).      

             

Page 14: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    14  

 

Case:  1DonlySlip_0.25Hz  

 Figure12.   Retrieved   rupture   model,   in   terms   of   slip   and   rise   time   distribution   (upper   and   bottom   panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity,  the  1D  dataset  in  the  frequency  band  0.01-­‐0.25Hz.    

 Figure13.   Misfit   between   synthetic   ground   velocities   (blue   lines)   with   those   computed   from   the   inverted  rupture  model  displayed  in  Figure12  (red  lines).  

0.0

2.5sec

rise timeE W

-20

0

(km)

0 20 40 60 80 100(km)

0.000.250.500.751.001.251.501.752.00

mslipE W

-20

0

(km)

0 20 40 60 80 100(km)

Page 15: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    15  

 

Case:  1DSlipRise_0.25Hz  

 

Figure14.   Retrieved   rupture   model,   in   terms   of   slip   and   rise   time   distribution   (upper   and   bottom   panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity  and  rise  time,  the  1D  dataset  in  the  frequency  band  0.01-­‐0.25Hz.  

Figure15.   Misfit   between   synthetic   ground   velocities   (blue   lines)   with   those   computed   from   the   inverted  rupture  model  displayed  in  Figure14  (red  lines).  

1.0

1.5

2.0

2.5

3.0sec

rise timeE W

-20

0

(km)

0 20 40 60 80 100(km)

0.000.250.500.751.001.251.501.752.00

m

slipE W

-20

0

(km)

0 20 40 60 80 100(km)

Page 16: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    16  

 

Case:  1DonlySlip_0.5Hz  

 Figure16.   Retrieved   rupture   model,   in   terms   of   slip   and   rise   time   distribution   (upper   and   bottom  panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity,  the  1D  dataset  in  the  frequency  band  0.01-­‐0.5Hz.    

 Figure17.   Misfit   between   synthetic   ground   velocities   (blue   lines)   with   those   computed   from   the  inverted  rupture  model  displayed  in  Figure16  (red  lines).  

0.0

2.5secrise timeE W

-20

0

(km)

0 20 40 60 80 100(km)

0.000.250.500.751.001.251.501.752.00

mslipE W

-20

0(km)

0 20 40 60 80 100(km)

Page 17: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    17  

 

Case:  1DSlipRise_0.5Hz  

   Figure18.   Retrieved   rupture   model,   in   terms   of   slip   and   rise   time   distribution   (upper   and   bottom   panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity  and  rise  time,  the  1D  dataset  in  the  frequency  band  0.01-­‐0.5Hz.  

 Figure19.   Misfit   between   synthetic   ground   velocities   (blue   lines)   with   those   computed   from   the  inverted  rupture  model  displayed  in  Figure18  (red  lines).  

1.0

1.5

2.0

2.5

3.0secrise timeE W

-20

0

(km)

0 20 40 60 80 100(km)

0.000.250.500.751.001.251.501.752.00

mslipE W

-20

0(km)

0 20 40 60 80 100(km)

Page 18: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    18  

 

 Case:  3DonlySlip_0.25Hz  

 

Figure20.   Retrieved   rupture   model,   in   terms   of   slip   and   rise   time   distribution   (upper   and   bottom   panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity,  the  3D  dataset  in  the  frequency  band  0.01-­‐0.25Hz.    

Figure21.  Misfit   between   synthetic   ground   velocities   (blue   lines)   with   those   computed   from   the   inverted  rupture  model  displayed  in  Figure20  (red  lines).  

0.0

2.5sec

rise timeE W

-20

0

(km)

0 20 40 60 80 100(km)

0.000.250.500.751.001.251.501.752.00

mslipE W

-20

0

(km)

0 20 40 60 80 100(km)

Page 19: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    19  

 

Case:  3DSlipRise_0.25Hz  

 

Figure22.   Retrieved   rupture   model,   in   terms   of   slip   and   rise   time   distribution   (upper   and   bottom   panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity  and  rise  time,  the  3D  dataset  in  the  frequency  band  0.01-­‐0.25Hz.  

Figure23.   Misfit   between   synthetic   ground   velocities   (blue   lines)   with   those   computed   from   the   inverted  rupture  model  displayed  in  Figure22  (red  lines).  

1.0

1.5

2.0

2.5

3.0sec

rise timeE W

-20

0

(km)

0 20 40 60 80 100(km)

0.000.250.500.751.001.251.501.752.00

m

slipE W

-20

0

(km)

0 20 40 60 80 100(km)

Page 20: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    20  

 

Case:  3DonlySlip_0.5Hz  

 Figure24.   Retrieved   rupture   model,   in   terms   of   slip   and   rise   time   distribution   (upper   and   bottom   panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity,  the  3D  dataset  in  the  frequency  band  0.01-­‐0.5Hz.      

 

Figure25.   Misfit   between   synthetic   ground   velocities   (blue   lines)   with   those   computed   from   the   inverted  rupture  model  displayed  in  Figure24  (red  lines).  

0.0

2.5secrise timeE W

-20

0

(km)

0 20 40 60 80 100(km)

0.000.250.500.751.001.251.501.752.00

mslipE W

-20

0(km)

0 20 40 60 80 100(km)

Page 21: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    21  

 

Case:  3DSlipRise_0.5Hz  

 

Figure26.   Retrieved   rupture   model,   in   terms   of   slip   and   rise   time   distribution   (upper   and   bottom   panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity  and  rise  time,  the  3D  dataset  in  the  frequency  band  0.01-­‐0.5Hz.  

   

Figure27.   Misfit   between   synthetic   ground   velocities   (blue   lines)   with   those   computed   from   the   inverted  rupture  model  displayed  in  Figure26  (red  lines).  

1.0

1.5

2.0

2.5

3.0sec

rise timeE W

-20

0

(km)

0 20 40 60 80 100(km)

0.000.250.500.751.001.251.501.752.00

m

slipE W

-20

0(km)

0 20 40 60 80 100(km)

Page 22: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    22  

 

The  inverted  models  are  similar  to  the  target  one  (Figure1)  ;  the  positions  of  the  asperities  are   correctly   imaged   and   the     slip   values   well   estimated.     In   order   to   quantify   and   to  compare   the   obtained   results,   for   each   performed   inversion   we   show   in   Table1   the   cost  function  values  associated  to  the  waveforms’  comparison  (second  and  third  column)  and  the  ‘SLIP-­‐FIT’   comparison   (fourth   and   fifth   column).   The   last   ‘misfit’   is   computed   by   the  equation:  

 

               

𝑆𝐿𝐼𝑃_𝐹𝐼𝑇 =1

𝑁𝑠𝑢𝑏𝑠𝑙𝑖𝑝𝑇 − 𝑠𝑙𝑖𝑝𝑅 !

!

𝑠𝑙𝑖𝑝𝑇𝑖! + 𝑠𝑙𝑖𝑝𝑅𝑖!

!"#$

!!!

 

 

where  𝑠𝑙𝑖𝑝𝑇  and  𝑠𝑙𝑖𝑝𝑅  are  the  target  and  retrieved  slip  values  and  𝑁𝑠𝑢𝑏,   is  the  number  of  sub-­‐faults   by   which   the   fault   plane   has   been   parameterized.   This   quantity   allows   us   to  quantify   the   reliability  of   a   retrieved  model   in   respect   to   the   target  one  and   to   indicate  a  preferred  performed   inversion,   in   terms  of   resolution   capability.   The   cost   function   values’  analysis   show   how   the   waveform-­‐fit   improves   with   the   lower   frequency   band   (see   also  Figures   13-­‐15-­‐21-­‐23)   and   it   decreases   when   synthetic   data   from   a   3D   earth   structure   is  inverted   (Figures   25-­‐27).   This   is   probably   due   to   the   difficulty   in   modelling   3D   wave  propagation  effect.  From  the  ‘SLIP-­‐FIT’  analysis  emerges  how  the  most  simple  inversion  case  (‘1DonlySlip’),  in  which  we  invert  just  for  one  parameter  (peak  slip  velocity)  and  in  the  lower  frequency  band   (0.01-­‐0.25hz),  by  using   the   synthetic  dataset  generated  with  a  1D  velocity  profile,  is  able  to  yield  a  well  resolved  slip  model.    

Table1.    Cost  function  values  

 

    0.01-­‐0.5Hz   0.01-­‐0.25Hz   0.01-­‐0.5  Hz   0.01-­‐0.25Hz    1DonlySlip  

                       0.33    

                   0.052  

                       0.67    

                   0.59  

 1DSlipRise  

           0.31    

         0.048  

           0.66    

         0.60  

 3DonlySlip    

         0.45  

             0.16  

         0.66  

             0.61  

 3DSlipRise    

         0.44  

         0.14  

         0.67  

         0.61  

WAVEFORM-­‐FIT   SLIP-­‐FIT  

Page 23: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    23  

 

3.  Conclusions    The  obtained  results  show  how  the  proposed  inversion  techniques  guarantee  a  reliable  and  accurate   reconstruction   of   earthquake   source   rupture   process   on   finite   fault,   in   the  Marmara  tectonic  and  observational  setting  configuration.  The  proposed  analysis  represents  a   useful   tool   to   assess   the   performance   of   a   finite-­‐fault   inversion   code,   by   taking   into  account  the  actual  or  future  planned  stations  configuration  (strong  motion,  cGPS,  GPS,  BB)  in  the  Marmara  Sea  and  earthquake  scenarios.  

 

References  

Aochi,   H.,   T.   Ulrich,   A.   Ducellier,   F.   Dupros,   D.   Michea,   Finite   difference   simulations   of  seismic   wave   propagation   for   unerstanding   earthquake   physics   and   predicting   ground  motions:   Advances   and   challenges,   J.   Phys:   Conf.   Ser.,   454,   012010,   doi:   10.1088/1742-­‐6596/454/1/012010,  2013.  

Aochi,  H.,  and  T.  Ulrich  (2014).  Dynamic  rupture  and  ground  motion  simulations  in  the  Sea  of  Marmara,   2nd   European   Conference   of   Earthquake   Engineering   and   Seismology   (ECEES),  Istabul,  Turkey,  24–29  August  2014.  

Aochi,   H.   and   T.   Ulrich,   A   probable   earthquake   scenario   near   Istanbul   determined   from  dynamic   simulations,   Bull.   Seism.   Soc.   Am.   ,   105,   doi:10.1785/0120140283,   2015.      

Bayrakci,  G.,  M.   Laigle,  A.  Bécel,  A.  Hirn,  T.   Taymaz,   S.   Yolsal-­‐Cevikbilen  an  SEISMARMARA  team,  3-­‐D  sediment-­‐basement  tomography  of  the  Northern  Marmara  trough  by  a  dense  OBS  network  at  the  nodes  of  a  grid  of  controlled  source  profiles  along  the  North  Anatolian  fault,  Geophys.  J.  Int.,  194,  1335-­‐1357,  2013.  

Cirella   A.,   Piatanesi   A.,   Tinti   E.   Chini  M.   and  M.   Cocco   (2012),   "Complexity   of   the   rupture  process  during  the  2009  L’Aquila,   Italy,  earthquake",  Geophysical  Journal  International.190,  607-­‐621,  doi:10.1111/j.1365-­‐246X.2012.05505.x  

Ji,  C.,  D.  J.  Wald,  and  D.  V.  Helmberger  (2002),  Source  description  of  the  1999  Hector  Mine,  California,  earthquake,  Part  I:  Wavelet  domain  inversion  theory  and  resolution  analysis,  Bull.  Seismol.  Soc.  Am.,  92  (4),  1192-­‐1207.  

Piatanesi   A.,   A.   Cirella,   P.   Spudich   and   M.   Cocco   (2007),   “A   global   search   inversion   for  earthquake  rupture  history:  Application  to  the  2000  western  Tottori,   Japan  earthquake”,  J.  Geophys.  Res.,  112(B7),  B07314,  doi:10.1029/2006JB004821  

Spudich,  P.  and  L.  Xu  (2003),  Software  for  calculating  earthquake  ground  motions  from  finite  faults  in  vertically  varying  media,  in  International  Handbook  of  Earthquake  and  Engineering  Seismology,  Academic  Press.  

Page 24: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.3    24  

 

Tinti,  E.,  E.  Fukuyama,  A.  Piatanesi  and  M.  Cocco  (2005a),  A  kinematic  source  time  function  compatible   with   earthquake   dynamics,   Bull.   Seismol.   Soc.   Am.,   95(4),   1211-­‐1223,  doi:10.1785/0120040177.  

Zhang,  Y.,  Wang,  R.,  Zschau,  J.,  Chen,  Y.  T.,  Parolai,  S.,  &  Dahm  T.,  2014.  Automatic  imaging  of   earthquake   rupture   processes   by   iterative   deconvolution   and   stacking   of   high-­‐rate  GPS  and   strong   motion   seismograms,   J.   Geophys.   Res.,   119,   5633–5650,  doi:10.1002/2013JB010469.  

Wang,  R.,  1999,  A  simple  orthonormalization  method  for  stable  and  efficient  computation  of  Green’s  functions,  Bull.  Seismol.  Soc.  Am.,  89(3),  733–7410.    

Page 25: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  1  

 

This  project  has  received  funding  from  the  European  Union’s  Seventh  Programme  for  research,  technological  development  and  demonstration  under  grant  agreement  No  [308417]”.  

       

New  Directions  in  Seismic  Hazard  Assessment    through  Focused  Earth  Observation    

in  the  Marmara  Supersite    

Grant  Agreement  Number:  308417  co-­‐funded  by  the  European  Commission  within  the  Seventh  Framework  Programme  

THEME  [ENV.2012.6.4-­‐2]  [Long-­‐term  monitoring  experiment  in  geologically  active  regions  of  Europe  prone  to  natural  hazards:  the  

Supersite  concept]    

D5.4  Near-­‐real  time  estimation  of  most  relevant  

earthquake  source  parameters      

Project  Start  Date   2012  November  1  Project  Duration   36  months  Project  Coordinator  /Organization   Nurcan  Meral  Özel  /  KOERI  Work  Package  Number   WP5  Deliverable  Name/  Number   Near-­‐real  time  estimation  of  most  relevant  

earthquake  source  parameters/D5.4    Due  Date  Of  Deliverable   2015  April  30    Actual  Submission  Date    Organization/Author  (s)   INGV,  GFZ,  BRGM/  Cirella  A.,  Piatanesi  A.,Diao  

F.,  Wang  R.,  Aochi  H.    Dissemination  Level      

PU                                  Public    

PP     Restricted  to  other  programme  participants  (including  the  Commission)      

RE     Restricted  to  a  group  specified  by  the  consortium  (including  the  Commission)      

CO     Confidential,  only  for  members  of  the  consortium  (including  the  Commission)      

 

Page 26: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  2  

 

TABLE  OF  CONTENTS    

1.  Introduction………………………………………………………………………………………………3  

2.  Blind  test…………….…………………………………………………………………………………….3  

2.1  Description  of  blind  test…………………………….……………………………………………………………….3  

2.2  GFZ’  TEAM  RESULTS……………………………………………………………………………………………………4  

2.2.1  Geometrical  setting-­‐  Fault  parametrization  -­‐  Data  processing……………..…………………..4  

2.2.2  Results………..…………………………………………………………………………………………………………..5  

2.2.3  Test  for  near  real-­‐time  kinematic  inversions..............................................................5  

2.3  INGV’  TEAM  RESULTS………………………………………………………………………………………………….8  

2.3.1  Geometrical  setting-­‐  Fault  parametrization  -­‐  Data  processing……………..…………………..6  

2.3.2  Results………..…………………………………………………………………………………………………………..7  

3.  Conclusions………..……………………………………………………………………………………16    

 

Page 27: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  3  

 

1.  Introduction    

The   main   goal   of   this   deliverable   was   the   rapid   determination   of   the   most   relevant  earthquake  source  parameters,  with  special  focus  on  their  finite-­‐fault  characteristics,  in  case  of   large   earthquakes   in   the  Marmara   region.   To   this   goal   we   performed   a   blind   test   for  kinematic   source   inversion.   BRGM   research   group   generated   a   synthetic   dataset,   by  considering  near-­‐field  strong-­‐motion  and  high-­‐rate  GPS  data,  obtained  by  dynamic  modelling  of   a   single   earthquake   scenario;   and   provided   these   synthetics   to   the   other   teams   (GFZ,  INGV),   to   invert   for   the   rupture   process,   by   using   the   different   codes,   described   in  deliverable   D5.3.   This   approach   allowed   us   to   assess   the   resolution   and   efficiency   of   the  different  inversion  techniques,  also  in  terms  of  the  execution  quickness,  in  the  Marmara  Sea  configuration.   GFZ’   team   performed   an   additional   test,   for   near   real-­‐time   kinematic  inversions;  the  related  results  are  described  in  Section  2.2.3.    

2.  Blind  test  

2.1  Description  of  blind  test  In  order  to  carry  out  the  realistic  inversion  in  this  region,  we  provide  a  synthetic,  but  

more  probable   scenario,   dynamically   simulated   taking   into   account  of   the   fault   geometry,  stress  and  friction  condition.  We  use  one  of  the  scenarios  of  Mw7.04  from  Aochi  and  Ulrich  (BSSA,   2015;   LP   fault   model,   T   =   0.66,   hypocenter   location   at   Center;   See   Figure   1).   The  rupture   propagates   unilaterally   to   the   east.   The   slip   distribution   remains   relatively   simple  (briefly  one  big  asperity,  illustrated  again  in  Figure  2),  but  rupture  time  and  slip  time  function  are   not   imposed.   The   fault   geometry   used   here   is   not   a   single   plane   fault,   but   a  geometrically  irregular  fault.  All  these  dynamic  factors  might  have  made  the  wave  radiation  complex.  The  ground  motion   is   calculated   in   the  3D  structure  model   (See  D5.3)  under   the  same  situations.      

 

Figure  1.  A  set  of  the  dynamic  rupture  simulations  from  Aochi  &  Ulrich  (BSSA,  2015).  The  scenario  used  for  the  blind  test  corresponds  to  the  case  at  the  upper-­‐right  corner.  

Page 28: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  4  

 

 

Figure  2.  Slip  distribution  (top)  and  rupture  time  (bottom)  from  the  dynamic  rupture  simulation,  projected  on  a  plane  fault.  

The   data   set   of   the   same   47   receivers   can   be   downloaded   from  http://aochi.hideo.perso.neuf.fr/marmara/   (Scenario   1).   However   for   the   purpose   of   blind  test,  the  above  information  was  not  informed  to  the  participants  before  their  inversion.  Only  the   following   information   is   provided.   Thus,   estimating   a   reasonable  magnitude   is   also   an  objective  of  the  inversion  here.  

Informed  Parameter   Quantity  Hypocenter   28.5274°E,  40.8717°N,  9.75  km  depth  Rupture   It  seems  that  the  main  Central  Marmara  part  

of   the   North   Anatolian   fault   takes   place   an  earthquake.   No   fault   geometry   is   given   but  the   same   fault   orientation   as   the   checker-­‐board  test  is  inferred.    

   

2.2  GFZ’  team  results  

2.2.1  Geometrical  setting-­‐  Fault  parametrization  -­‐  Data  processing  

We   used   a   rectangular   fault   plane   (80   km   ×   24   km)   that   constructed   based   on   the   focal  mechanism  (strike=86°,  dip=90°).  This   fault  geometry  was  discretized  to  120  subfaults  of  4  km  ×  4  km  size,  each  being  treated  as  a  point  source.  We  fixed  the  rake  angle  to  be  180°.  The  data  was  processed  using  the  same  approach  as  mentioned  in  D5.3  (Section  2.2.1).  We  did  not  constraint  the  rupture  velocity,  rise  time  and  the  shape  of  the  rise  time  function  in  the  inversion.  The  corner  frequency  used  for  the  blind  test  is  0.10  Hz.  

2.2.2  Results  

 

Page 29: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  5  

 

The  inverted  source  model  of  the  blind  test   is  shown  in  Fig.  3.  The  rupture  model  suggests  that   the   moment   magnitude   is   7.03   and   the   rupture   process   last   for   20   second.   With   a  rupture   scale   of   ~   35   km  and   a   slip  maximum  of   5  m,   the   fault   slip   are  mostly   located   at  depths  less  than  16  km.  The  data  fit  is  shown  in  Fig.  4,  from  which  we  found  that  the  large  misfit  mainly   lies  at   the  high  frequency  components  that   induced  by  3D  wave  propagation  effect.  

The   computation   time  used   for   inversion  of   the   rupture  models   is  120   seconds  with   a  PC  (Intel(R)  Core  (TM)  i7-­‐3770  CPU  @3.4G  Hz,  32  GB  RAM).      

 

 

Figure  3.    Rupture  model  inverted  based  on  synthetic  datasets  that  simulated  from  3D  earth  structure.    

 

2.2.3  Test  for  near  real-­‐time  kinematic  inversions    

For   purposes   of   tsunami   early   warning   and   earthquake   rapid   response,   time-­‐dependent  finite-­‐fault   source   inversions   are   of   great   importance.   Here  we   address   the   question   how  fast  such  source  models  can  be  obtained  theoretically  for  the  Marmara  Sea  region.  The  time  delay   for   kinematic   source   inversion   addressed   here   is   not   the   computation   time   but   the  time  for  seismic  wave  propagation  from  the  source  to  the  seismic  stations.    

For  this  purpose,  we  adopt  the  IDS  inversion  scheme  and  predetermined  fault  geometry  (Fig.  5)   for   a   real-­‐time   data   processing.   Here   the   term   “real-­‐time”   means   using   only   the   data  which  become  available.  We  used  a  different  earthquake  scenario  with  moment  magnitude  of  7.19,  which  is  the  scenario  2  from  Aochi  H.  (http://aochi.hideo.perso.neuf.fr/marmara/).  We  assume  that  large  earthquakes  (M  7+)  can  only  occurred  on  the  main  Marmara  Sea  fault.  For  this  reason,  all  major  seismogenic  faults  in  the  Marmara  Sea  region  identified  by  Armijo  et  al.  (2005)  were  assumed  to  have  the  same  potential  to  nuclear  large-­‐scale  earthquakes  in  the   inversion.   The   right-­‐lateral   strike-­‐slip   mechanism   is   assigned   uniformly   according   to  various   geological   and   geomechanical   investigations   (Armijo   et   al.,   2005;   Hergert   et   al.,  

Page 30: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  6  

 

2011).  These  faults  are  then  divided  into  4  km  ×  4  km  subfaults.  Each  subfault  is  allowed  to  rupture  at  any  time  after  the  origin  of  the  event.  

For   the   real-­‐time   inversions,  we   repeat   the   inversion   each   10   s.   The   results   are   the   time-­‐dependent  slip  distributions  shown  in  Fig.  5  and  Fig.  6.  From  the  real-­‐time  magnitude  curve,  the   final   moment  magnitude   (Mw   7.19)   of   the   utilized   scenario   earthquake   seems   to   be  available   at   about   30   s   after   the   true   event   occurrence   (Fig.   6).   However,   it   is   partly  contributed  by   the  numerical   noises   on  neighboring  non-­‐causal   faults.   Figure   5   shows   the  slip  distribution  on  the  causal  fault  stabilizes  not  earlier  than  50  s  after  the  event  occurrence,  but  the  causal  fault  can  be  recognized  already  from  20-­‐30  s.  Note  that  the  rupture  duration  of  the  earthquake  is  20  s.  Thus,  the  actual  time  delay  for  getting  the  final  source  model  is  at  least   30   s,   a   large   part   of   which   is   caused   by   the   travel   times   of   S   waves   to   the   seismic  stations.  

 

 

Figure   4.   Waveform   comparison   between   synthetic   (blue)   and   inverted   (red)   velocity   seismograms   for   the  rupture  model  shown  in  Fig.  3.    

 

Page 31: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  7  

 

 

Figure   5.   Comparison   between   the   input   (top   left)   and   real-­‐time   reconstructed   slip   models.   The   moment  magnitudes  outside  the  brackets  are  inferred  from  the  seismic  moment  distributed  on  the  whole  fault  system,  while  that  in  the  brackets  corresponds  to  seismic  moment  located  on  the  main  rupture  fault.  

 

Figure  6.  Moment  magnitude  curves  obtained  by  the  retrospective  (red)  and  real-­‐time  reconstruction  (blue)  in  comparison  with  the  input  one  (black).  

 

Page 32: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  8  

 

2.3  INGV’  TEAM  RESULTS  

2.3.1  Geometrical  setting-­‐  Fault  parametrization  -­‐  Data  processing    We   used   the   47   synthetic   seismograms   provided   for   Scenario1  (http://aochi.hideo.perso.neuf.fr/marmara/).   Original   ground   velocity   time   histories   are  band-­‐pass  filtered  in  two  different  frequency  ranges;  between  0.01  and  0.5  Hz  and  between  0.01  and  0.25Hz,  by  using  a  two-­‐pole  and  two-­‐pass  Butterworth  filter.  We  invert  60  seconds  of  each  waveform,  including  body  and  surface  waves.  We  assumed  a  fault  plane  consistent  with   the   hypocentre   location   and   the   focal   mechanisms   given   for   the   Central   Marmara  segment   (Scenario1   strike:   86°;   dip=90°).   The   fault   plane   is   95   km   long   and   24   km  width,  along   strike   and   down-­‐dip   direction,   respectively.   We   invert   simultaneously   for   all   the  parameters  at  nodal  points  equally  spaced   (4.5  km)  along  strike  and  dip  directions.  During  the  inversion,  we  fix  a  given  range  of  variability  for  each  model  parameter.  In  particular,   in  this   study  we   adopt   the   following   variability   intervals:   peak   slip   velocity   values   can   range  between  0  and  7.0  m/s  at  0.25  m/s  interval;  the  rise  time  between  1.0  and  4  sec  at  0.25  sec  interval  and  the  rupture  time  at  each  grid  node  is  constrained  by  the  arrival  time  from  the  hypocentre  of  a  rupture  front  having  a  speed  comprised  between  2  and  4  km/s.  Rake  angle  is   fixed   to   180°.   In   this   study,   the   adopted   source   time   function   is   a   regularized   Yoffe  function  having   a   constant   time   to  peak   slip   velocity   (Tacc)   equal   to   0.225   sec   (Tinti   et   al.,  2005).  We  adopted  the  inversion  technique  described  in  Section  2.3.1  (D5.3).  

2.3.2  Results  

We  performed  six  different  inversions:  

1. by   inverting   for   peak   slip   velocity,   in   the   frequency   range   0.01-­‐0.25   Hz.   Rise   time,  rake   angle   and   rupture   velocity   are   fixed;   CPU=13minutes;   (results   are   referred   as  case  ‘1par0.25Hz’);  

2. by  inverting  for  peak  slip  velocity,  in  the  frequency  range  0.01-­‐0.5  Hz.  Rise  time,  rake  angle   and   rupture   velocity   are   fixed;   CPU=1h;   (results   are   referred   as   case  ‘1par0.5Hz’);  

3. by  inverting  for  peak  slip  velocity  and  rise  time,  in  the  frequency  range  0.01-­‐0.25  Hz.  Rake   angle   and   rupture   velocity   are   fixed;   CPU=2h;   (results   are   referred   as   case    ‘2par0.25Hz’);  

4. by  inverting  for  peak  slip  velocity  and  rise  time,  in  the  frequency  range  0.01-­‐0.5  Hz.  Rake   angle   and   rupture   velocity   are   fixed;   CPU=6h   ;   (results   are   referred   as   case    ‘2par0.5Hz’);  

5. by  inverting  for  peak  slip  velocity,  rise  time  and  rupture  time,  in  the  frequency  range  0.01-­‐0.25  Hz.  Rake  angle   is   fixed   to  180°;  CPU=3.30h   ;   (results  are   referred  as   case  ‘Allpar0.25Hz’);  

Page 33: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  9  

 

6. by  inverting  for  peak  slip  velocity,  rise  time  and  rupture  time,  in  the  frequency  range  0.01-­‐0.5   Hz.   Rake   angle   is   fixed   to   180°;   CPU=   8.30h;   (results   are   referred   as   case  ‘Allpar0.5Hz’).    

For  each  inversion  we  show  (see  Figures  7-­‐9-­‐11-­‐13-­‐15-­‐17)  the  retrieved  rupture  model,  given  in  terms  of  rise  time,  slip,  peak  slip  velocity  and  rupture  times  distribution  (depending  on  the  set  of  inverted  kinematic  parameters)  on  the  fault  plane,  and  the  corresponding  comparison  between  synthetic  (blue  lines)  and  inverted  (red  lines)  velocity  time  histories  (see  Figures  8-­‐10-­‐12-­‐14-­‐16-­‐18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 34: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  10  

 

Case:  1par0.25Hz  

 Figure7.  Retrieved  rupture  model,  in  terms  of  slip  and  rise  time  distribution  (upper  and  bottom  panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity,  in  the  frequency  band  0.01-­‐0.25Hz.    

 Figure8.  Misfit  between  synthetic  ground  velocities  (blue  lines)  with  those  computed  from  the  inverted  rupture  model  displayed  in  Figure7  (red  lines).    

0.00.51.01.52.02.53.03.54.0sec

rise timeE W

-18(km)

(km)

0.00.51.01.52.02.53.03.54.04.55.0m

slipE W

-18(km)

(km)28.5 66.59.5 47.5 85.50 95

28.5 66.59.5 47.5 85.50 95

Page 35: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  11  

 

Case:  1par0.5Hz    

 Figure9.  Retrieved  rupture  model,  in  terms  of  slip  and  rise  time  distribution  (upper  and  bottom  panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity,  in  the  frequency  band  0.01-­‐0.5Hz.      

 Figure10.  Misfit  between  synthetic  ground  velocities  (blue  lines)  with  those  computed  from  the  inverted  rupture  model  displayed  in  Figure9  (red  lines).  

0.00.51.01.52.02.53.03.54.0

secrise timeE W

-18(km)

(km)

0.00.51.01.52.02.53.03.54.04.55.0m

slipE W

-18(km)

(km)28.5 66.59.5 47.5 85.50 95

28.5 66.59.5 47.5 85.50 95

Page 36: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  12  

 

Case:  2par0.25H  

 Figure11.  Retrieved  rupture  model,  in  terms  of  slip  and  rise  time  distribution  (upper  and  bottom  panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity  and  rise  time,  in  the  frequency  band  0.01-­‐0.25Hz.  

 Figure12.  Misfit  between  synthetic  ground  velocities  (blue  lines)  with  those  computed  from  the  inverted  rupture  model  displayed  in  Figure11  (red  lines).  

0.00.51.01.52.02.53.03.54.04.55.0

m

(km)

slipE W

-18

(km)

0.00.51.01.52.02.53.03.54.0

sec

rise timeE W

-18

(km)

(km)

28.5 66.59.5 85.50 9547.5

28.5 66.59.5 85.50 9547.5

Page 37: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  13  

 

Case:  2par0.5Hz  

 Figure13.  Retrieved  rupture  model,  in  terms  of  slip  and  rise  time  distribution  (upper  and  bottom  panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity  and  rise  time,  in  the  frequency  band  0.01-­‐0.5Hz.  

 

Figure14.  Misfit  between  synthetic  ground  velocities  (blue  lines)  with  those  computed  from  the  inverted  rupture  model  displayed  in  Figure13  (red  lines).  

0.00.51.01.52.02.53.03.54.0

secrise timeE W

-18

(km)

(km)

0.00.51.01.52.02.53.03.54.04.55.0

mslipE W

-18

(km)

(km)28.5 66.59.5 85.50 9547.5

28.5 66.59.5 85.50 9547.5

Page 38: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  14  

 

Case:  Allpar0.25Hz  

 Figure15.   Retrieved   rupture   model,   in   terms   of   slip,   rise   time,   peak   slip   velocity   and   rupture   time  distribution   (upper,   middle,   and   bottom   panel,   respectively),   obtained   by   inverting   for   peak   slip  velocity,   rise   time   and   rupture   time,   in   the   frequency   band   0.01-­‐0.25Hz.  White   contours   in   bottom  panel  show  the  retrieved  rupture  times.  

 Figure16.  Misfit  between  synthetic  ground  velocities  (blue  lines)  with  those  computed  from  the  inverted  rupture  model  displayed  in  Figure15  (red  lines).  

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.0

m/speak slip velocityE W

2

3

-18

(km)

(km)

0.00.51.01.52.02.53.03.54.0

secrise timeE W

-18

(km)

(km)

0.00.51.01.52.02.53.03.54.04.55.0

mslipE W

-18

(km)

(km)28.5 66.59.5 85.50 9547.5

28.5 66.59.5 85.50 9547.5

28.5 66.59.5 85.50 9547.5

Page 39: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  15  

 

Case:  Allpar0.5Hz  

 Figure17.  Retrieved  rupture  model,  in  terms  of  slip,  rise  time,  peak  slip  velocity  and  rupture  time  distribution  (upper,  middle,  and  bottom  panel,  respectively),  obtained  by  inverting  for  peak  slip  velocity,  rise  time  and  rupture  time,  in  the  frequency  band  0.01-­‐0.5Hz.  White  contours  in  bottom  panel  show  the  retrieved  rupture  times.  

 Figure18.  Misfit  between  synthetic  ground  velocities  (blue  lines)  with  those  computed  from  the  inverted  rupture  model  displayed  in  Figure17  (red  lines).  

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.0

m/speak slip velocityE W

1

2

3

-18

(km)

(km)

0.00.51.01.52.02.53.03.54.0

secrise timeE W

-18

(km)

(km)

0.00.51.01.52.02.53.03.54.04.55.0

mslipE W

-18

(km)

(km)28.5 66.59.5 85.50 9547.5

28.5 66.59.5 85.50 9547.5

28.5 66.59.5 85.50 9547.5

Page 40: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  16  

 

 All  the  retrieved  rupture  models  are  characterized  by  a  main  patch  with  a  maximum  slip   value   of   4  m   that   extends   from   the   right-­‐upper   fault   plane   border   down   to   a  depth  of  14  km.  The  associated  moment  magnitudes  are  all  around  7  (see  fourth  and  seventh  column   in  Table1).  The   total  duration  of   the   rupture   is  about  20s;  and   the  slip  asperity  is  characterized  by  rise  time  of  about  2-­‐3.5  s  (Figures  15-­‐17).  Table1  also  shows,  for  each  performed  inversion,  the  corresponding  waveform’  cost  function  (second  and  fifth  column  in  Table1)  and  the  computation  time  (CPU),  (third  and  sixth  column  in  Table1).  All  inversions  were  done  with  a  PC  (Intel  Xeon  E5-­‐2680  processor  running  CPU  @2.7GHz,  128  GB  RAM).  As  we  can  see,  our  code   is  able  to  retrieve  a  good   rupture  model   (cost=0.35)   in  13minutes.    We  consider   this   result  a  rapid  and  reliable  estimation  of  the  main  rupture  process’  features.      Table1.  CPU,  waveform  Cost  function,  Moment  Magnitude  values  

 

    cost   CPU  

 Mw   cost   CPU  

 Mw  

 Allpar    

     0.23  

     3.30h  

   7.10  

       0.42  

   8.30h  

   7.07  

 2par    

     0.29  

     2.00h  

   7.08  

     0.56  

     6.00h  

   7.06  

 1par    

   0.35  

     13min  

   7.01  

     0.50  

     1.00h  

   7.00  

 

3.  Conclusions    Information  about  the  extended  source  properties  are  needed  for  performing  the  ground  motion  simulation  associated  to  the  earthquake  rupture  on  the  causative  fault.   The  main   goal   of   this   task  was   the   fast   determination   of   the   earthquake  source,  with  special  focus  on  its  finite-­‐fault  characteristics.  The  obtained  result,  for  the  blind  test,  show  that,  by  inverting  near-­‐field  strong-­‐motion  and  high-­‐rate  GPS  data   in   the  Marmara  Sea  we  are  able   to  provide  a   rapid   (CPU  between  2  and  13  minutes)  and  reliable  reconstruction  of  the  rupture  process  of  large  earthquakes,  by   retrieving   the  most   relevant   earthquake   source   parameters.   These   analyses  can   be   done   in   near   real   time   and   are   particularly   suited   for   capturing   near-­‐source   large   earthquakes.   The   proposed   approach   represents   a   helpful   tool   to  improve   rapid   ground-­‐motion   simulations   in   case   of   large   earthquakes   in   the  Marmara  region.  Moreover,  according  to  the  test  results,  performed  by  the  GFZ  

0.01  –  0.25  Hz   0.01  –  0.5  Hz  

Page 41: D5.3! …...MARSite((GA(308417)(D5.3((5" " Top! of layer (km)! Vp(m/s)! Vs(m/s)! Density!(kg/m3)!Q*! 0( 2250( 1100( 2150( 300(Q1( 5700( 3200( 2700( 300(Q6( 6100( 3600( 2750( 300 ...

MARSite  (GA  308417)  D5.4  17  

 

team,  near  real-­‐time  source  characterization  of  large-­‐scale  earthquakes  (Mw  ≥  7)  under   the  Marmara   Sea   is   feasible.   Providing   the   real-­‐time  data   acquisition   for  the   current   network   and   a   good   database   of   the   active   fault   system,   all   key  source  parameters  that  are  relevant  for  purpose  of  the  rapid  hazard  assessment  can   be   estimated   without   substantial   uncertainties.   The   theoretical   time   delay  between   what   can   be   resolved   and   what   has   been   really   occurred   on   the  earthquake   source   is   in   the   order   of   10-­‐15   s.   The   cause   of   this   time   delay   is  mainly   physical,   namely   by   the   S   wave   propagation   from   the   source   to   the  network.  In  practice,  a  slightly  larger  time  delay  should  be  considered  because  of  the  time  to  be  required  additionally  for  the  data  transmission  and  inversion.  The  latter,   however,   can   be   generally   reduced   to   a   few   seconds   through  parallelization  of  the  IDS  inversion  technique.      

References  

Aochi,   H.   and   T.   Ulrich,   A   probable   earthquake   scenario   near   Istanbul   determined   from  dynamic  simulations,  Bull.  Seism.  Soc.  Am.  ,  105,  doi:10.1785/0120140283,  2015.  

Armijo,  R.  &  21  others,  2005.  Submarine  fault  scarps  in  the  Sea  of  Marmara  pull-­‐apart  (North  Anatolian  Fault):  Implications  for  seismic  hazard  in  Istanbul,  Geochem.  Geophys.  Geosyst.,  6,  Q06009,  doi:10.1029/2004GC000896.  

Hergert,  T.,  Heidbach,  O.,  Bécel,  A.  &  Laigle,  M.,  2011.  Geomechanical  model  of  the  Marmara  Sea   region   -­‐   I.   3-­‐D   contemporary   kinematics,   Geophys.   J.   Int.,   185,   1073-­‐1089,  doi:10.1111/1365-­‐246X.2011.04991.x.  

Tinti,  E.,  E.  Fukuyama,  A.  Piatanesi  and  M.  Cocco  (2005a),  A  kinematic  source  time  function  compatible   with   earthquake   dynamics,   Bull.   Seismol.   Soc.   Am.,   95(4),   1211-­‐1223,  doi:10.1785/0120040177.