D4.1 Specification of industrial...

20
E-Learning and Practical Training of Mechatronics and Alternative Technologies in Industrial Community 510586-LLP-1-2010-1-SI-LEONARDO-LNW Multilateral Thematic Networks UM FERI D4.1 Specification of industrial modules E-PRAGMATIC project report E-PRAGMATIC partners January 25, 2012 This work has been performed within the project "E-PRAGMATIC; E-Learning and Practical Training of Mechatronics and Alternative Technologies in Industrial Community", 510586-LLP-2010-SI-LNW. This project is funded with support of the Lifelong Learning Programme of the European Union. All here provided information and documentation reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. General form, specific content, specification of the remote experiments for individual learning modules and specification of the educational methodology are presented. Everything is adapted to the need of professionals from industry, ascertained with the knowledge and education needs analysis (E-PRAGMATIC Deliverables D2.2 and D2.3).

Transcript of D4.1 Specification of industrial...

E-Learning and Practical Training of Mechatronics and Alternative Technologies in Industrial Community

510586-LLP-1-2010-1-SI-LEONARDO-LNW Multilateral Thematic Networks

UM FERI

D4.1 Specification of industrial modules

E-PRAGMATIC project report

E-PRAGMATIC partners

January 25, 2012

This work has been performed within the project "E-PRAGMATIC; E-Learning and Practical Training of Mechatronics and Alternative Technologies in Industrial Community", 510586-LLP-2010-SI-LNW. This project is funded with support of the Lifelong Learning Programme of the European Union. All here provided information and documentation reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

General form, specific content, specification of the remote experiments for individual learning modules and specification of the educational methodology are presented. Everything is adapted to the need of professionals from industry, ascertained with the knowledge and education needs analysis (E-PRAGMATIC Deliverables D2.2 and D2.3).

P a g e | ii

Document revision history

REVISION DATE OF RELEASE PURPOSE

22.06.2011 Draft version (Second meeting minutes)

07.07.2011 Second version

25.01.2012 Updated version (after 3rd meeting); Names of two learning modules prepared by P7 were changed and outline added. Names of two modules by P4 were slightly changed.

08.02.2012 Update, added information concerning pilot training (attachment, last section).

P a g e | ii

Contents 1 INTRODUCTION ........................................................................................................................................ 1

2 GENERAL FORM OF THE LEARNING MODULES .......................................................................................... 1 Information concerning the modules............................................................................................................ 1

Structure of the learning materials ............................................................................................................... 1

Multimedia elements .................................................................................................................................... 2

Knowledge tests ............................................................................................................................................ 3

3 SPECIFICATION OF THE CONTENTS/EXPERIMENTS IN THE LEARNING MODULES ...................................... 4 3.1 AUSTRIA ................................................................................................................................................. 4

Introduction to remote and Online engineering ........................................................................................... 4

Introduction to LabVIEW .............................................................................................................................. 4

High temperature design (material science) ................................................................................................ 5

3.2 NEDERLAND ............................................................................................................................................ 5 Solar electricity ............................................................................................................................................. 5

Power electronics for electric cars ................................................................................................................ 5

Energy and energy storage of electric cars ................................................................................................... 5

Electrical drives ............................................................................................................................................. 6

3.3 POLAND .................................................................................................................................................. 6 Wheeled mobile robot – practical aspects of control and navigation .......................................................... 6

PLC controllers and industrial networks ....................................................................................................... 7

Robot programming ..................................................................................................................................... 7

3.4 SLOVENIA ................................................................................................................................................ 7 Introduction to LabVIEW and Computer Based Measuerments ................................................................... 7

Computer based measurement and instrument control............................................................................... 8

Introduction to industrial robotics ................................................................................................................ 8

Applied control theory .................................................................................................................................. 9

Hybrid drives ................................................................................................................................................. 9

Mechatronic devices ................................................................................................................................... 10

Electrical circuits ......................................................................................................................................... 10

3.5 SPAIN ................................................................................................................................................... 10 Introduction to Microcontrollers................................................................................................................. 10

8-bit Microcontrollers, advanced course .................................................................................................... 10

Low cost Platform to provide LAN/WAN Connectivity to Embedded Systems ............................................ 11

P a g e | ii

3.6 SWITZERLAND ........................................................................................................................................ 11

Energy efficient drive technologies ............................................................................................................. 11

4 REMOTE EXPERIMENTS AND REMOTE WORKING STATION .................................................................... 11

5 EDUCATIONAL METHODOLOGY .............................................................................................................. 12 Basic methodology ..................................................................................................................................... 12

Material distribution ................................................................................................................................... 13

Supervision/tutoring of the learners ........................................................................................................... 14

Methods for maintaining motivation of the learners ................................................................................. 14

6 SPECIFICATION OF THE MODULES FOR PILOT TRAINING ......................................................................... 15

P a g e | 1

1 Introduction General form, specific content, specification of the remote experiments for individual learning modules and specification of the educational methodology are presented. Everything is adapted to the need of professionals from industry, ascertained with the knowledge and education needs analysis (E-PRAGMATIC Deliverables D2.2 and D2.3).

2 General form of the learning modules General form in which the e-learning material is presented, will be the same for all E-PRAGMATIC learning modules. This form is partially determined by the learning management system (LMS) eCampus.

Since the materials will be also available in the form of handbook, a special Word template was prepared. The template is designed in such way, that easy transform to SCORM format will be possible and that it can be also used for the final handbook (see attached document).

Information concerning the modules In all learning modules following data should be provided in the introduction:

• Course summary , 100-200 words • Course outline • Educational objectives • Target group • Required preliminary knowledge

Structure of the learning materials 1. Structure (table of contents)

• Each chapter has all (or at least most) of the following elements: text, scheme/photo/video, motivation question, side note. Example of the learning unit with text, scheme and motivation question.

• Maximum two chapters’ levels can be used: chapter, subchapter. For each chapter there should be an introductory text (the text which doesn't belong to any subchapter). Each chapter and subchapter title should be formatted with in this Word template build-in Heading1, Heading2 style respectively. Each heading represents one learning page in e-course. A learning page is also called a learning unit.

• It is recommended, that the chapters are balanced, respectively that they have approximately the same number of subchapters.

• It is recommended that the content of each page is limited to one 'screen', respectively 1.500 characters with blanks included.

• The content of the learning unit should be written with 'Normal' style. It can be additionally formatted as bold and/or italic. The text can be aligned right or left. All this formatting will be preserved in SCORM format as well.

• Paragraphs’ formatting and Bulleted Lists 1 and 2 formats will be also preserved in SCORM format.

P a g e | 2

• Tables will be exported to the learning portal in general format (defined on the

learning portal). Exported are also the paragraphs inside of the cells. • Colour, font and size of the text will not be exported to the learning portal. This is

set generally in the learning portal in order to preserve uniform graphical appearance for all learning materials.

2. Motivation questions • It is recommended that the motivation questions are provided in the most of

learning units. The learners answer those questions immediately after they read the learning unit and get immediate response.

3. Side notes • Learning units can be additionally variegated by the side notes. The available

notes types are: Warning, Advice, and Interesting. In order to show a side note in the learning unit, specific text should be placed at the end of corresponding chapter/subchapter.

For inserting Warning add at the end of the chapter/subchapter following: [opomba tip=1]Be careful with the units![/opomba] For inserting Advice add at the end of the chapter/subchapter following: [opomba tip=2]At the calculation of acceleration don't forget the friction! [/opomba] For inserting Interesting add at the end of the chapter/subchapter following: [opomba tip=3]One of the first computer viruses was written in Pakistan![/opomba]

4. Links It is recommended to include links in the learning contents in order to provide the additional information. Try to provide links only to relatively long-lasting pages. Hyperlinks such as E-PRAGMATIC will be automatically transferred to hyperlinks in the SCORM learning materials.

Multimedia elements 1. Figures

• It is recommended that each learning unit contains a figure/photo/scheme/video. Each Figure should have a caption.

• A figure width should not be over 570px. • The figures from Word documents are to the learning portal exported in the size in

which they are shown in Word document. Please note: If we put into Word a picture with size 570px is this picture automatically adapted to the size of Word page (for example 450px) and is in such size also exported to the learning portal. Therefore it is recommended, that pictures are in the Word re-set to their original dimensions.

• Supported formats: *.png and *.jpg (for photographs).

P a g e | 3

2. Animations, audio and video • Following multimedia elements can be used: flash animations (swf), Articulate

Engage animation (zip), audio (mp3), video (avi, mp4) or embedded video from other pages such as YouTube). For flash information dimensions should be known (for example 550x320px).

• The multimedia elements will not be transferred from Word document to SCORM learning materials automatically, but they can be added to the learning materials manually, directly within the learning portal.

Knowledge tests 1. General

• Electronic knowledge tests with automatic assessment should be included in each learning module. It is also possible to introduce such test for each chapter.

• The tests will be composed randomly, so that from the base of question-answer pairs a new test with predetermined number of questions will be created. In the base of question-answers pair also motivation questions could be included.

• Tests prepared according to the instructions in the template will be automatically exported from Word document to SCORM format in eCampus.

2. Structure of e-tests • Number of questions. 10-20 questions are recommended for each learning module. • Possible types of the questions: multi-choice single-answer, multi-choice multi-

answer, free text answers. • Number of the answers. For the questions with one correct answer 4 answers

altogether are usually provided. For the questions with more than one correct answer usually 5 answers altogether are provided. If more than one answer is correct, then this is usually mentioned in the questions (for example 'Two right answers').

P a g e | 4

3 Specification of the contents/experiments in the learning

modules The contents of learning modules were chosen according to the stated knowledge and education needs of the target group (professionals from industry). The needs were investigated by:

• E-PRAGMATIC questionnaires, 355 answers from 7 participating countries were received, • direct interviews with the industrial partners, • other sources of information (results of other studies).

Results, analysis and conclusions are given in E-PRAGMATIC WP2 report, D2.2, D2.3, D2.4 (also available at the project web page and here). Based on the results and their expertise the partners suggested learning modules, which they will prepare. The courses were presented and discussed by all educational partners on second e-PRAGMATIC meeting to avoid overlapping.

3.1 Austria Three learning modules will be prepared.

Introduction to remote and Online engineering Outline:

• Introduction • Examples of Good Practices • Systematization and Architecture of Online Labs • Technologies for Delivering Online Experiments • Present and Future Trends

Introduction to LabVIEW Outline:

• Introduction • Basics • Basic programming structures in LabVIEW • Variables and Data Types • Arrays and Clusters • Property Nodes • Data Acquisition • State Machine • Configuration Files • TDMS • LabVIEW Remote Panel Access • Event Driven Programming • Synchronization • Debugging in LabVIEW • Customized Front Panel Objects

P a g e | 5

• Timing Function • Data Communication via VISA • Database

High temperature design (material science) Contents is prepared according to the needs of industrial partner Flowserve.

3.2 Nederland Three learning modules will be prepared by Technical University of Delft (P7) and one learning module by Simulation research (P10).

Solar electricity Outline:

• Introduction • Solar modules and solar arrays • Solar converter topologies • Maximum power point tracking • Impact on grid • Large scale photovoltaic power plants • Remote experiment • Conclusion

Additional a distance lab, remote experiments which will be accessible through UNI MB booking system will be prepared for practical work.

Power electronics for electric cars Updated, January 2012. Initially this module was named ‘Drivetrain of electric car’ however the name of the module was changed in order to better present the content of the module- Written material will be prepared. Multimedia elements will be included. An animation of operating principle of drivetrain will be presented.

Outline: • Introduction • Drivetrain of electric vehicle • Energy storage • Two-quadrant DC-DC converter • Three phase DC-AC converter • Conclusion

Energy and energy storage of electric cars Updated, January 2012.

P a g e | 6

Initially the module was named ‘Charging of electric cars’. The module was however renamed, since the initial content was updated and now covers broader range of topics. The title was changed in order to be more informative.

Outline: • History, current state and trends in development of electric vehicles • Modelling and analysing of electric vehicles’ dynamics • Energy storage systems • Charging of electric vehicles • Case study • Conclusion

Electrical drives This module will be prepared by partner P10 and will include theoretical materials and multimedia elements such as animations.

Outline: • The basic functionality of the various common types of motors. • Working principle of the various common types of motors. • Required control of the various common types of motors. For each motor, tutorials are given,

on how to control the motor.

3.3 Poland

Wheeled mobile robot – practical aspects of control and navigation The course is intended to provide some basic theory as well as practical solutions in the area of mobile robotics.

Outline: • Classification and description of wheeled mobile robots kinematics including constraints

imposed on velocities • Motion control algorithms based on kinematic model

o Set point control (parking problem) solutions o Trajectory tracking control o Path following control

• Localization and navigation o Selected methods of localizations: odometry, inertial techniques, triangulation,

trilateration, etc. o Selected methods of navigation: graph search techniques, potential functions, probabilistic

approach, etc. • Simulation and experimental results related to points 1, 2 and 3.

P a g e | 7

PLC controllers and industrial networks The course is intended to provide basic theory about architecture and programming of PLC controllers with practical solutions in the area of control algorithms with PLC controllers.

Outline: • Introduction to Control: elements of logic in control systems, automatic control system with

PLC controller, processing of analogue values. • Architecture of the PLC controller, principle of operation and configuration of software

controller • Programming Languages of PLC controller • Industrial communication protocols: communications reference model ISO / OSI, standards for

communication interfaces in the drivers, function and structure of the Profibus or CAN • The use of network communication in the programming language: discussion of the application

layer Profibus DP or CANopen, function block for network communication, example program realizing the exchange of process data in industrial network

• Design of the control system with PLC controllers

Robot programming The course is intended to provide basic theory concerning trajectory and task planning for industrial robots. Basic programming structures and techniques will be discussed.

Outline: • Trajectory planning in Cartesian and joint space • Polynomials, Bezier polynomials, • Basic trajectories in Cartesian space. • Differential kinematics and related algorithms • Task planning in Cartesian space

- Basic data structure of high level robot programming language: position, orientation, quaterions and frame concept

- Simulation examples o MATLAB toolbox for Robotics (public domain toolbox designed by P. Corke) o Kuka simulator (KUKA.Sim Pro)

3.4 Slovenia Five learning modules will be prepared; some have remote experiments.

Introduction to LabVIEW and Computer Based Measuerments This course will cover basic topics from PC based data acquisition using LabVIEW development environment.

Outline: • Introduction; • Creating, editing, and debugging LabVIEW programs; • Developing modular applications; • Using programming structures (FOR loop, WHILE loop, sequence, etc.);

P a g e | 8

• Creating arrays and clusters; • Using strings and files I/O functions; • Data acquisition using LabVIEW and custom developed DAQ device; • Conclusion; • The users will need LabVIEW software: • 30 days trial version; • access to remote station; • Data acquisition part will be realized using custom developed low cost USB DAQ device; Remote working station accessible through CEyeClon system and kit for home work will be available.

Computer based measurement and instrument control This course will cover advanced topics from data acquisition, signal processing and instrument control.

Outline: • Introduction; • Data acquisition hardware: • A/D and D/A conversion; • Analogue and digital inputs/outputs, counters; • Analogue and digital triggering; • Signal conditioning; • Signal processing; • Instrument control; • Conclusion;

Remote experiments: • Remote experiments from data acquisition part will be realized using LabVIEW and NI ELVIS. • Exercises from Instrument control will be realized using NI instrument simulator.

Introduction to industrial robotics Outline: • Introduction • Mechanical construction, kinematics and dynamics • Repeatability, precision and accuracy • Case study: Yaskawa/Motoman

o Construction o Product specifications supplied by the robotics manufacturer

• Drives and sensors • Peripheral equipment • Programming for the industrial applications

o Trajectory planning o Manipulator control

• Case study: Inform II (Yaskawa robots)

P a g e | 9

o Coordinate systems o Motion planning o Programming structures o Programming with Teach-In box

• Off-line programming o Example 1: Robotic grinding o Example 2: Work cell for palletizing

• Safety in the robot systems Because of its specifics (industrial robots cannot be implemented as remote experiments with full functionality of the robots), the course will be executed in two versions:

• Completely online version. • Blended training version, where practical training will be executed in the laboratory on industrial robot (non-obligatory part).

Applied control theory Outline: • Introduction • Basic concepts (open loop, feedback) • Switching controller • PID controller and its modifications • Interactive animations • Conclusion

Hybrid drives Outline: • Introduction • Operating principle and typical constructions • Energy storage systems • Batteries • Hybrid energy storage systems with super capacitors • Power electronics elements • Buck-Boost converter for super-capacitor • Buck-Boost converter for batteries • Control of energy flow • Control design • Case study: Hybrid drive of UNI MB • Conclusion

P a g e | 10

Mechatronic devices Outline: • Introduction • Joint drive system • Complex mechatronic devices • Robots configuration, geometry and dynamics • Motion control of complex mechatronic devices • Conclusion Within the module a remote experiment with two-degree SCARA robot will be available.

Electrical circuits Outline: • Introduction • Fundamental elements of electrical circuits • Frequency characteristics • Filters

o Passive o Active o Switched capacitors filters

• Conclusion Within the module a remote experiment with different type of filters, including switched capacitor filters, will be available..

3.5 Spain

Introduction to Microcontrollers This is an introductory course that will introduce students to the use of these devices. Includes development of a simple project through a remote laboratory that will allow the assembly language programming of a microcontroller 8-bit RISC.

Outline: • Chapter 1: Introduction • Chapter 2: 8-bits Microcontrollers • Chapter 3: PIC18F Architecture • Chapter 4: PIC18 assembler • Chapter 5: WebLab-Bot Remote Laboratory

8-bit Microcontrollers, advanced course This course will study the most common peripherals included in the 8-bit microcontrollers. The course ends with the development of a project through a remote laboratory.

P a g e | 11

Outline:

• Chapter 1: Introduction • Chapter 2: 16-bits Timers • Chapter 3: Analog to Digital Converter • Chapter 4: Pulse Width Modulation • Chapter 5: Final Experiment: Integrating different resources

Low cost Platform to provide LAN/WAN Connectivity to Embedded Systems Local area network connectivity has become a primary objective in the design of embedded systems. Most industrial facilities, not to mention other buildings, have a deployed local area network that facilitates the installation of new systems without requiring new communication infrastructures. Besides, if the network is connected to the Internet embedded system can be remotely controlled or monitored from anywhere in the world. This course will present the 18FXXJ60 microcontroller family, the most economical solution on the market to ensure Ethernet network connectivity to any embedded system.

Outline: • Chapter 1 Introduction to Microchip 8-bits Family • Chapter 2 Introduction to Ethernet • Chapter 3 The TCP/IP Stack • Chapter 4 Understanding a Demo application • Chapter 5 Designing a new Project

3.6 Switzerland

Energy efficient drive technologies The course will present learning materials and a remote workplace (hosting drive 5 kW)

Outline: • Evaluation:

o Software Sizer o Calculations o Mechanical approach of the system o Evaluation of drive system

• Realization o Software Starter o Commissioning of a servo drive

• Identify o Software Sentron power manager o Analyse of a hosting drive with and without energy recuperation

4 Remote experiments and remote working station Three different access systems to remote experiments will be used. Those accesses are following:

P a g e | 12

- CEyeClon system will be used by:

1. HFTbiel for remote working station in the learning module Energy efficiency in industrial consulting and production.

2. UNI MB for remote working stations for two modules (PC based measurement and instrument control I and II).

- Booking system of University Maribor will be used by: 1. TU Delft for the experiment from Solar energy, 2. UNI MB for its remote experiments.

- WebLab of UDEUSTO will be used for all remote experiments in the learning modules

prepared in this institution.

Connection between all systems and eCampus learning management system will be established in order to avoid double sign-in.

Technical details and other further information (description of remote access systems) are presented in the following document: EPRAGMATIC_2nd_meeting_minutes.pdf (available under WP1 or here).

5 Educational methodology A general methodology for distance education does not exist. There are however few factors, which are known to have a significant effect at the efficiency of distance education and should be considered at the preparation of the modules:

• basic methodology, • material distribution, • supervision of the training participants, • methods for maintaining motivation of the learners.

Here presented draft educational methodology will be refined during the preparation of learning modules and in parallel to on-going adaptations of the learning management system. After the pilot training, based on the gained experience and obtained feedback from the participants (based on the results of the questionnaires, which will be executed during training), the guidelines for further development and implementation of the developed educational methodology and specifications for e-learning in industry will be set. Final educational methodology will be presented in Deliverable D8.6, ‘Further development of specifications and methodology for e-learning of technical subjects in industry’, available 15.10.2012.

Basic methodology Asynchronous distance learning was chosen for e-PRAGMATIC training. This is the most frequently used method for the online programs and courses. Asynchronous learning enables the learners to enrol in the courses at the times which suit her/him.

P a g e | 13

E-PRAGMATIC training will also offer few remote experiments and working station, which will be available 24 hours/day. Therefore all advantages of asynchronous learning process will be exploited in E-PRAGMATIC training. The learners will be able to access learning materials and remote experiment for practical work at any time they chose.

Further, the results of E-PRAGMATIC questionnaires (D2.3, D2.3, available under WP2 and online) have shown that preferred days for the training differ for the participant to the participant. However, on general, each day about the same percentage of the learners will engage in the training. This fact makes application of the synchronous learning methodology impossible and is another reason for choosing of the asynchronous distance learning method.

Nevertheless some time limits have to be set for the training duration. Average time which the participants have at disposal weekly to engage in the distance training is 6 hours (as found out by the questionnaires).

Average E-PRAGMATIC distance course will require about 15 hours of work effort. Therefore 3 weeks of time should be devoted for each course. If an average participant of the pilot training will enrol in 3 courses, would this mean about 45 hours of work. Based on this the pilot training could be realised within 10 weeks, which corresponds to the time planed for pilot training (1.4.2012 - 15.6.2012).

Material distribution Learning modules will be presented within LMS in the form of small learning units (as described in section 2) with motivation questions, exercises and remote experiments. Additionally some pdf files will be provided for the cases where information is not available in other forms (like for example producer specifications for drives, industrial robots,..).

Inside the learning material, the additional links will be provided to Wikipedia and to other relevant pages. Those links will serve of providing more detailed explanation of some concepts or to provide background knowledge necessary for understanding of the learning materials.

Experience gained from the projects which involved education of professionals from industry (project Merlab), also shows, that some adult learners still prefer traditional, printed learning materials and have somehow negative attitude toward learning directly from the computer screen. However if materials suitable for printing are offered and participants chose to learn off-line, then their learning time and engagement cannot be checked by the mentors. This makes distance supervision of the learners harder and some advantages of distance training are lost.

In the case that learning materials in the form suitable for printing will be requested by the pilot training participants, then the tutors, respectively authors of the learning materials will alone decide, if they will provide it to the individuals who will request it.

After the project finishes, an additional service ‘Print on demand’ will be offered within the learning portal as a part of commercialization/ sustainability measures.

P a g e | 14

Materials will be also prepared in the form of handbook, which will be available on DVD. Handbook will be prepared after the pilot training, since based on the training results and feedback, necessary changes/adaptation of the learning material will be done.

Supervision/tutoring of the learners Each learning module will have assigned a tutor/mentor, who will supervise all participants of the course for which she/he is responsible. The tutor will set exact deadlines (within pilot training period) in which the learners will have to fulfil all their obligations (exercises, test, and remote experiments).

Contact between tutor and learner will be through:

- messaging in the LMS as a primary method, - e-mail, when suitable, - phone, optionally, - direct contact at the introductory meeting and also for execution of some part of the

courses. This is also optional method, which can be used for the participants from the same country to provide them additional knowledge and possibilities. However all courses have to have also the version which can be executed completely online, since for the participants from other countries will be impossible to participate at the live meeting.

Tutors will try to keep contact with the learners by contacting them:

- At the beginning of the module execution for explaining how the training is planned, which exercises, tests and experiments the learner has to execute/pass in order to successfully finis the module.

- When the participant sends solved free-text exercises or reports for experiments, which have to be checked by the tutor. Then the tutor should answer and provide comments as soon as possible, ideally within 24 hours.

- When the tutor receives from the participant a question concerning learning materials and other training related topics.

- When the participant successfully finish e-test. - When the learner doesn’t log to the learning platform for a longer time or is behind with the

work (sending exercises, executing tests).

Based on the feedback from the learners each tutor will however adapt this basic approach in order to consider individual needs of the participants and the whole group.

Methods for maintaining motivation of the learners Maintaining motivation of the learners is at distance training more challenging as at the conventional training (as there is no direct and daily contact with the tutors and other learners). However we do not expect very big problems with this, since already questionnaires’ results showed, that most of the participants are highly motivated to obtain new knowledge, either to be more efficient at the

P a g e | 15

usage of new tools/methodology at their work, either to improve income and be able to compete for a better job.

Nevertheless following methods will be used to motivate the learners:

- Providing constant and fast feedback on the activities of the learner (solved tests, sent reports and similar).

- Supporting and encouraging the interaction between learners in E-PRAGMATIC community concerning training related and other matters (D5.5).

- Providing confirmation about successfully finished training. Training confirmation (a general draft version is attached) will be issued by the project, and (if possible) confirmed by the institution which has prepared the learning courses in which the learner was enrolled. Text of the confirmation will be adapted by each partner according to their needs.

6 Specification of the modules for pilot training Update, January 2012

The data for each module, which will be collected with this form, will be forwarded to the possible participants of the pilot training. Based on this information possible participants will choose the modules in which they want to enrol.

Separate table for each language version of the same module were filled. For filling the table the same language in which the module is prepared and in which it will be available for the training is used.

Table has be created according to recommendation form Quality assurance plan for modules and Community 8D8.3).

- Module summary - text from module description (as foreseen in the template). Max 200 words. Please note that this is also marketing text for your learning module; therefore make it attractive and informative at the same time.

- Required preliminary knowledge and skills - text from module description (as foreseen in the template). Max 5 lines.

- Time span in which the module will be executed - Please write in which time period you will provide support/mentoring to the participants between 1.4.2012 and 15.6.2012. Preferably this should be for the whole timespan, but at least 1 month for each module. Note: all modules have to be on e-learning portal until 1.4.2012. no matter what the execution period will be.

- Other important information – Anything else that possible participants should know. - Mentor, organization – name and organization of the mentor who will supervise distance

training. - Maximal number of participants from other partners (countries) – state how many

participants you are willing to include in your course (for each language version separately in corresponding tables) from other countries/other partners. Number of participants from other countries plus number of participants from your country (those participants will be locally managed) should be minimum 15.

P a g e | 16

Table 1: Module form for pilot training

Title of the module Language Module summary Required preliminary knowledge and skills Time span in which the participants will be supervised (at least one month between 1.4.2012 and 15.6.2012) Other important information Mentor, organization Maximal number of participants from other partners (countries)

Attachment 1 shows Prepared list of modules.

E-Learning and Practical Training of Mechatronics and Alternative Technologies in Industrial Community

510586-LLP-1-2010-1-SI-LEONARDO-LNW Multilateral Thematic Networks

E-PRAGMATIC PARTNERS

WP4: List of Learning Modules

E-PRAGMATIC project report

Collected and edited by Olga Dziabenko, University of Deusto

2/1/2012

This work has been performed within the project "E-PRAGMATIC; E-Learning and Practical Training of Mechatronics and Alternative Technologies in Industrial Community", 510586-LLP-2010-SI-LNW. This project is funded with support of the Lifelong Learning Programme of the European Union. All here provided information and documentation reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Overview and summaries of all E-PRAGMATIC learning modules with information for pilot training participants.

P a g e | ii

Document revision history

REVISION DATE OF RELEASE PURPOSE

07.02.2012

P a g e | iii

Contents 1 INTRODUCTION ........................................................................................................................................ 1

1.1 OVERVIEW OF THE LEARNING MODULES ........................................................................................................ 2 INDUSTRIAL MODULES ........................................................................................................................................... 2 BASIC MODULES ................................................................................................................................................... 2 ALTERNATIVE/EMERGING TECHNOLOGIES MODULES .................................................................................................... 2

2 SUMMARY OF LEARNING MODULES IN ENGLISH ...................................................................................... 6 2.1 8-BIT MICROCONTROLLERS ADVANCED COURSE (M2_ENG_UDEUSTO) .......................................................... 6 2.2 APPLIED CONTROL THEORY (M1_EN_ UNI MB) ........................................................................................... 6 2.3 COMPUTER-BASED MEASUREMENTS AND INSTRUMENT CONTROL (M7_EN_ UNI MB) ........................................ 7 2.4 ELECTRIC DRIVES (M1_EN_SR) ................................................................................................................. 7 2.5 ELECTRICAL CIRCUITS (M2_EN_UNI MB) .................................................................................................... 8 2.6 ENERGY AND ENERGY STORAGE IN ELECTRIC CARS (M1_EN_TUD) .................................................................... 8 2.7 ENERGY EFFICIENT DRIVE TECHNOLOGIES (M1_EN_ HFTBIEL/ SIEMENS) ......................................................... 9 2.8 HYBRID DRIVE (M3_EN_UNI MB) ........................................................................................................... 10 2.9 INTRODUCTION TO INDUSTRIAL ROBOTICS (M4_EN_UNI MB) ....................................................................... 11 2.10 INTRODUCTION TO LABVIEW (M1_EN_CUAS) .......................................................................................... 11 2.11 INTRODUCTION TO LABVIEW AND COMPUTER BASED MEASUREMENTS (M5_EN_UNI MB) .............................. 12 2.12 INTRODUCTION TO MICROCONTROLLERS (M1_EN-UDEUSTO) ..................................................................... 12 2.13 INTRODUCTION TO REMOTE AND ONLINE ENGINEERING (M2_EN_CUAS) ....................................................... 13 2.14 LOW-COST PLATFORM TO PROVIDE LAN / WAN CONNECTIVITY FOR EMBEDDED SYSTEMS (M3_EN_UDEUSTO) ... 14 2.15 HIGH TEMPERATURE DESIGN - MATERIAL SCIENCE (M3_EN_CUAS) ................................................................ 14 2.16 MECHATRONIC DEVICES (M6_EN_UNI MB) .............................................................................................. 15 2.17 PLC CONTROLLERS AND INDUSTRIAL NETWORKS (M1_EN_PUT) .................................................................... 15 2.18 POWER ELECTRONIC FOR ELECTRIC VEHICLES (M2_EN_TUD) ......................................................................... 16 2.19 ROBOT PROGRAMMING (M2_EN_PUT) ................................................................................................... 17 2.20 SOLAR ELECTRICITY (M3_EN_TUD) ......................................................................................................... 17 2.21 WHEELED MOBILE ROBOTS – PRACTICAL ASPECTS OF CONTROL AND NAVIGATION (M3_EN_PUT) ......................... 18

3 SUMMARY OF LEARNING MODULES IN GERMAN ................................................................................... 19 3.1 ENERGIEEFFIZIENTE ANTRIEBSTECHNIK (M1_DE_ HFTBIEL/ SIEMENS) .......................................................... 19 3.2 HOCHTEMPERATURKONSTRUKTION (M3_DE_CUAS) ................................................................................... 20 3.3 ELEKTRISCHE SCHALTUNGEN (M4_DE_CUAS) ............................................................................................ 20

4 SUMMARY OF LEARNING MODULES IN SLOVENIAN ............................................................................... 22 4.1 UPORABNA TEORIJA VODENJA (M1_SL_UNI MB) ....................................................................................... 22 4.2 ELEKTRIČNA VEZJA (M2_SL_UNI MB) ...................................................................................................... 22 4.3 HIBRIDNI POGONI (M3_SL_UNI MB) ....................................................................................................... 23 4.4 UVOD V INDUSTRIJSKO ROBOTIKO (M4_SL_UNI MB) .................................................................................. 23 4.5 UVOD V LABVIEW IN RAČUNALNIŠKO PODPRTA MERJENJA (M5_SL_UNI MB) ................................................. 24

P a g e | iv

4.6 MEHATRONSKE NAPRAVE (M6_SL_UNI MB) ............................................................................................. 25 4.7 RAČUNALNIŠKO PODPRTA MERJENJA IN UPRAVLJANJE MERILNIH INSTRUMENTOV ................................................. 25

5 SUMMARY OF LEARNING MODULES IN SPANISH .................................................................................... 27 5.1 INTRODUCCIÓN A LOS MICROCONTROLADORES (M1_ES_UDEUSTO) ............................................................. 27 5.2 CURSO AVANZADO DE MICROCONTROLADORES DE 8 BITS(M2_ES_UDEUSTO) ............................................... 27 5.3 PLATAFORMA DE BAJO COSTE PARA PROPORCIONAR CONECTIVIDAD LAN/WAN A SISTEMAS EMBEBIDOS

(M3_ES_UDEUSTO) ....................................................................................................................................... 28

6 SUMMARY OF LEARNING MODULES IN POLISH ...................................................................................... 29 6.1 STEROWNIKI PLC I SIECI PRZEMYSŁOWE (M1_PL_PUT) ................................................................................ 29 6.2 PROGRAMOWANIE ROBOTÓW (M2_PL_PUT) ............................................................................................ 29 6.3 KOŁOWE ROBOTY MOBILNE – PRAKTYCZNE ZAGADNIENIA STEROWANIA I NAWIGACJI (M3_PL_PUT) ..................... 30

P a g e | v

List of Tables

Table 1: Overview of Learning Modules/Courses (English) ..................................................................................... 3

Table 2: Overview of Learning Modules/Courses (German) .................................................................................... 4

Table 3: Overview of Learning Modules/Courses (Slovenian) ................................................................................. 4

Table 4: Overview of Learning Modules/Courses (Spanish) .................................................................................... 5

Table 5: Overview of Learning Modules/Courses (Polish) ....................................................................................... 5

P a g e | 1

1 Introduction The purpose of this report is to provide an overview of E-PRAGMATIC learning modules for an industry in frame of online vocational educational pilot training. Data for each module provide here will be given to the potential pilot training participants, so that they can choose the module in which they want to participate.

Distance learning courses/learning modules are going to be implemented E-PRAGMATIC learning portal (http://learning.e-pragmatic.eu/). Although eCampus is password protected, the registration is free, and number of participants is restricted only by the acceptable workload of the moderator of courses.

The learning modules available during pilot training can be divided in three groups: basics, alternative and emerging technologies, and industrial demand courses. All courses were developed on the outcomes of the survey that was organized in frame of the WP2 - Analysis of the existing situation and conceptual development of educational approach (Deliverables D2.2, D2.3, D2.4) and in framework of WP4 - Implementation of learning modules (D4.1-Specifications on industrial modules).

List of courses which will be available in English is shown in Table 1. When the course is also available in some other language, this is indicated too. Summaries of those courses in English language are given in section 2 of this document. List of courses which will be available in German is shown in Table 2. When the course is also available in some other language, this is indicated too. Summaries of those courses in German language are given in section 3 of this document. List of courses which will be available in Slovene is shown in Table 3. When the course is also available in some other language, this is indicated too. Summaries of those courses in Slovene language are given in section 4 of this document. List of courses which will be available in Spanish is shown in Table 4. When the course is also available in some other language, this is indicated too. Summaries of those courses in Spanish language are given in section 5 of this document. List of courses which will be available in Polish is shown in Table 5. When the course is also available in some other language, this is indicated too. Summaries of those courses in English language are given in section 6 of this document.

Maximal number of participants: Application of participants for English modules (Table 1: Overview of Learning Modules/Courses (English) will be managed globally, so they are given in the table. Applications for modules in other languages will be managed locally in that country, so they alone regulate the number of participants and this data is therefore not given here.

P a g e | 2

1.1 Overview of the learning modules

Industrial modules • 8-bit Microcontrollers Advanced Course (M2_EN_UDEUSTO, M2_ES_UDEUSTO) • Applied control theory (M1_EN_UNI MB, M1_SL_UNI MB) • Computer-based Measurements and Instrument Control (M7_ EN_UNI MB, M7_SL_UNI MB) • Energy efficient drive technologies (M1_EN_ HFTbiel/ SIEMENS , M1_DE_ HFTbiel/ SIEMENS) • High temperature design (material science) (M3_EN_CUAS, M3_DE_CUAS) • Introduction to LabVIEW (M1_EN_CUAS) • Introduction to LabVIEW and Computer Based Measurements (M5_EN_UNI MB, M5_SL_UNI

MB) • Introduction to Microcontrollers (M1_EN_UDEUSTO, M1_ES_UDEUSTO) • Low-cost platform to provide LAN / WAN connectivity for embedded systems

(M3_EN_UDEUSTO, M3_ES_UDEUSTO) • Power electronic for electric vehicles (M2_EN_TUD) • Mechatronic devices (M6_EN_UNI MB, M6_SL_UNI MB) • PLC controllers and industrial networks (M1_EN_PUT, M1_PL_PUT) • Robot Programming (M1_EN_PUT, M1_PL_PUT)

Basic modules • Electric Drives (M1_EN_SR) • Electrical circuits (M2_EN_UNI MB, M2_SL_UNI MB) • Introduction to industrial robotics (M4_EN_UNI MB, M4_SL_UNI MB) • Elektrische Schaltungen (M4_DE_CUAS)

Alternative/emerging technologies modules • Solar Electricity (M3_EN_TUD) • Hybrid drive (M3_EN_UNI MB, M3_SL_UNI MB) • Wheeled mobile robots – practical aspects of control and navigation (M1_EN_PUT,

M1_PL_PUT) • Introduction to Remote and Online Engineering (M2_EN_CUAS) • Energy and energy storage in electric cars (M1_EN_TUD)

P a g e | 3

Table 1: Overview of Learning Modules/Courses (English)

Title of Learning Module Period

Number of other

countries´ participants

8-bit Microcontrollers Advanced Course M2_EN_UDEUSTO, M2_ES_UDEUSTO

7.5. 2012 - 24.5. 2012 15

Applied control theory M1_EN_UNI MB, M1_SL_UNI MB

16.4. 2012 - 15.6. 2012 10

Computer-based Measurements and Instrument Control M7_ EN_UNI MB, M7_SL_UNI MB

14.5. 2012 – 15.6. 2012 15

Electric Drives M1_EN_SR

16.4. 2012 - 08.6. 2012 30

Electrical circuits M2_EN_UNI MB, M2_SL_UNI MB

9.4. 2012 - 9.5. 2012 10

Energy and energy storage in electric cars M1_EN_TUD

1.5. 2012 - 15.6. 2012 20

Energy efficient drive technologies M1_EN_ HFTbiel/ SIEMENS , M1_DE_ HFTbiel/ SIEMENS

23.4. 2012 - 30.5.2012 10

High temperature design (material science) M3_EN_CUAS, M3_DE_CUAS

1.5. 2012 - 31.5. 2012 5

Hybrid drive M3_EN_UNI MB, M3_SL_UNI MB

16.4. 2012 - 15.6. 2012 15

Introduction to industrial robotics M4_EN_UNI MB, M4_SL_UNI MB

7.5. 2012 - 15.6. 2012 10

Introduction to LabVIEW M1_EN_CUAS

1.5. 2012- 31.5. 2012 10

Introduction to LabVIEW and Computer Based Measurements M5_EN_UNI MB, M5_SL_UNI MB

7. 5. 2012 – 15.6. 2012 15

Introduction to Microcontrollers M1_EN_UDEUSTO, M1_ES_UDEUSTO

16.4. 2012 – 6.5. 2012 15

Introduction to Remote and Online Engineering M2_EN_CUAS

1.5. 2012 – 31.5. 2012 10

Low-cost platform to provide LAN / WAN connectivity for embedded systems M3_EN_UDEUSTO, M3_ES_UDEUSTO

25.5. 2012 – 15.6. 2012 10

Mechatronic devices M6_EN_UNI MB, M6_SL_UNI MB

9.4. 2012 – 9.5. 2012 10

PLC controllers and industrial networks: M1_EN_PUT, M1_PL_PUT

1.5. 2012 – 31.5. 2012 10

P a g e | 4

Power electronic for electric vehicles M2_EN_TUD

1.5. 2012 – 15.6. 2012 20

Robot Programming M1_EN_PUT, M1_PL_PUT

1.5. 2012 – 31.5. 2012 10

Solar Electricity M3_EN_TUD

1.5. 2012 – 15.6. 2012 20

Wheeled mobile robots – practical aspects of control and navigation M1_EN_PUT, M1_PL_PUT

7.5. 2012 – 15.6. 2012 10

Table 2: Overview of Learning Modules/Courses (German)

Title of Learning Module Period

Energieeffiziente Antriebstechnik M1_EN_ HFTbiel/ SIEMENS , M1_DE_ HFTbiel/ SIEMENS

23.4. 2012 - 30.5.2012

Hochtemperaturkonstruktion M3_EN_CUAS, M3_DE_CUAS

1.5. 2012 - 31.5. 2012

Elektrische Schaltungen M4_DE_CUAS

1.5. 2012 - 31.5. 2012

Table 3: Overview of Learning Modules/Courses (Slovenian)

Title of Learning Module Period

Uporabna teorija vodenja: M1_EN_UNI MB, M1_SL_UNI MB

16.4. 2012 - 15.6. 2012

Električna vezja M2_EN_UNI MB, M2_SL_UNI MB

9.4. 2012 - 9.5. 2012

Hibridni pogoni M3_EN_UNI MB, M3_SL_UNI MB

16.4. 2012 - 15.6. 2012

Uvod v industrijsko robotiko M4_EN_UNI MB, M4_SL_UNI MB

7.5. 2012 - 15.6. 2012

Uvod v LabVIEW in računalniško podprta merjenja M5_EN_UNI MB, M5_SL_UNI MB

7. 5. 2012 – 15.6. 2012

Mehatronske naprave M6_EN_UNI MB, M6_SL_UNI MB

9.4. 2012 – 9.5. 2012

Računalniško podprta merjenja in upravljanje merilnih instrumentov M7_EN_UNI MB, M7_SL_UNI MB

14.5. 2012 – 15.6. 2012

P a g e | 5

Table 4: Overview of Learning Modules/Courses (Spanish)

Title of Learning Module Period

Curso Avanzado de Microcontroladores de 8 bits M2_EN_UDEUSTO, M2_ES_UDEUSTO

7.5. 2012 - 24.5. 2012

Introducción a los Microcontroladores M1_EN_UDEUSTO, M1_ES_UDEUSTO

16.4. 2012 – 6.5. 2012

Plataforma de bajo coste para proporcionar conectividad LAN/WAN a sistemas embebidos M3_EN_UDEUSTO, M3_ES_UDEUSTO

25.5. 2012 – 15.6. 2012

Table 5: Overview of Learning Modules/Courses (Polish)

Title of Learning Module Period

Sterowniki PLC i sieci przemysłowe M1_EN_PUT, M1_PL_PUT

1.5. 2012 – 31.5. 2012

Programowanie robotów M1_EN_PUT, M1_PL_PUT

1.5. 2012 – 31.5. 2012

Kołowe roboty mobilne – praktyczne zagadnienia sterowania i nawigacji M1_EN_PUT, M1_PL_PUT

7.5. 2012 – 15.6. 2012

P a g e | 6

2 Summary of Learning Modules in English The Learning Modules are alphabetically arranged. Each Module has his own number, the legend of the course number is Module Number_ Language Available _ University provided and developed this Module.

2.1 8-bit Microcontrollers Advanced Course (M2_ENG_UDEUSTO) Title of the module 8-bit Microcontrollers Advanced Course Language English Module summary This course addresses the methodology to be followed by a programmer for the proper control of advanced peripherals including a microcontroller. From the Datasheet provided by the manufacturer, the course shows how to approach a resource to the development of advanced applications. This module begins once the student has completed the introductory course on microcontrollers. Each chapter of this module provides a resource that is explained as follows:

1. General functional description. The resource is presented in a generic way analyzing its main features.

2. The resource in the PIC18F4522. This section specifies the resource characteristics in the microcontroller included in the remote laboratory, "the PIC18F45k22".

3. A practical example. The resource is analyzed by developing a practical example. 4. Experiment. Using the remote laboratory "WebLab - PIC", the developed example is

implemented in a real PIC18F45k22. Required preliminary knowledge and skills • Principles of digital electronics and computer structure. • Successful completion of the introductory module to the microcontroller offered by E-PRAGMATIC

network. Time span in which the participants will be supervised 07.05. 2012 – 24.04. 2012 Other important information - Mentor, organization Ignacio Angulo Martinez, Deusto Institute of Technology, University of Deusto

2.2 Applied control theory (M1_EN_ UNI MB) Title of the module Applied control theory Language English Module summary Control of systems is one of the most important and most common tasks in the field of mechatronics, where feedback control (sometimes also called regulation) is especially important. The classic approach to teaching applied control theory uses relatively complex mathematical tools, which are not necessary for understanding of the basic principles. With understanding of controllers behavior and the effects of changing their parameters not only simple, but also more complex systems control can be easily carried out. In the frame of learning module initially the basic principle of feedback control is presented, we start with some simple problems, which we try to solve by using various types of feedback controllers. We start with the switching controller, the simplest of them, and continue with the introduction of hysteresis and an illustration of its effects. Then we continue with the most commonly used controllers - PID controllers, and by adjusting their parameters. For all the controllers also the possible realizations are shown. Through interactive simulation tools participants get familiar with the effects of changing the parameter values, by using some empirical approaches and formulas they acquire the ability for a more systematic approach. At the end their knowledge is used to control the system through a remote experiment and learn about the aspects of the use of realistic systems.

P a g e | 7

The knowledge gained in module can provide a solid basis for further individual learning and, consequently, the knowledge needed to design and set the control systems. To successfully complete the course around 15 hours are required. Required preliminary knowledge and skills • Basic knowledge or some practical experience in mechanics (secondary vocational level). • Basic knowledge or some practical experience in electrical engineering (secondary vocational level). • Basic knowledge of mathematics (secondary vocational level). Time span in which the participants will be supervised 16.4. 2012 – 15.6. 2012 Other important information The learning module is the initial course, and selection of other modules is not a condition for participation in it. Mentor, organization Dr. Miran Rodič, University of Maribor, Slovenia

2.3 Computer-based Measurements and Instrument Control (M7_EN_ UNI MB)

Title of the module Computer-based Measurements and Instrument Control Language English Module summary The purpose of this course is to teach you the basics of data acquisition (DAQ) and instrument control using LabVIEW. The course contains hands-on exercises with data acquisition and instrument control hardware and teaches you how to use data acquisition and instrument control software functions to build your application. After attending this course, you will be able to use DAQ Assistant and NI-DAQmx API to perform analog and digital acquisition and generation, create measurements with counters, and synchronize the tasks. You will also learn how to programmatically control instruments using Instrument I/O Assistant and Virtual Instrumentation Software Architectures (VISA) API, and how to find and use the instrument drivers. During the course you will use the NI Educational Laboratory Virtual Instrumentation Suite NI ELVIS II+, NI Instrument Simulator V2.0 and High-Performance Ethernet-to-GPIB Controller NI GPIB-ENET/1000. Required preliminary knowledge and skills This course assumes that you have experience with LabVIEW or that you have taken Introduction to LabVIEW and Computer-based Measurements (University of Maribor) course and that you are familiar with the concepts contained therein. Time span in which the participants will be supervised 14.5. 2012 – 15.6. 2012 Other important information Mentor, organization Dr. Bojan Gergič, University of Maribor, Slovenia

2.4 Electric Drives (M1_EN_SR) Title of the module Electric Drives Language English Module summary Electrical drives are around us everywhere and we cannot imagine a world without using electrical motors any more. Electric motors are found in many applications, ranging from very small, like our wristwatch, medium in many household appliances and toys, via large in transportation to very large in industry. The basics of the electric motors, how they work and how to control them are explained in this course. It explains the basic functionality of the various common types of motors, their working principle, as well as the required control. For each motor, tutorials are given, on how to control the motor. Around 30 hours are required to successfully go through this course. A basic understanding of electronics

P a g e | 8

and physics is required before starting his course. After finishing this course you will better understand how to choose a specific motor and how it is controlled and this will help in the other following courses where electrical drives are employed. This module offers a good knowledge for understanding of following modules: Mechatronic devices (University of Maribor), Hybrid Drives (University of Maribor), Energy efficient drive technologies (HFTbiel). Required preliminary knowledge and skills

• Basic knowledge of physics (secondary vocational level). • Basic knowledge or some practical experience in electrical engineering (secondary vocational

level). Time span in which the participants will be supervised 16.4. 2012 – 08.6. 2012 Other important information The participants are invited to exercise the hands-on tutorials using a Windows PC. Software, tutorials and guidelines are provided with the course material. Mentor, organization Dr ir P. J. van Duijsen, Simulation Research, Netherlands

2.5 Electrical circuits (M2_EN_UNI MB) Title of the module Electrical circuits Language English Module summary In this module first the fundamental elements of electrical circuits (resistor, capacitor, inductor, memristor) and operational amplifiers are presented. First exercise includes basic calculations of simple electrical circuits. Frequency characteristics and its graphical presentation by using Bode plot is discussed next. It is shown how to draw Bode diagram and how to use it for calculation of the output signal from the circuit. Many relevant examples are explained. Further, filters are presented in the details, as one of frequently used electrical circuits in the mechatronics. Emphasis is put on the passive and active low-pass, high-pass and band-pass filters. Switched capacitor filters and digital filters are also described. Basic operating principles and frequency characteristics of the filters are studied trough the remote experiments executed on the switched capacitor filters. Required study time for the module highly depends on the participant’s initial knowledge. However, it is 20 hours on average. Required preliminary knowledge and skills Introductory course in electrical engineering (secondary vocational school level). Time span in which the participants will be supervised 9.4. 2012 – 9.5. 2012 Other important information - Mentor, organization Dr. Andreja Rojko, University of Maribor

2.6 Energy and energy storage in electric cars (M1_EN_TUD) Title of the module Energy and energy storage in electric cars Language English Module summary The main topics of this learning module are dynamics, energy storage systems and charging of electric vehicles. Also some general information concerning electric vehicles is provided and few other relevant issues are discussed.

The history, current state and trends in the development of electric vehicles are presented first. Further, dynamic influences which determine the vehicle’s energy and power needs are explained. Dynamic model

P a g e | 9

of the vehicle is discussed. Beside basic dynamic effects also the influences such as slipping of the wheels and effect of the side wind are considered. Special stress is put to estimation of efficiency of energy transmission and energy recuperation by estimating the efficiency of separate elements. Dynamic analysis for Nissan leaf is executed and discussed.

Next, the energy storage system of electric vehicle is presented. Properties of different types of batteries are compared. Stress is put to Lithium-Ion batteries which are mostly used in modern electric vehicles. Terms relating to the batteries are explained including: voltage, internal resistance, battery capacity, specific energy/power, energy density, energy efficiency, state of charge and how to estimate it, self-discharge, depth of discharge and Peukert’s equation. Understanding of those terms enables understanding of the producer’s specifications for the batteries and choosing a suitable battery.

Exercises included into the module are designed in such way, that the learner gains good comprehension of the explained topics. Learner familiar with MATLAB/Simulink can also study in details simulation model with realistic models of the batteries and super capacitors (available at the request).

About 20 hours of work effort is necessary to successfully complete this module. For more comprehensive overview of the vehicles with alternative propulsion system, the module Hybrid electric vehicles (University of Maribor) can be also taken. Another related module is Power electronics for electric vehicles (Delft University of Technology).

Required preliminary knowledge and skills • Basic knowledge or some practical experience in mechanics (secondary vocational level). • Basic knowledge or some practical experience in electrical engineering (secondary vocational level). Time span in which the participants will be supervised 1.5. 2012 – 15.6. 2012 Other important information n.a. Mentor, organization Rodrigo Texeira Pinto, Delft University of Technology

2.7 Energy efficient drive technologies (M1_EN_ HFTbiel/ SIEMENS) Title of the module Energy efficient drive technologies, Analysis of 5kW freight lift systems Language English Module summary Energy management in industry significantly gained importance in the last years. The reasons are high energy costs, increasing pretentiousness of the environmental constraints and/or efforts toward EN 16001 certification (European standard - Energy Management System).

Energy efficiency in the industry is crucial for increased productivity of different devices/machines and improved environmental friendliness of the industrial processes. A new generation of servo-drives, which allow recuperation of a braking energy, sets completely new standards for energy efficiency of industrial devices and production technology.

HFTbiel in cooperation with Siemens Schweiz AG has prepared a remotely accessible practical workplace, which can be used for comprehensive practical training with modern industrial equipment. SIEMENS servo-drives and servo shaft with 5 kW of power, controlled by a Programmable Logic Controller (PLC), are used for realisation of the workplace. The learners can access this workplace without limitations. Also the learners without experience with SIEMENS technology have an opportunity to operate SINAMICS Servosystem and analyse the results. Namely the system can be easily recovered from improper manipulation or wrong input parameters and, by simple press of a button, always set back into desired initial state.

The workplace allows three different approaches. According to desired difficulty level, one can choose to concentrate on the analysis of PLC side of the workplace or on Servo Control Unit (CU). Following three learning cases are possible:

Case 1: In this case the access to a fully functional freight lift system is granted. The learner can, with a help of technical documentation, introduce themself into functions and technology of the

P a g e | 10

lift. It is possible to operate the system and observe the results of the changes.

Case 2: By using this access the learner will be faced with the error in PLC program, which will put the freight lift out of the operation. The error can be found and corrected through the analysis performed by using STEP7 software. This case presents a situation very relevant for service technicians, as it often appears in the practice.

Case 3: The learner is in this case faced with the system error in the lift operation. By analysing the system, the error can be localised and dismissed. The stress is put to choosing and setting suitable parameters of a servo control unit.

The learners with advanced knowledge in this topic also have a possibility to define the functions of the system from bottom up. All parameters and programs, including PLC side and drive side, can be newly set up.

To obtain necessary preliminary knowledge also E-PRAGMATIC modules Electric Drives (Simulation research) and/or Applied control theory (University of Maribor) can be taken.

Required preliminary knowledge and skills • It is an advantage if the learner known the engineering software from SIEMENS (STEP7,

STARTER). However this is not absolutely necessary, as one can Ad hoc obtain necessary knowledge of STARTER software.

• Basic knowledge of drives and control theory. Ability to analyse schemes and diagrams of industrial technical processes.

Time span in which the participants will be supervised 23.4.2012 - 30.05.2012 Other important information - Mentor, organization Mag. Thomas Zürcher, HFTbiel

2.8 Hybrid drive (M3_EN_UNI MB) Title of the module Hybrid drive Language English Module summary Hybrid electric vehicles are one of the effective technical solutions, which can improve our environment. Hybrid propulsion system allows best possible usage of the fossils fuel and hybrid vehicles with such propulsion are already available as a mass-market product.

This learning module presents basic operation principles, possible configurations and components of the hybrid vehicle propulsion systems. The analysis of the energy/power consumption for standard drive cycles is shown. Further it is described, how this can be used for dimensioning of the components of hybrid propulsion system.

As a case study a commercial plug-in hybrid vehicle, that is a vehicle which can be charged directly from the electrical grid, is described and analysed. Consumers’ view of hybrid vehicles is also presented based on the results of questionnaire executed between the drivers, who have tested the vehicle.

The module requires about 20 hours of studying. A non-obligatory participation at the practical workshop is also possible. Knowledge obtained int his module can be completed and upgraded by participating in the module Power electronics for electric vehicles (Delft University of Technology) .

Required preliminary knowledge and skills Basic knowledge or some practical experience in electrical engineering / mechanics (secondary vocational level). Time span in which the participants will be supervised 16.4. 2012 – 15.6. 2012 Other important information

P a g e | 11

The participants will be invited to a practical workshop in which few different electrical vehicles will be presented and testing of the vehicles will be possible. The workshop will be organised one Saturday in May 2012 at the Faculty of electrical engineering and computer science in Maribor, Slovenia. Participation at the workshop is not obligatory to successfully finish the module. Mentor, organization Mag. Marijan Španer, University of Maribor, Slovenia

2.9 Introduction to industrial robotics (M4_EN_UNI MB) Title of the module Introduction to industrial robotics Language English Module summary Although choosing and programming of industrial robots appears to be a pretentious task, it can be learned quite fast. This learning module gives a necessary basic expertise for this. Furthermore, it also gives a solid knowledge base, which allows additional self-study and, consequently, planning and programming of more complex industrial robot applications.

After short introduction to the general robotics, the module concentrates on the practical aspects of industrial robotics. Most common industrial applications are presented, main characteristics of industrial robots are explained, and guidelines, how to choose a suitable robot for a specific application, are discussed. Next, the basics of robot programming are given. One of the modern robot programming languages is presented in detail. Practical exercises include choosing suitable robot for the specific application and writing of the robot programs for grinding and palletizing.

About 25 hours of work effort is necessary to successfully complete this module. Participation at (non-obligatory) practical workshop is possible.

It is recommended that this module is taken after the course Mechatronic devices (University of Maribor), although enrolment to this module only is also possible. In this module obtained knowledge can be upgraded with module Robot programming (Poznan University of Technology).

Required preliminary knowledge and skills • Basic knowledge or some practical experience in mechanics (secondary vocational level). • Basic knowledge or some practical experience in electrical engineering (secondary vocational level). Time span in which the participants will be supervised 7.5. 2012 – 15.6. 2012 Other important information The participants will be also invited to a practical workshop, which will include direct programing and execution of prepared programs on industrial robot. The workshop will take place one Saturday in May 2012 at the Faculty of electrical engineering and computer science in Maribor, Slovenia. Participation at the workshop is not obligatory to successfully finish the module. Mentor, organization Dr. Andreja Rojko, University of Maribor, Slovenia

2.10 Introduction to LabVIEW (M1_EN_CUAS) Title of the module Introduction to LabVIEW Language English Module summary LabView stands for “Laboratory Virtual Instrumentation Workbench” and is a platform developed by National Instruments that features a development environment for a visual programming language. In the last times it was gaining popularity, especially for data acquisition and measurement. Virtual instrumentation is defined as the combination of measurement and control hardware and application software with industry-standard computer technology to create user-defined instrumentation systems. This course aims at introducing the LabView programming environment to beginners. Typical applications developed with LabView usually involve data acquisition, industrial automation, control etc.

P a g e | 12

It starts with basic concepts about the platform, basic programming techniques and definitions of programming paradigms. Furthermore some chapters were specially chosen for the industrial partner Flowserve and cover topics of their interest. These topics cover the field of data acquisition, instrument communication, user interface design, handling of multithreading as well as file IO and database applications development techniques. Required preliminary knowledge and skills Basic knowledge in electronics and mechatronics. Time span in which the participants will be supervised 01.05. 2012 – 31.05. 2012 Other important information - Mentor, organization MsC. Diana V. Pop, Carinthia University of Applied Sciences, Villach Austria

2.11 Introduction to LabVIEW and Computer Based Measurements (M5_EN_UNI MB)

Title of the module Introduction to LabVIEW and Computer Based Measurements Language English Module summary LabVIEW is well known graphical programming environment used by many engineers and scientists in developing measurement, test, and control applications. In this module you will become familiar with basic concepts of LabVIEW graphical programming environment. You will learn how to create, edit, and debugging LabVIEW programs, how to use programming structures, arrays, clusters, file I/O functions, and how to perform simple acquisition of analogue and digital signals by using data acquisition device. Data acquisition part of this module is realized using custom developed low cost USB data acquisition device. This device is available to the users as a kit and can be purchased through the online store. The purchase of this kit is not obligatory hence the same kit is available to the users via remote workstation. This remote workstation, which is located at University of Maribor, contains all the necessary hardware and software to implement this module.

About 20 hours of work effort is necessary to successfully complete this module. Obtained knowledge can be upgraded with module Computer-based Measurements and Instrument Control (University of Maribor).

Required preliminary knowledge and skills Basic knowledge or some experience in computer science or electrical engineering (secondary vocational level). Time span in which the participants will be supervised 7. 5. 2012 – 15.6. 2012 Other important information - Mentor, organization Dr. Darko Hercog, University of Maribor, Slovenia

2.12 Introduction to Microcontrollers (M1_EN-UDEUSTO) Title of the module Introduction to Microcontrollers Language English Module summary A microcontroller is described as an integrated circuit that includes all the essential parts of a complete computer system: CPU, Memory, inputs and outputs. This concept is perfectly suited to the requirements of embedded systems which, unlike computers, should always perform the same task: to govern the operation of the system in which they are integrated.

P a g e | 13

There are numerous manufacturers of microcontrollers, all aiming at tuning the performance of their devices to the requirements of real applications. Thus, in the same way that there are simple applications, such as controlling a simple appliance and complex applications that require high performance for image or audio processing, there is a huge range of devices ranging from the simplest 8-bit microcontroller to dual-core devices that integrate a DSP engine for digital signal processing. Success in the embedded system development depends largely on the choice of the device that best meets the project requirements.

This course will introduce Microchip microcontrollers, studying in detail the PIC 18F architecture family and its devices’ programming.

During the development of the course, the student will have access to a remote laboratory that will allow them to control the operation of a mobile robot governed by a PIC18F4550 microcontroller.

Required preliminary knowledge and skills Fundamentals of digital electronics and computer architecture Time span in which the participants will be supervised 16.04. 2012 – 06.05. 2012 Other important information Mentor, organization Javier García Zubia, Ignacio Angulo Martinez, Deusto Tech Institution, University of Deusto Maximal number of participants from other partners (countries) Max 15

2.13 Introduction to Remote and Online Engineering (M2_EN_CUAS) Title of the module Introduction to Remote and Online Engineering Language English Module summary Laboratories are important elements in science, engineering and technical education. They allow the application and testing of theoretical knowledge in practical learning situations. Active working with experiments and problem solving does help learners to acquire applicable knowledge that can be used in practical situations. That is why courses in the sciences and engineering consider laboratory experimentation as an essential part of educating students. Experimentation and experience-based learning (learning by doing) is also performed in many other subject areas, for example in economics where students lead virtual companies and compete on a simulated market. The Remote Applications and Trends course focuses in describing the state of the art in the field of online engineering with a special focus in online laboratories. Online Engineering can be defined as an interdisciplinary field utilizing the areas of engineering, computing and telematics; where specific engineering activities like programming, design, control, observation, measuring and maintenance are provided to both remote and local users in a live interactive setting over a distributed, physically-dispersed network. The course will introduce the basis pertaining the learning in online labs, different technologies to deliver online labs as well as several examples of good practices of running online labs around the world. Required preliminary knowledge and skills In order to follow the course the student is expected to have a basic knowledge about Internet technologies and LabView. Time span in which the participants will be supervised 1.05. 2012 – 31.05. 2012 Other important information - Mentor, organization MsC. Diana V. Pop, Carinthia University of Applied Sciences, Villach Austria

P a g e | 14

2.14 Low-cost platform to provide LAN / WAN connectivity for embedded

systems (M3_EN_UDEUSTO) Title of the module Low-cost platform to provide LAN / WAN connectivity for embedded systems Language English Module summary To include connectivity to local area networks in the design of embedded systems has become one of the most common requirements. Most industrial facilities have already deployed a local network that facilitates the installation of new distributed systems without requiring new communication infrastructures. Besides the use of standards in communication, it ensures secure transmission of data and ensures interoperability by enabling communication between different platforms. Moreover, if the network is connected to the Internet the system can be monitored or controlled from anywhere in the world.

Commercially, most systems including LAN connectivity are based on powerful platforms that complicate the design and hardware integration. These embedded platforms that integrate powerful microprocessors (Arm Cortex, Intel Athome, etc..) are suitable for embedded systems that include large requirements in terms of performance and graphics capabilities, but they suppose an overkill to implement systems that can be perfectly carried out by a microprocessor of 8 bits. The use of the architecture described by this course allows both significantly cheaper cost of production and design. In addition, the software stack provided by Microchip is compatible with all microcontroller families, i.e. those of 8, 16 and 32-bit, enabling scaling designs to new requirements.

This training module includes access to a remote laboratory based on the 18F97J60 PIC microcontroller that will allow students to experiment with the theoretical concepts seen in the course and build an application that can remotely monitor and control the environmental conditions of a building. Required preliminary knowledge and skills • Fundamentals of digital electronics and computer architecture. • Programming in C language • Experience in programming PIC microcontrollers. Time span in which the participants will be supervised 25.05. 2012 – 15.06. 2012 Other important information The module includes a massive load of remote experimentation. Each experiment requires at least 1 hour of work. Mentor, organization Ignacio Angulo Martinez, Deusto Tech Institution, University of Deusto

2.15 High temperature design - material science (M3_EN_CUAS) Title of the module High temperature design Language English Module summary The course "High-temperature design" is treated in the balance of materials science problems for components and systems that are used at high temperatures above the creep temperature. The course will allow the interested persons, to work out by their own in the field of materials technology. The focus of this module is based on high temperature applications. Important basic skills of design in the normal temperature range will be repeated, and successive issues incorporated in the high temperature topic. The "High-temperature design" course covers the following chapters: • Metallurgy and Steel for customer applications in the normal temperature range • Thermally activated processes in metals • Materials and Coatings for High Temperature Applications

P a g e | 15

Required preliminary knowledge and skills Graduates in mechanical engineering and mechatronics of technical schools. Time span in which the participants will be supervised 01.05. 2012 – 31.05. 2012 Other important information - Mentor, organization NN, Carinthia University of Applied Sciences, Villach Austria

2.16 Mechatronic devices (M6_EN_UNI MB) Title of the module Mechatronic devices Language English Module summary The structure and operation principles of complex mechatronic devices, especially the robots, are main topics in this module. First, mechanical elements, such as gears, belts and joints, are described. As a simple mechatronic device and building block for more complex devices, a joint drive system is presented. The learners’ exercise includes calculation/dimensioning of the joint drive system (motor, gear) for a specific load and task. Next, it is shown how the joint drives are used to build a robot. The basic operation principles of the robots are explained in the case study. Robots configuration, geometry and dynamic are discussed. Exercise deals with biomimetic and modular robots. Another presented topic is motion control of the robots. Basic control algorithms used for robots are explained. The real world problems in the control of complex mechatronic devices are demonstrated by executing the remote experiments with the SCARA robot. The user can test different operation modes, few motion controllers and set their parameters. Required study time for the module highly depends on the participant’s initial knowledge. However, it is 20 hours on average. Before studying this module, it is advised, that the learners study E-PRAGMATIC module Applied control theory (University of Maribor). The learners, who have already finished this module, can upgrade their knowledge by studying Introduction to industrial robotics (University of Maribor) and Robot programming (Poznan University of Technology). Required preliminary knowledge and skills • Introductory course in mechanics or some practical experience (secondary vocational school level), • introductory course in physics (secondary school level), • basic knowledge of control theory or finished E-PRAGMATIC module ‘Applied control theory’, • basic knowledge of electric drives. Time span in which the participants will be supervised 9.4. 2012 – 9.5. 2012 Other important information - Mentor, organization Dr. Andreja Rojko, University of Maribor

2.17 PLC controllers and industrial networks (M1_EN_PUT) Title of the module PLC controllers and industrial networks Language English Module summary

For the purposes of industrial process control, PLC controllers or universal industrial controllers are used. The difference between them lies in the fact that the PLC controllers can work with different control algorithms, while the industrial controllers are dedicated to specific industrial processes. The industry likes to apply PLCs, as they allow rapid changes of functionality without incurring additional hardware costs. This feature increases the flexibility of control systems.

P a g e | 16

This course is proposed because PLC controllers are very popular. This course aims to present the

basic theory about the architecture and programming of PLCs with practical solutions for industrial control algorithms. In addition to the introduction of basic information about PLCs, a brief overview of basic knowledge in the field of control systems is provided. During the course, distributed control systems will be presented. Industrial communication protocols, such as CAN-open, Profibus DP will be discussed.

This course gives a basic experience that will enable an additional self-study and design of control systems. This module provides 15 hours of work, which is necessary to successfully manage the material presented. Exercises include design automation systems and PLC programming. Tests will be carried out in order to check participants’ knowledge. Required preliminary knowledge and skills

• basic knowledge of control theory, • basic knowledge or some practical experience in digital technology, • basic knowledge or some practical experience in electrical engineering.

Time span in which the participants will be supervised 1.05.2012 – 31.05.2012 Other important information - Mentor, organization Piotr Sauer, Poznan University of Technology, Poland

2.18 Power electronic for electric vehicles (M2_EN_TUD) Title of the module Power electronic for electric vehicles Language English Module summary Power electronic conversion of a simple power drivetrain of battery electric vehicle or hybrid vehicle will be explained. Different steps of power conversion are shown and steady state operation of a two quadrant DC-DC converter charging and discharging the battery is explained step by step. Similarly a three phase inverter and inverter connected with an induction motor/generator is analysed. Finally the integration of all power conversion modules in a battery electric vehicle is illustrated in steady state operation. For a conclusion power electronics based charging methods and a new method for charging of electric vehicles, an inductive charging, in presented. The method is convenient as it is contactless and allows also charging while the vehicle is driving. The method is still under development and some issues still need to be resolved, however first prototypes are already available. About 20 hours of work effort is necessary to successfully complete this module. For more comprehensive overview of the vehicles with alternative propulsion system, the module Hybrid electric vehicles (University of Maribor) can be also taken. Another related module is Energy and energy storage in electric cars (Delft University of Technology). Required preliminary knowledge and skills Basic knowledge or some practical experience in electrical engineering (secondary vocational level). Time span in which the participants will be supervised 1.5. 2012 – 15.6. 2012 Other important information There is an optional distance laboratory, where participants can work with a DC-DC one quadrant converter and also with a three phase inverter. Mentor, organization Mag. Todor Todorcevic, Delft University of Technology, Netherlands

P a g e | 17

2.19 Robot Programming (M2_EN_PUT)

Title of the module Robot Programming Language English Module summary The aim of this course is to introduce the concept of trajectory planning both in joint and Cartesian space that can be used for different task execution by industrial robots. Different trajectories are defined in joint and Cartesian space among them polynomial trajectories such as linear, parabolic and spline trajectories. For all of them position, velocity and acceleration signals are defined. It is shown how manipulator can be used as a system for position and orientation measurements. Next it is shown how a real task in Cartesian space can be defined and executed. Task execution is strictly related with programming of robot using higher programming language. Due to the fact each company introduces its own programming language what its basic structure is shown independent of any particular language. Basic data structures are defined and operations that can be performed on them. Examples of task and robot programming are presented and discussed. The course consists of 15 didactics units and it is recommended to take the module Introduction to industrial robotics (University of Maribor) course first. Required preliminary knowledge and skills Required are basic knowledge of higher programming language and mathematics at level equivalent to technical university. Time span in which the participants will be supervised 1.05.2012 – 31.05.2012 Other important information Depending on interest of participants it is possible to organize at practical training of programming of KUKA and Staübli robots one day in May 2012 Chair of Control and Systems Engineering, Poznan University of Technology. Mentor, organization Prof. Krzysztof Kozłowski, Poznan University of Technology, Poland

2.20 Solar Electricity (M3_EN_TUD) Title of the module Solar Electricity Language English Module summary The module delivers basic knowledge of solar electricity. First solar module characteristics are analysed (and measured on distance laboratory). Solar cells from modules to arrays are explored and problem of shading explained. Different converters for grid connection of solar cell proposed and basic principle of maximum power point trekking is explained. An exercise for solar park design is included. For obtaining some practical knowledge, a distance laboratory, which allows measurement of a solar cell with three different illumination levels, is available. Also power point trekking with the use of buck converter is verified in the distance laboratory. About 15 hours of work effort is necessary to successfully complete this module. Required preliminary knowledge and skills Basic knowledge or some practical experience in electrical engineering (secondary vocational level). Time span in which the participants will be supervised 1.5. 2012 – 15.6. 2012 Other important information Solar electricity module is accompanied by a distance laboratory, which can be accessed through UNI MB booking system Mentor, organization Mag. Ilja Pecelj, Delft University of Technology, Netherlands

P a g e | 18

2.21 Wheeled mobile robots – practical aspects of control and navigation

(M3_EN_PUT) Title of the module Wheeled mobile robots – practical aspects of control and navigation Language English Module summary Robots that are capable of movement in an environment are the subject of interest of modern robotics and can be seen as a natural extension of the possibility of stationary manipulators used in the industry since the late 70's of the twentieth century. Current theoretical and technological achievements make this class of robots gradually overcomes the barriers of scientific laboratory and give possibility to use it in the real environments. Capabilities of applications of mobile robots seem to be endless and include various transport and manipulation tasks. In particular, much attention is focused on autonomous robot operation, which consists of: perception, localization, navigation and control. The proposed course is devoted to robots equipped with the wheeled drive systems, which constitute the largest category of the mobile robots. It considers a classification of these robots taking into account their geometric structures and discusses the localization and motion control techniques. The selection of these algorithms is subordinated to, among others, possibility of their use in practice, ease of implementation and use of relatively simply mathematical description. Part of teaching tasks are assumed to be realized by the participants of the course in Matlab / Simulink application. Required preliminary knowledge and skills • Knowledge of higher mathematics (bachelor level) • Basic knowledge of robotics. Time span in which the participants will be supervised 7.5. 2012 – 15.6.2012 Other important information - Mentor, organization Dr. inż. Dariusz Pazderski, Poznań University of Technology, Poland

P a g e | 19

3 Summary of Learning Modules in German The Learning Modules are alphabetically arranged. Each Module has his own number, the legend of the course number is Module Number_ Language Available _ University provided and developed this Module. All modules of this chapter are designed under demand of Industrial partners.

3.1 Energieeffiziente Antriebstechnik (M1_DE_ HFTbiel/ SIEMENS) Titel des Moduls Energieeffiziente Antriebstechnik , Analyse eines 5kW Lasten Lift Systems Sprache Deutsch Modulzusammenfassung Energiemanagement gewinnt in der Industrie zunehmend an Bedeutung. Dies wegen steigender Energiekosten, immer strengerer Umweltauflagen oder einer angestrebten Zertifizierung nach EN16001. Vor allem trägt Energieeffizienz in der Produktion entscheidend zur Steigerung der Produktivität von Anlagen bei und verbessert so die Wettbewerbsfähigkeit. Durch die Servotechnik der jüngsten Generation, mit der Möglichkeit die Bremsenergie zurückzuspeisen, werden in der industriellen Anlagen- und Produktionstechnik, bezüglich der Energieeffizienz neue Massstäbe gesetzt.

Die HFTbiel bietet in Zusammenarbeit mit Siemens Schweiz AG einen Praxisarbeitsplatz an, auf welchem ein umfangreiches Training mit den neuesten Siemens-Servoantrieben gemacht werden kann. Die Servoachse mit einer Leistung von 5 kW, gekoppelt mit einer speicherprogrammierbaren Steuerung (SPS), steht für den Lernenden ohne Einschränkungen zur Verfügung. Auch Einsteiger ohne Erfahrung mit SIEMENS – Antriebstechnik haben die Möglichkeit das SINAMICS Servosystem in Betrieb zu nehmen und zu analysieren. Bei Fehlmanipulationen und Fehlparametrierungen kann das System auf Knopfdruck wieder in die gewünschte Ausgangssituation zurückgesetzt werden.

Der Arbeitsplatz bietet drei unterschiedliche Zugänge. Je nach Schwerpunkt kann mehr die SPS Seite analysiert werden, oder die Servo Control Unit (CU) Dem Arbeitsplatz liegt folgendes Konzept zu Grunde:

Zugang 1: Über diesen Zugang gelangen sie auf ein voll funktionsfähiges Lasten Liftsystem. Mit Hilfe technischer Dokumentationen können Sie sich in die Funktion und in die Technologie einarbeiten. Sie haben die Möglichkeit das System zu verändern und diese Veränderungen zu Beobachten.

Zugang 2: Beim Einsteigen über diesen Zugang wird ein Fehler in der SPS auftreten. Durch die Analyse mit der Software STEP7 kann dieser lokalisiert und behoben werden damit das Lastenliftsystem wieder funktioniert. Dies ist eine klassische Servicetechniker- Situation, welche in der Praxis oft anzutreffen ist.

Zugang 3: Der dritte Zugang weist eine Fehlfunktion des Liftsystems auf, welche durch Analyse des Systems lokalisiert und behoben werden kann. Hier wird der Schwerpunkt auf die Parametrierung der Servo Control Unit gelegt.

Fortgeschrittene Fachleute haben die Möglichkeit, die Funktion des Systems von Grund auf neu zu definieren und sowohl SPSseitig wie auch Antriebsseitig die gesamte Parametrierung und Programmierung neu zu erstellen.

Erforderliche Vorkenntnisse • Es ist von Vorteil, wenn man die Engineering Umgebung von Siemens (STEP7, STARTER)

kennt. Es ist jedoch nicht zwingend, da sich der Anwender AdHoc in die Software STARTER einarbeiten kann.

• Grundlagen der Antriebs- und Regelungstechnik erleichtern das Analysieren des Systems. • Schema- und Diagrammanalyse eines industrietechnischen Prozesses.

Betreuter zeitraum 23.4.2012 - 30.05.2012 Andere wichtige Informationen - Betreuer, Organisation Mag. Thomas Zürcher, HFTbiel

P a g e | 20

3.2 Hochtemperaturkonstruktion (M3_DE_CUAS)

Titel des Moduls Hochtemperaturkonstruktion Sprache Deutsch Modulzusammenfassung Der Kurs "Hochtemperaturkonstruktion" behandelt im ausgewogenen Verhältnis die werkstoffkundlichen Problemstellungen für Bauteile, Systeme und Komponenten welche bei hohen Temperaturen oberhalb der Kriechtemperatur eingesetzt werden. Es werden folgende Kapitel behandelt: • Metallurgie und Stahlkunde für Anwendungen im Normaltemperaturbereich • Thermisch aktivierte Vorgänge in Metallen • Werkstoffe und Beschichtungen für die Hochtemperaturtechnik Der Kurs erlaubt es den Interessenten sich im Selbststudium wesentlichen Grundlagen im Bereich der Werkstofftechnik zu erarbeiten. Der Fokus wird dabei auf Anwendungen im Hochtemperaturbereich gelegt. Wichtige Grundkenntnisse der Konstruktion im Normaltemperaturbereich werden dafür wiederholt, und sukzessive Problemstellungen im Hochtemperaturbereich eingearbeitet. Erforderliche Vorkenntnisse Maschinenbau und Mechatronik (grundlagen) Betreuter zeitraum 01.05. 2012 – 31.05. 2012 Andere wichtige Informationen - Betreuer, Organisation NN, FH Kärnten

3.3 Elektrische Schaltungen (M4_DE_CUAS) Titel des Moduls Elektrische Schaltungen Sprache Deutsch Modulzusammenfassung In diesem Modul werden zuerst die passiven elektronischen Grundelemente (Widerstand, Kondensator, Spule, Memristor) vorgestellt. Anschließend werden der Operationsverstärker und einige andere Schaltungen behandelt. Als eines der häufigst verwendeten Werkzeuge für die Analyse elektrischer Schaltungen wird die Frequenzkennlinie anhand des Bode-Diagramms vorgestellt. Dann folgt die Darstellung und Analyse der Filter, wobei in diesem Kapitel der Schwerpunkt bei den analogen Filtern liegt. Aber auch die Funktion digitaler Filter wird kurz erläutert. Am Ende des Moduls gibt es noch ein Praxisbeispiel, das über ein Remote Experiment läuft. Es wird auf passiven analogen und integrierten aktiven analogen Filtern ausgeführt, die auf dem Prinzip geschalteter Kapazitäten arbeiten.

Erforderliche Vorkenntnisse • Einführungskurs Elektrotechnik bzw. praktisches Wissen aus der Elektrotechnik • Kurs lineare Algebra • Kenntnisse aus der Physik • Kenntnisse aus der Mathematik Time span in which the participants will be supervised 1.5-1.6.2012

P a g e | 21

Andere wichtige Informationen - Betreuer, Organisation Dr. Andreas Pester

P a g e | 22

4 Summary of Learning Modules in Slovenian The Learning modules of this chapter cover all three available content groups: industrial, basic, and alternative and emerging technologies courses. The modules are alphabetically arranged. Each Module has his own number, the legend of the course number is Module Number_ Language Available _ University provided and developed this Module.

4.1 Uporabna teorija vodenja (M1_SL_UNI MB) Naslov modula Uporabna teorija vodenja Jezik Slovenščina Povzetek Vodenje sistemov je ena najpomembnejših in najpogostejših nalog na področju mehatronike, pri čemer igrajo še posebno pomembno vlogo regulacije oz. zaprtozančno vodenje. Klasični način poučevanja regulacij uporablja sorazmerno zahtevna matematična orodja, ki pa za poznavanje osnovnih principov niso potrebna. S poznavanjem obnašanja regulatorjev in vplivov spreminjanja njihovih parametrov lahko brez večjih težav izvedemo regulacije ne samo preprostih, temveč tudi bolj zapletenih sistemov. V okviru učnega modula je na začetku predstavljen osnovni princip vodenja, podanih je nekaj preprostih problemov, ki jih v nadaljevanju poskusimo reševati z uporabo raznih tipov regulatorjev. Začnemo z najpreprostejšim, stikalnim regulatorjem in nadaljujemo z vpeljavo histereze ter nazornim prikazom njenega učinka. Nato nadaljujemo z najpogosteje uporabljenimi regulatorji – PID regulatorji, ter z nastavitvijo njihovih parametrov. Za vse regulatorje so prikazane tudi možnosti izvedbe. Preko interaktivnih simulacijskih orodij udeleženci s spreminjanjem vrednosti parametrov spoznajo njihove vplive, z uporabo nekaterih izkustvenih pristopov in formul pridobijo tudi zmožnost za bolj sistematičen pristop. Na koncu svoje znanje uporabijo še za vodenje sistema preko oddaljenega eksperimenta in spoznajo še vidike, ki jih s seboj prinaša uporaba realnih sistemov. V okviru modula pridobljeno znanje je nato lahko solidna osnova za nadaljnje individualno učenje in posledično pridobitev znanja potrebnega za načrtovanje in nastavljanje sistemov vodenja. Za uspešno izvedbo tečaja je potrebnih okoli 15 ur dela. Potrebno predhodno znanje • Osnovno znanje oziroma nekaj praktičnih izkušenj iz mehanike/mehatronike (srednja strokovna šola). • Osnovno znanje oziroma nekaj praktičnih izkušenj iz elektrotehnike/mehatronike (srednja strokovna

šola). • Osnovna znanja matematike (srednja strokovna šola). Čas izvedbe modula 16.4 – 15.6. Ostale pomembne informacije Učni modul je začetni tečaj, zato udeležba na njem ni pogojena z izbiro drugih modulov. Mentor, organization Dr. Miran Rodič, Univerza v Mariboru, Slovenija

4.2 Električna vezja (M2_SL_UNI MB) Naslov modula Električna vezja Jezik Slovenščina Povzetek V modulu so najprej predstavljeni osnovni elektronski elementi (upor, kondenzator, tuljava, memristor), čemur sledi obravnava operacijskega ojačevalnika in nekaj drugih vezij. Naloga zahteva osnovne izračune enostavnih električnih vezij. Kot eno izmed najpogosteje uporabljanih orodij za analizo električnih vezij je obravnavana frekvenčna karakteristika in njen prikaz v obliki Bode-jevega diagrama. Razloženo je kako se skicira Bode-jev diagram in kako ga je možno uporabiti za izračun izhodnega signala.

P a g e | 23

Sledi predstavitev in analiza filtrov, pri čemer je poudarek na analognih filtrih. Razloženi so nizkopasovni, visokopasovni, pasovno prepustni filtri in filtri višjega reda. Na kratko je razloženo tudi delovanje digitalnih filtrov in filtrov s preklapljajočimi kondenzatorji. Praktično delo, ki poteka preko oddaljenih eksperimentov, se izvaja na pasivnih analognih in integriranih aktivnih analognih filtrih, ki delujejo na principu preklapljajočih kondenzatorjev. Potreben čas je odvisen od predznanja učečega, v povprečju pa znaša okoli 20 ur. Potrebno predhodno znanje Osnovno znanj elektrotehnike/elektronike (srednja strokovna šola). Čas izvedbe modula 9.4. 2012 – 9.5. 2012 Ostale pomembne informacije - Mentor, organization Dr. Andreja Rojko, Univerza v Mariboru, Slovenija

4.3 Hibridni pogoni (M3_SL_UNI MB) Naslov modula Hibridni pogoni Jezik Slovenščina Povzetek Električna hibridna vozila predstavljajo odgovor sodobne tehnologije na zahteve po čim nižji porabi, oziroma čim boljši izkoriščenosti fosilnega goriva kot sredstva za pogon vozila. V učnem modulu so opisani osnovni princip delovanja, različne možne konfiguracije in komponente hibridnih pogonov. Predstavljena je analiza energijskih razmer vožnje po standardnih voznih ciklih, narejena na osnovi matematičnega modela vozila. Ta orodja so uporabljena tudi za dimenzioniranje komponent pogonskega agregata hibridnega vozila. V učnem modulu je nadalje opisano komercialno “Plug-In” hibridno vozilo z možnostjo polnjenja neposredno iz električnega omrežja. Prikazani so tudi rezultati ankete voznikov, ki so vozilo preizkusili. Za uspešno izvedbo tečaja je potrebnih okoli 20 ur študija. Možna je tudi udeležba na praktični delavnici o električnih vozilih, kjer je predstavljen tudi laboratorijski hibridni pogon. Znanje pridobljeno v tem modulu je možno poglobiti in nadgraditi z modulom Power electronics for electric vehicles (samo v angleščini, Delft University of Technology) . Potrebno predhodno znanje Osnovno znanje iz elektrotehnike / mehanike (srednja strokovna šola). Čas izvedbe modula 16.4. 2012 – 15.6. 2012 Ostale pomembne informacije Organizirana bo praktična delavnica na temo sodobnih električnih vozil, na kateri se bo možno seznaniti in tudi praktično preizkusiti električna vozila . Delavnica bo organizirana eno soboto v maju 2012 na Fakulteti za elektrotehniko, računalništvo in informatiko v Mariboru, Slovenija. Udeležba na praktični delavnici ni nujna za uspešen zaključek tečaja. Mentor, organizacija Mag. Marijan Španer, Univerza v Mariboru, Slovenija

4.4 Uvod v industrijsko robotiko (M4_SL_UNI MB) Naslov modula Uvod v industrijsko robotiko Jezik Slovenščina Povzetek Čeprav se zdi, da je izbira in programiranje industrijskih robotov zelo zahtevna naloga, je mogoče osnovno znanje pridobiti dokaj hitro. Ta učni modul je namenjen prav temu. V okviru modula pridobljeno znanje je nato lahko solidna osnova za nadaljnje individualno učenje in posledično pridobitev znanja

P a g e | 24

potrebnega za načrtovanje in programiranje zahtevnejših industrijskih robotskih aplikacij. Po kratkem uvodu v splošno robotiko je modul usmerjen v praktične vidike industrijske robotike. Predstavljene so najpogostejše industrijske aplikacije in osnove programiranja robotov. Eden izmed sodobnih robotskih jezikov je predstavljen nekoliko podrobneje. Praktične naloge, ki so najpomembnejši del tega modula, vključujejo izbiro ustreznega robota za specifično industrijsko aplikacijo in pisanje programov za rezkanje in paletiranje z industrijskim robotom. Za uspešno izvedbo tečaja je potrebnih okoli 25 ur dela. Možna je tudi udeležna na praktični delavnici. Udeležencem priporočamo, da najprej končajo učni modul Mehatronske naprave, čeprav je možna udeležba tudi samo na tem tečaju. Potrebno predhodno znanje • Osnovno znanje oziroma nekaj praktičnih izkušenj iz mehanike/mehatronike (srednja strokovna šola). • Osnovno znanje oziroma nekaj praktičnih izkušenj iz elektrotehnike/mehatronike (srednja strokovna

šola). Čas izvedbe modula 7.5. 2012 – 15.6. 2012 Ostale pomembne informacije Spletni tečaj bo nadgrajen s praktično delavnico, ki bo vključevala praktično delo na robotu. Delavnica bo organizirana eno soboto v maju 2012 na Fakulteti za elektrotehniko, računalništvo in informatiko v Mariboru, Slovenija. Udeležba na praktični delavnici ni nujna za uspešen zaključek tečaja. Mentor, organization Dr. Andreja Rojko, Univerza v Mariboru, Slovenija

4.5 Uvod v LabVIEW in računalniško podprta merjenja (M5_SL_UNI MB) Naslov modula Uvod v LabVIEW in računalniško podprta merjenja Jezik Slovenščina Povzetek LabVIEW je uveljavljeno grafično programsko orodje, ki ga pri razvoju merilnih, testnih in ostalih aplikacij uporabljajo številni inžinirji in znanstveniki. V tem modulu se boste seznanili z osnovnimi koncepti LabVIEW grafičnega programskega okolja. Naučili se boste, kako kreirati, urejati LabVIEW programe, kako odkriti sintaktične in logične napake, kako uporabljati programske strukture, polja, gruče, funkcije za delo z znakovnimi nizi in datotekami, ter kako izvesti preprosto zajemanje analognih in digitalnih signalov s pomočjo merilne kartice. Merilni del modula je realiziran z uporabo nizko cenovne USB merilne kartice, ki je uporabnikom na voljo kot kit komplet in jo je mogoče kupiti preko spletne trgovine. Nakup kartice pa ni obvezen, saj je le-ta uporabnikom na voljo tudi preko oddaljene delovne postaje. Delovna postaja, ki se nahaja Univerzi v Mariboru, vsebuje vso potrebno strojno in programsko opremo za izvedbo tega modula. Za uspešno izvedbo učnega modula je potrebnih približno 20 ur dela. Pridobljeno znanje je mogoče nadgraditi z modulom Računalniko podprta merjenja in upravljanje merilnih instrumentov (Univerza v Mariboru). Potrebno predhodno znanje Osnovno znanje oziroma nekaj izkušenj iz računalništva ali elektrotehnike (srednja strokovna šola). Čas izvedbe modula 7. 5. 2012 – 15.6. 2012 Ostale pomembne informacije Mentor, organization Dr. Darko Hercog, Univerza v Mariboru, Slovenija

P a g e | 25

4.6 Mehatronske naprave (M6_SL_UNI MB)

Naslov modula Mehatronske naprave Jezik Slovenščina Povzetek V modulu so opisani struktura in principi delovanja kompleksnejših mehatronskih naprav, zlasti robotov. Najprej so obravnavani mehanski elementi kot so zobniška in jermenska gonila. Kot primer enostavne mehatronske naprave je opisan mehanski člen s pogonom in gonilom. Naloga je izračun/dimenzioniranje mehanskega člena s pogonom in gonilom za specificirano breme in delovno nalogo. V nadaljevanju so razložene osnovne konfiguracije robotov, geometrija in dinamika robotov. Naloga se nanaša na biomimetične in modularne robote. Posebno poglavje je namenjeno vodenju robotov, zlasti vodenju po položaju. Razloženi so osnovni algoritmi vodenja v robotiki. Praktične vaje se izvajajo preko oddaljenih eksperimentov na dvoosnem robotu s SCARA konfiguracijo. Uporabnik lahko izbira različne načine delovanja robota, različne algoritme vodenja in nastavlja njihove parametre. Potreben čas je odvisen od predznanja učečega, v povprečju pa znaša okoli 20 ur. Pred udeležbo na tem modulu priporočamo udeležbo v modulu Uporabna teorija vodenja (Univerza v Mariboru). Pridobljeno znanje se lahko nadgradi z udeležbo na nadaljnjih dveh modulih in sicer Uvod v industrijsko robotiko (Univerza v Mariboru) in Robot programming (samo angleška verzija, Poznan University of Technology). Potrebno predhodno znanje

• osnovno znanje mehanike oziroma nekaj praktičnega znanja mehanike (srednja strokovna šola), • osnovno znanje fizike (srednja strokovna šola), • osnovno znanje regulacij ali predhodna udeležba na E-PRAGMATIC modulu ‘Uporabna teorija

vodenja’, • osnovno znanje iz električnih pogonov.

Čas izvedbe modula 9.4. 2012 – 9.5. 2012 Ostale pomembne informacije - Mentor, organization Dr. Andreja Rojko, Univerza v Mariboru, Slovenija

4.7 Računalniško podprta merjenja in upravljanje merilnih instrumentov Naslov modula Računalniško podprta merjenja in upravljanje merilnih instrumentov Jezik Slovenščina Povzetek Namen tečaja je, da se naučite osnov uporabe programskega orodja LabVIEW za zajemanje merilnih podatkov in upravljanje merilnih instrumentov. Tečaj vključuje praktične vaje s strojno opremo za zajemanje merilnih podatkov in upravljanje merilnih instrumentov ter uporabo programskih funkcij, ki jih boste potrebovali za zajemanje merilnih podatkov in upravljanje merilnih instrumentov v svojih merilnih aplikacijah. Po končanem tečaju boste znali uporabljati pomočnika za zajemanje merilnih podatkov (DAQ Assistant) in uporabljati gonilnik NI-DAQmx s programskim vmesnikom (API) za zajemanje ter generiranje analognih in digitalnih signalov, merjenje s pomočjo števcev ter sinhronizacijo posameznih nalog. Naučili se boste tudi programsko upravljati merilne instrumente z uporabo pomočnika Instrument I/O Assistant in programskega vmesnika (API) arhitekture VISA (Virtual Instrumentation Software Architecture) ter poiskati in uporabljati gonilnike za merilne instrumente. Na tečaju boste uporabljali učilo NI ELVIS II+, simulator merilnih instrumentov NI Instrument Simulator V2.0 in vmesnik GPIB (General Purpose Interface Bus) NI GPIB-ENET/1000. Potrebno predhodno znanje Predpostavlja se osnovno znanje uporabe programskega orodja LabVIEW ali znanje pridobljeno na tečaju Uvod v LabVIEW in računalniško podprta merjenja.

P a g e | 26

Čas izvedbe modula 14.5. 2012 – 15.6. 2012 Ostale pomembne informacije - Mentor, organizacija Dr. Bojan Gergič, Univerza v Mariboru, Slovenija

P a g e | 27

5 Summary of Learning Modules in Spanish The Learning modules presented here deliver introductory, intermediate, and advance courses for Microcontrolers. The modules are alphabetically arranged. Each Module has his own number, the legend of the course number is Module Number_ Language Available _ University provided and developed this Module.

5.1 Introducción a los Microcontroladores (M1_ES_UDEUSTO) Título del módulo Introducción a los Microcontroladores Lengua Español Resumen del módulo Un microcontrolador se describe como un circuito integrado que incluye todas las partes fundamentales de un completo sistema informático: CPU, Memoria y Entradas y Salidas. Este concepto se adapta perfectamente a los requerimientos de los sistemas embebidos los cuales, a diferencia de los computadores, deben siempre llevar a cabo la misma tarea: gobernar el funcionamiento del sistema en el cual se integran. Existen numerosos fabricantes de microcontroladores, todos ellos persiguiendo ajustar el rendimiento de sus dispositivos a los requisitos que demandan las aplicaciones reales. Así, de la misma forma que existen aplicaciones sencillas, como puede ser el control de un sencillo electrodoméstico y aplicaciones complejas, que exigen por ejemplo altas prestaciones para el tratamiento de imágenes o sonido, existe una inmensa gama de dispositivos que van desde el microcontrolador más sencillo de 8 bits hasta dispositivos de doble núcleo que integran motor DSP para el tratamiento de señales digitales. El éxito en el desarrollo de sistemas embebidos depende en gran medida de la elección del dispositivo que mejor se ajuste a los requisitos del proyecto. En este curso se introducirán los microcontroladores de microchip, profundizando en el estudio de la arquitectura de la familia PIC 18F y en la programación de estos. Durante el desarrollo del curso el alumno dispondrá de acceso a un laboratorio remoto que permitirá controlar el funcionamiento de un robot móvil gobernado por un microcontrolador PIC18F4550. Conocimientos Previos exigidos Fundamentos de electrónica digital y estructura de computadores Periodo de supervisión de los participantes 16.04. 2012 – 06.05. 2012 Otra información relevante Mentor, organización Javier García Zubia, Ignacio Angulo Martinez, Deusto Instituto de Technología, Universidad de Deusto

5.2 Curso Avanzado de Microcontroladores de 8 bits(M2_ES_UDEUSTO) Título del módulo Curso Avanzado de Microcontroladores de 8 bits Lengua Español Resumen del módulo Este curso aborda la metodología a seguir por un programador para el adecuado control de periféricos incluidos en un microcontrolador. Partiendo de la hoja de datos proporcionados por el fabricante, el curso muestra cómo acercarse a un recurso para el desarrollo de aplicaciones avanzadas. El presente módulo comienza inmediatamente el alumno ha finalizado el curso introductorio de microcontroladores. Cada capítulo del presente módulo contempla un recurso que se imparte de la siguiente forma:

1. Descripción funcional general. El recurso es presentado de forma genérica indicando sus principales características

2. El recurso en el PIC18F4522. En este apartado se especifican las características del recurso estudiado en el microcontrolador incluido en el laboratorio remoto: “el PIc18F45k22“

3. Ejemplo práctico. Se analiza mediante el desarrollo de un ejemplo práctico el

P a g e | 28

funcionamiento del recurso.

4. Experimento. Mediante el laboratorio remoto “webLab – PIC” el ejemplo desarrollado es ejecutado en un PIC18F45k22 real.

Conocimientos Previos exigidos - Fundamentos de electrónica digital y estructura de computadores - Completar satisfactoriamente el curso de introducción a los microcontroladores ofrecido por la

red E-PRAGMATIC. Periodo de supervisión de los participantes 07.05. 2012 – 24.04. 2012 Otra información relevante Mentor, organización Ignacio Angulo Martinez, Deusto Instituto de Technología, Universidad de Deusto

5.3 Plataforma de bajo coste para proporcionar conectividad LAN/WAN a sistemas embebidos (M3_ES_UDEUSTO)

Título del módulo Plataforma de bajo coste para proporcionar conectividad LAN/WAN a sistemas embebidos Lengua Español Resumen del módulo Incluir conectividad a redes de área local se ha convertido en uno de los más habituales requisitos en el diseño de sistemas embebidos. La mayoría de instalaciones industriales dispone de una red local ya desplegada que facilita la instalación de nuevos sistemas distribuidos sin requerir nuevas infraestructuras de comunicación. Además la utilización de estándares en la comunicación, garantiza la seguridad en la transmisión de datos y garantiza la interoperabilidad permitiendo la comunicación entre diferentes plataformas. Por otro lado, si la red está conectada a Internet el sistema puede ser monitorizado o tele-controlado desde cualquier parte del mundo. Comercialmente, la mayoría de sistemas que incluyen conectividad LAN se basan en potentes plataformas que complican la integración y diseño de hardware. Estas plataformas embebidas que integran potentes microprocesadores (Arm Cortex, Intel Athom, etc.) son adecuadas para sistemas embebidos que incluyen grandes requisitos en términos de rendimiento o capacidad gráfica pero exagerados para la implementación de sistemas que pueden ser perfectamente llevados a cabo mediante un microprocesador de 8 bits. El empleo de la arquitectura descrita mediante el presente curso permite abaratar sensiblemente tanto el coste de producción como el de diseño. Además la pila software proporcionada por Microchip es compatible con todas sus familias de microcontroladores de 8, 16 y 32 bits permitiendo la escalabilidad de los diseños ante nuevos requerimientos. Este módulo formativo incluye el acceso a un laboratorio remoto basado en el microcontrolador PIC 18F97J60 que permitirá a los alumnos experimentar con los conceptos teóricos vistos en el curso y construir una aplicación que permita monitorizar y controlar remotamente las condiciones ambientales de un edificio. Conocimientos Previos exigidos

- Fundamentos de electrónica digital y arquitectura de computadores. - Programación en lenguaje C. - Experiencia en la programación de microcontroladores PIC.

Periodo de supervisión de los participantes 25.05. 2012 – 15.06. 2012 Otra información relevante El módulo incluye una carga masiva de la experimentación a distancia. Cada experimento requiere al menos 1 hora de trabajo. Mentor, organización Ignacio Angulo Martinez, Deusto Instituto de Technología, Universidad de Deusto

P a g e | 29

6 Summary of Learning Modules in Polish This chapter consists of three Learning modules: one is from alternative/emerging technologies field, two others represent the industrial needs group of courses. The modules are alphabetically arranged. Each Module has his own number, the legend of the course number is Module Number_ Language Available _ University provided and developed this Module.

6.1 Sterowniki PLC i sieci przemysłowe (M1_PL_PUT) Tytuł kursu (modułu) Sterowniki PLC i sieci przemysłowe Język Polski Streszczenie kursu (modułu)

Do celów sterowania procesami przemysłowymi wykorzystuje się programowalne sterowniki PLC lub uniwersalne regulatory przemysłowe. Różnica między nimi polega na tym, że sterowniki ze względu na programowalność mogą pracować z różnymi algorytmami sterowania, natomiast regulatory przemysłowe dedykowane są do wybranych procesów przemysłowych. W przemyśle chętnie stosuje się sterowniki PLC, gdyż umożliwiają szybkie zmiany funkcjonalności bez ponoszenia dodatkowych kosztów sprzętowych. Właściwość ta zwiększa elastyczność układów sterowania.

Z uwagi na bardzo dużą popularność sterowników PLC zaproponowano w/w kurs. Zaprezentowany kurs ma na celu zaprezentowanie podstawowej teorii na temat architektury i programowania sterowników PLC wraz z praktycznymi rozwiązaniami w zakresie algorytmów sterowania obiektem przemysłowym z wykorzystaniem sterowników PLC. W wprowadzeniu oprócz podstawowych informacji o sterownikach PLC, zostanie przedstawione krótkie omówienie podstawowej wiedzy z dziedziny automatyki. W ramach kursu prezentowane będą również rozproszone systemy automatyki wykorzystujące przemysłowe interfejsy komunikacyjne takie jak CAN, Profibus DP.

Kurs ten daje podstawowe doświadczenie, które umożliwia dodatkową samodzielną naukę, a także projektowanie układów automatyki.

Moduł uczący przewiduje 15 godzin pracy, która jest niezbędna do pomyślnego opanowania przedstawionego materiału. Ćwiczenia obejmują projektowanie układów automatyki oraz programowanie sterowników PLC. Przeprowadzone będą testy sprawdzające wiedzę. Wymagania wstępne w kategorii wiedzy i umiejętności

• podstawowa wiedza z zakresu teorii sterowania, • podstawowa znajomość lub praktyczne doświadczenie w technice cyfrowej. • podstawowa wiedza lub doświadczenie z elektrotechniki

Okres, w którym uczestnicy będą nadzorowani 1.05.2012 – 31.05.2012 Inne ważne informacje Prowadzący, organizacja Dr inż. Piotr Sauer, Politechnika Poznańska, Polska

6.2 Programowanie robotów (M2_PL_PUT) Tytuł kursu Programowanie robotów Język Polski Streszczenie Celem kursu jest zapoznanie uczestników z zagadnieniami planowania zadań oraz ich programowanie wykonywanych przez roboty przemysłowe. Pierwsza część dotyczy opisu różnych trajektorii (liniowych, parabolicznych, ogólnej wielomianowych) opisywanych w przestrzeni złączy manipulatora. Dla każdej z trajektorii należy wyznaczyć położenie, prędkość oraz przyspieszenie w przestrzeni złączy. Następnie planowanie trajektorii jest realizowane w przestrzeni kartezjańskiej związanej z wykonywaniem przez manipulator konkretnego zadania. Z trajektorią związany jest odpowiednio zdefiniowany układ współrzędnych, który przemieszcza się wzdłuż trajektorii w trakcie jej realizacji. Uczestnicy zapoznają się w jaki sposób manipulator może być wykorzystany jako urządzenie pomiarowe do realizacji zadania

P a g e | 30

paletyzacji. Następnie w kursie przedstawione są podstawy programowania robota z wykorzystaniem języka wysokiego poziomu. Przedstawione są podstawowe struktury danych jakie powinien posiadać język programowania robotów. W kursie przedstawione są przykłady zadań programowania i planowania zadań. Kurs składa się z 15 jednostek dydaktycznych i powinien być poprzedzony kursem Wprowadzenie do robotów przemysłowych. Wymagana wiedza oraz umiejętności Podstawowe wiadomości z zakresu programowania w języku wysokiego poziomu oraz znajomości matematyki na poziomie absolwenta wyższej uczelni technicznej. Czas trwania kursu 1.05.2012 – 31.05.2012 Inne dodatkowe informacje Dla zainteresowanych osób jest możliwa prezentacja programowania zadań z wykorzystaniem robotów KUKA oraz Staübli w jednym wspólnie uzgodnionym dniu w maju 2012 roku w Katedrze Sterowania i Inżynierii Systemów Politechniki Poznańskiej. Mentor, organization Prof. Krzysztof Kozłowski, Politechnika Poznańska, Polska

6.3 Kołowe roboty mobilne – praktyczne zagadnienia sterowania i nawigacji (M3_PL_PUT)

Tytuł modułu Kołowe roboty mobilne – praktyczne zagadnienia sterowania i nawigacji Język Polski Module summary Roboty posiadające zdolności lokomocyjne są przedmiotem zainteresowania nowoczesnej robotyki i mogą być postrzegane jako naturalne rozszerzenie możliwości manipulatorów stacjonarnych wykorzystywanych w przemyśle od końca lat 70-tych dwudziestego wieku. Obecne osiągnięcia teoretyczne i technologiczne sprawiają, że stopniowo ta klasa robotów przekracza bariery laboratorium naukowego i znajduje zastosowania w środowiskach rzeczywistych. Możliwości zastosowań robotów mobilnych wydają się być nieograniczone i obejmują różne zadania transportowe oraz manipulacyjne. W szczególności dużo uwagi poświęca się zagadnieniu autonomicznej pracy robota, na którą składają się: percepcja, lokalizacja, nawigacja oraz sterowanie. Proponowany kurs dotyczy zagadnień związanych z robotami wyposażonymi w kołowe układy napędowe, które stanowią najliczniejszą kategorię robotów mobilnych. Przedstawia podział tych robotów ze względu na strukturę geometryczną oraz omawia algorytmy lokalizacji oraz sterowania ruchem. Wybór tych algorytmów podyktowany jest m. in. możliwością ich zastosowania w praktyce, łatwością implementacji oraz stosowaniem możliwie nieskomplikowanego opisu matematycznego. Część zadań dydaktycznych przewidzianych do realizacji przez uczestników kursu zakłada wykonanie badań symulacyjnych w środowisku Matlab/Simulink. Wymagana wiedza początkowa i umiejętności • Znajomość matematyki wyższej na poziomie inżynierskim • Podstawowa znajomość zagadnień związanych z robotyką Termin, w którym uczestnicy kursu będą nadzorowani przez nauczyciela 7.5. 2012 – 15.6.2012 Inne informacje - Mentor, organizacja Dr. Inż. Dariusz Pazderski, Politechnika Poznańska, Polska