D2 2Initialbusinessmodels, market ... - 5g-pagoda.aalto.fi ·...

95
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723172. D 2 . 2 Initial business models, market analysis and strategies for the adaptation of 5G!Pagoda concept Document Number D2.2 Status Final Work Package WP2 Deliverable Type Report Date of Delivery 30 June 2017 Responsible Device Gateway (DG) Contributors DG, Orange, Ericsson, Fokus, MI, UT, KDDI, Hitachi, NESIC Dissemination level CO This document has been produced by the 5GPagoda project, funded by the Horizon 2020 Programme of the European Community. The content presented in this document represents the views of the authors, and the European Commission has no liability in respect of the content.

Transcript of D2 2Initialbusinessmodels, market ... - 5g-pagoda.aalto.fi ·...

 

This   project   has   received   funding   from   the   European   Union’s   Horizon   2020   research   and  innovation  programme  under  grant  agreement  No  723172.    

 

 

 

 

 

 

 

 

D2 .2  Initial  business  models,  market  analysis  and    strategies  for  the  adaptation  of  5G!Pagoda  concept  

 

 

Document  Number   D2.2  

Status   Final  

Work  Package   WP2  

Deliverable  Type     Report  

Date  of  Delivery     30  June  2017  

Responsible     Device  Gateway  (DG)  

Contributors   DG,  Orange,  Ericsson,  Fokus,  MI,  UT,  KDDI,  Hitachi,  NESIC  

Dissemination  level   CO  

This  document  has  been  produced  by  the  5GPagoda  project,  funded  by  the  Horizon  2020  Programme  of  the  European  Community.  The  content  presented  in  this  document  represents  the  views  of  the  authors,  and  the  

European  Commission  has  no  liability  in  respect  of  the  content.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  2  of  95  

   

Change  History  

Version   Date   Status   Author  (Company)   Description  

0.1   14.12.2016   Working   Georges  Haour,  Eunah  Kim  (DG)   ToC  and  structure  description  0.15   30.01.2017   Working   Georges  Haour,  Eunah  Kim  (DG)   Added  intro  and  foreword  0.2   13.02.2017   Working   Georges  Haour,  Eunah  Kim  (DG)   Updated  foreword  

0.25   24.02.2017   Working   Georges  Haour,  Eunah  Kim  (DG),  Nicklas  Beijar  (Ericsson)   Added  5G  and  IoT  

0.3   06.03.2017   Working   Georges  Haour,  Eunah  Kim  (DG),  Hiroshi  Takezawa  (NESIC)  

Added   market   analysis   and   5G  dynamic  slice  impact  

0.35   10.03.2017   Working   Yoshiaki   Kiriha   (UT),   Eunah   Kim  (DG)  

Added   use   case   market   analysis  and  5G  dynamic  slice  impact  

0.4   23.03.2017   Working  

Lechosław   Tomaszewski  (Orange),   Zaw   Htike   (KDDI),  Daisuke   Okabe   (Hitachi),   Eunah  Kim(DG)  

Added   use   case   market   analysis  and  5G  dynamic  slice  impact  

0.5   11.04.2017   Working   Yoshinori   Kitatsuji   (KDDI),   Eunah  Kim  (DG)   Added  dynamic  slice  impact  

0.55   30.04.2017   Working   Georges   Haour(DG),   Eunah   Kim  (DG),  Sébastien  Ziegler  (MI)  

Updated   market   analysis   and  impact  on  dynamic  slicing  

0.6   18.05.2017   Working   Yoshiaki   Kiriha   (UT),   Zaw   Htike  (KDDI),  Daisuke  Okabe  (Hitachi)   Added  adaptations  of  5G!Pagoda  

0.7   24.05.2017   Working  Eleonora   Cau   (Fokus),   Cédric  Crettaz   (MI),   Georges   Haour,  Eunah  Kim  (DG)  

Added  market  analysis,  5G!Pagoda  adaptation,   Added   business  opportunities  

0.75   29.05.2017   Working   Zaw  Htike  (KDDI)   Added  5G!Pagoda  adaptation  

0.8   11.06.2017   Working  

Eunah   Kim   (DG),   Lechosław  Tomaszewski   (Orange),   Nicklas  Beijar   (Ericsson),   Christopher  Hemmens  (MI)  

Added   5G!Pagoda   adaptation,  challenges   of   vendor,   update   of  challenges   on   telcos,   refinement  of  text.  

0.9   15.06.2017   Working  Sébastien   Ziegler,   Christopher  Hemmens   (MI),   Georges   Haour  (DG),  Nicklas  Beijar  (Ericsson)  

Added   analysis   of   the   survey   on  partners’  exploitation  plan  

1.0   20.06.2017  Submitted  to  the  consortium  

Christopher   Hemmens   (MI),  Georges  Haour,  Eunah  Kim  (DG)   Overall  text  refinement  

1.1   25.06.2017   Version  1.1   Eunah  Kim  (DG)   Editorial   corrections   and  applications  of  partners’  input    

1.2   30.06.2017   Final   Eunah   Kim   (DG),   Sébastien  Ziegler  (MI)  

Applying   comments   and   overall  update  of  the  document.    

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  3  of  95  

   

AUTHORS  

Full  Name   Affiliation  Georges  Haour,  Eunah  Kim   Device  Gateway  SA  Christopher   Hemmens,   Cédric   Crettaz,  Sébastien  Ziegler  

Mandat  International  

Nicklas  Beijar   Ericsson  Lechosław  Tomaszewski   Orange  Eleonora  Cau   Fokus  Yoshinori   Kitatsuji,   Zaw   Htike,   Itsuro  Morita,  Phyo  May  Thet  

KDDI  

Akihiro   Nakao,   Yoshiaki   Kiriha,   Shu  Yamamoto,  Du  Ping  

UT  

Daisuke   Okabe,   Kota   Kawahara,   Hidenori  Inouchi    

Hitachi  

Hiroshi   Takezawa,   Kazuto   Satou,   Masato  Yamazaki  

NESIC  

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  4  of  95  

   

Executive  Summary  

After   one   year   of   project  work,   this   deliverable   provides   inputs   on   the   three   components   of   task   T   2.2,  which  are:  1)  preliminary  market  data  concerning  5G,   IoT,  and  selected  use  cases   in  T2.1,  2)   stakeholder  analysis   including   their   benefits   and   challenges,   3)   initial   business   potential   analysis   and   adaptation   of  5G!Pagoda   concepts   by   different   stakeholders,   and   4)   surveying   the   paths   envisaged   by   the   partners   to  exploit  the  results  of  this  project.  

The   market   analysis   described   in   the   Section   3   does   not   simply   provide   general   market   studies,   but   it  discusses  how  the  dynamic  slicing  of  5G,   the  core   focus  of  5G!Pagoda  project,  can   impact  on  the  market  movement.   The   consortium   partners   are   thankfully   consisted   of   key   market   players   and   active  standardization  actors,  and  the  insights  of  the  partners  have  been  gathered  in  the  process.    

In  the  stakeholder  discussion  in  the  Section  4,  we  identifies  major  stakeholders  involving  each  segment  (5G,  IoT,  smart  drive-­‐assisted  services,   industrial  factory  management,  ensuring  QoS  on  demand,  smart/virtual  office,  content  delivery  network  as  a  service  and  advancement  of  medial  services).  This  is  done  with  special  reference  to  the  use  cases  selected  in  task  T2.1.  It  also  discusses  the  benefits  in  each  stakeholder  in  general  categories.  In  all  cases,  a  crucial  stakeholder  is  people,  who  may  make  or  break  the  industry.  

It   is   followed   by   discussing   on   challenges   for   telecom   network   operators,   telecom   vendors   and  manufacturers  who  have  most  influenced  by  the  new  technologies.  In  the  section,  it  is  not  only  pointing  out  challenges  but  also  leads  the  discussion  of  opportunities  using  the  challenges.    

The   business   model   analysis   shows   initial   observation   of   dynamic   slicing   impacts   on   business.   It   also  discusses   the   key   factors,   business   types   and   cloud   models   on   designing   further   business   models.   A  particular  emphasis  has  been  put  on  telecommunication  companies,  which  will  be  impacted  heavily  by  5G  and   dynamic   slicing.   It   should   be   stressed   that   it   includes   initial   strategies   for   adaptation   of   5G!Pagoda  concepts   in   each  major   stakeholder   group,   which   is   directly   from   the   key   industry   partners   giving   their  know-­‐how,  company  direction  and  insight,  instead  of  using  broad  and  general  market  data.  

Intensive   survey   analysis   of   partners’   initial   exploitation   plan   is   included   in   the   Section   7.   In   order   to  develop  and  recommend  any  realistic  and  feasible  business  models  in  the  next  iteration,  it  is  important  to  assess  and  clarify  the  specific  assets  and  uniqueness  of  5G!Pagoda  technological  outputs,  and  the  survey  on  the  initial  exploitation  plan  has  been  used  to  identify  the  direction  of  exploitation  plan  and  further  paths  on  designing   business   models.   According   to   our   initial   analysis,   it   appears   that   the   most   likely   path   to  exploitation   will   be   distributed   between   technology   transfer   to   standardisation   and/or   individual  exploitation  of  specific  outputs  by  individual  partners.    

This  “work  in  progress”  must  be  seen  as  an  iterative  process.  One  of  the  objectives  of  the  next  phase  is  to  concentrate  on  the  key  issue  of  this  task,  which  consists  of  deeper  assessing  where  and  how  dynamic  slicing  will   impact   business   and  markets,   both   in   providing   enhanced/new   opportunities,   as   well   as   threats   to  certain  established  business  positions.  Given  the  rapid  change  and  novelty  of  5G,  IoT  and  dynamic  slicing,  it  is  going  to  be  a  challenge  to  anticipate  events  for  the  foreseeable  future.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  5  of  95  

   

Table  of  Contents  

1.   Introduction  ........................................................................................................................  12  

1.1.   Objectives  ....................................................................................................................................  12  

1.2.   Motivation  and  scope  ..................................................................................................................  13  

1.3.   Relationships  with  other  tasks  in  WP2  and  other  WPs  ..................................................................  13  

1.4.   Structure  of  the  document  ...........................................................................................................  13  

2.   Foreword  ............................................................................................................................  15  

2.1.   Digital  healthcare  .........................................................................................................................  15  

2.2.   Connected  cars  ............................................................................................................................  16  

2.3.   Smart  reality  at  fingertips  .............................................................................................................  16  

2.4.   The  companies  try  to  adapt  to  the  digital  revolution  ....................................................................  17  

2.5.   The  serious  need  for  healthy  debates  ...........................................................................................  18  

3.   Market  overview  .................................................................................................................  20  

3.1.   Market  analysis  and  impact  of  5G  dynamic  slicing  ........................................................................  20  

3.1.1.   5G  .........................................................................................................................................  20  

3.1.2.   Application  domains  from  the  selected  use  cases  ..................................................................  23  

3.1.2.1   Massive  IoT  .....................................................................................................................  23  

3.1.2.2   Smart  driving  ..................................................................................................................  27  

3.1.2.3   Smart  manufacturing  .....................................................................................................  30  

3.1.2.4   On-­‐demand  QoS  support  with  mobility  .........................................................................  31  

3.1.2.5   Smart/Virtual  office  ........................................................................................................  32  

3.1.2.6   Content  Delivery  Service  ................................................................................................  33  

3.1.2.7   Advancement  of  medical  services  ..................................................................................  35  

3.1.2.8   Handling  disasters  or  very  high  concentration  of  people  ..............................................  36  

4.   Multi-­‐stakeholder  analysis  ..................................................................................................  38  

4.1.   Identified  stakeholders  in  5G!Pagoda  use  cases  ...........................................................................  38  

4.2.   Identification  of  the  multi-­‐stakeholders  in  each  use  case  ..............................................................  41  

4.2.1.   Massive  IoT  ...........................................................................................................................  42  

4.2.2.   Smart  drive-­‐assisted  services  .................................................................................................  44  

4.2.3.   Industrial  factory  management  ..............................................................................................  46  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  6  of  95  

   

4.2.4.   Ensuring  QoS  on  demand  ......................................................................................................  46  

4.2.5.   The  smart/virtual  office  .........................................................................................................  47  

4.2.6.   Content  delivery  network  as  a  service  ...................................................................................  48  

4.2.7.   Advancement  of  medical  services  ..........................................................................................  49  

5.   Challenges  for  three  key  players  .........................................................................................  50  

5.1.   Specific  challenges  for  the  telecom  network  operators  .................................................................  50  

5.2.   Challenges  to  telecom  vendors  ....................................................................................................  53  

5.3.   Challenges  to  manufacturers  .......................................................................................................  54  

6.   Business  model  analysis  ......................................................................................................  55  

6.1.   Network  slicing:  a  game-­‐changer  .................................................................................................  55  

6.2.   Business  model  ............................................................................................................................  56  

6.2.1.   Drivers  and  challenges  of  network  slicing  for  the  operators  ...................................................  58  

6.2.2.   Business  impact  of  network  slicing  ........................................................................................  59  

6.3.   Business  opportunities  with  5G!Pagoda  concepts  .........................................................................  61  

6.4.   Initial  strategies  for  the  adaptation  of  5G!Pagoda  concepts  ..........................................................  62  

6.4.1.   Telecom  operator  (Orange)  ...................................................................................................  62  

6.4.2.   Telecom  operator  (KDDI)  .......................................................................................................  64  

6.4.3.   Manufacturer  (Hitachi)  ..........................................................................................................  64  

6.4.4.   Telecom  vendor  (ERICSSON)  ..................................................................................................  65  

6.4.5.   IoT  platform  provider  (ERICSSON,  DG)  ...................................................................................  66  

6.4.6.   MVNO  (NESIC)  .......................................................................................................................  67  

6.4.7.   IoT  solution  provider  (DG)  .....................................................................................................  69  

7.   Initial  Exploitation  Strategy  .................................................................................................  70  

7.1.   Partners  survey  ............................................................................................................................  71  

7.2.   Analysis  of  the  survey  ..................................................................................................................  71  

7.2.1.   Exploitable  results  .................................................................................................................  71  

7.2.2.   Perceptions  of  market  potential  ............................................................................................  72  

7.2.3.   IPR  potential  and  strategy  .....................................................................................................  74  

7.2.4.   Exploitation  strategy  .............................................................................................................  75  

7.2.5.   Specific  results  to  be  exploited  ..............................................................................................  80  

7.2.6.   Freedom  to  use  results  ..........................................................................................................  82  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  7  of  95  

   

7.3.   Considerations  on  the  exploitation  strategy  .................................................................................  85  

7.3.1.   Comparative  SWOT  analysis  ..................................................................................................  85  

8.   Legal,  regulatory  and  corporate  policy  issues  ......................................................................  87  

9.   Future  Steps  ........................................................................................................................  89  

Appendix  1.  Exploitation  Plan  Survey  ........................................................................................  90  

 

   

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  8  of  95  

   

List  of  Tables  

Table  1  –  List  of  Acronyms  .......................................................................................................................  10  

Table  2  –  Actors  involved  in  the  seven  use  cases  selected  in  task  D2.1  ..................................................  38  

Table  3  –  Partners'  answer  on  exploitable  results  ...................................................................................  71  

Table  4  –  Perception  of  market  potential  ................................................................................................  73  

Table  5  –  IPR  potential  and  strategy  ........................................................................................................  74  

Table  6  –  Collective  exploitation  &  Individual  exploitation  .....................................................................  75  

Table  7  –  Exploitation  Focus  ....................................................................................................................  76  

Table  8  –  Joint  commercial  exploitation  plans  ........................................................................................  77  

Table  9  –  Exploitation  actions  ..................................................................................................................  79  

Table  10  -­‐  Answers  on  results  to  be  exploited  .........................................................................................  80  

 

   

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  9  of  95  

   

List  of  Figures  

Figure  1  –  Exploitation  strategy  for  5G!Pagoda  .......................................................................................  13  

Figure  2  –  Impact  of  the  digital  revolution  on  various  sectors  ................................................................  18  

Figure  3  –  Security  Decision-­‐Makers  have  growing  concerns  about  IoT  initiatives  .................................  26  

Figure  4  –  Telecommunication  cost  ratio  in  various  segments  ...............................................................  28  

Figure  5  –  MRI's  forecast  for  smart  mobility  ...........................................................................................  28  

Figure  6  –  Smart  driving  in  Japan  in  2030  (from  Yano  Economic  Laboratories)  ......................................  29  

Figure  7  –  Boston  Consulting  Group's  prediction  on  smart  driving  (2015)  ..............................................  29  

Figure  8  –  Global  Smart  Office  Market  Industry  (source:  mordorintelligence.com)  ...............................  32  

Figure  9  –  Content  Delivery  Service  Revenue  Forecast  ...........................................................................  34  

Figure  10  -­‐  General  view  of  Multi-­‐Stakeholders  ......................................................................................  41  

Figure  11  -­‐  Stakeholders  of  5G  Telecom  operators  .................................................................................  42  

Figure  12  –  Internet  of  Things  for  Business  (source:  Beecham  research)  ...............................................  43  

Figure  13  –  Stakeholders  and  key  players  of  global  smart  city  market  ...................................................  44  

Figure  14  –  An  Ecosystem  of  Winners  of  connected  car  .........................................................................  45  

Figure  15  –  Pre-­‐5G  vs.  5G-­‐based  factory  model  ......................................................................................  65  

Figure  16  –  MVNO  subscribers  in  Japan  (source:  Mitsubishi  Research  Institute,  Ltd.)  ...........................  67  

Figure  17  –  Exploitable  results  of  5G!Pagoda  ..........................................................................................  72  

Figure  18  –  Answers  on  Focus  on  exploitation  ........................................................................................  76  

Figure  19  –  Answers  on  the  joint  commercial  exploitation  plan  .............................................................  77  

Figure  20  –  Answers  on  the  joint  research  activities  ...............................................................................  78  

Figure  21  –  Answers  on  the  joint  standardization  activities  ....................................................................  78  

Figure  22  –  Category  of  exploitable  results  .............................................................................................  81  

Figure  23  –  IPR  policy  ...............................................................................................................................  82  

Figure  24  –  Free  exploitation  to  the  partners  ..........................................................................................  83  

Figure  25  –  Free  exploitation  to  the  3rd  party  ..........................................................................................  83  

Figure  26  –  Survey  results  on  business  concerns  in  deploying  M2M  or  IoT  ............................................  88  

     

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  10  of  95  

 

Abbreviations  Throughout  this  document,  the  following  acronyms  are  used.  

Table  1  –  List  of  Acronyms  

Abbreviations   Original  terms  

3GPP   The  Third  Generation  Partnership  Project  

5G  system   The  Fifth  Generation  of  Mobile  Communications  System  

AaaS   Asset  as  a  Service  

B2B2C   Business  to  Business  to  Consumer  

CDN   Contents  delivery  network  

CDNaaS   CDN  as  a  Service  

E2E   End  to  End  

EBITDA   Earnings  Before  Interest,  Tax,  Depreciation  and  Amortization  

IaaS   Infrastructure  as  a  Service  

IMT   International  Mobile  Telecommunications  

IoT   Internet  of  Things  

M2M   Machine  to  Machine  

MEC   Mobile  Edge  Computing  

MVNO   Mobile  Virtual  Network  Operator  

NFVI   Network  Function  Virtualization  Infrastructures  

NFVIaaS   NFV  Infrastructure  as  a  Service  

NGMN   Next  Generation  Mobile  Network  Alliance  

NSaaS   Network  Security  as  a  Service  

OaaS   Operation  as  a  Service  

OSS   Operational  Support  Systems  

OTT   Over-­‐the-­‐top  content

RAN   Radio  access  network  

SDN   Software  Defined  Networking  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  11  of  95  

 

SDO   Standards  Development  Organization  

uRLLC   ultra-­‐reliable  low  latency  communications  

VMN   Virtual  Mobile  Network  

VNF   Virtualized  Network  Function  

XaaS   Anything  as  a  Service  

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  12  of  95  

 

1. Introduction  

1.1. Objectives  The  objectives  of  WP2  are  to  define  a  set  of  reference  use  case  scenarios  for  5G!Pagoda  with  identification  of   their   technical   requirements   (T2.1),   to   define   target   business   models   at   work   (T2.2)   and   to   define  5G!Padoga  architecture  with  descriptions  of  the  specifications  of  different  slices  for  different  sectors  (T2.3).  

The   general   objective   of   task   T2.2   is   to   explore  marketing   opportunities   for   dynamic   network   slicing,   to  analyse  drivers  and  barriers  for  the  adoption  of  the  technology,  and  to  explore  viable  business  models.  As  stated   in  the  description  of  action,   this   task   is  closely  aligned  with  research  and  standardization  activities  and  will  evolve  alongside  the  project.  

The  object  of  this  deliverable  is  to  present  a  first  iteration  of  task  T2.2's  research  and  analysis.  It  identifies  and  outlines  an  initial  set  of  market  opportunities  for  5G!Pagoda  and  analyses  key  drivers  and  barriers  for  the  adoption  of  the  technology  among  stakeholders  in  the  whole  value  chain.  A  market  overview  of  current  and   future   commercial   environments   is   provided.   In   order   to   define   viable   business   models,   realistic  evaluations  of  the  identified  business  models  are  derived  and  different  marketing  strategies  are  identified.  In  order  to  make  realistic  business  models,  legal,  regulatory,  and  corporate  policy  issues  associated  with  the  5G!Pagoda  area  are  addressed  and  recommendations  to  cope  with  these  issues  are  stated.  

In  the  wording  of  the  project  proposal,  for  the  D2.2  task,  deliverables  include  three  components:  

• initial  look  at  business  models;  

• preliminary  market  data;  

• strategies  for  the  exploitation  by  the  partners  of  results  of  the  project  on  dynamic  slicing.  

This  work  in  progress  will  be  complemented  by  a  second  iteration  to  be  delivered  by  M30.  From  a  research  project  perspective,   it  must  be  noted  that   the  5G!Pagoda  project   is  a   three-­‐year  project  and  most  of   the  research   results  will   come  about   in  years  2  and  3,  and  according   to   the  GANTT  most  outputs  will  not  be  finalized  before  M30.    

At  the  same  time,  the  technology  landscape  and  5G  standardization  are  evolving  very  fast  while  the  market  and   business   prospects   are   unclear.   The   value   of   the   results   will   thus   depend   a   lot   on   the   on-­‐going  evolution  of  technology  and  the  markets.  

In  this  context,  we  have  chosen  to  focus  this  first  deliverable  on  contextual  analysis  and  a  prospective  view  that  will  guide  the  exploitation  strategy  of  task  T6.3  which  starts  in  M18.  The  second  iteration,  deliverable  D2.4,  due  by  M30,  will  extend  and  further  detail  the  analysis  according  to  the  on-­‐going  developments  and  achievements  of  the  project.    

Our  methodology  has  been  chosen  and  adapted  to  this  evolving  market  environment  and  to  the  integration  with   complementary   tasks,  namely   task  T6.3  on  exploitation   starting   in  M18.  A   coordinated   strategy  has  been  designed  and  adopted  by  tasks  our  task  and  task  T6.3.  Accordingly,  the  first  iteration  provides  a  high-­‐level  view  that   is  expected  to  remain  valid  until   the  end  of  the  project.   It  defines  the  overall  context  and  framework.   The   second  deliverable  will   be   synchronized  with   the  effective  outputs  of   the  project  with   a  focus  on  supporting  the  exploitation  strategy.  It  will  also  be  adapted  to  T6.3's  orientation  and  needs.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  13  of  95  

 

Figure  1  below   illustrates   the  exploitation   strategy   for   the  5G!Pagoda  project  as  well   as   the   relationships  between  tasks.    

 

Figure  1  –  Exploitation  strategy  for  5G!Pagoda  

1.2. Motivation  and  scope  This  task  aims  at  assessing  the  business  implications  of  the  developments  expected  as  a  result  of  the  advent  of   5G   looking   in   particular   at   the   eight   uses   case   selected   in   task   T2.1.   As   an   initial   version   of   the   T2.2  results,  it  covers  initial  market  analysis  based  on  current  market  trends  and  forecasting.  It  includes  a  short  conceptual   description   of   the   impact   on   5G!Pagoda   and   includes   initial   strategies   on   the   adaptation   of  5G!Pagoda  concepts   from   the  different  actors  within   the   consortium  partners.   It   also   covers   some   initial  observations  on  regulatory,  societal  and  cooperation  issues.  These  initial  results  will  keep  evolving  until  the  end  of  the  project  according  to  market  direction  and  5G!Pagoda's  exploitable  results  that  will  be  carried  out  in  the  next  phase  (D2.4).    

1.3. Relationships  with  other  tasks  in  WP2  and  other  WPs  As  stated  in  section  1.2,  the  market  analysis  is  focused  on  selected  use  cases  defined  in  D2.1  from  T2.1.  In  addition,   task   T2.2   is   bound   by   several   interdependencies   related   to   business   models   and   exploitation  strategies  as  indicated  in  Figure  1.  There  are  two  main  interdependencies  we  can  highlight:  

• The  market  analysis  and  exploitation  strategy  is  closely  related  to  the  output  of  the  project.    

• The  market  analysis  is  also  closely  related  to  task  T6.3  in  charge  of  exploitation.  The  initial  exploitation  strategy  stated  in  deliverable  D2.2  will  contribute  to  guiding  and  focusing  the  market  analysis  work  to  be  performed  in  D2.4.  

1.4. Structure  of  the  document  Following  this  introductory  section,  the  remaining  part  of  the  document  is  structured  as  follows:  

• Section  2  states  foreword,  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  14  of  95  

 

• Section  3  analyses  market  data  and  impact  on  5G  dynamic  slicing  mechanism,  

• Section  3  describes  and  analyses  stakeholders,  

• Section  4  discusses  challenges  of  three  major  stakeholders,  

• Section  6  describes  business  opportunities  and  adaptation  of  5G!Pagoda  concepts,  

• Section  7  states  initial  exploitation  strategies,    

• Section  8  handles  legal,  regulatory  and  corporate  policy  issues,  and  

• Section  9  draws  important  concluding  remarks  and  future  work.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  15  of  95  

 

2. Foreword  The  world   is  at  the  threshold  of  a  huge  step-­‐change   in  scale  and  speed   in  connectivity.  This   is  due  to  the  advent   of   5G,   which   will   provide   roughly   100   times   the   capacity   for   transmission   of   information   as  compared   with   current   4G.   At   the   same   time,   the   expected   exponential   rise   of   connected   objects   will  provide  yet  another   level  of  connectivity.  Some  authors  therefore  speak  of  a  “Digital  Tsunami”.  Although  this  industry  is  the  object  of  much  hype,  it  is  clear  that  the  digital  revolution  will  continue  to  have  a  broad  and   profound   impact   on   all   aspects   of   human   activity.   People,   governments   and   institutions   are  unprepared  for  this  tsunami;  this  project  should  help  improve  the  situation.

Not  surprisingly,  some  aspects  of  the  industry  are  negative,  which  should  not  be  downplayed.  If  that  were  to  happen,  this  would  boomerang  on  the  industry  and  on  individual  firms  due  to  1)  loss  of  image  and  good  will  and  2)  the  possible  triggering  of  the  refusal  of  the  technological  change  induced  by  5G/IoT.  Indeed,  in  recent  times,  the  rapid  pace  of  change  has  been  poorly  assimilated  by  the  general  public  especially  when  other   elements   of   the   scene   (geopolitics,   economics,   etc.)   are   changing   at   the   same   time.   Staying   away  from  the  nostalgic  “things  were  better  before”  lets  us  look  at  a  few  lights  and  shadows  of  this  “brave  new  digital  world”.  

2.1. Digital  healthcare  Digital  tools  offer  great  opportunities  for  providing  quality  healthcare  at  a  reasonable  cost.  The  recent  book  by  Dr.  Eric  Topol:  “The  patient  will  see  you  now”  (Basic  books,  New  York,  2015),  provides  a  cogent  vision  of  this  large  field.    

Beyond   the   usual   benefits   of   computer-­‐aided   surgical   robots,   such   as   the   Vinci   robot,   telemedicine   and  tools   for   improved   diagnostic,   digital   communications   will   be   used   a   lot   more   in   hospitals   to   improve  effectiveness   and   efficiency.   Also,   there   is   great   scope   for   keeping   old   people   at   home,   which   is   the  overwhelmingly  preferred  option  when  compared  to  retirement  homes.  This  includes  non-­‐invasive  sensors  and  user-­‐friendly  robots  while  making  sure  that  older  people  live  among  diverse  populations,  for  example,  they  could  help  pupils  after  school  or  read  them  stories  or  handle  “hot  lines”.  Serious  investment  should  be  made  to  adapt  housing  to  the  health  and  needs  of  “seniors”.  Part  of  the  large  financial  resources  of  private  healthcare  companies  should  be  mobilized  to  this  end.    

On   the   subject  of  productivity,   information  and   computer   technologies   (ICTs)  do  not  always  have   such  a  positive   impact.   As   a   low-­‐key   example,   professionals,   highly   trained   to   take   care   of   patients,   spend  expensive   time  on   ICT-­‐driven  menial   tasks   such   as   scanning  medical   documents   in   order   to  mitigate   the  consequences   of   a   computer/network   failure.  More   dramatically,  medical   devices,   such   as   insulin   pump  implants   in  a  person,  may  be  hijacked  by  a   third  party.   The   latter  may   thus   trigger   the   release  of   a  high  quantity   of   insulin,   killing   the   person,   using   a   blue   tooth   connection.   Similarly,   tampering   can   also   take  place  with   pacemakers.   So   far,  manufacturers   of  medical   devices   have   provided   low   protection   to   such  hacking   because   they   did   not   think   of   it   or   decided   that   the   cost   did   not   justify   the   risk.   Thinking   the  unthinkable  is  not  easy.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  16  of  95  

 

2.2. Connected  cars  There   is   currently   considerable  hype  –  and  much   investment  –   concerning   connected  cars  and  driverless  cars.  This  is  because  it  concerns  an  object  with  which  consumers  have  had  a  long  love  affair:  automobiles.  Also,  the  automotive  industry  is  a  substantial  part  of  many  countries'  economy.  Digital  car  technology  has  a  number  of  difficult  goals.  First,  it  aims  to  reduce  the  number  of  victims  in  automobile  accidents  -­‐  each  year,  more   than  a  million  people  die  on   the  world's   roads.  Certain  counties,   such  as  France,  have  managed   to  substantially  reduce  the  number  of  traffic  victims  by  a  sustained,  coherent  set  of  measures,  however,  the  digital  car  offers  further  improvement  in  this  area.  Given  recent  failures,  however,  driverless  cars  may  not  be  on  our  roads  before  2025.    

Second,  it  aims  to  increase  the  amount  of  traffic  that  existing  roads  can  handle  -­‐  one  talks  of  an  increase  of  20  to  30%.  Third,  the  car  becomes  a  space  for  work  and  leisure.  Finally,  driverless  cars  greatly  enhance  the  autonomy  for  handicapped  people.  One  outstanding   issue  remains   insurance   -­‐   in  case  of  a  car  crash,   the  responsibility  is  not  with  the  driver  anymore,  but  then,  with  what  or  whom?  The  sensors,  the  hardware,  the  software,   the   road   infrastructure?   Fierce   fights   between   experts   are   on   the   horizon.   Obviously,   the   big  economic  impact  will  be  that  cars  will  then  be  leased  and  shared  dramatically  dropping  the  number  of  cars  sold  every   year.  Bad  news   for   car-­‐makers  but   good  news   for   the  environment.   Later   in   this   report,  we’ll  discuss  the  business  aspects  in  this  area.  

2.3. Smart  reality  at  fingertips  Digital  healthcare  and  connected  cars,  briefly  discussed  above,   are  pieces  of  a  puzzle   that  can  be  named  “smart  reality”.  There  are  already  numerous  such  pieces  available,  many  of  them  are  often  only  seen  and  considered  alone.  Some  of  them  may  be  reshaped  according  to  coming  technological  advancements.  Some  of   them  may  be  made  denser  and  more   intense  because   technology  enablers  will  make   them  affordable  and   their   appearance  on  a  massive   scale  will  provide  new  opportunities  and   smart   interactions  between  them.  Some  of  them,  currently  missing,  will  be  imagined  and  then  created.  

The  idea  of  smart  buildings,  proposed  in  the  1970s,  originates  in  automated  manufacturing  control  systems  and  plant  growth  environment  optimization  systems.  The  smart  building  combines  sensors  and  detectors  into   one,   integrated  management   system  managing   facilities,   installations   and   grids   inside   the   building.  With   information   coming   from   various   sensors,   the   system   can   autonomously   adapt   to   changes   of  environment   inside   and   outside   the   building,   optimizing   its   functionality,   comfort,   safety,   security,  operational   costs   and   emissions.   The   idea   of   self-­‐aware   and   self-­‐managing   building   might   have   been  perceived  as   futuristic   in   the  1970s,  but  nowadays   it   is   common  due   to   sensing,   transmitting,   computing  and   controlling   technologies   making   it   viable   and   affordable.   This   is   especially   true   for   the   connected  components  of  the  smart  building.  

What   if   we   think   about   expanding   this   “smartness”   to   cities,   or   regions,   and,   at   the   same   time,   aim   to  maximize  the  comfort  of  individual  people?  What  if  we  expand  self-­‐awareness  and  self-­‐management  from  air-­‐conditioning,   lighting,  watering,   access,   safety   and   security,   to   other   domains   such   as  manufacturing,  trade,   logistics   and   supply   chain,   health,   transportation   and   traffic,   finance,   information   media   and  entertainment,  etc.?  

Telemedicine   (including   remote   monitoring   of   human   vital   signs   for   early   warning   and   diagnostics   and  automated  calling  for  rescue,  remote  healthcare  and  consultations  or  even  remote  surgery)  and  connected  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  17  of  95  

 

cars  for  road  security  improvement  and  active  shaping  of  traffic  for  better  use  of  road  capacity,  have  been  discussed  above.  In  addition,  existing  fleet-­‐tracking  technologies  might  be  developed,  densified  and  reused  for   e.g.   freight/luggage/shipment   tracking   and   localization,   inventory   management,   smart   or   assisted  travelling,   automated   goods/shipment   delivery,   public   transportation   agility   and   adaptation   etc.   Existing  remote   sensing   technologies   may   be   densified   in   order   to   provide   high   spatial   resolution   metropolitan  pollution  sensing  systems  associated  with  e.g.  traffic  management  systems  and  public  systems  for  localized  warning.   Another   scenario  with  multi-­‐parametric   and   high   spatial   density-­‐sensing/monitoring   for   natural  disasters  anticipation  and  emergency  detection  (terrorism,  fires,  traffic  accidents  etc.)  may  be  considered.  Current   systems   for   energy   and  media  management   used   in   smart   buildings  may   be   expanded   to   smart  electricity,   water   and   gas   grids   allowing   balanced   production   and   utilization   with   inherent   centralized  remote  charging.  Many  other  currently  available  features  can  be  rethought,  redefined  or  re-­‐engineered.    

Massive-­‐coverage,  high-­‐density  data,  transmission  networks,  as  key  enablers  for  "smart  reality",  require:  

• high  data  speeds,  

• low  latency,  

• advanced  mobility  support  (providing  reliable  connectivity  for  terminals  in  motion  at  high  speed),  

• high  resolution  of  spatial  positioning  (horizontal  and  vertical,  inside  and  outside  buildings),  

• high  reliability,  

• high  agility  and  adaptability  to  specific  use  cases,  

• high  capacity  in  terms  of  volume  of  connected  devices.  

These  features  will  be  required  in  whole  or  part  of  a  system,  depending  upon  the  specific  individual  needs.  Such  networks,  satisfying  the  conditions  listed  above,  will  shortly  come  about  with  the  advent  of  5G.  

2.4. The  companies  try  to  adapt  to  the  digital  revolution  Existing  firms  must  metamorphose  themselves  to  adapt  to  this  new  reality.  Although  always  profound,  the  digital  revolution  impacts  various  industries  to  different  degrees:  utilities  or  oil  &  gas  can  be  said  to  be  less  drastically  metamorphosed   than  media  &  entertainment,   for   example.   Chemical   companies  must   indeed  learn   to  capitalize  on   these  advances   to  manufacture  and  distribute  “the  digital  way”,  but   their  products  themselves  remain  chemicals  unchanged.  In  order  to  successfully  negotiate  such  a  revolution  and  achieve  this,  their  activity  in  R&D  Research  and  development  has  to  be  “digitalized”,  not  a  trivial  feat.  Automotive  companies   are   the   most   advanced   in   machine-­‐to-­‐machine   communication.   Plants,   with   modular  manufacturing  fully  using  robots  and  drones,  are  around  the  corner.  Figure  2  illustrates  the  impact  of  the  digital  revolution  in  various  business  sectors.  The  sectors  indicated  close  to  the  center  are  most  likely  to  be  affected  by  the  digital  revolution  more  than  those  in  the  outermost  sectors.    

In   spite   of   the   agreed   upon   enormous   impact   of   digital   on   all   walks   of   life,   close   to   45%   of   companies  consider   that   this   revolution   is  not  a  board   issue.  The  power  of  human  denial   is  enormous.  On  the  other  end  of  the  scale,  in  2015,  close  to  25%  of  firms  were  declared  to  be  actively  experimenting  and  proactively  using   the  power  of  digital.   The  words   “open-­‐minded   firms",   "agility",   "speed"   and   "quality  of   execution”  pop  up  most  often  in  the  management  literature.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  18  of  95  

 

On  the  manufacturing  side,  the  production  of  smartphones  in  Asia’s  plants,  sometimes  “black  factories”  i.e.  without  workers,  may  not  ever  be  repatriated  to  the  “west”  because  the  latter  does  not  have  the  necessary  know-­‐how.  

On  the  other  hand,  new  companies  emerge  and  grow  in  order  to  leverage  digital  tools  to  offer  new  services  such  as  Europe-­‐born  Skype  or  Airbnb.  Their  business  models  are  not  rocket  science  and  many  currently  lose  money,   but   their   success   depends   heavily   on   access   to   large   investments   for   fast   growth   and   quality   in  execution.  Their  model  is  usually  predicated  on  the  accumulation  of  consumer  habits  and  details,  so  as  to  provide   high   value,   “targeted”   marketing.   However,   things   have   been   at   a   crude   stage   for   years,   for  example,  Internet  messages  to  people  in  the  Geneva  area  are  written  in  German.  In  the  attributes  of  speed  and  scale,  the  Chinese  are  unrivalled  and  this  is  particularly  the  case  for  the  mobile  Internet.  The  example  of  Tencent’s  WeChat  Pay   is  particularly   remarkable.  Close   to  400  million  Chinese  are  doing  most  of   their  payments  with   their  mobile  phone  as  of  Spring  2017   [1].   Some  problems  of  hacking  and  disruption  have  been  reported,  but,  so  far,  apparently  in  a  limited  way.  

 

 

Figure  2  –  Impact  of  the  digital  revolution  on  various  sectors  

sectors  close  to  the  center  are  likely  to  be  most  affected  [3]  

2.5. The  serious  need  for  healthy  debates  Concerning  this  coming  digital  tsunami,  we  have  to  hold  robust  debates  with  lucidity.  The  media  have  a  full  role   in   this;   will   they   be   up   to   the   task?   Our   governments  must   anticipate,   or   at   least   accompany,   the  process   with   light-­‐footed   but   effective   regulations,   not   self-­‐serving   bureaucracy.   Consumers   demand  honesty  and  openness.  The  industry  must  inform  and  engage  with  the  population  at  large  about  what  5G  and   IoT  mean;   their  negative  aspects  must  not  be  covered  up.  These   include  serious   issues:  security   (the  more  connectivity,   the  more  hacking   is  possible),  privacy  and  the  proper  use  of  data,  opaque  systems  (in  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  19  of  95  

 

fact,  in  the  case  of  “deep  learning”  in  AI,  the  systems  are  opaque  even  to  the  authors  of  the  software),  and  the  very  dense  array  of  antennae  required  by  5G.  

If   these   negative   aspects   are   not   responsibly   addressed   by   the   industry   and   the   regulating   bodies,  impatient  and  demanding  customers  will   rebel.  Similarly,   the  world  currently  experiences  a  wave  against  globalization   and   free   trade.   Forgetting   the   downsides,   these   have   been   naively   presented   as   panaceas.  These  days,  when  a  group  of  people  arrive  at  a  refugee  camp,  one  of  the  first  things  they  ask  for  is  access  to  Wi-­‐Fi  as  well  as  electricity  to  recharge  their  cell  phones.  For  them,  a  smartphone  is  as  basic  a  resource  for  survival  as  food  and  water.  This  is  a  vivid  reminder  of  the  fact  that  we  are  fully  immersed  in  a  digital  world.  Currently,   in   the  world,   150  million   e-­‐mails   are   sent   every  minute.  However,  we   are   about   to   reach   the  point   where   50%   of   the   world’s   inhabitants   are   connected   to   the   Internet,   most   of   them   securing   this  access  via  their  cellular  phones  (e.g.  “mobile  internet”),  which  should,  in  fact,  really  be  called  “HC”  –  hand  computers.  This  means  that  growth  rates  in  the  industry  will  begin  to  seriously  decrease.  

This  explains  why  the  industry  is  desperately  racing  ahead  towards  a  new  phase  of  a  much  more  radically  digital  world  after  2020,  with  all  the  relevant  buzzwords.  At  that  time,  5G  is  expected  to  be  launched  with  the   capability   of   transmitting   truly   massive   amounts   of   data,   roughly   100   times   that   of   current   4G.   In  addition,  we’ll   witness   the   exponential   growth   of   connected   objects,   the   so-­‐called   IoT   –   the   Internet   of  things.  We  are  thus  about  to  enter  a  truly  new  phase  stepping  up  the  impact  of  information  technology  in  every  aspect  of  human  activity.    

 

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  20  of  95  

 

3. Market  overview  As  already  mentioned,  the  advent  of  5G  represents  a  much  bigger  step  than  going  from  3G  to  4G.  Indeed,  it  comes  with  a  hundredfold  increase  in  the  capacity  of  data  transmission  compared  with  the  introduction  of  4G.   Furthermore,   dynamic   slicing   provides   a   way   to   secure   additional   capacity   for   transmitting   data.  Indeed,   the   5G   and   IoT   dynamics   are   often   coupled   with   other   elements   such   as   Big   Data,   Analytics,  Artificial  Intelligence  (AI)  and  block-­‐chain.  This  bundle  constitutes  a  most  powerful  driver  of  change  in  every  walk  of  life.  

The  numbers  articulated  to  evaluate  the  markets   in  2020-­‐25  vary  widely  depending  on  the  source.  Much  assessment  and  validating  work  in  the  present  project  will  be  needed  to  arrive  at  “responsible”  numbers.  The  collective  wisdom  of  the  partners  in  this  project  is  key  in  achieving  this.    

Market  data  given  below  must  be  taken  with  a  grain  of  salt.  Actors  involved  in  the  various  market  segments  are   1)   either   an   element   of   the   value   chain   or   2)   operate   in   the   context   of   the   business   activities.   This  context  includes  several  issues  such  as  a  host  of  societal,  legal,  regulatory,  financial  and  geopolitical  issues,  which  will  make  or  break  the  markets  more  surely  than  the  quality  of  the  developed  technology.  Let  us  look  at  the  forecast  for  the  overall  markets  of  5G  and  IoT.  

3.1. Market  analysis  and  impact  of  5G  dynamic  slicing    This   section   provides   market   overview   based   on   the   current   trends   and   prediction.   In   general,   more  statistics   are   available   for   IoT,   largely   because   5G   is   capable   of   enabling   the   development   of   data   and  information  exchange.  In  addition  to  the  market  study,  we  give  our  thought  on  each  market  area  how  the  dynamic  slicing  of  5G,  the  core  focus  of  5G!Pagoda  project,  can  impact  on  the  market  movement.    

3.1.1. 5G  (1) Market  analysis    

As  5G  is  expected  to  be  roughly  100  times  faster  than  4G,  corresponding  speeds  are  in  the  range  of  1  to  10  GB   per   second   with   latency   of   1   to   5ms   and   bandwidth   of   6   to   30   GHZ   [9].   Rapid   speed   is   the   crucial  ingredient   provided   by   5G,   but   also,   high   bandwidth   and   low   latency   constitute   substantial   benefits.   If  everything  goes  well,   customers  will   have   the  perception   that   they  have   infinite  bandwidth  and   limitless  data.  

As  a  first  step,  it  is  useful  to  look  at  the  market  evolution  of  mobile  telephones.  A  recent  study  [4]  indicates  that  units  sold  worldwide   in  the  first  quarter  of  2016  were  337.2  million  (representing  a  value  of  $  101.3  billion)   compared   to   the   first   quarter   of   2015,   for   which   the   respective   numbers   are   319.3   million   (an  increase  of  6%)  and  $98.5  billion  (an  increase  of  3%).  Not  surprisingly,  the  fastest  growth  is  in  China  where  the  year-­‐to-­‐year  value  increased  by  18%.  Mobile  telephones  are  increasingly  seen  as  indispensable  and  an  all-­‐around  medium  for  accessing  data,  information  and  images.    

With   regard   to  5G,   in  order   to  avoid  a   "can't   see   the   forest   for   the   trees"   situation,   let  us   start  with   the  general   picture   given   by  Geneva-­‐based   ITU   (International   Telecommunications  Union).   The   target   set   by  this  organization   is  10  Gbps  mobile  download  speed  with  a   latency  of  one  millisecond  [5].  Comparing  4G  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  21  of  95  

 

and  5G,  the   ITU  spells  out  significant   improvements,  especially   in   latency  and  data  rate/capacity   (see   ITU  vision  IMT  2010,  published  in  2016).  

The  availability  of  5G  is  likely  to  be  first  localized;  it  will  then  unroll  slowly.  In  terms  of  overall  markets,  the  advent   of   5G  will   trigger   vast   and   rapidly   growing   added   value   through   services   and   products,   primarily  through  the  Internet  of  things,  which  will  be  discussed  in  the  following  section.  For  the  latter,  for  example,  Cisco   estimates   that,   by   2020   [6],   more   than   50   billion   objects   will   be   connected.   The   corresponding  economic  added  value  is  estimated  to  be  close  to  $2  trillion  across  all  sectors  [7].  Forecasts,  however,  range  from  16  billion  (Ericsson)  to  more  than  30  billion  (IDC)  connected  objects  by  2020-­‐21.  

South   Korea   (5G   Forum)   has   invested   $1.4   billion   and   is   planning   to   launch   commercial   5G   in   2019   [7].  Japan,  where  5GMF  was  established  in  2014,   intends  to  realize  the  commercial  stage  of  5G  for  the  Tokyo  Olympics,  in  2020  [7].    

Enabling  technologies  for  5G  are  [7]  as  follows:  

• Wireless  networks  

• Optical  networks  

• Network  management  

• Effective  systems  

• Software  

(2) Impact  on  5G  with  slicing  mechanism    

As   network   slicing   is   one   of   the   fundamental   enablers   of   5G   technology   (together   with   NFV   and   SDN  concepts   and   the   global   trend   of   telecommunication   network   architecture   cloudification),   its  implementation  conditions  implementation  of  5G  itself,  especially  the  demands  of  the  separation  of  traffic  belonging   to   different   profiles   of   services   and   processing   these   traffic   fractions   within   network  architectures  matched  to  essential  service  requirements  (e.g.  IP  traffic  break-­‐out  point  location  dependent  on   maximum   latency   limit).   The   promises   of   5G   technologies   and   expectations   regarding   them   are  commonly  known,  especially   the   impact  of  5G  on   the  global  economy  and  on  civilization.  Additionally,  as  the  densification  of  the  network  will  demand  high  investment  costs,  the  pressure  on  optimizing  utilization  of   currently   owned   resources   will   grow.   That’s   why   all   techniques   increasing   infrastructure   flexibility,  versatility,  reusability  and  agility  will  play  very  important  roles  during  the  5G  roll-­‐out.  

It   is  expected  that  network  slicing  will  be  brought  into  common  usage  by  5G  implementation,  however,  it  disrupts  the  current  “market  puzzle”,  which  is  currently  under  a  lot  of  pressure  and  highly  sensitive.  

The   telecom   ecosystem   has   changed   irreversibly   over   the   last   three   decades.   The   value   chain   initially  containing   three   segments   (distribution,   end-­‐user   devices   and   “network   =   service”)   and   often   being  covered   even   by   one   player   (network   operator)   has   been   converted   to   the   7-­‐segments   model   of  distribution   (physical   and   on-­‐line),   end-­‐user   devices,   network   access,   network   core,   enablers   (e.g.  advertising   platforms,   billing   &   payment   systems,   cloud   computing,   web   hosting   and   CDN),   content   &  service  providers  and  content  producers.  As  was  mentioned  in  Section  5.1,  the  implementation  of  the  “all-­‐IP”  paradigm  with   coincidental   separation  of  basic   connectivity   and   services  has   capsized   the  position  of  traditional   network   operators   fighting   for   survival   with   OTT   service   providers   and   with   network   access  providers   (offering  alternative  access   technologies   for   IP   connectivity,   e.g.  Cable  TV  operators,   local  WiFi  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  22  of  95  

 

operators)   and   breached   the   customers'   base.   It  was   further   strengthened   by   state   regulators’   pressure  (promoting  new  operators,  imposing  asymmetric  interconnected  fees).  

According  to  the  forecast  of  Tera  Consulting,  the  economic  transformation  of  the  telecom  ecosystem  will  mean   the   total   growth   of   the   entire   market   (slightly   more   than   doubling   between   2014   and   2025).  However,   the  distribution  of   revenues   in   segments   is   going   to   change  dramatically,   growing  especially   in  higher  segments.  In  2014,  the  access  segment  part  is  46%  of  total,  while  core  and  enablers’  parts  are  about  5%  and  service/content  providers’  part  is  13%.  In  2025,  the  access  segment  is  expected  to  have  only  26%,  the  core  part  less  than  2%,  enablers  almost  30%  and  service/content  providers  part  almost  27%.  

The   technical   implementation  and  opening  a  market  offer  of  orchestrated  network   slicing  based  on  NFV  shall  redefine  the  value  chain  again,  adding  the  2nd  dimension  to  the  chain  and  punching  a  wedge  between  underlying   infrastructure   and   functions   of   network   access/core,   enablers’   and   service/content   providers’  segments.   This   trend  will   also   affect   the   situation  of   network  operators   and   change   the   aforementioned  distribution  of   revenues   further   (e.g.  operators  of  orchestrators,  offering  orchestrated   services  built  with  3rd  parties’  components,  will  strengthen  the  “enablers”  segment).  

New  roles  are  going  to  appear:  

• “Infrastructure  provider”  selling  the  “bare  metal”  devices  (computing  and  storage  nodes)  and  “naked  media”  (optic  fibres,  copper  lines)  or  physical  access  (radio-­‐head  or  fixed  access-­‐head  devices)  offering  everybody  infrastructural  resources  for  last-­‐mile  access  and  scattered  edge-­‐computing.  The  latter  will  be  spatially  densified  according  to  maximum  transmission  latency  limits  lowering  (e.g.  implementation  of  augmented  reality  services).  The  most  extreme  case  would  be  implementation  of  a  common  single  network  infrastructure  utilised  by  all  operators  and  only  one  radio  network  shared  by  all  operators.  In  such   a   scenario,   the   gravity   of   inter-­‐operator   competition  would   shift   to   services,   as   data   rate   and  coverage  differentiation  will  have  disappeared.  In  case  of  a  joint-­‐venture  company  owned  by  a  group  of  all  network  operators,  the  extremely  deep  cooperation  between  partners  would  be  needed,  but  the  gain   on   reduction   of   CAPEX   spent   on   the   network   build.   On   the   other   side,   the   spectrum   auctions  would   become   pointless   (one   network,   one   license   per   country,   one   applicant)   –   resistance   of   the  regulatory  authority  to  such  an  extreme  scenario  is  feasible.  

• “XaaS   services   broker/integrator”   offering   various   levels   of   services   assembled   from   components  delivered  by  3rd  party  owners/sellers.   Such  an  actor  wouldn’t   be   just   a  dealer  or   reseller  due   to   the  active  role  of  the  operator  of  orchestrator,  unbundling  packages  of  offered  and  delivered  services  and  then   actively   designing   and   delivering   the   new   bundle   composing   the   service   requested   by   served  customers.   Probably,   the   relations   will   be   multilateral   and   some   “infrastructure   providers”   will   be  interested  in  expanding  their  offers  with  the  offers  of  others  and  putting  up  the  synergic,  orchestrated  offer  for  sale,  thus  becoming  IaaS  service  integrators.  

• “NSaaS  customer”  embedding  the  operated  network  into  a  specific  wider  industrial  context.  The  main  example  is  vertical  industry  (automotive,  manufacturing,  media  grids,  health  sector,  public  safety,  ITS,  freight   tracking  and  management  etc.).   They  already  use   transmission,   connectivity,   communication,  positioning  or  cloud  services,  but  equipped  with  network  slicing  technology  and  orchestration  they  will  become   more   self-­‐reliant   and   “operator-­‐like”,   having   a   separated,   secured   network   and   their   own  control   over   its   quality   and   reliability,   thus   being   able   to   take   the   sole   E2E   responsibility   for   their  services  nested  in  the  telecommunications  network.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  23  of  95  

 

The   technologies   of   orchestration   and   network   slicing   bring   opportunities   and   threats   to   network  operators.  They  shall  rethink  themselves  in  the  future  “orchestrated  network  slicing  reality”  and  find  their  position   in   the   future  shape  of   the  value  chain.  They  will  probably  not  avoid  mutual  sharing  of   resources  and   exposing   network   management   APIs,   still   wanting   to   be   able   to   gain   such   access   to   the   common  market  of  infrastructure  and  networks.  They  will  need  to  get  maximum  internal  benefits  of  network  slicing  and   function   virtualization   and  migrate   to  more   profitable   segments   of   the   value   chain,   keeping   proper  balance  between  profits  and  losses  entailed  by  this  common  market.    

3.1.2. Application  domains  from  the  selected  use  cases  The   transformational   power  of   5G   is   considerable,   but   yet,   it   is   fairly   unknown.   Indeed,   it  will   vary   from  country  to  country  and,  mainly,  from  one  industrial  sector  to  another.  Of  course,  early  on,  the  clear  winners  will   be   those   companies   involved   in   building   infrastructure,   as   well   as   the   chip   manufacturers.   The  companies  on  the  losing  side  will  be  a  broad  mix  of  companies  -­‐  the  business  of  which  will  be  impacted  and  displaced  by  the  digital  tsunami.  Within  the  ICT  sector,  likely  losers  include  cable-­‐makers  as  well  as  gaming  consoles.  

The   release   of   3GPP-­‐15   is   expected   for   2018   for   fixed   wireless,   while   3GPP-­‐16   is   expected   in   2020   for  mobile  Internet  and  massive  IoT.  Indeed,  the  advent  and  growth  of  5G  is  predicated  on  the  development  of  software.  On  the  5G  and  IoT  scenes,  dynamic  slicing  brings  considerable  added  potential  for  an  enormous  range  of  use  cases  and  customized  applications.    

It   is  generally  accepted   that   two  sectors  will   represent   the  biggest   share  of   this  dynamic:  healthcare  and  advanced  manufacturing  [11].  We  now  turn  to  a  brief  overview  of  the  market  potential  for  the  various  use  cases  selected  in  task  T2.1,  listed  below:  

• Massive  IoT  

• Autonomous  (driver-­‐less)  cars,  or  smart  driving  

• Factory  management  

• QoS  on  demand    

• Smart/Virtual  office  

• Contents  Delivery  Networks    

• Advanced  medical  services  

• Disaster  handling  

We  will  now  look  at  a  couple  of  these  sectors,  beginning  with  IoT  and  followed  by  autonomous  cars.  

 

3.1.2.1 Massive  IoT  

(1) Overall  market  figure  

The   Internet   of   Things,   according   to   Cisco,   will   represent,   by   2020   [6],   more   than   50   billion   connected  objects.   The   corresponding   economic   value   is   estimated   to   be   close   to   $2   trillion   across   all   sectors   [7].  Gartner   estimates   that   Internet   of   Things   devices  will   constitute   13.5   billion   connected   devices   by   2020  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  24  of  95  

 

[34].  These  devices  will   thus  surpass  mobile  phones  as  the   largest  category  of  connected  devices   in  2018  [27].  Between  2015  and  2021,  IoT  is  expected  to  increase  at  a  compounded  annual  growth  rate  (CAGR)  of  23  %  [27].  In  addition  to  the  uncertainty  in  the  estimation,  these  numbers  also  vary  depending  on  what  is  counted  as  an   IoT  device.  By  2025,   IoT  may  represent  a  business  volume  between  $3.9  trillion  and  $11.1  trillion  a  year  [36].  

(2) IoT  in  Mobile  Networks  

At   the  end  of  2015,  millions  of   IoT  devices  were  connected  using  mobile   subscriptions   [6].  Cellular   IoT   is  expected   to  experience   the  highest   rates  of  growth  among  the  different  categories  of  connected  devices  reaching  1.5  billion  in  2021  [27].  

GSM/EDGE  will  continue  to  be  an  important  alternative  for  Massive  IoT  [27].  Today,  around  70  percent  of  cellular   IoT  devices  support  only  GSM  [27].  Cost   reductions  achieved  by   reducing  complexity  and   limiting  modem  functionality  will  make  LTE  an  increasingly  viable  option.  This  enables  new  low  latency  applications  [27].  5G  networks  can  enable  a  wide  range  of  use  cases  for  IoT  -­‐  greater  capacity  will  allow  more  devices  to  be  connected  and  lower  energy  requirements  will  prolong  battery  lives  more  than  10  times  [27].  Coverage  for  cellular  machine-­‐type  communication  (MTC)  will  support  IoT  applications  in  more  remote  locations  such  as  within  buildings  and  in  underground  locations  [28].  Network  system  improvements,  such  as  sleep  mode,  will  support  battery  lifetimes  beyond  10  years  for  remote  cellular  devices  [27].  

(3) Edge  Computing  

In  terms  of  data  processing,  the  edge  cloud  (or  “fog”  computing)  concept  has  an  important  role  for  IoT.  One  reason   for  providing  network   intelligence  closer   to   the  data  source   is   that  most  data  will  be   too  noisy  or  expensive  to  be  carried  all  the  way  to  the  cloud  [29].  The  amount  of  data  can  be  reduced  by  compressing,  filtering,  and  aggregating  it  near  the  network  edge  [33].  Analytics,  image  recognition  and  machine  control  can   also   be   provided   at   the   network   edge   in   order   to   avoid   transporting   the   raw  data   to   the   cloud   and  instead   only   collect   the   important   features   from   the   data.   For   example,   in   the   automatic   analysis   of  surveillance  video,   the   interested  features  could  be  extracted  near  the  camera  device   itself,  and  only  the  resulting   summarized   data   from   the   analysis,   or   alarms,   will   be   sent   to   the   central   cloud.   Another  motivation   for   edge   processing   is   the   reduction   of   latency.   Control   loops   collecting   data   from   (typically  multiple)  sensors  must  react  quickly  to  the  data  and  send  back  actuation  commands  to  the  device  based  on  the  determined  action.  This  motivates  running  application  servers  at  the  network  edge.  

(4) Applications  and  use  cases  

Companies   are   focused   on   IoT   as   a   driver   of   incremental   revenue   streams   based   on   new   products   and  services.  Businesses  are  also  embracing  IoT  to  improve  productivity  and  save  costs,  such  as  capex,  labour,  and   energy   [29].  While   the   initial   drive   of   IoT  will   come   from   lower   device   costs   and   the   availability   of  connectivity,   the   creation   of   new   services   not   limited   to   connectivity   requires   enablers   from   cloud  computing,  big  data  management,  security,  logistics  and  other  network-­‐enabled  capabilities  [32].  

IoT   creates   opportunities   for   several   vertical   industries,   including   the   health,   automotive,   and   energy  sectors  as  well  as  homes  and  buildings  [32].  Applications  include  smart  wearables,  video  surveillance,  smart  meters  and  digital  health  monitors  [26][32].  In  [29],  the  application  area  is  divided  into  connected  wearable  devices,  connected  cars,  connected  homes,  connected  cities,  and  the   industrial   internet,  where  the   latter  covers  industries  including  transportation,  oil  and  gas,  and  health  care.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  25  of  95  

 

The  connected  health  consumer  segment  is  estimated  to  have  the  fastest  growth  of  connections  between  2015  and  2020  (from  144  million  to  729  million)  [26].  For  example,  future  clothes  may  integrate  ultra-­‐light,  low   power   sensors   to  measure   various   environmental   and   health   attributes   like   pressure,   temperature,  heart   rate,  blood  pressure,  body   temperature,  breathing   rate  and  volume,  and  skin  moisture   [32].   Smart  cities   provide   services   for   gas,   water   and   electricity   metering   as   well   as   environmental   monitoring  (pollution,   temperature,   humidity,   and   noise),   light   control,   and   vehicle   traffic   control   [32].   Video  surveillance   may   be   supported   in   mobile   environment   such   as   on   aircrafts,   drones,   cars,   and   security  personnel   [32].   The   Consumer   Electronics   Association   estimates   only   10%   of   new   homes   in   the   United  States  currently  utilize  home  automation  [29].  The  connected  home  segment  will  have  the  largest  volume  of  connections:  nearly  half  of  all  connections  (2.4  billion  in  2015,  5.8  billion  by  2020)  [26].  This  is  in  line  with  [29],  which  expects  that  home  automation  to  be  at  the  vanguard  of  IoT  adoption.  

Western   Europe  will   add   the  most   connections   led  by   growth  within   the   connected   car   segment   [27].   A  connected  car  is  counted  here  as  one  device,  though  it  may  have  hundreds  of  sensors.  

(5) Applications  requirements  for  business  growth  

IoT  devices  differ  significantly  in  terms  of  capabilities,  power  consumption  and  cost.  IoT  also  poses  a  range  of  requirements  on  the  reliability,  security,  latency,  throughput  of  the  network.  The  real  impact  in  IoT  will  be  felt  at  a  later  date.  The  true  transformational  role  of  this  field  will  be  felt  after  the  “stovepipes”  solutions  have  been  implemented.  The  scope  is  huge,  for  example,  in  the  area  of  energy,  reducing  the  consumption  of  industry  and  home  appliances  at  peak  demand  times  will  produce  handsome  savings.  Figure  3  is  a  chart  regarding  concerns  on  the  part  of  industry,  from  Forrester’s  Global  Business  Security  survey  in  2016.  As  it  shown   in   the   Figure,   security   and   privacy   concerns   are   increasing   and   impact   on   business   decision   on  adaptation  of  IoT.    

IoT   devices   can   be   roughly   divided   into   two  main   segments:  Massive   IoT   and   Critical   IoT.  Massive   IoT   is  characterized  by  a  high  number  of   connections,  where   the  data   volume  per   connection   is   relatively   low.  Low-­‐cost   and   low-­‐energy   consumption   is   required.   Examples   include   smart   buildings,   transport   logistics,  fleet   management,   smart   meters   and   agriculture.   Many   of   the  Massive   IoT   devices   will   not   be   directly  connected  to  the  mobile  network,  but  rather  through  things  will  be  connected  through  capillary  networks,  i.e.  short-­‐range  radio  networks  connecting  to  the  mobile  network  via   IoT  gateways  [27].  A   large  group  of  the  massive   IoT   devices   are   immobile   and   do   not   require   features   like   handovers   and   location   updates,  which  have  been  critical   in  serving  mobile  phones  [30].  On  the  other  hand,   the  connections  may  be  very  dense  geographically  -­‐  up  to  200,000  connections  per  square  kilometre  [30].  

Critical  IoT  connections  are  characterized  by  requirements  for  ultra-­‐reliability  and  availability  with  very  low  latency   [27].   Examples   include   traffic   safety,   autonomous   cars,   industrial   applications,   remote  manufacturing   and   healthcare   including   remote   surgery   [27].   Service,   such   as   autonomous   driving   or  remote  controlled  robots,  requires  latency  in  the  order  of  milliseconds  -­‐  less  than  5  ms  for  intelligent  traffic  monitoring  (ITS)  and  less  than  1  ms  for  control  of  motion  [30].  

The  requirements  of  both  Massive  IoT  and  Critical  IoT  differ  substantially  from  mobile  broadband.  

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  26  of  95  

 

 

Figure  3  –  Security  Decision-­‐Makers  have  growing  concerns  about  IoT  initiatives  

 

(6) Impact  on  5G  with  slicing  mechanism  

VNFs  are  being  placed  in  different  locations  (edge  or  core  cloud)  depending  on  the  purpose  of  the  slice.  For  a   massive   IoT   slice,   scalability   is   the   main   criteria.   A   simpler,   light-­‐duty   5G   Core   without   mobility  management  may   be   sufficient   [30].   In   a   Critical   IoT   slice,   the   5G   Core   and   application   servers,   such   as  vehicle  communication  servers   (V2X),  are  placed   in   the  edge   in  order   to  minimize   the   transmission  delay  [30].  Some  network  functions  like  charging  and  policy  control  can  be  essential  in  one  slice  but  unnecessary  in  other  slices  [30].  Operators  can  customize  network  slices  the  way  they  want  [30].  

Operators  can  provide  network  slices  with  different  performance  characteristics   to  offer  optimal   support  for  different  types  of  services  for  different  types  of  customer  segments  [28].  Separation  of  core  networks  provides   flexibility   and   allows   the   network   control   to   be   optimized   for   different   types   of   traffic   and  priorities.   In   particular,   it   allows   giving   higher   priority   to   massive   IoT   traffic   compared   to   smart   phone  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  27  of  95  

 

traffic.   Network   congestion   and   failures   caused   by   a   large   number   of   M2M   devices   could   impact   the  communication   of   higher-­‐priority   smart   phone   traffic.   Separation   between   the   traffic   classes   improves  reliability  and  performance  by   reducing   the   impact  of   failures  and   isolating   the  network   from  each  other  [NTT].   In   contrast   to   traditional   QoS  methods,   separation   also   protects   the   core   network   elements   and  services.   Additionally,   cost   reduction   is   possible   by   adjusting   the   service   levels   to   suit   the   traffic  characteristics  and  priority  levels  of  the  devices.    

 

3.1.2.2 Smart  driving  

(1) Market  analysis  

Much   of   the   data   here   comes   from   Frost   Sullivan’   Global   2015   study   [9],   which   included   Nissan,   PSA,  Ericsson,  Mazda  and  Bosch.  Commercialization  planned  as  follows:  

• South  Korea  2020    

• USA  2025    

• Japan  2020,  pegged  on  the  Olympic  Game  

The   study   concludes   that   consumers   will   have   to   pay   in   order   to   have   the   option   of   5G   available.   This  option  is  expected  to  increase  the  cost  of  a  vehicle  by  $200.  Interestingly,  the  study  does  not  articulate  a  single  prediction  on  the  number  of  driverless  vehicles  expected  to  be  on  the  roads  

The   autonomous   car   elicits  much   enthusiasm   from   consultancy   firms   to   ridiculous   lengths   -­‐   the   obscure  “Grand  View”  [8]  consultancy  pontificates  that,  in  2024,  138,089  driverless  cars  will  be  sold.  Given  the  fact  that  this  kind  of  forecast  has  a  50%  error  of  margin,  it  is  unnecessary  to  go  to  that  level  of  precision,  which  constitutes   part   of   the   exquisite   charm   of   market   studies.   Alphabet   (ex-­‐Google),   Tesla,   Ford,   GM   and  VW/Bosch  are  all  active  in  this  area.  Volvo,  now  owned  by  the  Chinese  Chery,  makes  similar  noises  on  this  issue.    

In  2015,  another  pundit  claimed  that  there  will  be  10  million  self-­‐driving  cars  on  the  road  by  2020  [10]!  On  this  glamorous  issue,  it  is  probably  realistic  to  remain  in  the  camp  of  a  somewhat  conservative  stand  since  there   are   so  many   technical,   practical,   legal   and   ethical   issues.  Our   regulatory   environment  will  NOT   be  ready  for  a  while  as  many  crucial  issues  are  outstanding  requiring  a  minimum  of  societal  consensus.  

In  Japan,  towards  the  era  of  IoT/Big  Data/AI,  private  sector  lead  organization  ”IoT  Acceleration  Consortium”  was  established  on  October  23,  2016,  in  order  to  promote  the  utilization  of  IoT  in  industry,  government  and  academia.  Under  this  umbrella,  Technology  Development  WG  (Smart  IoT  Acceleration  Forum)  is  promoting  a  mart  mobility  project,  which  tackles  research  and  development  of  future  mobility  systems  (Smart  driving,  Autonomous   Robots,   Drones)   thanks   to   5G   capabilities.   According   to   a   Japanese   document  (http://www.soumu.go.jp/main_content/   000397783.pdf),   written   by   the   Mitsubishi   Research   Institute  (MRI),  transportation,  i.e.  vehicle  tracking,  connected  cars  and  ITS,  and  industrial  segments  (remote  control  and   operation   of   large   factories),   are   indeed   anxiously   waiting   for   the   advent   of   5G   because   their  application   depends   heavily   on   the   availability   of   the   appropriate   telecommunication   infrastructure.   The  anticipated  average  communication  cost  in  the  total  cost  of  ownership  is  around  10-­‐30%  and  is  compared  below  with  the  situation  in  other  sectors.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  28  of  95  

 

 

Figure  4  –  Telecommunication  cost  ratio  in  various  segments  

Concerning  smart  driving,  all  automotive  companies  in  Japan  plan  to  commercialize  automatic  driving  cars  by   around   2020.   Moreover,   Mitsubishi   Research   Institute   predicts   that   the   Japanese   market,   including  robotics,  advanced  services  using  drones,  and  smart  driving  &  ITS  will  grow  from  1.6  trillion  yen  (2015)  to  9.7  trillion  yen  (2035).  One  Yen  is  roughly  equivalent  to  9  US  cents  at  current  market  rates  so  1.6  trillion  yen  represents  about  $14.4  billion.    

 

 

Figure  5  –  MRI's  forecast  for  smart  mobility  

According   to   https://japan.zdnet.com/article/35095221/,   the   Japanese   consulting   firm   Yano   Economic  laboratory   (https://www.yano.co.jp/press/pdf/1633.pdf)   predicts   that   smart-­‐driving-­‐ready   cars   will  increase  to  23  million  for  assisted  driving,  28  million  for  partial  autopilot,  18  million  for  full  auto-­‐pilot,  and  2  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  29  of  95  

 

million  for  fully  autonomous  vehicles.  Each  corresponds  to  autonomous  driving  levels  1,  2,  3,  and  4  defined  by  NHTSA  (National  Highway  Traffic  Safety  Administration).  Of  course,  this  evolution  depends  a  lot  on  the  autonomous  capabilities  of  the  car.  However,  ITS-­‐related  communication  capabilities  in  5G  are  also  greatly  expected   for   innovation.   The   ultra-­‐reliability   and   low-­‐latency   capabilities   in   5G   are   key   to   realizing   drive  assistance  and  partial  or  full  autopilot  in  this  automotive  segment  as  well  as  in  remote  industrial  operations  and  new  drone-­‐based  services.  

 

Figure  6  –  Smart  driving  in  Japan  in  2030  (from  Yano  Economic  Laboratories)  

The   Boston   Consulting   Group   has   reported   a   similar   estimation   (http://www.bcg.co.jp/documents/  file197533.pdf).  The  figures  below  state  that  around  30  million  (18.4+12)  cars  on  levels  2  and  3  will  be  on  the  market  and  the  total  size  of  the  market  will  grow  to  $77  billion  worldwide.  

 

Figure  7  –  Boston  Consulting  Group's  prediction  on  smart  driving  (2015)  

In  conclusion,  a  note  of  warning:  the  hype  around  driverless  cars  does  not  mean  that  it  will  be  around  in  a  big  way   soon.   The   gross,   recent   failures   (autonomous   cars   going   through   red   lights,   getting   overturned,  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  30  of  95  

 

hitting   somebody"   venture   capitalist,   John   Doerr,   who   stated   that   “Segway   was   to   be   bigger   than   the  internet”!.  These  bizarre  miscalculations  are  reported  in  the  book  “Driverless:  intelligent  cars  and  the  road  ahead”,  by  Hod  Lipson  and  Melba  Kurman  (MIT  Press,  2016)  

(2) Impact  on  5G  with  slicing  mechanism  

In  order  for  network  infrastructure  to  provide  real-­‐time  and  highly  reliable  and  secure  capabilities  to  share  huge   volume   of   ITS   information,   it   is   necessary   for   information-­‐networking   infrastructure   to   provide   an  isolated   slicing   mechanism.   Especially   in   the   case   of   supporting   (semi-­‐)automatic   driving   since   a  communication   delay   and   failure   may   cause   car   accidents.   It   is   demanding   to   provide   high-­‐quality  communication  avoiding  the  effects  from  other  traffic.  In  order  to  deal  with  this,  end-­‐to-­‐end  (i.e.  from  cars  to  mobile  edge  servers  and  cloud  servers)  network  slicing  mechanism  is  one  of  anticipating  and  promising  technologies.  Thanks  to  the  isolation  capability  in  network  slicing,  ITS  service  providers  are  able  to  control  various   type   of   traffic   (for   example,   car   navigation,   congestion   information,   real-­‐time   driving   status  information,  real-­‐time  driving  control  commands)  according  to  the  demanding  quality  of  services  avoiding  interference.  

 

3.1.2.3 Smart  manufacturing  

(1) Market  analysis  

In   the  business-­‐to-­‐business  activity  of   industrial  manufacturing,  sometimes  called  “smart  manufacturing”,  the   impact   of   advanced   ICTs   is   already   large   and   is   expected   to   be   enormous   in   the   near   future.   It   is  critically  important  in  achieving  vastly  enhanced  flexibility,  effectiveness  and  efficiency.  Japan  is  leading  the  way  in  this  sophisticated,  modular  manufacturing.  For  example,  Toyota  is  using  block-­‐chain  to  improve  and  secure  its  automotive  supply  chain  [9].  

As  this  is  not  a  customer-­‐focused  industry,  it  is  probably  implemented  more  smoothly.  In  fact,  in  Japan  and  some  areas  of  Shenzhen,  this  revolution  is  fully  at  work.  Certain  plants  have  NO  workers  in  sight,  as  far  as  one  can  see.  For  example,  most  iPads  are  produced  in  “black  plants”,  i.e.,  on  premises  without  any  workers  so   no   lighting   is   required.   On   the   other   hand,   in   such   plants,   the   investments   in   IT   infrastructure   are  enormous  [6].  

The  market  numbers  for  this  business  segment  are  also  there  and,  not  surprisingly,  differ  wildly  depending  on  the  source.  More  time  is  needed  to  reach  meaningful  (tentative)  conclusions  in  this  area.  At  this  stage,  let   us   only   mention   the   optimistic   anticipation   by   General   Electric,   to   the   effect   that   advanced  manufacturing   (with   internet   of   things   and   machine   to   machine   communications,   etc.)   presents   the  potential  of  adding  $500  billion  each  year  to  the  global  economy  [7].  

The   report   "Smart   Factory  Market”   by  Markets   &  Markets,   indicates   that   smart   factory   market   size,   in  terms  of   value,   is   expected   to   reach  $74.8  billion  by  2022  at   a   growth   rate  of   10.4%  between  2016  and  2022.  The  emergence  of  smart  factories  can  be  seen  from  the  period  of  change  toward  cohesive  control  of  the  machineries,  processes,  and  resources  with  local  intelligence.  The  increasing  focus  on  saving  energy  &  improving  process  efficiency  along  with  the  integration  of  engineering  and  manufacturing  by  the  adoption  of  IoT  is  expected  to  foster  the  growth  of  the  smart  factory  market  [23].    

(2) Impact  on  5G  with  slicing  mechanism  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  31  of  95  

 

With  the  growth  of  device  and  service  technology,  cyber-­‐attacks,  which  target  infrastructure  systems,  have  been  confirmed   in  several   industrial   facilities.  For  example,   in  a   threat  to  a  car   factory,  13   factories  were  shut  down  by  a  viral   infection   in  August  2005.   In  addition,  a   reduction   in  processing  capability  of   the  car  product   line  was  reported   in  2011.   It  was  also  reported  that   in  a  semiconductor  factory,   the  product   line  was  stopped  by  a  viral  infection  [24].  

In   a   typical   car-­‐assembly   plant,   it   is   generally   expected   that   each  minute   of   stopping   the   line   costs   two  million  yen  per  minute.  If  the  damage  requires  an  average  of  one  hour  to  be  fixed,  this  translates  into  a  loss  of   120  million   yen   [25].   It   is   hoped   that   the   risks   presented   by   the   cyber-­‐attacks  may   be  minimized   by  disconnecting  the  slice  that  is  caught  in  the  attack  and  avoid  it  influencing  the  whole  system.  

 

3.1.2.4 On-­‐demand  QoS  support  with  mobility  

(1) Market  analysis  

It  is  expected  that  mobile  communication  networks  built  on  5G  will  provide  1ms  latency  and  data  transfer  rates  of  more  than  10  Gb/s.  Major  applications  that  demand  a  high  QoS  are  video  streaming  and  gaming.  With  the  popularity  of  4K  videos  and  Virtual  Reality   (VR)  gaming,   the  QoS  requirements   for  mobile  video  streaming  and  gaming  will  always  be  increasing.    

Video  is  set  to  have  the  highest  growth  rate  of  any  mobile  application  in  the  next  five  years.  Cisco  predicts  that  75%  of  mobile  traffic  will  be  video  by  2020  [20].  It  is  estimated  that  the  global  video  streaming  market  will   grow   from  $30.29  billion   in   2016   to   $70.05  billion   in   2021   at   a   growth   rate  of   18.3%   [17].  With   the  popularity  of  video  streaming  apps  such  as  Facebook  and  YouTube,  in  the  coming  five  years  it  is  expected  that   50%   of   viewers   will   stream   online   videos   from   their   smartphones   [2].   In   Japan,   according   to  www.statista.com,  the  revenue  from  video-­‐on-­‐demand  represents  $545  million  in  2017  and  is  expected  to  have  an  annual  growth  rate  of  12.8%,  resulting   in  a  market  volume  of  $883  million  in  2021.  The  market's  largest  segment  is  video-­‐streaming  (SVoD)  with  an  anticipated  market  volume  of  $408  million  in  2017  [18].    

The  report  from  Newzoo  [16]  shows  that  gaming  generated  $99.6  billion  in  worldwide  revenue  in  2016.  For  the  first   time,  mobile  gaming  will   take  a   larger  share  than  PC  with  $36.9  billion,  up  21.3%  globally.  China  alone  accounts  for  one  quarter  of  all  global  gaming  revenue.  It  is  expected  that  the  global  market  will  grow  with   a   CAGR   of   6.6%   in   2019   eventually   reaching   $118.6   billion   with  mobile   gaming   at   $52.5   billion.   In  Japan,  revenue  in  the  video  game  segment  is  expected  to  grow  by  12%.  The  largest  segment  is  constituted  with  mobile  games  [18].    

Even  though  the  markets  have  great  potential,  recent  Ericsson  research  found  that  two-­‐thirds  of  users  that  watch   video   over   a   mobile   connection   are   unhappy   with   the   quality   [21].   The   5G   mobile   network   will  definitely  provide  a  higher  data  rate  yet   it’s  still  a  great  challenge  to  ensure  high  QoS,  especially  for  high-­‐mobility  users  such  as  passengers  on  high-­‐speed  trains.  For  train  passengers,  the  best  way  to  kill  time  on  a  train   is   video-­‐streaming   or   mobile   gaming   and   each   QoS   requirement   for   each   individual   mobile   user  (passenger)  should  be  ensured.   In  Japan,  157  million  passengers  used  high-­‐speed  trains   (Shinkensen)  and  391  million  passengers  used  normal  trains  for  daily  commuting  in  2015  [19].  

(2) Impact  on  5G  with  slicing  mechanism    

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  32  of  95  

 

QoS  could  be  defined  by  various  KPIs  such  as  data  rate  (throughput),   latency,  availability,  error  rate,  jitter  and  so  on.  Always  providing  high  QoS  for  all  users  will   lead  to  resource   inefficiency  for  operators  but  will  also  be  costly  for  users.  Thus,  the  QoS  should  be  provided  on-­‐demand.    

With  a  slicing  mechanism,  network  slices  can  be  implemented  separately  for  individual  QoS  requirements;  for   example,   one   slice   could   be   for   mobile   video-­‐streaming   and   one   for   mobile   gaming.   For   the   video-­‐streaming   slice,   a   content   server   can   be   installed   on   the   train,   for   example.   The   content   server   pre-­‐downloads  and  buffers  the  video  content  and  delivers  high-­‐quality  videos  even  in  poor  network  conditions.  Ensuring  QoS  for  high  mobility  gaming  users  is  more  challenging.  The  operators  may  implement  a  delicate  slice   for  mobile  gaming,  optimize  the  handover  parameters  and  ensure  the   latency  requirement.  UE  may  request   access   to   the   dedicated   slices   based   on   its   QoS   requirement.   As   an   alternative,   operators   may  create  a  temporary  slice  on  demand  for  an  UE  or  group  of  UEs  and  ensure  the  QoS  requirements.    

 

3.1.2.5 Smart/Virtual  office  

(1) Market  analysis    

The  smart  /  virtual  office  is  an  interesting  use  case  for  the  near  future  as  the  companies  aim  to  reduce  their  costs   and   to   improve   their   employees’   productivity.   Smart   buildings   with   sensors   and   actuators   for  comfort-­‐monitoring   are   increasing   and   many   products   to   support   employee   productivity   and   remote  collaborations  are  coming  to  the  market.  However,  there  is  currently  no  support  for  connecting  the  pieces  together  and  there  are  many  technical  challenges  to  overcome  to  make  the  scenario  real  and  effective.  The  adoption   of   the   European   General   Data   Protection   Regulation   also   brings   new   requirements:   while   the  smart  office  will  be  more  and  more  connected,  the  data  protection  requirements  will  increase.  Use  of  local  servers,  Mobile  Edge  Computing  and  online  authentication  servers  will  be  considered.    

 

Figure  8  –  Global  Smart  Office  Market  Industry  (source:  mordorintelligence.com1)  

There  are   several   studies  available   trying   to  estimate   the  worth  of   the   smart/virtual  office  market   in   the  coming  years.  For  example,  a  study2  estimates  that  the  market  for  smart  offices  will  have  a  value  of  $43.31  

                                                                                                                         

1  https://www.mordorintelligence.com/industry-­‐reports/global-­‐smart-­‐office-­‐market-­‐industry  2  http://www.marketsandmarkets.com/PressReleases/smart-­‐connected-­‐offices.asp  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  33  of  95  

 

Billion  by  2020.  An  industry  report  from  mordointelligence.com3  states  that  the  global  smart  office  market  was  valued  at  $29.64  billion  in  2016  and  is  expected  to  reach  $55.36  billion  by  the  end  of  2022,  at  a  CAGR  of  11.16%.   It  also  shows  that  the  United  States  held  the  majority  share  of  86.24%  of  the  North  American  smart  office  market  in  2016.  The  fastest  growth  rate  is  estimated  for  India  with  a  rate  of  21.42%  during  the  forecast   period   (2017-­‐2022).   The   article   published  on   22nd  March   20174  indicates   that   the  Global   Smart  Office  Market  was  valued  at  $26.93  billion  in  2016  and  is  expected  to  reach  a  value  of  $51.26  billion  by  the  end  of  2022,  growing  at  a  projected  CAGR  of  11.32%  during  the  forecast  period  of  2017  –  2022.  The  report  also  states  that  key  players  in  the  market  like  Siemens,  Schneider  Electric,  ABB,  Cisco,  Honeywell,  etc.  are  releasing  more  products  and  services  for  the  smart  offices  market.    

(2) Impact  on  5G  with  slicing  mechanism    

In  the  near  future,  there   is  no  doubt  that  workplaces  will  be  a   lot  smarter  than  those  today.  Most  of  the  devices   will   be   wirelessly   connected   and   office   workers   will   be   able   to   control   or   adjust   their   working  environment  via  their  smart  phones  or  any  smart  devices  belonging  to  them.  Some  immersive  technologies,  like  3D  or  augmented  reality,  will  enable  fully   interactive  business  meetings  and  people  from  all  over  the  world  can  join  the  meeting  as  if  they  were  in  the  same  room.  

5G   should   evolve   in   a   way   that   glues   the   separate   pieces   of   IoT,   wireless,   3D,   cloud,   and   their   related  technologies   into  a  big  picture  with  dynamic  slicing  of  the  network.  Different  smart/virtual  office  services  with   different   requirements   can   serve   with   different   slices.   For   example,   one   slice   for   share   files   via   a  secured  cloud,  one  for  smart  environment  control  for  comfort  and  energy  savings,  one  for  reliable  security  alarms  for  fire  and  intrusion,  and  one  for  interactive  tools  and  online  resources  to  improve  the  employees’  productivity,  etc.  

The  IoT  service  provider  produces  various  IoT  applications  and,  the  slice  could  be  managed  by  a  separate  company.  The  cloud  service  providers  ensure  the  security  and  privacy  of  office  files.  The  network  operators  may  also  provide  a  temporary  slice  for  teleconferencing  and  remote  business  meetings.  

The  requirements  of  the  smart  /  virtual  office  show  that  the  5G  mobile  slicing  network  should  improve  the  availability,   the   reliability   and   the   performance   in   the   smart   office   environment   for   the   IoT   and   cloud  services.   The   5G  mobile   network   could   bring   in   the   near   future   a   high   bi-­‐directional   throughput,   a   high  density  of  connections  which  is  an  important  topic  in  high  skyscrapers  (think  about  Manhattan  or  Dubai,  for  instance).   In  particular,  the  5G  slicing  mechanism  offers  advantages  for  this  use  case  and  the  list  of  these  advantages  comprises  an  optimal  handling  of   the  communication  volume,   increased  reliability,  a   reduced  latency,  which  is  important  for  alarms,  and  finally,  a  higher  security  of  transmission.  

 

3.1.2.6 Content  Delivery  Service    Content  Delivery  Service,  also  known  as  Content  Delivery  Networks  (CDN),  plays  a  key  role  in  state-­‐of-­‐the-­‐art  online  media  consumption  infrastructure.  Many  international  content  providers  such  as  Amazon,  Apple,  Netflix  and  others  operate  their  own  CDN,  while  smaller  companies  rely  on  the  3rd  party  CDN  of  providers  

                                                                                                                         

3  https://www.mordorintelligence.com/industry-­‐reports/global-­‐smart-­‐office-­‐market-­‐industry  4  http://www.satprnews.com/2017/03/22/global-­‐smart-­‐office-­‐market-­‐outlook-­‐2017-­‐2022/  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  34  of  95  

 

such  as  Akamai,  Limelight,  Highwinds  and  others  to  serve  their  customers/users.  Although  there  are  a  very  large   number   of   solutions,   a   common   solution,   which   could   be   customized   for   the   specific   content  providers,  would  prove  beneficial,  especially  because  of  the  possibility  to  install  on-­‐demand  CDN  networks  customized  for  different  numbers  of  subscribers.  

(1) Market  analysis  

While   CDN   growth   has   slowed   down   recently   as   described   in   [37],   they   should   remain   an   important  component  of  networks  for  the  foreseeable  future.  Adoption  of  ever  higher-­‐quality  video/audio  formats  to  meet  the  quality  requirements  of  new  end  devices  will   likely   increase  the  demands  on  CDN.  Yet,  the  high  demands  of  e.g.  4K  video  content-­‐streaming  cannot  currently  be  fulfilled  on  a  broad  scale.  This  is  where  5G  can  deliver  improvements.  

According  to  [37],  CDN  revenue  is  expected  to  grow  from  $3.2  billion  in  2015  to  $5.8  billion  by  2020  with  a  CAGR  of  12.5%  as  shown  in  Figure  9.  North  American  and  western  European  markets  are  expected  to  grow  the   slowest   as   adoption   in   these   areas   is   already   high.   Latin   America   and  Asia   Pacific   regions   are   set   to  experience   the   most   significant   growth.   However,   the   bulk   of   revenue   will   continue   to   come   from   the  North  American  region,  which  will  still  contribute  60%  of  global  revenue  in  2020.  

 

 

Figure  9  –  Content  Delivery  Service  Revenue  Forecast  

Mobile  consumption  of  high  quality  media  is  still  low  as  consumers  are  aware  of  the  high  potential  costs  of  excessive  mobile  data  transmission  and  prefer  using  Wi-­‐Fi  when  available.  

It   has   to   be   noted   that   [37]   does   only   consider   pure   CDN   providers   for   its   statistics   as   several   big   CDN  providers  are  only  used  by  their  own  operators.  These  do  not  have  revenue  per  se,  however,  they  are  still  relevant  providers  of  online  content  and  will  affect  5G  network  usage.  

(2) Impact  on  5G  with  slicing  mechanism    

The   anticipated   increase   of   5G   in   available   mobile   bandwidth   is   likely   to   trigger   a   significant   uptake   in  mobile  content  consumption,  if  pricing  models  satisfy  user  expectations  and  can  convert  Wi-­‐Fi  users.  In  this  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  35  of  95  

 

scenario,  CDN  nodes  would  benefit  from  being  deployed  in  edge  slices.  It  is  possible  that  CDN  nodes  would  be  deployed  in  a  common  slice  as  they  may  serve  different  kinds  of  slices.  Alternatively,  CDN  nodes  could  be  deployed   in  slices  depending  on  access  policies.  For  example  a  slice  with  support  for  a  specific  media-­‐streaming  service  would  require  an  appropriate  CDN  connection,  which  could  be  part  of  its  slice.  

Slices  could  be  utilized  to  provide  tiered  access  to  content  with  a  specific  slice  having  access  to  a  CDN  node  with  premium  content.  

If  users  stick  to  their  frugal  ways  of  mobile  content  consumption,  CDN  nodes  in  mobile  slices  would  likely  serve  smaller  file  sizes/lower  data  rates.  A  fixed  network  slice  CDN  node  would  have  to  take  care  of  higher  data  rate  transmissions.  Taking  slice  requirements  based  on  usage  statistics  into  account  could  allow  more  optimized  caching.  

Additionally,  the  CDN  networks  could  be  deployed  on  demand  and  dimensioned  for  the  specific  number  of  subscribers  actively  using  the  service,  their  distribution  across  the  multiple  network  providers  as  well  as  for  the  specific  quantity  and  diversity  of  the  content  considered.  With  this,  a  highly  customized  CDN  network  can  be  achieved,  efficiently  serving  even  low  numbers  of  subscribers  and  through  this  to  provide  a  minimal  initial  investment  and  at  the  same  time  a  fast  investment  return.    

 

3.1.2.7 Advancement  of  medical  services  

This  area  is  of  great  importance  for  the  digital  revolution.  Not  only  is  it  a  very  large  and  growing  field,  but  also  it  offers  enormous  scope  for  efficiency  and  effectiveness  with  a  vision  of  providing  quality  healthcare  at   a   low   cost.   Achieving   that   vision  will   take   considerable   staying   power   and   insight   on   the   part   of   the  regulatory  and  tax  authorities.  

(1) Market  analysis  

Current   medical   services   are   provided   at   medical   institutions   in   a   physical   way   such   as   seeing   doctors,  giving  medicine,  medical  examination,  medical  surgery  and  so  on.  And  medical  services  have  been  getting  more  sophisticated  due   to  medical  and  pharmaceutical  progress.  On   the  other  hand,   the  medical   service  gap  between  urban  and  rural  areas  such  as   isolated   islands   is  widened  in  proportion  to  population  aging,  depopulation  in  rural  areas,  a  shortage  of  doctors  and  financial  difficulties  of  the  municipality.    

Digital  healthcare  is  another  large  area  to  be  affected  by  network  revolution,  including:  

• Applications  for  the  pharmaceutical  companies  (management  of  clinical  studies,  bid  data  to  help  refine  the  most   appropriate   treatment,   etc.):   These   companies   are   investing   large   sums   in   applications   to  these  ends.  

• Provision   of   healthcare   to   individuals   (including   the   assistance   to   handicapped   people   and   to   the  elderly):   The   model   there   is   that   the   patient   becomes   much   more   involved   in   her   own   lifestyle  (prevention  finally  becomes  important…),  but  also  in  the  management  of  her  treatment,  with  the  help  of  the  doctors  (MDs).  The  latter  approach  requires  a  substantial  change  of  behaviour  on  the  part  of  the  patients.  They  currently   tend   to  entrust   their  care   to   the  MD,  not  wanting   to  know  too  much  about  their  predicament.   It   therefore   remains   to  be   seen  whether   such  an  evolution  can  be  engineered   in  this  way.    

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  36  of  95  

 

Large   companies   all   over   the  world   are   looking   at   digital   healthcare  with   great   interest.   As   an   example,  roughly   one   year   ago,   IBM   founded  Watson   Health,  which   intends   to   buy   a   third   firm   on  medical   data,  Truven   Health   Analytics.   The   latter   has   8000   customers:   hospitals,   MDs,   private   firms   and   government  units.  In  China,  a  major  building  contractor,  Fosun,  has  put  healthcare  as  one  of  their  three  top  priorities.  

Digital  healthcare  is  a  huge  sector.  The  overall  picture  shows  that  it  may  well  represent  $250  billion  by  2025  [11].  This  covers  a  wide  range  of  activity  from  big  data  to  telemedicine,  individualized  healthcare,  keeping  seniors  at  home,  etc.  The  healthcare   sector   is  particular   in   that   it   involves   three  parties:   the  patient,   the  insurance   provider   (public,   or   private)   and   the   providers   of  medical   services.   Healthcare   includes  widely  different  activities,  each  with  their  own  dynamics.  For  example,  surgical  advances,  such  as  the  Vinci  robot  (which   has   helped   carry   out   close   to   one   million   surgical   operations)   require   the   approval   of   so   called  “opinion  leaders”,  who  essentially  block  or  approve  the  advance.  At  the  same  time,  this  is  big  business:  the  specific  segment  of  remote  medical  systems,  alone,  is  expected  to  represent  $4,5  billion  worldwide  in  2018  [12].  

In  Japan,  the  market  size  is  expected  to  grow  to  420.4  billion  yen  by  2020,  a  12.3%  increase  over  2013  [13].  For   remote  medical   systems,   the  market  size  will  be  19.2  billion  yens  by  2020,  which   is  2.5   times   that  of  2016  [14].  Obviously,  the  worldwide  sales  are  also  estimated  to  grow  to  $4.5  billion  by  2018  compared  to  only  $0.4  billion  in  2013  [15].  

Segmenting   the  various  activities  of   the   large  and   fast-­‐growing  healthcare   sector  will  be   looked  at   in   the  next  phase  of  this  project.  This  will  be  done  with  particular  reference  to  dynamic  slicing  as  a  stimulus  to  the  development  of  these  various  segments.  Issues  of  reliability  and  security,  privacy  and  professional  secrecy  are  indeed  paramount  in  that  segment.   In  fact,  such  concerns  are  likely  to  slow  down  the  introduction  of  5G,  Big  data  and  IoT  [11].  

(2) Impact  on  5G  with  slicing  mechanism    

With   a   slice   mechanism,   the   5G   systems   will   contribute   to   the   remote   medical   systems.   One   of   their  promising   contributions  will   be  medical   information   collections   from  a   huge   number   of   people   and   lead  them  to  change  habitual  activities.  For   this  purpose,  a  single  person  carries  multiple  medical  sensors  and  they   continuously   upload   the   sensor   data   to   the   analysis   components   (in  many   case,   to   the   cloud).   The  analysis  component  gives  feedback  in  accordance  with  each  of  their  lifestyles.  The  5G  systems  are  expected  to  increase  the  accommodation  capacity  much  more  than  that  of  4G  systems.  Additionally,  the  5G  systems  may   contribute   to   the   surgery   support   system   resulting   in   allowing   patients   to   have   remote   medical  surgeries.   In   this   way,   the   communication   delay   can   be   shortened   to   only   a   few   milliseconds.  Simultaneously,   the   surgeon  can  also  collaborate  with  an  artificial   intelligence   (AI)   technology   to   take  on  some  parts  of  the  surgery.  

 

3.1.2.8 Handling  disasters  or  very  high  concentration  of  people  

(1) Market  Analysis  

Korea’s  winter  Olympics  in  February  2018  are  likely  to  be  the  first  “5G  games”.  The  bigger  test,  as  well  as  a  national   goal   for   Japan,   is   the  Tokyo   summer  Olympics,   in   2020.   Sporting  events,   gatherings  of   heads  of  government   and   religious   gatherings   all   present   serious   security   challenges.   Cost-­‐saving   is   derived   from  automatizing  administrative  functions.    

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  37  of  95  

 

The  market  is  country-­‐specific  and  is  linked  to  funding  by  local  and  national  governments.  Pressure  in  this  sector  is  to  deliver  “more  with  less”  because  of  constraints  on  public  budgets.  The  public  safety  segment  is  not  geared  for  commercial  benefits  since   its  purpose   is   to  protect   the  public.   It   shows  some  dysfunction,  such   as   purchasing   segmentation   and   dominance   of   suppliers.   Policy-­‐makers   and   public   safety   agencies  often   have   different   priorities.   Furthermore,   in   less   developed   countries,   low   wages   and   insufficient  political  priority  constitute  barriers.    

The  overall  market  for  mission-­‐critical  public  safety  networks  is  expected  to  grow  from  $14  billion  in  2015,  to  $17.6  billion  in  2020  [8].  Mobile  broadband,  on  the  other  hand,  is  expected  to  grow  at  the  higher  rate  of  25   %   per   annum.   Digital   solutions,   running   over   hybrid   voice   and   data   networks,   will   be   adopted.  Corresponding  applications,  as  well  as  infrastructure,  will  be  supplied  by  current  vendors  as  well  as  mobile  network  operators  and  new  entrants  [7].  Consumer  devices  have  a  life-­‐cycle  of  two  years  or  so.  In  contrast,  responder  radios  and  equipment  in  public  safety  have  often  been  in  service  for  more  than  ten.  At  the  same  time,  mobile   devices  will   proliferate,   such   as   sensors   and   cameras,   autonomous   aerial   and   land   vehicles  integrated  with  CCTV,  public  displays  and  sensors.    

Spending  has  been  mainly  concentrated  in  Australia,  Germany  and  the  United  Kingdom  in  the  period  2014-­‐2016.  In  the  USA,  Motorola  dominates  the  PMR  market;  Harris  is  second.  In  China,  Huawei,  ZTE  and  Hytera  are  the  leading  vendors.  Motorola,  Harris,  Airbus  D&S  are  the  main  international  vendors.  

Japan  aims  at  increasing  the  resilience  of  its  systems,  following  the  loss  of  critical  communications  in  2011,  with   the   earthquake/tsunami   and   the   Fukushima   nuclear   disaster.   NEC   is   the   leading   supplier   for   safer  cities  solutions,  network  equipment,  cameras  and  facial  recognition.    

Key   players   worldwide   are   Nokia,   Motorola,   Airbus   D&S,   Thales,   Selex   ES,   Sepura,   as   well   as   NEC   and  Huawei.  

(2) Impact  on  5G  with  slicing  mechanism    

The  5G  network  armed  with  network  slicing  mechanisms  with  autonomic  scalability  in  the  background  and  automated  orchestration  of  entire  E2E  network  architectures   in  minutes  timeframe  is  expected  to  deliver  the  capability  of  (1)  self-­‐adaptation  of  the  telecommunication  network  to  traffic  demand  fluctuations  and  (2)  fast  and  automated  network  reimplementation/reconfiguration  after  its  manually  requested  redesign  or  conditionally  triggered  autonomous  rearrangement.  

Such  predefined  “network  scenes”   (refer  to  “lighting  scenes”  used   in  the  home  automation  domain)  may  be   prepared   for   different   traffic   scenarios,   especially   for   natural   or   man-­‐made   disasters   (earthquakes,  floods,  massive  storms,  traffic  catastrophes,  terrorist  attacks)  and  quickly  implemented  in  order  to  provide  network  capacity  able  to  accommodate,  on  a  massive  scale,  emergency  calls,  rescue  actions  coordination,  public  safety  service  communication  etc.  having   the   top  priority  according   to   the   law's   requirements  and  enforced   by   network   regulators.   Upscaling   and   downscaling   capability   may   follow   the   process   of   traffic  transfer   from  one  network   architecture   instance   (e.g.   affected  by   failure  or   overloaded)   to   another   (e.g.  newly   cloned)   or   spatial   migration   of   network   function   instances   to   regions   of   high   traffic   density,  preventing  overall  clash  due  to  lack  of  underlying  infrastructure  resources.  

Separation   of   different   kinds   of   services   in   separate   network   slices   will   also   support   the   flexible   traffic  management  and  adaptation  of  network  capacity  to  a  high  concentration  of  people  in  specific  areas.  

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  38  of  95  

 

4. Multi-­‐stakeholder  analysis  People  are  the  most  important  stakeholder.  In  general,  customers’  concerns  of  safety  and  privacy,  as  well  as  the  mitigation  of  the  possible  effects  of  exposure  to  electromagnetic  fields,  must  be  considered  seriously  and   taken   into   account   upstream   in   any   development.   Tomorrow’s   customers   will   rebel   if   they   are   not  satisfied  with  the  way  technologies  have  been  developed  to  address  their  concerns.  In  other  words,  in  the  past,   the   phrase   “customer   orientation”   was   often   lip   service   for   the   annual   reports,   but   essentially   an  empty  slogan.  Times  have  changed;  firms  must  have  effective  antennae  to  detect,  and  truly  take  note  of,  people’s   concerns   and  wishes.   As   already  mentioned,  non-­‐business   issues   have   never   been   so   crucial   to  business.  

4.1. Identified  stakeholders  in  5G!Pagoda  use  cases  When  looking  at  the  use  cases,  selected  in  task  T2.1,  an  overview  of  the  actors  involved  is  given  in  Table  2.  The  table  summarises  the  actors  mentioned  by  the  project  partners  as  being  involved  in  the  selected  use  cases.  

Table  2  –  Actors  involved  in  the  seven  use  cases  selected  in  task  D2.1  

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  39  of  95  

 

 

In  summary,  we  can  categorize  the  stakeholders  and  their  major  benefits  from  5G  as  follows:  

Fixed  and  Mobile  (including  wireless)  telecom  operators  

Major  players   Orange,  KDDI  (consortium  members),  NTT,  SK  Telecom,  etc.  

5G  Benefits   Better  leverage  of  infrastructure  through  slicing  

New  network  lifecycle  capabilities,  

New  maintenance  scenarios  

Further  automation  of  network  lifecycle  operations  

Less  demand  for  operational  staff  (especially  centralized  operations  staff)  

Automated  inter-­‐operator  cooperation  

Scalable  network  management    

Cost-­‐efficient  service  provisioning    

Automated  services  

New  services  

New  business  models    

Mobile  virtual  network  providers  (MVNO)  

Major  players   NESIC  (consortium  member),  Lycamobile,  Patriot  mobile,  FreedomPop,  etc.  

5G  Benefits   New  services  for  particular  user  groups  with  suitable  SLA  

Flexible  business  models  

Lager  and  new  markets  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  40  of  95  

 

Telecom  equipment  manufacturers  

Major  players   Hitachi,  Ericsson  (Consortium  members),  Huawei,  Cisco,  etc.  

5G  Benefits   New  and  updated  equipment  and  software  

New  types  of  software  

New  services,  including  slice  design  services  and  maintenance  

New  products  and  markets  

Mobile  and  chipset  designers  and  manufacturers    

Major  players   Intel,  SMTElectronics,  Softbank  (ARM),  etc.  

5G  Benefits   New  products  and  markets  

Cloud  providers    

Major  players   Google,  amazon,  Microsoft,  etc.  

5G  Benefits   Bigger  demand  by  larger  data  flows  in  5G  

New  services  connecting  to  data  on  different  slices  

Diverse  business  models  

IoT  network  /  solution  providers  

Major  players   Ericsson,  DG  (Consortium  members),  Amazon,  Google,  etc.  

5G  Benefits   Better  leverage  of  infrastructure  through  slicing    

Improved  scalability  

Service  quality  guarantees  

Customization  of  services  in  slice  

Faster  deployment  of  services    

Easier  to  provide  secure  services  via  separate  slice  

Business  transformation  

New  services    

New  markets  

New  business  models  

Diverse  application  service  providers  (e.g.,  IoT,  ITS,  Healthcare,  Smart  office,  etc.)    

Major  players   Smart  office  (Siemens,  Schneider  Electric,  ABB,  Honeywell,  etc.)  

5G  Benefits   Integrated  and  more  sophisticated  services    

New  products  and  markets  

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  41  of  95  

 

Application  service  users  (including  citizens)    

Major  players   Customers   of   all   sectors   (e.g.,   building   management   companies   in   Smart  building,   Hospital,  Medical   staffs   and   patients   in   advanced   health   care,   etc.)  and  citizens  for  the  services  

5G  Benefits   Rich   services   (true  mobile   and   fixed   network   convergence,   Low-­‐latency   high  bandwidth  transmission)  

On-­‐demand  services  

Services  with  wider  area  covered  

Secure  services  

Real  implementation  of  the  rule  of  “seamless,  anywhere,  anytime  any  device”,    

Automotive  services  

Each  of  the  eight  selected  use  cases  requires  an  analysis  of  what  is  called  "industry  analysis”,  which  looks  at  the  chains  of  actors  to  see,  along  the  chain,  where  the  value  is  created,  what  actors  have  high  bargaining  power  and  where  the  benefits  and  risks  lie.  Indeed,  the  situation  in  various  “use  cases”  may  be  similar  so  that  the  corresponding  industry  analyses  may  be  grouped  into  one.  

Connected  with   the   business  models,   a   next   phase   of   this  work  will   be   to   do  what   is   called   an   industry  analysis,   i.e.   looking   at   the   value   chain   and   seeing  where   the  profits   are  made.   This  will   have   to   include  some  guessing  since  we  are  dealing  with  a  world  that  is  in  the  process  of  being  shaped  by  the  radical  and  rapid  changes   induced  by  technical  progress,   including  sophisticated  network  slicing.  We  will  also,  among  actors  along  the  value  chain,  assess  which  ones  are  most   likely  to  be   in  a  strong  position  to  bargain  with  suppliers,  customers  and  regulatory  institutions  in  the  next  phase.  

4.2. Identification  of  the  multi-­‐stakeholders  in  each  use  case  In  this  section,  we  identify  the  traditional  stakeholders,  as  well  as  the  new  stakeholders  appearing  by  5G.  In  a  general  view,  the  stakeholders  are  tiered  as  shown  in  Figure  10.  

 

Figure  10  -­‐  General  view  of  Multi-­‐Stakeholders  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  42  of  95  

 

Figure  11  shows  stakeholders  in  a  viewpoint  of  5G  telecom  operators.  Not  only  the  traditional  stakeholders,  the  following  stakeholders  may  be  newly  appeared  in  the  future:  

• Infrastructure  providers    

• Virtual  infrastructure  providers  

• Orchestration/service  brokers    

 

Figure  11  -­‐  Stakeholders  of  5G  Telecom  operators  

4.2.1. Massive  IoT The  Figure  12  constitutes  a  striking  visual  on  how  IoT  is  powerfully  impacting  all  activities,  and  will  continue  to   do   so.   Which   stakeholders   are   included   in   this   use   case   depends   on   the   applications   and   services  supported  with  massive  IoT.  

In   order   to   support   a   large   set   of   IoT   devices,   efficient   and   reliable   connectivity   to   the   infrastructure   is  crucial.   In   this   use   case,   the   issue   of   security   is   heightened   -­‐   as   the   connectivity   of   objects   increases  exponentially,  so  do  the  possibilities  for  hacking  into  the  system.  It  seems  that  we  will  have  to  learn  to  live  somewhat  more  dangerously  than  we  do  now.    

The   IPv6  protocol   is  a  tool  contributing  to  fostering  the  diffusion  of  massive   IoT.   It  steadily  replaces   IPv4,  however,  both  protocols  will  co-­‐exist  for  some  time.    

Given   the   current  market  movement,   Smart   Cities   is   a   good   example   that   includes   a   diverse   set   of   IoT  services  using  a  large  number  of  IoT  devices  on  a  city  scale.  Figure  13  illustrates  key  players  and  stakeholder  of  global  smart  city  market.  In  the  Smart  City  domain,  the  following  major  stakeholders  include:  

• Building  owners  and  city  authorities  who  deploy  and  own  the  IoT  devices,  

• IoT  solution  providers  who  provide  communication  integration  and  IoT  data  processing,    

• IoT  device  manufacturers  who  provide  IoT  devices  including  sensors,  actuators,  servers,  gateways,  etc.  

• Cloud  providers  who  provide  Cloud  platforms  and  Cloud  infrastructure,  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  43  of  95  

 

• Wired/Mobile/Wireless   communication   service   providers   who   support   network   infrastructure   and  deployment,  

• Application  providers  who  provide  user  applications  and  services   to   the  citizens   (e.g.,   smart  parking,  smart  utilities,  etc.),  

• Citizens  who  use  the  services  and  infrastructure.  

The  traditional  stakeholders  still  play  the  key  roles  in  5G-­‐based  massive  IoT  services,  however,  the  telecom  operators  who  provide  efficient  dynamic  slicing  can  take  a   lead  on  the  market.   In  addition,  under  the  5G  system,   MVNOs   can   take   a   key   role   in   IoT   services   as   aggregators   and   optimizers   of   connectivity   and  information   across  multiple   operator   networks.   A   new   set   of   application  providers   is   also   expected  with  real-­‐time  dynamic  services  thanks  to  the  5G-­‐slicing  mechanism.    

 

Figure  12  –  Internet  of  Things  for  Business  (source:  Beecham  research)  

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  44  of  95  

 

 

Figure  13  –  Stakeholders  and  key  players  of  global  smart  city  market5  

4.2.2. Smart  drive-­‐assisted  services    The   use   case   in   D2.1   handles   smart   driving   and   driverless   cars   together.   The   latter   are   expected   to   be  commercially   viable   from   around   2025.   As   mentioned   in   the   Foreword,   a   crucial   aspect   is   that   of  responsibility  and  insurance.  Indeed,  in  case  of  an  accident,  today’s  situation  incriminates  the  driver.  If  the  car   is   heavily   equipped   for   driving   assistance,   or   is   a   driverless   car,   what   will   the   insurance   company  decide?  Is  the  guilty  element  the  sensor,  the  software,  or  the  infrastructure?  It  seems  that  1)  this  is  a  key  challenge  for  insurance  companies  and  2)  technical  experts  will  have  a  huge  task  to  do  their  forensic  work  in  order  to  assess  responsibility.   If,   for  example,  car-­‐makers  are  held  responsible,  this  carries  a  major  risk  for  them.  This  is  likely  to  slow  down  the  diffusion  of  this  particular  innovation.  Renault  or  BMW  will  think  twice  about  the  mass  introduction  of  such  vehicles.  Malpractice  insurance  is  very  expensive,  to  say  nothing  about  possible  damage  to  the  brand.  

Beyond  this,  driverless  cars  present  distinct  ethical  issues:  how  will  the  algorithm  decide,  for  example,  that  a  moving  car  hits  a  wall  rather  that  an  old  lady  unexpectedly  crossing  the  road?  Many  elements  of  this  e-­‐car  are   installed   in  today’s  cars:  cruise  control,  e-­‐combustion,  warning  of  obstacles,  etc.   It   is  well-­‐known  that  today’s  cars  have  a  powerful  computing  capability.  

                                                                                                                         

5  https://www.slideshare.net/FrostandSullivan/global-­‐smart-­‐city-­‐market-­‐a-­‐15-­‐trillion-­‐market-­‐opportunity-­‐by-­‐2020  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  45  of  95  

 

Figure  14  shows  major  stakeholders  of  the  connected   introduced  by  Symphony  Teleca6,   listing  benefits  of  each   stakeholder.   In   this   area,   stakeholders   are   the   industrial   actors   such   as   automobile  manufacturers,  insurance  companies  and  content  providers,  as  well  as  the  institutions  regulating  and  vehicle  users.    

It   is   paramount   to   include,   as   early   as  possible,   the  perspective  of  users,   not  only   in   attempts   to  ensure  reliability,  safety  and  privacy  of  users,  but  also  in  order  to  avoid  rejection  of  the  information  technology  by  customers.   Indeed,   in   the   case   of   the   nuclear   industry,   acceptance,   or   the   low   level   of   it,   constitutes   a  major  obstacle  to  the  growth  and  development  of  that  industry.    

 

Figure  14  –  An  Ecosystem  of  Winners  of  connected  car    

(Source:  Symphony  Teleca  presentation  @Cebit2014)  

Concerning   the   key   stakeholders,   there   are   no   objections   to   automotive   venders,   communication  providers,  and  service  (cloud)  providers  leading  decision-­‐makers  in  this  market.  Furthermore,  eco-­‐systems  and  collaborations  are  mandatory  in  such  newly  appearing  markets.  Actually,  also  in  Japanese  automotive  vendors,   lots   of   collaboration   /   cooperation,   like   Toyota-­‐Microsoft,   Toyota-­‐NTT   DoCoMo,   Toyota-­‐KDDI,  Honda-­‐SoftBank,  Nissan-­‐Microsoft,  have  already  been  announced  (2016-­‐2017).  Moreover,  MVNO  will  have  an   important   role   in   achieving   service-­‐oriented   customized   functions   (ex.   security,   IT   application  integration,  redundancy,  load-­‐balancing,  etc.)  on  top  of  the  MNO  infrastructure.  

                                                                                                                         

6  The  Connected  Car  Revolution,  Symphony  Teleca    @  Cebit  2014  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  46  of  95  

 

4.2.3. Industrial  factory  management    The  basic  stakeholders  in  this  use  case  are:  

• Product-­‐maker,    

• Operator  of  product,    

• Manufacturing  line,    

• Provider  of  support  system  for  product-­‐manufacturing  line,  and    

• Wireless  communication  service  providers.    

The   product-­‐maker   works   on   improvements   to   their   productivity   and   quality   continuously   for  competitiveness  and  promote  introduction  of  the  new  system  and  machines.  In  addition,  they  control  their  production  line  to  connect  some  systems  and  machines.  However,  even  if  they  connected,  many  product-­‐makers  connect  only  a  few  parts  of  the  system  and  the  connection  is  limited  to  the  closed  network  in  the  factory.  

The  smart  factory  proposed  in  Industry  4.0  can  affect  the  whole  supply  chain,  which  has  not  been  possible  so  far.  Thus,  independent  systems  are  connected  to  outside  networks  (via  the  Internet)  and  analysing  data  from   the   whole   supply   chain   such   as   design,   manufacturing,   distribution,   sales   and   maintenance   in   an  integrated  fashion.    

Realizing   such   an   industrial   factory   management   requires   new   stakeholders   “Wireless   communication  service  providers”,  connecting  with  external  networks,  as  well  as  “providers  of  support  systems  for  product  manufacturing  lines”,  which  provide  sensors  in  order  to  collect  machine  information  in  the  factory.  

For   the   “smart   factory”,   5G   networks   are   important   because   there   are   large   numbers   of   sensors   in  numerous  machines  and  systems  in  the  factory  and  it  is  necessary  to  collect  information  from  all  of  them  in  real-­‐time.  

4.2.4. Ensuring  QoS  on  demand    For  this  use  case,  the  major  stakeholders  are:  

• Users,    

• Communication  service  providers,  and    

• Cloud  service  providers.    

Particularly,  users  represent  both  SNS  and  normal  mobile  users  who  use  the  mobile  communication  service  simultaneously,  yet  SNS  users  would  be  the  ones  who  require  high  bandwidth  for  content-­‐sharing,  such  as  videos   and   photos.  Wireless   communication   service   providers   (network   operators)   need   to   provide   high  bandwidth  for  SNS  users  and,  on  the  other  hand,  also  need  to  ensure  the  minimum  QoS  requirements  for  normal  mobile  users.  The  resources,  bandwidth  and  computing,  allocated  to  SNS  users  should  not  be  stolen  from  the  ration  of  normal  mobile  users.  A  key  of  cloud  service  providers’  systems  is  a  smooth  interaction  for  the  wireless  communication  service  providers  to  obtain  computational  resources  from  the  cloud  service  providers   in   order   to   provide   sufficient   communication   capacity   to   the  wireless   communication   users   in  accordance  with  variation  of  the  demands.    

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  47  of  95  

 

The  new  stakeholders  for  this  use  case  would  be:  

•  Virtual  infrastructure  providers  that  offers  NFV  infrastructure  (compute,  network,  hypervisor,  etc.)  as  a  service  (NFVIaaS)  

Suppose   the   bandwidth   demand   from   SNS   users   is   dramatically   increased   and   it   needs   to   scale   up   its  network  capabilities.  On  the  other  hand,  the  QoS  requirement  is  only  temporary,  for  example,  for  a  month  or  two  (e.g.  during  the  Olympics).  Therefore,  the  virtual  infrastructure  provider  leases  NVF  infrastructure  to  the  operator  over  the  short  term.  The  operator  deploys  a  temporary  network  slice  on  the  leased  virtualized  infrastructure  and  fulfils  the  QoS  demands.  

4.2.5. The  smart/virtual  office    This  use  case   shows  different  kinds  of   stakeholders  with  different   roles   inside  a   smart   /   virtual  office.  At  first,  the  companies  own  the  buildings  where  the  companies’  employees  are  working.  These  buildings  can  be  maintained   by   building  management   companies   that   need   good   connectivity   to  monitor   and   control  each   building   remotely.   This   means   that   the   building   management   companies   are,   in   practice,   wireless  communication  users,  in  particular  for  the  5G  in  the  frame  of  the  5G!Pagoda  project.    

Different   actors   are   present   in   the   use   case   to   offer   digital   services:   IoT   service   providers,   cloud   service  providers,   software  developers  and  network  operators.  The  mobile/fixed  network  operators  may  provide  connectivity  with  various  network  slices  according  to  the  requirements  of  each  application;  a  network  slice  with  high  reliability  but  low  bandwidth  for  IoT,  a  network  slice  with  high  bandwidth  and  security  for  office  file  transfer.  

Smart/Virtual  Offices   is   the  convergence  of  various  actors  and  the  major  stakeholders   for  this  scenario   in  the  5G!Pagoda  perspective  are:  

• Wireless  communication  service  providers,  

• Cloud  service  providers,  

• IoT  service  providers,  

• Enterprise  (wireless  communication  users),  

• Building  management  companies  (wireless  communication  users),  

• Employees  of  the  enterprise  (wireless  communication  user),  

• Service  platform  /  Software  developers.    

These   major   stakeholders   may   be   put   into   two   groups:   users   and   service   providers.   Users   are   building  management  companies,  mobile  service  users,  and  enterprises;  they  have  different  needs  when  using  the  services.   In   order   to   fulfil   the   user   requirements   and   the   required   service   types,   all   providers   need   to  collaborate   and   ensure   their   individual   roles/responsibilities.   Wireless   communication   service   providers  (e.g.,  MNO  and  MVNO)  provide  higher  throughput  and  secure  communication  services.  The  cloud  providers  provide   storage   or   computing   resources   for   the   enterprises.   It   is   the   responsibility   of  MNO  or  MVNO   to  ensure   the   security   of   files/contexts   transfer,   e.g.,   to  mitigate   the  men-­‐in-­‐the-­‐middle   attack,  while   cloud  service  providers  ensure  the  security  and  availability  of  the  files/contexts  stored  in  their  cloud.  IoT  service  providers   use   5G   capabilities   provided   by   wireless   communication   service   providers   and   cloud   services  from  cloud  providers  that  enable  reliable  and  secure  communication  services  with  differentiated  services.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  48  of  95  

 

The  users  access  their  local  resources  remotely  through  highly  secured  channels  provided  by  the  IoT  service  providers  that  will  provide  one-­‐stop  solutions  (in  this  scenario,  smart  office  centred   IoT  service)   including  cloud  systems  via  the  5G  system.    

Since  this  use  case   is  the  convergence  of  various  actors,  collaboration  between  players,  especially  service  providers,  is  important.  However,  for  service  resilience,  we  may  need  a  new  player  or  stakeholder.  In  case  of   a   service   failure,   e.g.,   the   public   surveillance   service   failure,   who   is   responsible?   The   sensors   and/or  surveillance   cameras   which   are   the   IoT   service   providers’   responsibility?   Or   the   communication   service  between  sensor/camera  and  the  application  servers  which  is  the  responsibility  of  MNO  or  MVNO?  For  this  scenario,   we  may   need   to   introduce   a   new   stakeholder   called   “monitoring   agent”   or   “broker”   between  service  providers.  The   roles  of   the  broker  would  be  monitoring  KPIs  and  enforcing  each  player   to  ensure  their  SALs,  sending  the  requests/notifications  to  correspondent  players  periodically  or  occasionally.    

4.2.6. Content  delivery  network  as  a  service    In  the  content  delivery  ecosystem,  we  identify  the  following  stakeholders  (in  no  particular  order):  

• Content   Creators   –   The   creators   of   the   actual   content   such   as   artists,  musicians,   actors,   production  companies  a.s.o.  

• Content  Distributors  –  The  companies  that  license  content  and  provide  it  to  their  customers,  e.g.  VoD  services,  video-­‐streaming  services,  music-­‐streaming  services,  social  networks,  news  organisations  

• Content  Delivery  Network  Providers  –  The  companies  running  the  CDN,  e.g.  Akamai,  Amazon  

• Internet  Service  Providers/Mobile  Network  Operators  

• Advertisement  Networks  –  The  companies  selling  advertisement  space/time  target  content  consumers  

• Advertisers  –  The  companies  advertising  products  to  content  consumers  

• User  Equipment  Manufacturers  –  E.g.  smart  phone,  smart  TV  and  tablet  manufacturers  

• Application  Developers  

• Content  Consumers  

• Content  Codec/Format  standardization  bodies  

For   content,   delivery   networks,   content   consumers,   providers,   creators   and  CDN  providers   are   the  most  important   roles:   content   creators  want   to   reach  as   large  an  audience  as  possible  and  gain   revenue   from  licensing  and  advertisement.  Content  consumers  want  high-­‐quality  content  at  a  low  cost  and  or  with  little  advertising.  Content  providers  are  interested  in  delivering  content  to  as  large  an  audience  as  possible  at  a  low   cost   while   providing   a   high-­‐quality   consumer   experience.   They   are   interested   in   advertisement  revenue,  but  also  revenue  from  subscriptions  and  the  purchase  of  digital  content.  The  CDN  providers  need  to  efficiently  deliver   content   at   a   low   cost  while   gaining   a   fair   revenue   from  contracts/partnerships  with  content  providers.  

Especially   for   bandwidth-­‐hungry   services   such   as   video,   a   promising   candidate   is   satellite   networks   for  offloading   the   terrestrial   5G   network   traffic.   The   role   of   satellite   in   5G   networks  will   become   extremely  relevant   in   order   to   support   the   huge   demand   of   multimedia   services,   ensuring   a   high   data   rate,   low  latency   and   higher   energy   efficiency.   This   scenario   enables   long-­‐range   and   large   coverage-­‐oriented  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  49  of  95  

 

transmission,   while   the   complementary   communication   solution   named   device-­‐to-­‐device   (D2D)   exploits  point-­‐to-­‐point  close  proximity  transmission.    

4.2.7. Advancement  of  medical  services    This  use  case  aims  to  improve  the  current  situation  of  medical  services  by  providing  equal  opportunities  for  medical  treatments  all  over  the  nation.  Mobile  network  operators,  mobile  virtual  network  operators,  cloud  providers   and   application   providers   should   play   an   important   role   in   this   use   case   in   conjunction   with  current   stakeholders   such   as   medical   institutions,   doctors,   nurses,   pharmacists,   medical   instrument  suppliers  and  medical  insurance  companies.    

New  stakeholders  can  find  new  markets  and  new  services  in  addition  to  providing  a  social  contribution,  and  current   stakeholders   can   benefit   from   this   use   case   by   improving   the   shortage   of   doctors   and   financial  issues.    

All  these  elements  must  be  woven  and  combined  in  order  to  assess  the  overall  impact  on  existing  business  models  and  on  creating  new  ones.  At  a  later  stage,  this  approach  will  be  refined  to  more  clearly  ascertain  what  the  technical  advances  at  hand  make  it  possible  to  achieve.  Then,  these  advances  must  be  translated  into  offerings   to  businesses  or  customers  while  carefully  designing   the  channels  with  which   these  will  be  delivered.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  50  of  95  

 

5. Challenges  for  three  key  players  

5.1. Specific  challenges  for  the  telecom  network  operators  The   digital   revolution   at   early   stages   drove   a   tremendous   growth   of   telecom   business   and   telecom  operators   providing   huge   revenues   following   traffic   and   utilization   growth.   It   is   said   that   “revolution  devours   its   own   children”,   however.   The   era   of   continuous   revenue   growth,   perceived   as   generally  unlimited,   has   gone   away.   The   traffic   and   revenue   curves   have   split   and   network   operators   suffer   the  constantly  growing  gap  between  traffic  and  revenue.  The  customer  base  in  mature  markets   is  stable,  e.g.  the  mobile  SIM  penetration  (%  of  population)  is  >130%  in  developed  countries  (>84%  of  population  being  unique  customers)  [http://www.gsma.com/mobileeconomy/#oaconnections]  giving  no  room  for  significant  growth.  Even  if  there  are  some  segmental  efforts  e.g.  stimulating  new  M2M  SIM  activations  or  promoting  a  shift   from   feature-­‐phones   to   smartphones,   their  effect  on  overall   revenue   streams   is   slight  due   to   tough  market  competition  encompassing  customers’  demand  for  offers  bundling,  churn-­‐preventing  bonuses,  etc.  The  “IP-­‐ization”  of   telecommunication  technologies,  while   the  separation  of  network  access  and  network  services  layer  (the  achievement  and  feat  of  4G/LTE  and  natural  effect  of  fixed/mobile  network  convergence  trend),   in   addition   to   the   unification   of   network   architecture   has   resulted   (as   an   adverse   side-­‐effect)   in  promoting  OTT  providers  and  losing  the  monopoly  of  network  providers  in  the  role  of  the  service  provider  despite   the   operators’   competitive   advantage   related   to   their   ability   to   control   the   quality   of   service.  According  to  worldwide  telecom  market  research-­‐based  forecasts,  the  revenues  in  2020  will  be  affected  by  stagnation   everywhere   except   in   the   APAC   region   [http://www.gsma.com/mobileeconomy/  #revgrrevenues].  

Another   phenomenon,   accompanying   income   flattening,   is   the   convergence   of   revenue   and   expense  curves.   The   business   effects   of   evolutionary   remedies   (process   optimization   and   automation,   reducing  employment,   quests   for   savings   of   network   operation   costs,   homogenization   of   network   equipment   and  reducing   variety   of   technologies,   optimization   of   network   architecture/topologies/energy   consumption,  swapping  old,   costly   technologies  with  newer  and  more   thrifty  outsourcing  of   selected  operations,   inter-­‐operators’  sharing  of  resources  and  operations,  getting  rid  of  some  unprofitable  activities  or  assets)  have  ran   out.   Thus,   keeping   the   EBITDA  margin   at   the   level   expected   by   the   shareholders   requires   disruptive  ways  of  coming  back  to  the  business  growth  path.  

The   additional   factor   for   financial   pressure,   typical   for   EU   operators,   is   the   legislation   about   phased  reduction   of   roaming   charges  within   the   EU   and   the   trend   of   building   one   common   telecommunication  market.  The  final  movement,  in  force  since  June  2017,  is  the  abolition  of  roaming  charges,  according  to  the  rule  of  “roam  like  at  home”  (domestic  tariff  for  customers  roaming  within  the  European  area).  

The  picture  is  pessimistic,  however,  the  operators  actively  respond  to  these  disadvantageous  circumstances  and  trends  and  try  to  rethink  their  vision  and  mission,  reshape  their  market  positions,   look  for   innovative  reuse  of  owned  assets  and  new  business  opportunities.  

New  business   cooperation  models   –   “coopetition”:   In   the  1980s,   Japan  fascinated  the  world  by  the   fact  that  fierce  competitors  would  join  forces,  for  a  time,  to  cooperatively  develop  a  new  activity,  in  which  they  would   later  compete.  Similarly,  network  operators   tend  to   look   for  opportunities   for  doing  business  with  competitors  in  areas  where  benefits  may  be  derived.    

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  51  of  95  

 

Such   coopetition   can   be   achieved   at   various   levels:   for   example,   fifty-­‐fifty   procurement   Joint   Venture  between  Deutsche  Telekom  and  Orange  (BuyIn  –  http://www.buyin.pro/),  resources  sharing  (mobile  bands  and  RAN  infrastructure  sharing,  50/50  Joint  Venture  between  Orange  Poland  and  T-­‐Mobile  Poland),  shared  operations   (NetWorkS!   –   http://www.networks.pl/,   50/50   Joint   Venture   between   Orange   Poland   and   T-­‐Mobile   Poland   for   RAN   operation),   joining   public-­‐private   partnership   projects   even   if   they   are   aimed   to  build   public   and   competitive   networks   (Orange  Poland   joining   the   EU-­‐sponsored   regional   public   projects  devoted   to   development   of   digital   infrastructure;   various   models   of   involvement),   letting   OTT/content-­‐providing  competitors  in  operators’  networks  in  order  to  provide  better  customer  experience  and  the  own  network  and  traffic  optimization  (Google  CDN  PoPs  inside  Orange  Poland  network).  

Redefinition  of  company  mission  and  vision:  Traditional  telecom  network  operators  positioned  themselves  as  communication  services  providers  (voice,  messaging,   information-­‐desk  services  –  either  voice-­‐based  or  text-­‐based   like   pre-­‐IP   era   France   Telecom’s  Minitel,   later   on   –   generic   data   transmission).   “All-­‐IP”   trend,  blurring  borders  between  communication  and  IT,  migrating  every  type  of  information  exchange  to  one  IP-­‐based  network,   has   given  network  operators   a   stimulus   to  become   “entertainment  providers"   delivering  textual   or   audio-­‐visual   content   (IPTV,   VoD,   infotainment   portals,   e-­‐Books,   etc.)   –   “triple   play   service  providers”.  Operators  also   looked  for  other  added  value  applications  based  on  fundamental  services  (e.g.  offered  by  Orange  Poland:  localization  services,  “Cyber  Shield”  –  e-­‐Security,  “Smart  Home”,  providing  web-­‐based  home   remote  control  and  monitoring  with   IP   cameras,  door/window/flood/motion/smoke  sensors  and   remote-­‐controlled   electric   plugs).   Those   moves,   even   if   technologically   significant,   had   very   little  impact  from  the  business  point  of  view  because  network  operators  remained  in  the  wide  circle  of  ICT.  For  current  challenges  it  is  not  enough,  that’s  why  network  operators  look  for  evolution  paths  allowing  getting  away  from  the  ICT  circle  using,  however,  their  strong  assets  (ICT  resources,  sales  network,  customer  base,  potential  CEM-­‐based  insight  to  customers’  needs  and  preferences).  One  of  many  possible  paths,  chosen  by  Orange   Poland,   is   evolution   to   the   role   of   “life-­‐organizing   and   support   service   provider”   or   “business-­‐organizing  and   support   service  provider”,  offering   traditional   ICT   services,  but   currently  also   “à   la   carte”:  financial   services   (banking,   life/health/travelling/property/job   loss   insurance),   security   (both   cyber   and  physical),  post-­‐warranty  support  and  assistance  of  home/office  equipment  and  smartphones,  utility  media  (currently  electricity,  possibly  gas,  heating  or  water  in  the  future),  virtual  reception  desk  (web-­‐based  service  providing  appointment  management  and  SMS/e-­‐mail  messaging).  

Looking  for  new  opportunities  and  ways  of  monetizing  operators'  assets:  Network  operators  made  money  not  only  on  their  top  detail  offer,  but  also  on  lower  level  services,  long  before  they  were  called  IaaS,  NaaS  or  PaaS.  The  variety  of  these  services  is  big,  e.g.  copper  lines,  dark  fibres,  leased  lines,  colocation,  hosting,  traffic   transiting,   metro   Ethernet,   virtual   voice   switches,   MVNO   platforms,   management   services).   The  problem   with   selling   these   operators'   services   was   always   associated   with   very   long   delivery   or   even  feasibility   study   time   (measured   in   days/weeks/months),   mainly   manual   “cooking   of   the   dish”   (physical  network  functions  environment,  physical  inter-­‐domain  interfaces,  involvement  of  local  interventions  teams,  poor   network   assets,   lack   of   multi-­‐domain   OSS   tools   designing   and   composing   the   service   E2E,   lack   of  interfaces   for   service   configuration   and   activation   in   some   domains   implying  manual   activities   etc.)   and  often   need   of   assets   relocation   or   extension.   Another   inherent   and   disincentive   factor   for   XaaS-­‐class  services  is  the  fact  that  the  process  takes  place  “behind  the  curtain”,  usually  giving  customer-­‐side  engineers  no  hints  or  guides  for  iterative  query  refinement  in  order  to  find  an  optimal  solution.    

On  the  opposite  side,  the  operators'  “managed  services”  were  impaired  by:  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  52  of  95  

 

(1)  Lack  of  a  standardized  data  model  for  network  infrastructure  and  a  services  description  disallowing  easy  Inventory  DBs  integration,    

(2)   Lack   of   easy-­‐to-­‐activate   equipment   monitoring   and   management   channels   (fault,   performance,  parametrization),    

(3)  Lack  of  smart  tools  for  discovery  of  E2E  network  topology  and  hierarchy  for  building  the  logical/physical  model  of  installed  services  in  order  to  be  able  to  correlate  events  occurring  in  the  network  and  to  view  their  impact  on  services  and;    

(4)  Actual  anchored  relation  between  NE   layer  and  EMS/NMS  layer  with  vendor  and  equipment/software  version.    

For  both  cases  –  “assets  as  a  service”  and  “operation  as  a  service”  –  the  way  to  find  agility  that  increases  assets   usage   and   brings   new   revenue   is   reshaping   the   operator's   network   into   an   environment   with  decoupling   of   functions   from   physical   resources   based   on   standardized   physical   equipment   and   with  inherent  highly  standardized  self-­‐aware  multi-­‐technology  E2E  management.    

Having   such   a   network,   the   operator   will   be   able   to   provide   “E2E   network   on   demand”   for   industries,  MVNOs   –   such   virtual   and   separate   networks   will   provide   unlimited   ownership   and   freedom   to   their  tenants,  but  also  the  ability  to  put  their  applications  even  at  the  customer’s  side.  Business  analytics   layer  products   (“Data   and   Knowledge   as   a   Service”)   can   be   also   monetized.   On   the   other   side,   due   to   the  mutuality  effect,  the  network  operator  can  act  as  the  tenant  with  agile  ability  to  offer  services  in  the  new  coverage  areas.  

Innovative   applications   based   on   operators'   assets:  Network  operators,  having  a  high  awareness  of   the  potential   of   their   technology,   will   look   for   new   applications   allowing   “repacking”   and   tailoring   generic  network  abilities   to  services  addressing  specific  and  profitable  use  cases.  Such  activity  may  be  associated  with  cooperation  with   start-­‐ups  or  even  coopetition  with  OTT  players.  The   illustration  of   such  attitude   is  high  R&D   involvement  of  Orange  Group   in   IoT  area  or   research  of  Orange  Poland  on  high-­‐density   street  lamppost-­‐based  sensor  network  for  metropolitan  smog  monitoring  and  alerting.  

Simplification  of  network  architecture  and  achieving  true  fixed/mobile  convergence:  As  it  was  mentioned  before,  the  beneficiaries  of  network  and  service  layers  decoupling  and  “All-­‐IP”  trend  are  OTT  players,  so  far.  Implementation  of   IMS-­‐based  services  other   than  voice  calling   (e.g.  RCS)   is   rather  poor.  From  the   typical  operator’s  point  of  view,  the  fixed/mobile  network  convergence  occurred  up  to  the  transport  layer  of  the  TCP/IP  model.  For  dual-­‐network  operators  there  are  typically  two  parallel  separate  network  architectures  implemented   -­‐   there   is  no   inherent  mechanism   for  mutual   fixed-­‐mobile  networks  offloading  or   seamless  fixed/mobile   handover.   Solutions   like   non-­‐3GPP   access   support   in   LTE   architecture   are   rather   patching  overlays.  The  truly  “access-­‐technology-­‐agnostic  core”  with  architecture  reflecting  actual  usage  needs  would  be  a  compensation  of  previous  losses  to  OTT  players,  paving  the  way  to  more  efficient  networks  (in  terms  of  simplicity,  expenditures,  operations,  utilization)  and  materializing  the  “anytime,  anywhere,  any  device”  paradigm  that  will  drive  new  business  growth.  

The  5G  network  with  architecture  adapted   to  use  case   specificity,   founded  on  SDN  and  NFV,  embedding  multi-­‐technology   E2E   orchestration,   self-­‐management   and   capabilities   exposing   mechanisms   with  integrated  slicing  will  respond  to  the  demanded  disruptive  scenarios.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  53  of  95  

 

5.2. Challenges  to  telecom  vendors  Mobile  data  traffic  was  growing  by  63%  in  2016,  reaching  7.2  exabytes  of  data  per  month  at  the  end  of  the  year  [39].  The  traffic  is  expected  to  continue  growing  in  the  coming  years,  which  gives  further  opportunities  to  all  telecommunication  related  sectors,   including  the  network  equipment  and  infrastructure  companies.  Network  traffic  is  now  driven  by  video,  with  60%  of  the  total  traffic  [39],  both  in  the  form  of  real  time  video  and  streaming  video.  By  2021,  78%  of  the  traffic  will  be  video  [39].  The  shift  from  traditional  television  to  on-­‐demand   streaming   services  produces   a   demand   for   network   expansion.  One  particular   opportunity   is  provided  by  the  rising  interest  in  Internet  of  Things  (IoT),  which  emerges  both  for  the  consumer  sector  and  the  industrial  use  of  connected  things.  Services  for  smart  cities  being  in  the  piloting  phase  in  selected  cities  may  become  part  of  standard  city  infrastructure  in  the  coming  years.  The  focus  of  growth,  however,  may  be  shifting   from  pure   connectivity   to  platforms   for   higher   level   services.   In   order   to   take   advantage  of   this,  vendors  need  to  expand  beyond  basic  connectivity.    

New  use  cases,  such  as  automation,  remote  control,  traffic  control,  self-­‐driving  cars,  create  a  demand  for  low-­‐latency.  The  low  latency   is  a  major  selling  point  for  the  5G  equipment.  But   latency   is  not  only  due  to  transport.   For   example,   a   100   millisecond   latency   can   be   provided   by   a   data   center   at   a   distance   of  thousands   of   kilometres   from   the   user   –   but   when   the   latency   needs   to   be   pushed   down   to   a   few  milliseconds,  the  data  center  needs  to  be  in  the  range  of  tens  of  kilometres.  Edge  computing  will  be  a  major  solution  for  critical  operations.  Both  vendors  and  operators  need  to  embrace  the  opportunity  provided  by  the  requirement  of  low  latency.    

However,  the  economics  of  a  complex  network  with  increased  amounts  of  traffic  does  not  always  translate  into   increased   profit.   The   average   revenue   per   user   is   falling   in   virtually   every   region.   Consequently,   as  telecom  vendors  are  dependent  of  operators  as  customers,  both  types  of  businesses  share  the  same  fate.  IoT  translates   into  a  massive  increase  of  the  number  of  devices,  but  the  traffic  per  device  is  minimal.  The  profit  comes  from  higher  level  services,  such  as  IoT  platforms.  The  challenge  of  the  vendors  is  to  get  a  share  of  these  services.    

The   increased   software   content   of   telecommunication   equipment   has   a   major   impact   on   the   telecom  vendors.   In  5G,  the  whole  architecture  is  based  on  NFV.   In  particular,  the  move  towards  open  source  can  have  a  divisive  impact  on  the  vendor  community,  lowering  the  threshold  for  new  entrants  on  the  markets  and  pushing  the  price   level  down.  On  the  other  hand,  this  may  also   lower  the  cost  of  telecommunication  vendors   for   developing   solutions   containing   open   source   components.   Vendors   are   joining   various   open  source   industry   groups   and   implementing   open   source   platforms   into   their   platforms.   In   the   software  sector,   there   are   many   more   players   than   in   the   traditional   telecom   market.   The   rise   of   open   source  telecommunication   components   forces   the   telecommunication   vendors   to   rethink   their   business  model.  This   moves   the   market   from   hardware   equipment   toward   software   and,   in   particular,   toward   services.  Telecom   vendors   have   high   requirements   on   their   products   in   terms   of   reliability,   security   and  performance,  which  is  vital  to  operators  for  business  critical  systems.  While  operators  want  to  break  down  the  walls  of  vendor  contracts,  a  shared  history  can  be  the  difference  between  getting  a  contract  and  losing  it  to  a  new  player  [38].  

Open   source   can   partially   be   seen   as   a   complement   to   traditional   standardization   work,   with   the  interoperability   between   components   being   defined   by   the   strongest   open   source   projects   rather   than  formal  standard  definition.  Open  source  provides  a  baseline  on  top  of  which  value–added  services  can  be  added  to  different  the  offerings  from  the  competitors.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  54  of  95  

 

5.3. Challenges  to  manufacturers    Network  requirements  to  diversify:  Even  if  the  equipment  is  targeting  to  support  office  network  and  local  area  network,  support  of  5G  network  gives  benefits  as  more  and  more  customers  require  various  services  such  as  disaster  recovery,   IoT  data  collection,  etc.  For  example,  when  the  equipment  supports  only  VLAN  for  an  office  network,  it  will  not  satisfy  network  operators  for  their  diverse  requirements  of  traffic,  quality,  MTBF,   IoT   data   collection,   critical   application,   disaster   recovery   and   so   on.   In   addition   to   it,   when   a  manufacturing   company   wants   to   trace   and  monitor   the   customers’   orders,   it   normally   uses   enterprise  service  Bus  as  it  must  be  secure  and  reliable.  5G  dynamic  slicing  concepts  can  be  adapted  and  be  used  in  such   monitoring   system   with   separate   slice   for   such   purpose.   Thus,   it   is   essential   that   equipment  manufacturers   closely   follow   up   the   development   of   5G   technologies   and   develop   5G   supporting  equipment.  

Security:  With  the  IoT  era,  the  factory  connected  to  the  Internet  will  be  exposed  to  the  cyber-­‐attack.  As  it  is  expected  that  cyber-­‐attacks  being  fatal  to  the  business  continuation  increase,  it  is  necessary  to  support  the  equipment  able  to  separate  regular  functions  from  the  incident  immediately.  

Economical   digital   twin:   The   manufacturing   industries   are   moving   toward   collaborative   crowd  manufacturing   with   dynamic   virtual   manufacturing   that   enables   dynamic   switching   and   linkage   among  partner  companies.  With  this  paradigm  swift,  collaborating  companies  exchange  production  resources  and  their   related   information   between   companies   for   on-­‐demand   production.   Dynamic   switching   of  information   flow   and   dynamic   scheduling   must   be   provided   in   order   to   avoid   confidential   information  leakage  for  using  this  new  concept  of  manufacturing.  If  we  use  5G  network  we  are  able  to  collect  real  data  effectively,  and  we  can  create  simulation  space  easily  by  using  slicing  together  with  providing  secure  and  reliable  channels.    

 

 

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  55  of  95  

 

6. Business  model  analysis    A  business  model  is  essentially  the  system  that  allows  an  organization  to  create,  deliver  and  capture  value.  At   this   stage,   it   is   anticipated   that   business   models   will   largely   be   extrapolated   from   the   4G   era.   The  difference   is   in   the   ability   to   exchange   vastly   superior   amounts   of   data,   interacting   with   AI   –   Artificial  intelligence   and   block-­‐chain.   However,   work   underway   underlines   the   fact   that   such   a   vastly   enhanced  speed   and   scale   of   information   exchange   will,   on   occasion,   cause   new,   or   evolved,   business   models   to  emerge.    

Indeed,  much   of   the   sphere   of   risks   and   benefits   stems   from   the   firm   itself   and   not   from   the   “business  environment”,  although   it   is   fair   to  say  that,   in  this  day  and  age,  non-­‐business   issues  have  never  been  so  important  to  business.  Looking  more  narrowly  at  the  business  risks/benefits,  a  first  iteration  of  the  analysis  is  given  below.  It  will  be  elaborated  later  in  the  course  of  this  project.    

6.1. Network  slicing:  a  game-­‐changer  Network  slicing  aims  at  scalability  and  flexibility  of  the  network  architecture  so  that  the  latter  may  be  able  to   support   diverse   scenarios.   It   constitutes   the   center-­‐piece   of   the   5G!Pagoda   project.   This   technique  makes   it   possible   that   a   multiplicity   of   specific   networks   run   on   a   given   physical   infrastructure.   This  constitutes  a  major  step  forward  because:  

• it  essentially  allows  an  unlimited  number  of  network-­‐supported  services    

• a  new  ad  hoc  network  may  be  set  up  quickly  at  a  minimal  cost  

A  rough  analogy  is  that  of  the  deregulation  of  railroads  -­‐  the  infrastructure  of  rails  and  signals   is  run  by  a  company   that  allows  diverse  operators   to  use   this   infrastructure   for  a   fee.  There   is   a  big  difference  with  network  slicing,  however.  In  this  case,  the  number  of  service-­‐supporting  networks  is  unlimited,  whereas  the  physical  rails  restrict  the  amount  of  train  traffic  that  can  be  accommodated.  In  passing,  let  us  note  that  such  infrastructure   companies   are   often   not   profitable   and   therefore   often   under-­‐invest   and   save   on  maintenance  because  they  are  under  pressure  to  charge  relatively  low  fees  by  the  regulators.  

The  advent  of  5G  opens  the  possibility  of  launching  all  kinds  of  specific  networks  and,  therefore,  services.  For  example,  pupils  from  the  same  class  can  decide  to  set  up  their  own  network.  A  family  may  want  to  have  its  own  specific  network  in  order  to  exchange  texts,  photos  and  music,  a  bit   like  snapchat  allows  today.  A  city   can   set   up   such   a   network   to   provide   inhabitants   and   visitors   with   a   broad   range   of   information  concerning  the  activities  and  services  available  in  the  city.  

Businesses,   either   dealing   directly   with   customers   or   in   a   business-­‐to-­‐business   mode,   may   use   this  opportunity  to  differentiate  their  offering.  For  example,  a  car-­‐maker  can  set  up  a  network  only  available  to  its   clients   in   order   to   provide   specific   services,   safety   features   or   entertainment.   In   particular,   driverless  cars  will  be  able  to  draw  on  a  host  of  new  services  available  to  their  passengers.  Part  of  the  attraction  of  buying   a   Nissan   rather   than   a   BMW  may,   in   part,   come   from   the   services   offered.   It   is   somewhat   like  choosing  an  airline  for  its  in-­‐flight  entertainment  system.  

Similarly,   in   the   area   of   infrastructure:   plants,   power   grids   and   water   systems   will   benefit   from   these  advances.  The  most  compelling  example  at  this  stage  is  probably  enabling  smart  grids.  It  can  be  envisaged  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  56  of  95  

 

that  managing   the  power  consumption,   in  order   to   reduce   it  at  peak   times,  could   result   in  not  having   to  build  another  power  generation  unit  -­‐  a  substantial  saving.  

Network   slicing   provides   particular   benefits   in   managing   very   large   amounts   of   data   concerning   many  segments   of   a   highly   dense   population.   This   relates   to   management   of   disasters,   such   as   earthquakes,  hurricanes  or  tsunamis.  It  is  also  relevant  to  sports  events  including  the  largest  one  of  all,  i.e.  the  Olympic  games.   Japan   is  particularly   concerning  on   this   as   it  will   host   the   summer  Olympics   in  2020,   for  which   it  plans  to  have  this  environment  fully  operational  and  is  therefore  diligently  working  on  it.    

In  addition,  this  technique  will  allow  support  for  IoT  services,  whether  at  the  level  of  the  home,  the  city,  the  region,  the  country,  or  the  world.  Network  slicing  truly  allows  a  convergence  of  5G  with  the  world  of  the  Internet  of  Things.    

In   all,   network   slicing   provides   a   new  world   in   providing   a   practically   infinite   number   of   services.   These  services   are   most   likely   to   be   offered   by   enterprises,   which   will   work   as   partners   with   the   telecom  operators.  It  appears  unlikely  that  the  telecom  operators  will  operate  services  themselves  for  retail  -­‐  they  will  be  busy  with  the  engineering  side  of  the  business.  Let  us  see  how  this  may  impact  telecommunication  companies  and  information  technology  firms.  

6.2. Business  model    A   firm   must   not   be   constrained   by   its   existing   business   model;   it   should   make   it   evolves   as   soon   it   is  demanded  by  a  changing  environment  or  by  the  competition.   It   is  generally  considered  that  a  company’s  business  relies  on  several  components.  Central  is  the  value  proposition  embodied  in  the  firm’s  offering;  this  is  delivered  through  the  following  elements:  

• The  resources,  including  the  crucial  human  factor.    

• The  processes,  including  the  channels  to  the  various  segments  of  customers.  

• The  key  partners,  including  suppliers.  

• Finally,  the  financials  include  the  cost  structure  and  the  revenue  stream.  

Drawing   on   a   recent   book   [1],   these   elements   are   put   to   work   in   three   main   types   of   digital   business  models:  

Model   Description   Examples  

Based  on  “experience”   This   includes   devices’   user-­‐friendliness,   reliability   and  ease  of  use.  This  also  involves  low  latency,  privacy  and  cyber-­‐security.  What  offered  to  the  customers  is  more  convenience,  more  speed  and  better  efficiency.  

Netflix,  Amazonprime  

Platforms   This  over-­‐used  phrase  includes  many  elements  such  as  crowdsourcing,  monetization  of  data  and  peer-­‐to-­‐peer  transactions  

ebay,  Cisco,  Innocentive,  Airbnb  

Based  on  cost   Elements   of   interest   there   are   transparency,  consumption-­‐based  pricing,  etc.  

Coursera,  Rolls  Royce,  Groupon,  Trivago  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  57  of  95  

 

In  the  first  model,  self-­‐service  “disintermediation”  and  better  control  are  the  key.  In  the  past,  Easyjet  was  such  an  example,  and  before  that,  the  US  Heathkit  in  the  1960s.  Later,  Ikea  asked  the  customer  to  do  a  bit  of  the  work  so  far  carried  out  by  firm  selling  the  offering.  In  the  future,  e-­‐Healthcare  and  the  “smart”  office  are  examples.   In  healthcare,   the  patient  may  be  expected   to  be  more   in  charge  of  managing   the  various  elements  of  the  chain  in  the  healthcare  system.  It  is  not  clear  whether  this  vision  is  realistic.  

Information  technologies  constitute  indeed  a  most  powerful  enabler  for  putting  end  customers  to  service  suppliers   in  a  fast,  global  and   inexpensive  way  thanks  to  the  Internet.  How  innovative   is  such  a  "business  model”?  The  key   is  good  algorithms,  excellent   implementation  and  abundant  capital,   in  order   to  achieve  speed  and  scale.    

Customization  may  also  be  an  important  feature;  there,  manufacturing  is  primarily  beneficial  of  5G  and  the  Internet  of  things.  Finally,  automation,  probably  also  using  analytics  and  block-­‐chain,  is  the  third  avenue.  An  example  is  Fintech,  which  is  in  the  process  of  strongly  impacting  private  banking.  

Platforms  rely  on  the  network  effect,  the  value  of  which  resides  in  the  number  of  members  in  the  network.  This   concerns   social   media,   but   also   impacts   the   operations   of   companies.   For   example,   a   firm   selling  machine,  can  monitor  them  at  a  distance  and  secure  the  data  required  online  enabling  them  to  carry  out  preventive  maintenance.  Examples  include  elevators,  energy-­‐generating  windmills  or  electricity  generators.  

Cost  is  likely  to  be  the  path  for  competition  to  change  the  scene  most  dramatically.  “Dematerialization”  is  the  mechanism  at  work.   Sophisticated   tools   to  provide  online   conference   services  directly   compete  with  business  travel.  Manufacturing  and  the  smart  office  are  examples  of  this  potential.  

Taking   the   earlier   example   of   the   autonomous,   or   driverless   car,   the   latter   appears   to   belong   to   the  “experience”  category  of  business  models.  Currently,   traditional  car-­‐makers   remain   the   integrating   force,  with  a  myriad  of  suppliers  around   it.   In  driverless  cars,   the  suppliers  operate   in  new  segments  of  activity  since   they   represent   new   components   to   be   integrated   into   the   “new   product”   of   autonomous   cars   as  followings:  

• Sensors:  radar  (Autoliv,  in  Sweden),  or  ultrasound,  already  used  as  a  parking  aid.  

• Adaptive   orchestrator,   using   3D  mapping   computers   to   a)   either   integrate   the   various   components  from   online   driving   information   or   b)   proactively   give   “driving   orders”.   This   is   coupled   with   the  capability   of   “machine   learning".   Companies   such   as   Baidu,   Tom   Tom,  Google   and  Nvidia   represent  today’s  stakeholders  in  this  area.  

• Scanners  using  laser  technology  (Lidars,  with  companies,  such  as  Ibeo  or  Quanergy).    

• Cameras  with  a  fine  resolution  zoom  to  150  m.  Currently,  Mobileye  is  the  world  leader.  The  conditions  of   the   recent   acquisition   of   Mobileye   (see   section   below)   underscore   the   critical   role   of   “effective  vision”.  This,  together  with  high-­‐performing  software,  appears  to  be  the  key  to  value-­‐creation   in  this  business.  

Car  suppliers  appear  poised  to  be  winning   this  game  since  already  half   the  value  of  a  car   is   in   ICTs.  Such  firms  include  Bosch  ($45  billion  of  turnover  in  2016),  Denso,  Magna,  Continental,  ZF,  Mobis,  Aisin,  Faurecia  and  Valeo.  

As  automobile  manufacturers  are  likely  to  remain  the  integrators  of  these  elements,  the  system  will  not  be  very  different  from  what  it  is  now.  Certain  elements  will  be  supplied  by  the  current  companies  mentioned  above.  In  addition,  certain  specific  components  will  be  supplied  by  newcomer  firms.  The  latter  will  have  to  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  58  of  95  

 

fight   a   highly   competitive   game   between   automobile   manufacturers   and   the   large   suppliers.   But,   then,  what  happens  to  car-­‐makers  if  these  key  components  are  not  part  of  their  pallet  of  production?  They  will  have  a  hard  time  making  a  profit  and,  even,  effectively  developing  a  driverless  car.  

Classical   industry  analysis,  as  well  as  past  experiences,   tell  us   that   these  newcomers  may  have  a  difficult  time  surviving  profitably  as  they  will  be  squeezed  between   large  actors  constituted  by  the  car-­‐makers  on  one   side   and   the   large   suppliers,   such   as   Bosch,   on   the   other.   Thus,   newcomers,   in   this   business   as   in  others,   need   to  have  antennae  on  what   the   future  holds   and  anticipate  or   at   least   react   to   change  with  extreme  agility  as  discussed  in  an  earlier  section.  

In   the   scope   of   5G!Pagoda,   business  models   are   different   by   stakeholder   types.   5G!Pagoda   consortium  consists   of   telecom   operators,   manufacturer,   telecom   vendor,   IoT   platform   providers,   IoT   solution  providers  and  MVNO,  which   target  different  business   focus.  Based  on  the  survey  described   in  Section  7,  there  are  not  common  assets  to  measure  and  design  a  common  business  model  at  this  stage.  Thus,  instead  of   unrealistic   design   of   business  model,   partners   in   each   type   of   stakeholder   provide   their   own   plan   of  adaptation  of  5G!Pagoda  concept,  which  is  discussed  in  the  Section  6.3.    

Yet,   based   on   the   survey   results,   partners   consider   that   the   telecom   operators   are   one   of   the   most  important  stakeholders.  Thus,  we  take  a  look  at  drivers  and  challenges  of  dynamic  network  slicing  for  the  telecom  operators  before  we  move  to  each  partner’s  adaption  of  5G!Pagoda  concept.  

6.2.1. Drivers  and  challenges  of  network  slicing  for  the  operators  The   following   questions   is   to   find   drivers   and   challenges   of   5G   network   slicing   system   for   telecom  operation:    

Mechanism   How  will  operators  slice  their  5G  networks?    

-­‐ By  market?    -­‐ Per  enterprise/customer  within  a  market  slice?    -­‐ Per  type  of  service  (i.e.  voice,  messaging,  mobile  broadband)?  

 

Operation   Should  certain  network  functions  be  centralised?    

Once  a  slice  has  been  rented  out  to  a  customer,  can  it  operate  without  interfering  with  another  slice?    

How  will  we  achieve  slices  with  very  different  requirements  for  reliability,  privacy  and  security,  without  excessive  engineering  costs?    

How  to  design  the  slices  adapted  to  different  scenarios?  

 

Cost   Given   the   negotiating   power   present,   will   the   benefits   of   network   slicing  compensate  its  costs?  

 

Coopetition   Looking  at  the  various  pressures  on  operators,  will  these  be  ready  and  willing  to  share  with  each  other  how  they  will  slice  the  network?  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  59  of  95  

 

In  brief,  it  appears  that  a  key  issue  is  to  develop  a  robust  design  of  the  architecture  and  functions  in  a  given  network   slice,   serving   a   specific   scenario.   In   addition,   the   important   role   of   effective   software  must   be  emphasized.   In   fact,   a   start-­‐up,   which   offers   a   high   performing   software,   will   constitute   an   attractive  partner  for  telecom  equipment  manufacturers  and  operators.    

6.2.2. Business  impact  of  network  slicing  Let  us  look  below  at  the  expected,  likely  impact  on  each  of  the  actors  along  the  value  chain.  First  of  all,  as  in  the  past  in  the  telecom  industry,  the  different  players  will  have  to  adopt  cooperation/competition  practices  in   order   to   develop   industry   standards   and   accelerate   the   advent   of   5G-­‐enabled   services.   These   players  include  operators,  vendors  and  service-­‐providers.  In  the  past,  this  has  been  relatively  standard  practice  for  mobile  phone  industry  infrastructure.  

The  equipment  providers  are  likely  to  be  relatively  unaffected  as  they  offer  equipment  which  is  an  absolute  requirement   for   the   operators   to   be   in   business.   The   global   competition,   however,   is   likely   to   be   even  fiercer  than  it  is  now.  This  is  partly  due  the  advent  of  new  global  entrants,  such  as  Huawei,  who  are  eager  to  win  new  markets,  even  by  offering  very   low  prices.  That  company  has  been   the   first   to  announce   the  availability   of   a   network   slicing   router.   So   far,   it   has   been   impossible   to   find   numbers   on   the   business  volume  expected  to  be  generated  by  equipment  for  5G  infrastructure.  

For  equipment  providers,   astute,  high-­‐performing,   supporting   software  will   constitute  crucial   assets.  This  will  make  a  difference  in  running  costs  for  the  operators  in  a  sector  that  is  bound  to  run  on  low  margins.  

For   the   operators,   the   benefits   of   network   slicing   are   that   they   deploy   only   the   function   required   by   a  specific  customer  for  its  application.  This  should  result  in  substantial  savings.  The  operators,  however,  are  likely  to  be  “squeezed”  between  equipment  suppliers  and  service-­‐providers.  The   latter  will  want  to  pay  a  minimal  toll  for  the  use  of  the  infrastructure  as  a  result  of  very  intense  competition  and  the  extremely  low  barrier   to   entry.   The   service-­‐provider   will   be   compelled   to   constantly   upgrade   its   offering   and   provide  carefully   targeted   and  differentiated   services   to   specific   segments  of   customers.   In  brief,   network   slicing  will  definitely  open  new  markets,  particularly  in  the  sector  of  services,  where  a  real  explosion  of  offerings  seems  highly  likely.  

Some  initial  conclusions  are  emerging  from  this  analysis  at  this  stage:    

Dynamic   slicing   will   pave   the   way   to   new   business   models   for   the   telecommunication   industry.   The  most   emblematic   evolution   will   be   reduced   barriers   to   entry:   cost   and   easier   integration   of   Mobile  Virtual  Network  Operators  (MVNO).  

This  technological  evolution  will  accelerate  the  dissociation  of  this  industry  into  three  distinct  functions:  

Business  to  Business  (B2B)   The  physical  network  deployment  and  maintenance  functions.  

Operators  sell  the  network  slice  to  a  company  or  enterprise.  

Business  to  Customer  (B2C)   The  telecom  operators  sell  the  network  slice  as  a  service  to  the  customer.  

 B2B2X  (B2B2B  or  B2B2C)   The  telecom  operator  sells   infrastructure  to  brokers   like  MVNOs,  and  MVNOs  provide  services  to  customers.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  60  of  95  

 

New  types  of  players  by  orchestrating  network  slices:  

Infrastructure   provider,   XaaS   service   brokers/integrators,   NSaaS   customers,  etc.      

The   5G!Pagoda   adaption   of   the   two   telecom   operator   partners   are   also   well   synchronized   with   these  business   types.   Based   on   the   survey   results   stated   in   the   Section   7,   5G!Pagoda   partners   see   the  opportunities  more  in  B2B  model.  The  detail  survey  results  are  in  Section  7.  

Telecommunication  nodes   are   evolving  more   and  more   into   SDN/NFV,   particularly   in   5G,  which  network  functionalities  are  performing  in  cloud  environment.  The  well-­‐known  cloud  models  such  as  IaaS,  PaaS  and  SaaS   are   applied   for   telecom   resources.   On   top   of   it,   diverse   XaaS   can   be   newly   introduced   in   use   of  network  resources  in  slice  levels.  The  followings  are  brief  description  of  the  cloud  models.  

Infrastructure  as  a  service  (IaaS)    

Raw  infrastructure  of  5G  is  made  available  on  demand.     Infrastructure  owners  such  as  telecom  operators  are  the  main  actors.  

 

Platform  as  a  service  (PaaS)    

Hardware  and  corresponding  software  and  some  services  of  5G  are  to  be  available.  

 

Software  as  a  Service  (SaaS)    

Specific  software  for  5G  is  provided  as  a  tools  and  utilities  for  services.  Typically  runs  within  the  platform.    

 

Anything  as  a  Service    (XaaS)    

Diverse  5G  network  resource  can  be  provided  as  a  service.  New  types  of  actors  will  emerge  in  this  model  in  5G  environment.    

The  combined   impact  of  5G  and   IoT  enables  a  host  of  new  services   to  be  put   in  place.   It   also  brings   the  promise   of   reduced   costs   in   existing   operations.   The   IT   tools   will   allow   manufacturing   firms   to   add   an  efficient  component  of  service  activities.  The  example  of  ABB,  which  will  be  able  to  monitor  and  follow  the  parking  of  installed  ASEA  robots  with  a  “preventative  maintenance”  perspective.  This  saves  money  for  the  client  and  reduces  costs  for  the  provider  while  enhancing  its  effectiveness.  

   

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  61  of  95  

 

6.3. Business  opportunities  with  5G!Pagoda  concepts  As  seen  earlier,  the  basic  elements  of  a  firm's  business  model  are:  

• Key  partners  

• Key  activities  and  resources  

• Value  proposition,  which  packages  together  the  products  and  services   in  order  to  create  value  for  the  customers  

• Customer  relationship  and  the  channels  to  reach  them  

• Cost  structure  and  revenue  stream(s)  

At   this   stage,   the   digital   era,   5G   and   IoT   in   particular,   pretty  much   impacts   every   one   of   these   elements   to  varying  degrees  depending  on  the  sector  and  the  firm  considered.  

In  many  cases,  IT-­‐enabled  activities  may  well  parallel  previous  activities,  much  like  in  the  way  digital  books  are  developing  but  not   replacing  paper  books.   Such  “blended”  business  models   require  an  ambidextrous  (or  multi-­‐dextrous)  capability  for  the  firm  to  effectively  thrive  in  these  conditions.  

Using,  as  a  basis,   the  methodology  and  typology  of  business  models   in  the  digital  age  outlined   in  Section  6.2,  this  part  aims  to  describe,  in  the  case  of  Telecom  operators,  a  first  iteration  of  what  could  be  achieved  by  network  slicing  combined  with  5G’s  speed  and  scale  for  exchanging  data.  

A   first  element   is   to   consider  how  value   is   created   through  5G  network   slicing   in   the   telecom  operators’  business  models.  This  can  be  achieved  by  the  following:  

• Cost   reduction,   which   may   include   (considerable)   operational   simplification   for   the  Telecom  operators.  

• The  above  may,  in  turn,  benefit  from  an  automation  of  operations.  

• Enhanced  services  (scope,  speed,  nature  of  the  range  of  services,  etc.),  as  perceived  by  the  B2B  users  or  the  final  consumers.  

• New  services.  

In   effect,  we   have   two   types   of   impact:   those   that   result   in   improved   efficiency   and   those   that   provide  effectiveness,  i.e.  something  new  and  valued  by  the  market.  Let  us  look  at  these  four  elements.  

Cost  reduction    

As  an  example,  in  a  large  industry  change,  the  advent  of  information  technology  has  allowed  the  financial  sector,  banks  in  particular,  to  operate  at  a  fraction  of  the  costs  encountered  previously.  A  specific  example  is  Automated  Teller  Machines  (ATMs),  which  have  running  costs  at  roughly  10%  that  of  human  tellers.  As  a  result,  the  interior  space  of  banks  has  been  drastically  modified,  reducing  the  number  of  tellers,  but  also,  making   the  ones   left  more   convivial   and  pleasant   to   interact  with.   This   is   a  particularly  positive  example  because,  not  only  things  are  cheaper  for  the  bank,  but  ATMs  are  available  24  hours  a  day.  

Combining  5G/network  slicing  with  block-­‐chain  and  artificial  intelligence  provides  not  only  a  cost-­‐efficiency  gain,   but   also   real   step-­‐changes   in   the   way   one   does   business.   It   is   now   possible   to   envisage   a   client  establishing  a  contract,  fully  automatically,  without  any  lawyers  or  contractual  officers.    

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  62  of  95  

 

The   efficiency   at   hand,   therefore,   is   not   only   automatizing   the   transactions   between   clients   and  professionals,  but  allowing  that  transaction  to  be  completed  without  any  professionals,  just  like  cashiers  in  supermarkets  are  being  progressively  replaced  by  machines.  

Automation    

This  aspect  has  been  touched  on  above.  In  the  particular  case  of  Telecom  operators,  there  is  considerable  scope  for  potential  automatizing  operations  much  further  than  is  the  case  today.  In  China,  the  phenomenal  success  of  WeChat  Pay   is  a   result  of   this,  coupled  with   the   important   fact   that   the  algorithms  have  been  designed   to  be  utterly  user-­‐friendly.  We  are  at   the  onset  of  an  explosive  growth  of  payments  via  mobile  Internet  enabled  by  the  technological  advances  in  information  technology.  

Enhanced  services  

The   first   impact   of   the   technological   advances   being   considered/developed   is   speed   (often   called  “latency”).  A  customer,  with  her  smartphone  in  hand,  is  not  going  to  wait  patiently  for  the  screen  to  scroll  on.  In  this  respect,  faster  delivery  of  existing  services  is  a  substantial  plus  to  satisfying  customers.  Another  step  is  orchestration  of  data  to  provide,  in  essence,  new  services.  The  clients  of  Telecom  operators  in  this  regard  are  Bosch,  General  Electric  and  the  like.  

New  services  

This  is  where  major  impacts  are  expected.  This  concerns,  not  only  broadband  or  mobile  Internet  customers,  for  example,  but  also  B2C  business  models.  For  example,  this  may  concern  interactions  with  machines  such  as  agricultural  vehicles  or  systems  such  as  those  for  irrigation.  A  large  impact  will  be  in  the  area  of  so-­‐called  “smart   manufacturing”,   where   huge   efficiency   and   quality   gains   can   be   achieved.   Japan   and   China   are  leading  in  these  areas.  For  example,  in  Shenzhen,  certain  large  plants  are  “dark  factories”  -­‐  since  there  are  NO  workers  in  the  plant,  no  light  is  needed.    

6.4. Initial  strategies  for  the  adaptation  of  5G!Pagoda  concepts  As   the   consortium   members   are   consisted   of   major   players   of   5G   markets,   each   industry   partners   in  different  stakeholder  types  provide  its  insight  on  adaptation  of  the  5G!Pagoda  concepts,  dynamic  network  slicing  in  5G.  It  is  important  to  mention  that  these  inputs  are  not  from  broad  and  general  market  data  but  directly   from  the  key  players  of  the  market   in  the  consortium.  The  partners  will  update   its  results  on  the  adaptation   of   the   5G!Pagoda   concepts   in   the   next   iteration   reflecting   the   market   movement   and  corresponding  focuses  of  the  companies.    

6.4.1.  Telecom  operator  (Orange)    The   situation   of   European   telecom   operators   is   complicated   as   it   was   described   in   chapter   3.6.   The   5G  network  (especially  the  real  convergence  of  mobile  and  fixed  network)  founded  on  such  enablers  like  SDN,  NFV  and  network   slicing  with   robust   automation  provided  by  E2E  orchestrating   solutions,   is   expected   to  deliver  technical  means  to  shatter  the  bonds  and  give  a  chance  to  redefine  the  network  operator’s  position,  both  in  terms  of  internal,  technology-­‐related  status  and  business  relations  within  the  market  environment.  The  areas  of  potential  benefits  of   adaptation  of  network   slicing   technology  are   coupled  with   trending   to  operational   and   economic   excellence   of   the   operator’s   technology   and   infrastructure   and   business  opportunities  behind  various  use  cases  (e.g.  5G!Pagoda-­‐defined  use  cases).  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  63  of  95  

 

Internal  operations  and  costs  excellence:  work  on  adopting  NFV  technology  and  gradual  migration  of  the  LTE  core  and  previous  generations'   cores   is  already  underway.  This  migration  will  be  associated  with   the  natural  cycle  of  equipment-­‐swapping.  However,  the  main  perceived  barriers  currently  are:   lack  of  mature  software  equivalents  at  the  performance  level  of  commercially-­‐offered  hardware  solutions,  relatively  small  market   offer   of   proven   off-­‐the-­‐shelf   NFV   applications,   lack   of   price   (licensing  model)   competitiveness   of  these  and  as  a  result  of  the  separation  of  the  infrastructure  and  applications  layer  (the  consequence  of  the  NFV  paradigm)  –   lack  of  clear  evaluation  of  E2E  reliability  and  dispersion  of  responsibility  for  reliability  of  such  NFV  environments  provided  by  different  players.  But  even  after  resolving  these   issues,   it  remains  to  be   seen   that   NFV   without   network   slicing   will   only   allow   a   topical   network   functions   migration   from  hardware  to  software  solutions.  Implementing  flexible  network  slicing  should  allow  the  operator  to  create  entire   E2E   network   architectures   on   demand,   migration   or   partitioning   of   traffic   between   network  architecture   instances   that   are  more   benign   and   less   noticeable   for   end-­‐users   networks   and   technology  lifecycle  operations  such  as  upgrades  of  node  software,  deployments  of  new  services,  disaster  recovery  of  entire   network   architecture   and   creation   of   test   environments/sandboxes   perfectly   resembling  commercial/production  environments.  Using  standardized  IT  hardware  with  low  variance  of  types  and  high  potential   of   reusability,   automatized   deployment   of   entire   network   architectures,   application   of  architectures   tailored   to   service   specificities,   high   maintenance   flexibility   and   less   need   for   staff   are  expected  to  provide  serious  cost  saving  

New  business  opportunities  and  new  revenues:  

B2C  –  this  market  segment  is  responsible  for  the  majority  of  the  operator's  income  and,  at  the  same  time,  is  affected   by   high   pressure   from   regulators   and   market   competition.   The   typical   pricing   trend   is   “more  (minutes,  gigabytes)  for  the  same  price”,  pulling  down  the  income/costs  balance.  Pure  technology  changes  (e.g.  migration  of  voice  services  from  CS  domain  to  IMS)  have  no  value  for  end-­‐customers.  This  disruptive  change  is  the  change  adding  new  value  for  customers  (e.g.  WiFi  calling  at  domestic  prices  without  country  restrictions   –   practical   worldwide   work-­‐around   to   roaming   charges)   or   a   completely   new   service.   The  network  slicing  will  have  no  direct  impact  on  customers’  perceptions,  however,  new  services  coming  with  5G   (e.g.   true   mobile   and   fixed   network   convergence,   real   implementation   of   the   rule   of   “seamless,  anywhere,  anytime  any  device”,  low-­‐latency  high  bandwidth  transmission,  automotive  services)  will.  Thus,  the  network  slicing  will  bring  new  revenue  to  operators  as  the  enablers  for  5G.  

B2B  and  B2B2C:  beside  the  typical  telecommunication  services  offer  (B2C  end  services  in  B2B  wrap),  these  segments  will  be  truly  interested  in  gaining  access  to  network  operators'  infrastructure  and  network  slicing  technology   supported   by   automated   orchestration   for   fast   and   flexible   feasibility   checking,   NSaaS  implementation   and   further   reconfiguration   will   be   directly   used   by   B2B/B2B2C   players.   A   majority   of  5G!Pagoda   use   cases   can   be   directly   implemented.   Additionally,   NSaaS   gives   network   operators   an  opportunity   to   migrate   from   the   role   of   "connectivity   service   provider"   (data   network   connecting   B2B  customers'   or   cloud   providers'   data   centres)   to   the   role   of   "telecommunication   network   architecture  provider"   (offering   E2E   network   architecture   on   demand).   Additionally,   implementation   of   the   "smart  reality"  idea  (especially  IoT/sensor  networks,  intelligent  transport  systems,  public  safety  systems)  will  bring  new  customers  (public  sector),  either  in  client-­‐provider  or  public-­‐private-­‐partnership  models.  

However,   it   is   important   for   the   network   operator   not   to   lose   revenue   from   B2C/B2B   segments   due   to  strengthened   competitors   with   NSaaS   at   the   expense   of   their   own  market   position   and   their   customer  base.   Thus,   the   benefits   of   5G   and   network   slicing   should   come   first   at   the   areas   of   internal  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  64  of  95  

 

operations/costs   excellence   and   B2C/B2B   opportunities   related   to   typical   telecommunications   services  offer,  before  the  competitors  take  the  network  operator's  customers.  

6.4.2. Telecom  operator  (KDDI)  The  telecom  industry   is  challenged  by  a  consolidating   industry  and   lower  ARPU  for  the  mobile  subscriber  segment.   In   the   5G   era,   wireless   communication   infrastructure   would   be   the   backbone   for   all   adjacent  industry   verticals   such   as   automotive   and   IoT-­‐based   services.   Mobile   network   operators   (MNOs)   seek  newer  revenue  streams  from  these  adjacent  industries.  The  dynamic  network  slicing  could  be  a  key  enabler  for  network  operators   to  expand  existing  businesses  and  create  new  ones.  One  possible  way   is  providing  Network  Slice  as  a  Service  (NSaaS)  [32];  MNOs  provide  customized  network  slices  for  their  customers  as  a  service.  According  to  the  relationships  between  service  providers  and  consumers,   the  business  models  of  NSaaS  can  be  categorized  into  three  classes  as  below.  

Business   to   Business   (B2B):   Operators   sell   the   network   slice   to   a   company   or   enterprise   such   as   video  surveillance   networks   for   security   companies,   smart   factory   networks   for  manufacturing   companies,   IoT  service  providers  and  so  on.   In   this  case,   the  MNOs  provide  only  customized  wireless  connections   to   the  enterprises  with  SLA.  Full  control  of  devices  and  services  are  in  the  hand  of  the  enterprise  (customers).    

Business   to   Consumer   (B2C):   In   this   case,   the   MNOs   directly   provide   services   to   end-­‐consumers   by  exploiting   dynamic   network   slicing.   A   user   for   a   group   of   users   is   able   to   purchase   customized   network  slices   from   operators   for   their   terminals   like   smart   home   devices   but   do   not   possess   the   network   with  service  separation.  The  operator  has   full   control  of  network  slices   including  the  services,   thus,  customers  with  the  same  service  requirements  could  be  registered  with  the  same  slice,  such  as  high-­‐bandwidth  slice  and  low-­‐latency  slice.    

Regarding   the  5G!Pagoda  use  cases,   the  on-­‐demand  QoS  scenario  would   fall   into   the  B2C  category  while  the  smart/virtual  office  case  would  be  the  convergence  of  the  B2B  and  B2C  models.    

Business  to  Business  to  Consumer  (B2B2C):  The  operator  plays  the  role  of  wholesale  provider,  meanwhile,  a   broker   like   an  MVNO   helps   operators   to   be   engaged  with   end-­‐customers.   In   this   case,   operators   just  provide  dedicated  network  slices   to   the  broker  without   involving   the  business  part.  However,   the  broker  could  get  more  control  from  the  network  than  traditional  MVNOs.  

6.4.3. Manufacturer  (Hitachi)  Figure  15  illustrates  the  PRE-­‐5G  manufacturing  collaboration  model  and  5G  Crowd  Factory  model.  

In  this   figure,  we  assume  that  Company  B   is  responsible  for  on-­‐time  delivery  of  parts,  materials,  or  semi-­‐products   to   Company   A   and   each   MES   (Manufacturing   Execution   System)   is   connected   to   exchange  manufacturing   orders   and   monitoring   information   via   a   P2P-­‐VPN   MSB   (Manufacturing   Service   Bus)  connection.    

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  65  of  95  

 

 

Figure  15  –  Pre-­‐5G  vs.  5G-­‐based  factory  model  

There  are  two  major  potential  risks  in  this  PRE-­‐5G  collaboration  model.  

The  first  risk  is  an  on-­‐time  delivery  failure  risk.  If  Company  B  encounters  serious  machine  failures  on  their  shop  floor,  Company  A  would  not  be  able  to  fulfil  on-­‐time  delivery  of  finished  products  to  their  customers  unless   there  were  enough  product   stock.   In   this   scenario,  manufacturing  order   information  usually   flows  from  Company  A  to  Company  B  and  monitoring  information  flows  in  the  opposite  direction;  traffic  volume  of  monitoring  information  is  usually   larger  than  that  of  order   information.  Total  network  traffic  volume  is  considered   to  be   rather   small   unless   video   information   captured  by  Company  B’s   shop   floor   surveillance  cameras  are  not  sent  to  Company  A.  As  a  consequence,  5G  broadband  network  is  not  always  necessary.  

The  second  risk   is   that  of  secret   information   leakage.  Preventing  secret   information  such  as  Company  B’s  production  know-­‐how  from  leaking  to  Company  A  is  a  challenging  issue  to  be  solved  even  if  Company  A  and  B  is  collaborating  and  worse  for  Company  A  would  be  information  leakage  to  thousands  of  other  unrelated  companies.   As   of   now,   these   issues   will   be   expected   to   be   partially   solved   by   application-­‐level   trust  solutions  such  as  block-­‐chain  technology.  

Here  we  will  discuss  the  best  practices  of  this  new  collaboration  model  in  the  5G  era.  

As   for   delivery   failure   risk,   which   is   inevitable   for   the   Pre-­‐5G   collaboration   model,   integration   of   each  company’s  MES,  either  in  the  operator’s  cloud  or  edge  cloud,  is  expected  to  prevail  in  the  5G  era.  Note  that  in  the  figure  only  two  companies  and  one  virtual  factory  are  shown,  however,  thousands  of  companies  will  be  able  to  join  multiple  virtual  factories  via  Crowd  Manufacturing  technology.  This  collaboration  model  can  effectively   fix   on-­‐time   delivery   problems   for   Company   A   because,   when   machine   troubles   occur   on  Company   B's   shop   floor,   a   new   virtual   factory   –   able   to   replace   Company   B   -­‐   can   be   instantiated   in  cyberspace  and  then  orchestrated  to  connect  to  Company  A  in  physical  space  via  a  newly  allocated  5G  slice.  

As   for   the   information   leakage   risk,   when   a   control   application   running   on   a   virtual   factory   detects   any  inconsistent  MSB  transaction  caused  by  a  hacker’s  attack  or  a  software  bug,  it  can  instantly  shut  down  any  relevant  5G  slice  and  rebuild  an  alternative  virtual  factory  to  continue  seamless  manufacturing.  

6.4.4. Telecom  vendor  (ERICSSON)  Telecom  vendors  have  high  expectations   for  the  market  of  network  upgrades  enabled  by  5G  through  the  upgrade  of  both  network  equipment  and  software  in  telecommunication  networks.  Network  slicing  is  a  key  feature   introduced   in   5G.   Softwarization   of   functions   previously   implemented   as   hardware   networking  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  66  of  95  

 

equipment  provides  both  a  threat  and  an  opportunity.  Many  network  functions   implemented  in  software  can  run  on  generic  hardware  or   in  public  data  centres,   impacting  the  business  of  the  dedicated  hardware  negatively.  However,  deployment  of  slices  customized  for  particular  use  cases  may  generate  new  business  cases  for  specialized  networks  where  the  generic  networks  have  been  used  earlier.  As  a  whole,  the  new  use  cases,   including   IoT   and   autonomic   vehicles,   increase   the   use   of   networks   and,   in   particular,   the  dependency   of   low-­‐latency   and   reliable   communication,   which   creates   a   need   for   high-­‐performance  equipment.    

Telecom  vendors  will  productize  the  research  results  generated  by  the  5G!Pagoda  project.  The  results  will  impact   standardization,   which   contributes   to   the   adoption   of   the   results   in   commercial   products   and  services.  

Currently,   the  commercialization  of  slicing  technology   is  ongoing   in  the  form  of   trials  and  demonstrators.  Ericsson   has   been   one   of   the   most   progressive   providers   of   network   slicing   solutions   working   with  operators  since  2014.  In  October  2015,  Ericsson  and  SK  Telecom  demonstrated  the  use  of  network  slices  for  Internet   of   Things,   enterprise   solutions,   augmented   reality   and   video.   In   June   2016,   Ericsson   and   NTT  DOCOMO   presented   a   proof   of   concept   of   dynamic   network   slicing   technology   in   5G   core   networks  including  slice  creation,  slice  selection,  lifecycle  management  and  service  management.  The  standardization  process   is  ongoing   in  3GPP  and  other   relevant  organizations.  Telecom  vendors  are  major   contributors   to  standardization  and  develop  their  products  and  services  according  to  standards.  Telecom  vendors  typically  implement  the  whole  range  of  products,  from  hardware  data  center  equipment  and  switching  equipment  to  OSS/BSS  systems  and  core  network  VNF  software.  

6.4.5. IoT  platform  provider  (ERICSSON,  DG)  IoT  applications  range  from  critical  applications  with  strict  requirements  in  terms  of  latency  and  reliability  to  massive   IoT  applications,  where   scalability  and  cost  are  more   important   than  service  quality.  Network  slicing   allows   customization   of   the   QoS   for   dedicated   use   cases.   Moreover,   they   can   have   different  functional   requirements.  Whereas  mobility   is   important   in  some  applications  such  as  vehicular   IoT,  other  use  cases,   such  as  building  automation,  have  static  devices.   In  addition  to   the  network-­‐related   functions,  IoT  platform  providers  want  to  customize  the  applications  in  the  slice.  In  most  cases,  only  a  fraction  of  the  data  generated  by  IoT  devices  is  actually  used.  According  to  [36]  only  1%  of  data  from  an  oil  rig  with  30,000  sensors  is  examined  and  mostly  used  for  anomaly  detection  and  control.    

Edge  computing  has  important  applications  in  IoT,  including:  

• Data   reduction   at   the   edge   (filtering,   aggregation,   compression,   caching,   local   storage)   as   there   is  significant  redundancy  in  data  and  a  major  part  of  the  individual  raw  data  points  are  not  needed  after  a  first  phase  processing.    

• Computation  offloading  by  moving  computation  from  IoT  devices  to  the  cloud  enables  simpler  devices  with   lower  energy   consumption.   It   also  allows  devices   to  be  more  generic   and   inexpensive  with   the  customization  and  specialization  implemented  in  the  cloud.    

• Control  and  automation  uses  only  local  data  and  requires  a  control  loop  with  low  latency.    

The  use  of  edge  computing  in  IoT  is  driven  by  the  need  to  

• Reduce  end-­‐to-­‐end  latency  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  67  of  95  

 

• Utilize  the  locality  in  information  

• Reduce  transported  data  amount  

• Improve  reliability  and  autonomy  

NFV  and  slicing  provide  the  means  for  the   IoT  application  provider  to  place  processing   in  the  network.   In  contrast  to  traditional  data-­‐center-­‐based  solutions,  NFV  allows  placing  the  processing  closer  to  the  device.  Multi-­‐domain   network   slicing   allows   the   application   provider   to   offer   multi-­‐domain   and   multi-­‐national  platforms  that  still  have  a  local  presence  in  each  domain  with  local  processing.  Edge  computing  pushes  the  IoT  application  platform  all  the  way  to  the  base  station.    

In   some  applications  and  countries   there  may  be   legal   requirements   for   storing  and  processing  data   in  a  given   region.   This   requirement   is   addressed   by   placing   the   NFVs   and   services   in   specific   domains.  Moreover,   several   industries   are   unwilling   to   place   business   critical   information   in   public   clouds   or   in  devices  operated  by   their  customers.  Therefore,  network  slicing  provides   the  means   for  creating   isolated  industry-­‐specific  networks  extending  enterprise  networks  to  the  customer  devices.    

6.4.6. MVNO  (NESIC)  MVNO  Market  

In   Japan,   "cheap  SIM"  provided  by  MVNOs  has  been  highly  debated   recently.  The  number  of  subscribers  served  by  MVNOs  in  March  2016  achieved  7  times  the  number  in  March  2013  and  is  predicted  to  grow  to  11.7   million   by   March   2018.   Not   only   in   the   low-­‐price   range,   but   also   original   and   attractive   services  become  an  important  factor  in  differentiating  themselves  from  other  competitors.  

In  recent  years,  MVNOs  have  started  to  provide  a  new  service  form  called  “Full  MVNO”  by  the  operation  of  HLR/HSS  opened  by  MNO  and  it  is  expected  to  lead  to  a  high  creation  of  variety  services.  

 

Figure  16  –  MVNO  subscribers  in  Japan  (source:  Mitsubishi  Research  Institute,  Ltd.)  

     

0.75  1.73  

3.26  

5.39  

0  

1  

2  

3  

4  

5  

6  

2013  Mar.   2014  Mar.   2015  Mar.   2016  Mar.  

No.  of  subscribers  served  by  MVNO  in  Japan  (million)

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  68  of  95  

 

Technical  Challenges  

The  MVNO  market  size  is  predicted  to  grow  continuously,  however,  at  the  same  time,  since  what  MVNOs  can  control   is   limited  to  their  own  equipment  of  PGW,  RADIUS,  PCRF,  etc.,   there  are  two  challenges  that  prevent  MVNOs  from  providing  creative  variety  services  for  waiting  customers.  

1) One  is  the  limitation  of  information  and  resources  obtained  by  MVNOs,  which  hampers  the  exploitation  of   services.  MVNOs  desire   to  become  able   to  utilize  network  bandwidth  borrowed   from  MNOs  more  efficiently.  

2) The   other   one   is   the   quality   of  mobile   network,  which   depends   on   the   network   provided   by  MNOs,  which  MVNOs  are  not  able   to  control.  Therefore,   it   is  hard   to  satisfy  customer  needs  because  of   the  non-­‐guaranteed  end-­‐to-­‐end  services.  

Possible  Adaptation  of  the  5G!Pagoda  Concepts  

Thanks  to  5G,  the  following  requirements  are  expected  to  be  fulfilled  and  they  will  help  MVNOs  to  solve  the  problems  mentioned  above  and  provide  more  satisfactory  services.  

1) The   expansion   of   the   field   controlled   by   MVNOs   being   provided   with   MEC   cloud   service.   It   will   be  helpful   if   MNOs   can   provide   computing   resources,   i.e.   networking   function,   computer   (virtual   or  dedicated  hardware),  data  storage  etc.,  deployed  on  the  edge  of  the  mobile  communication  network,  such  as  base  station  (eNB)  to  MVNOs  as  a  kind  of  cloud  service.  For  the  reason  that  it   is  necessary  to  get  required  resources  on  demand  to  provide  real-­‐time  services  on  slice  network.  Besides,  it  can  lead  to  the   cost   reduction   due   to   the   efficient   utilization   of   network   bandwidth   by   optimizing   computing  resources  arrangements.  

2) To  realize  various  services,  the  provision  of  customer  information  retained  by  MNOs  is  necessary.  For  instance,  to  provide  a  high-­‐security  service,  the  customer  information  such  as  IMEI,  SIM,  accurate  GPS  information,  etc.  is  essential  to  prevent  illegal  access  when  IoT  devices  are  stolen  or  SIMs  are  missing.  

3) The  definition  of  the  quality  of  slice  services.  There  are  various  elements  to  determine  the  service  level  such   as   bandwidth,   priority   control,   latency   and   so   on.   But   if   service   levels   are   separated   for   each  MNO/MVNO,  it  is  unable  to  guarantee  the  SLA  with  customers.  From  this  perspective,  to  provide  end-­‐to-­‐end  service,  it  is  necessary  to  define  a  common  service  level.  As  a  result,  it  will  become  possible  to  provide  extra  value  through  service  level  definition  in  addition  to  general  eMBB,  mMTC  and  URLLC.  

Based  on  these  new  environments,  some  services  in  different  fields  have  been  assumed  and  expected  to  be  provided  by  MVNOs.  

1) The  utilization  of  edge  resource.  (Mobile  Edge  Computing).    

• For   the   4K/8K   content   delivery   service  by  OTT,   the  mobile   edge   is   preferred   to   the  mobile   network  provided  by  operators.  

• Placing  a  high-­‐quality  camera  image  on  the  mobile  edge,  security  companies  will  be  able  to  operate  a  video  surveillance  solution  efficiently.  

2) Security  and  Location-­‐based  services.  

• Via  the  practical  use  of  minute  communication  limit  of  terminal  information  and  location  information,  high  IoT-­‐device-­‐security  can  be  realized,  e.g.  to  stop  communication  when  IoT  devices  are  stolen.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  69  of  95  

 

• Information  delivering  suitable  advertisements  in  accordance  with  location  information  

• Games  using  information  on  location.  

3) Quality  assurance  service.  

• The  end-­‐to-­‐end  SLA  of  corporate  users.  For  example,  voice  call,  backbone  communication  and  so  on.    

• The  guarantee  of  emergency  contact  means  in  disaster  areas.  When  disaster  happens,  the  emergency  network  can  be  provided  promptly  and  dynamically.  

• In   the   medical   field,   the   guarantee   of   the   security   of   private   information   used   for   contact   with  hospitals  and  other  organizations.  

6.4.7. IoT  solution  provider  (DG)  Although   IoT   solutions   form  a  diverse  market,   they  are   still   limited   to   regional   services  and   there  are  a   lot  of  technical  challenges  such  as:  

• Quality  of  service:   in  order   to   improve  the  QoS  of   IoT  services,   it  needs  better   leverage  of   infrastructure.  Through  a  slicing  mechanism,  several  important  functions  can  be  performed  at  the  edge  and  directly  serve  the  IoT  data  processing  that  can  reduce  latency  and  improve  quality  of  service;  

• Security  and  privacy  by  design:  some  applications  and  services  do  not  need  high-­‐security  consideration  but  some   have   critical   security   and   privacy   concerns.   Security   on   IoT   continues   to   be   heavy   and   expensive.  These   challenges   can   be   improved   by   dynamic   slicing   mechanisms   from   5G   by   allocating   a   slice   for  enforcement  of  security  and  privacy  for  security-­‐critical  services  and  applications;    

• Service   in   scale-­‐on-­‐demand:   in   current   IoT   markets,   interoperable   IoT   platforms   are   a   key   challenge   to  making  scalable  and  extendable  services.  In  5G  environment,  some  platforms  naturally  evolve  to  support  in  multiple  domains  with  multiple  slice  with  higher  cost  while  some  targets  specified  local  services.      

• Enrichment  of  the  business  model:  With  a  dynamic  slicing  mechanism,  diverse  customized  services  can  be  integrated   into   IoT  gateways  making  customized  services  easy  and  also  widening  convergence  services  by  integrating/  breaking/  orchestrating  multiple  slices.    

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  70  of  95  

 

7. Initial  Exploitation  Strategy  In  order  to  build  realistic  and  feasible  business  models  in  the  next  iteration,  it  is  important  to  identify  and  clarify   the   expected   unique   and   specific   outputs   and   assets   of   5G!Pagoda   considering   that   several   5G  related  research  project  are  working  on  5G  dynamic  slicing.  Although  the  Exploitation  strategy  will  be   led  by  task  T6.3,  to  be  started  in  M18,  this  deliverable  includes  initial  views  on  potential  exploitation  strategies  from  the  partners.  It   is   important  to  assess  the  potential  ways  for  project  results  to  be  tuned  into  new  or  modified  businesses  and  activities.  

From   the   initial   market   analysis,   it   clearly   appears   that   5G!pagoda   is   positioned   in   a   changing   market  environment  and  standardization  landscape.  Parallel  research  projects  are  working  on  the  same  topic  and  the  formal  specification  of  5G  standard  will  determine  what  technology  will  be  integrated  and  part  of  the  5G  offer,  and  what  technologies  will  be  ignored  or  abandoned.    

The  initial  review  and  analysis  of  the  5G!Pagoda  results,  on  the  basis  of  the  information  communicated  by  the  partners,  points  to  two  exploitation  paths:  

A. Direct   exploitation  of   5G!Pagoda   results   in   terms  of   products   and   services,  most   likely   by   individual  partners;  

B. Indirect  exploitation  by  third  parties  using  5G!Pagoda  research  results.    

The  chances  of  success  for  option  A  depend  on  several  factors,  including:    

• Clearly  identified  technological  enablers  developed  by  the  project;  

• Effective  ownership  and  IPR  protection  of  the  enablers  to  be  exploited;  

• Presence   of   comparative   advantages   on   the   future  market   that   can   enable  market   penetration   and  justify  potential  investments;  

• Interest  and  motivations  of  project  partners  to  commit  to  commercial  exploitation.  

• The   actual   market   offer   and   competition   by   the   time   the   enablers   will   be   mature   enough   to   be  commercialized.    

• The  alignment  and  conformance  of  the  developed  enablers  with  5G  standardization.  

The   second   option,   B   requires   a   clear   approach   favouring   the   integration   of   5G!Pagoda   results   into  standardization  processes,  as  well  as  an  open  dissemination  strategy  in  order  to  support  effective  adoption  and  exploitation  of  5G!Pagoda  enablers  by  third  parties.  

At   the   end   of   the   first   year   of   research,   it   appears   unlikely   that   the   consortium   will   provide   a   fully  integrated  solution  ready  to  be  marketed  that  both  options  remain  open.  Analysing  and  comparing  these  two  options  requires  us  to  closely  follow  the  on-­‐going  research  activities  and  partners'  motivations.    

This   section   requires  more   interaction  with   the  companies   involved   in   the  project  and  we  have  gathered  initial  exploitation  strategies  from  the  consortium  members  on  a  confidential  basis.    

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  71  of  95  

 

7.1. Partners  survey  In  order  to  better  assess  the  potential  of  5G!Pagoda,  all  partners  of  the  consortium  have  been  invited  to  fill  a  survey.  The  survey  has  been  prepared  with  T6.3   leader  and  has  been  designed  to   identify  the  potential  products   or   services   that   could   be   commercially   exploited.   It   also   intended   to   identify   any   competitive  advantage  that  could  justify  financial  investments  and  reasonable  chances  of  success  to  take  shares  of  the  market.  All  partners  have  been  followed  up  to  provide  their  views  and  information,  and  almost  all  partners  have   responded   and   completed   the   survey.   The   results   enable   to   clearly   identify   what   each   partner  perceives  in  terms  of  exploitation  potential.    

The   partners’   exploitation   plans   are   also   influenced   by   the   profit   orientation   of   the   partners.   First,   the  partner  companies  see  the  advent  of  5G  and  IoT  as  new  opportunities  to  provide  hardware,  software  and  IT-­‐enabled  services.  Second,  the  university  partners  consider  the  exploitation  of  the  output  of  the  project  as   new   knowledge   and   acquired   familiarity   with   industrial   requirements.   For   them,   these   elements  constitute  a  basis  for  further  research  and,  possibly,  for  patents  leading  to  IP-­‐based  licensing  to  companies.  

In   order   to   understand   individual   partners’   needs   and   initial   exploitation   plans   in   adapting   5G!Pagoda  concepts  and  potential  results,   the  questionnaire  attached   in  Appendix  1  has  been  used.   In  the  course  of  the  month  of  May  and  beginning  of  June  2017,  the  information  has  been  collected  on  a  confidential  basis  and  the  consortium  has  requested  that  the  present  deliverable  be  handled  as  a  confidential  deliverable.  

7.2. Analysis  of  the  survey  All   the  partners  were   invited  to  complete  a  survey  and  all  partners  except  one  provided  the  answer.  The  following  results  are  based  on  the  partners’  inputs.    

7.2.1. Exploitable  results  The   following   table   summarizes   the   perception   of   anticipated   exploitable   results   by   the   consortium  members.  

Table  3  –  Partners'  answer  on  exploitable  results  

 

PartnerOpen source technology

enablers

Proprietary technology

enablersProducts Online services

Consulting service and/or

technology transfer

Other

Device Gateway X X X

Ericsson X

EURECOM X

Fraunhofer X X

Hitachi X

KDDI X

Mandat International X X X X

NEC X

Orange X X

University of Tokyo X X

Waseda University X X

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  72  of  95  

 

According  to  this  table,  half  of  the  partners  regard  proprietary  technology  enablers  and  consulting  service  as   the  main   exploitable   results.   Another   exploitable   result  mentioned   by   a   third   of   the   partners   is   open  source  technology  enablers.  It  is  to  be  noticed  that  none  of  the  categories  is  identified  by  all  partners  as  an  exploitation  potential.  It  can  be  anticipated  that  diverging  views  on  exploitation  potential  are  likely  to  lead  the  project  towards  heterogeneous  and  individual  exploitation  plans.    

 

Figure  17  –  Exploitable  results  of  5G!Pagoda  

7.2.2. Perceptions  of  market  potential The  Table  4  synthesizes  the  value  proposition,  the  competitors,  the  competitive  advantages  and  the  priority  customers.    

Value  Proposition  

There  is  a  converging  view  among  the  partners  that  the  value  proposition  of  5G!Pagoda  should  be  defined  as   being   related   to   “Dynamic   network   slicing   for   5G”.   Another   key   characteristic   is   the   “Multi-­‐domain  orchestration”  of  slices.  While  the  former  one  seems  to  be  addressed  by  several  other  research  projects,  the  multi-­‐domains  and  multi-­‐tenants  abilities  could  constitute  a  differentiator.    

Main  competitors  

According  to  the  received  inputs,  the  main  competitors  are:  

• Other  research  teams  on  the  5G;  

• Mobile  network  operators;  

• Wireless  protocols  with  a  relatively  long-­‐range  connectivity  such  as  LoRa  and  SigFox.  

Four  companies  have  been  specifically  mentioned:  Ericsson,  Nokia,  Huawei  and  Cisco.  

Competitive  advantage  

The  two  main  competitive  advantages  of  5G!Pagoda  technology  are:  

• The  joint  collaboration  between  European  and  Japanese  partners;  

• The  dynamic  slicing  mechanism  enabling  programmability  and  easier  manageability  of  network  slices.  

0  10  20  30  40  50  

Open  source  technology  enablers  

Proprietary  technology  enablers  

Products   Online  services  

Consul�ng  services  

Other  

Exploitable  results  of  5G!Pagoda  

Partners  (%)  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  73  of  95  

 

However,  at  the  current  stage,  nothing  enables  to  identify  prominent  and  effective  competitive  advantages  and  barriers  to  entry,  such  as  clear  and  strong  Intellectual  Property  Rights.  

Priority  customers  

There  are  converging  views  that  the  two  main  customers  are:  

• Telecommunication  network  operators;  

• Network  vendors.    

Other  potential  customers  such  as  MNOs  and  MVNOs  must  also  be  taken  into  account.   It  results  that  the  5G!Pagoda  market  perspectives  are  primarily  in  the  business-­‐to-­‐business  (B2B)  market.    

Table  4  –  Perception  of  market  potential  

 

Partner Value proposition Main competitors of 5G!Pagoda Competitive advantage Priority customers

Device Gateway

Dynamic network slicing for IoT services as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are LoRa and SigFox

A competitive advantage of 5G!Pagoda is the dynamic connection to the core network infrastructure for broader IoT services

The priority customer 5G!Pagoda should target are telecommunication operators as well as telecommunication vendors

Ericsson Multi-domain orchestration of Network Slices as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are proprietary orchestrators

A competitive advantage of 5G!Pagoda is the focus on every aspects of slicing as well as the collaboration between Japan and Europe

The priority customer 5G!Pagoda should target are telecommunication vendors and operators

EURECOM Multi-domain orchestration of Network Slices as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are 5GPPP, projects on the 5G as well as manufacturers

(-)

The priority customer 5G!Pagoda should target are network operators

Fraunhofer Highly configurable 5G standard as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are other projects on the 5G as well as initiatives such as Slicenet or 5GEx

A competitive advantage of 5G!Pagoda is the transfer of results from basic research to industry.

The priority customer 5G!Pagoda should target are R&D laboratories around the world of operators, equipment vendors, new software providers, infrastructure providers and use case owners, especially the vertical markets and mobile virtual network operators

Hitachi Dynamic network slicing for IoT services as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are IoT platform benders

A competitive advantage of 5G!Pagoda is the collaboration between Japan and Europe

The priority customer 5G!Pagoda should target are telecommunications carriers

KDDI New communication services with 5G mobile system as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are non-existant

A competitive advantage of 5G!Pagoda is the architecture forming multiple stakeholders

The priority customer 5G!Pagoda should target are mobile network operators, mobile virtual network operators, IoT service providers, network vendors ans well as firms

Mandat International

Creation ad hoc of networks on demand as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are the research teams working on 5G and network slicing as well as LoRa and SigFox

Collaboration between Japan and Europe

The priority customer 5G!Pagoda should target are telecommunication operators

NEC Dynamic network slicing for IoT flexible services as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are mobile network operators and mobile virtual network operators

A competitive advantage of 5G!Pagoda is the slicing mechanism including RAN and deep programmable network

The priority customer 5G!Pagoda should target are network service providers and mobile network operators

Orange The value proposition developped by 5G!Pagoda is the convergent architecture addressing some topic that relatively new in the context of slicing (RAN, multi-domain slicing, legacy subsystems inclusion, DP programmability)

Main competitors in the scope of 5G!Pagoda concepts are other projects trying to address these issues

The main competitive advantages are linked to the partners of 5G!Pagoda ; Eurecom (FlexRAN RAN slicing), FF (Open Baton, Open 5GCore) and UT (FLARE)

The priority customer 5G!Pagoda should target are infrastructure operators, orchestrators operators (network slice services brokers), telcommunication operators, verticals and their slicing solutions providers

University of Tokyo

Programmable Node System as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are Ericsson and Huawei

A competitive advantage of 5G!Pagoda is the deep data plane programmability (FLARE system, implementation of emerging network(ICN) Slice)

The priority customer 5G!Pagoda should target are mobible virtual network operators and mobile network operators

Waseda University

Dynamic network slicing for IoT services as the value proposition developped by 5G!Pagoda

Main competitors in the scope of 5G!Pagoda concepts are NOKIA, Huawei and CISCO

A competitive advantage of 5G!Pagoda is the deep data plane programmability (FLARE system, implementation of emerging network(ICN) Slice), dynamic and scalable orchestrater as well as early total system PoC implementation

The priority customer 5G!Pagoda should target are telecommunication operators, mobile virtual network operators, companies as their own slice creators, telecommunication equipment venders, service creators

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  74  of  95  

 

7.2.3. IPR  potential  and  strategy  The  following  tables  summarize  the  Intellectual  Property  Strategy  of  the  individual  partners  who  completed  the  survey:    

Table  5  –  IPR  potential  and  strategy  

 

Patent  results  

According  to  the  surveys,  the  majority  of  partners  have  no  plan  to  patent  the  results  of  5G!Pagoda.  Only  the  universities  of  Tokyo  and  Waseda  plan  to  partially  patent  the  results.  This  lack  of  patent  will  render  the  ability  to  prevent  another  competitor  from  copying  the  developed  5G!Pagoda  technology  and  software  unlikely.    

Open  source  results  

Concerning  the  release  of  open  source  code,  there  is,  as  of  yet,  no  consensus  on  the  subject.  Discussion  between  partners  on  the  matter  is  needed.  However,  by  analysing  the  inputs  of  the  partners,  the  majority  does  not  have  any  intention  to  release  open  source  code.      

Partner Plan to patent results Open sources results

Device Gateway No There is no specific plan to release open source software

Ericsson No There is no yet plan to make results open source and publicly available, but there is a contribution to ONAP

EURECOM No There is plan to make results on RAN slicing open source and publicly available by its implementation using OpenAirInterface (OAI)

Fraunhofer No There is plan to make source code open source and publicly available through a commercial Fraunhofer license

Hitachi No There is no plan to make results open source and publicly availablem still the result of project is assets of MIC, so it will be opened in JapanKDDI No There is no specific plan to release open source software

Mandat International No There is no specific plan to release open source software

NEC No There is no specific plan to release open source software

Orange No There is plan to make the components related to orchestration and management (D2.5) public

University of Tokyo There is plan to patent some results related to FLARE architecture

There is plan to make some application module results open source and publicly available, but it is still unsure

Waseda University There is plan to patent results in ICN field, but not directly related to 5G!Pagoda

There is no specific plan to release open source software

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  75  of  95  

 

7.2.4. Exploitation  strategy  The  partners  of  the  consortium  have  been  invited  to  clarify  their  expectations  in  terms  of  individual  and  collective  exploitation  plans.  The  following  table  summarizes  the  information  provided  by  the  partners:  

Table  6  –  Collective  exploitation  &  Individual  exploitation  

 

Collective  exploitation  

While  some  of  the  partners  do  not  wish  to  help  with  a  collective  exploitation,  most  of  them  would  like  it  to  happen.   This   could   lead   to   the   creation   of   focus   groups  with   interested   parties   to   discuss   some   ad   hoc  collaboration.  As  both  European  and  Japanese  partners  are  interested,  this  collaboration  could  enable  the  exploitation  to  have  a  broader  range  of  impact  geographically.  

Individual  exploitation  

There  is  a  converging  view  on  individual  exploitation.  Practically  all  partners  are  willing  to  exploit  their  own  results  individually.  This  can  be  explained  by  the  diversity  of  specific  enablers  and  developments.    

Focus  on  exploitation  

According   to   the   survey,   more   than   half   of   partners   identify   the   European   and   Japanese   synergy  opportunities   as   a   focus   for   exploitation.   From   a   business   point   of   view,   this   collaboration   would   allow  5G!Pagoda  to  have  a  greater  economic   impact  on  a   larger  scale.  On  the  other  hand,  5G!Pagoda  enablers  and  network  were  mentioned  by  a  half  of  the  partners.  

Partner Collective exploitation Individual exploitationDevice Gateway Interested in a collective exploitation by mutualizing the

developments made by 5G!Pagoda and exploiting them as a consortium or joint venture among the partners

Interested in an individual exploitation by using its results independently from the other partners

Ericsson Not interested in collective exploitation Interested in an individual exploitation by using its results independently from the other partners

EURECOM May be interested in a collective exploitation by mutualizing the developments made by 5G!Pagoda and exploiting them as a consortium or joint venture among the partners

May be interested in an individual exploitation by using its results independently from the other partners

Fraunhofer Interested to address the vertical markets with a comprehensive offer created with the other research institutions: Aalto, Eurecom, UTokyo, Waseda U

Interested in an individual exploitation by using its results independently from the other partners

Hitachi Not interested in collective exploitation Interested in an individual exploitation by using its results independently from the other partners

KDDI Interested in a collective exploitation by mutualizing the developments made by 5G!Pagoda and exploiting them as a consortium or joint venture among the partners

Interested in an individual exploitation by using its results independently from the other partners

Mandat International Interested in a collective exploitation by mutualizing the developments made by 5G!Pagoda and exploiting them as a consortium or joint venture among the partners

Interested in an individual exploitation by using its results independently from the other partners

NEC May be interested in a collective exploitation by mutualizing the developments made by 5G!Pagoda and exploiting them as a consortium or joint venture among the partners

Uninterested in an individual exploitation

Orange Not interested in collective exploitation May be interested in an individual exploitation by using its results independently from the other partners

University of Tokyo Interested in a collective exploitation by mutualizing the developments made by 5G!Pagoda and exploiting them as a consortium or joint venture among the partners

Interested in an individual exploitation by using its results independently from the other partners

Waseda University May be interested in a collective exploitation by mutualizing the developments made by 5G!Pagoda and exploiting them as a consortium or joint venture among the partners

May be interested in an individual exploitation by using its results independently from the other partners

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  76  of  95  

 

Table  7  –  Exploitation  Focus  

 

   

 

Figure  18  –  Answers  on  Focus  on  exploitation  

 

   

Partner 5G!Pagoda enablers 5G!Pagoda network EU-Japan synergies opportunities

Device Gateway X X

Ericsson X X

EURECOM X X

Fraunhofer X X

Hitachi X

KDDI X

Mandat International X X

NEC X

Orange X

University of Tokyo X X

Waseda University X X X

0  

20  

40  

60  

80  

5G!Pagoda  enablers   5G!Pagoda  network   EU-­‐Japan  synergies  opportuni�es  

Focus  on  exploita�on  

Partners  (%)  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  77  of  95  

 

Joint  commercial  exploitation  with  5G!Pagoda  

Partners  have  been  invited  to  assess  their  interest  in  joint  exploitation.  The  following  table  summarizes  the  received  replies.  

Table  8  –  Joint  commercial  exploitation  plans  

 

There   are  no   clear   incentives   for   joint   commercial   exploitation.   This   can  be  explained   thus:   the  partners  interested  in  the  potential  economic  gains  would  rather  perform  the  commercial  exploitation  individually.  Additionally,  the  academic  partners  are  more  interested  in  the  research  aspect  rather  than  the  commercial  one.    

 

Figure  19  –  Answers  on  the  joint  commercial  exploitation  plan  

PartnerJoint commercial exploitation with

5G!Pagoda partners

Joint research activities with

5G!Pagoda partners

Joint standardization activities with

5G!Pagoda partners

Device Gateway Perhaps Very much Rather Yes

Ericsson Not really Very much Perhaps

EURECOM Not at all Rather yes Not really

Fraunhofer Rather Yes Very much Rather Yes

Hitachi Not really Rather yes Not really

KDDI Perhaps Perhaps Rather yes

Mandat International Rather Yes Very much Rather Yes

NEC Perhaps Perhaps Not really

Orange Perhaps Rather Yes Rather Yes

University of Tokyo Very much Very much Very much

Waseda University Perhaps Very much Rather yes

0  

10  

20  

30  

40  

50  

Not  at  all   Not  really   Perhaps   Rather  yes   Very  much  

Joint  commercial  exploita�on  with  5G!Pagoda  

Partners  (%)  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  78  of  95  

 

Joint  research  activities  with  5G!Pagoda  

There   is   a   strong   consortium   for   5G!Pagoda   partners   to   undergo   joint   research   activities.   Among   the  partners,   universities   target   academic   achievement   in   5G!Pagoda.   On   the   other   hand,   firms   also   have  incentives   to   undergo   research   in   order   to   stay   updated   on   the   achievements  made   and,   therefore,   be  more   competitive   in   the   market.   It   seems   that   the   possibility   to   pave   the   way   to   future   joint   research  activities  is  a  consensual  element  of  interest  among  the  partners  who  replied.  

 

Figure  20  –  Answers  on  the  joint  research  activities  

Joint  standardization  activities  with  5G!Pagoda  

According   to   the   survey   results,   there   are   divergent   opinions   concerning   joint   standardization   activities.  However,  we  are  able  to  distinguish  seven  5G!Pagoda  partners  who  are  eager  to  undergo  standardization  activities  with  other  partners.    

 

Figure  21  –  Answers  on  the  joint  standardization  activities  

Hence,   the   creation  of   a   focus   group   for   standardization  between   these   5G!Pagoda  partners   is   relevant.  Those  partners  are:  

• Device  Gateway;  

• Fraunhofer;  

• KDDI;  

0  

20  

40  

60  

Not  at  all   Not  really   Perhaps   Rather  yes   Very  much  

Joint  research  ac�vi�es  with  5G!Pagoda  partners  

Partners  (%)  

0  

20  

40  

60  

Not  at  all   Not  really   Perhaps   Rather  yes   Very  much  

Joint  standardiza�on  ac�vi�es  with  5G!Pagoda  

Partners  (%)  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  79  of  95  

 

• Mandat  International;  

• Orange;  

• University  of  Tokyo  ;  

• Waseda  University.  

This  is  aligned  with  the  strategy  to  be  developed  by  WP6  regarding  standardization.  The  project  intends  to  encourage  joint  collaboration  between  Europe  and  Japan.    Moreover,  the  standardization  track  constitutes  an  interesting  alternative  to  direct  exploitation,  in  order  to  maximize  the  adoption  by  the  market  and  the  exploitation  by  third  parties  of  the  project  research  results.    

Exploitation  actions  to  be  performed  in  5G!Pagoda    

Partners   have   been   invited   to   identify   exploitation   activities.   According   to   the   inputs   received,   the  main  exploitation  actions  that  have  been  suggested  are:  

• Focus  groups  with  the  industrial  partners  to  better  identify  the  commercial  exploitation  opportunities;  

• Standardization  activities;  

• Joint  publications  (even  if  this  is  more  related  to  dissemination);  

• Joint  demonstrations  and  exhibitions;    

The  idea  is  to  use  the  potential  economic  gain  of  the  software  to  attract  potential  customers  such  as  firms.  This  is  achieved  through  the  publication  of  academic  papers  on  the  subject  as  well  as  the  utilization  of  use  cases  and  testbeds.  

Table  9  –  Exploitation  actions  

 

Partner Exploitation actions to be performed in 5G!PagodaDevice Gateway Organize focus groups with industrial partners to explore collaborative exploitation

plans and EU-Japan collaborationEricsson Exploitation actions to be performed in 5G!Pagoda are:

- standardization, - joint publications, presentations and demonstrators;- sharing research results within consortium

EURECOM Through D6.2Fraunhofer An exploitation actions to be performed in 5G!Pagoda is a comprehensive testbed

offer which includes the integration of the components of the different partners, flexible enough to integrate also with third parties, creating a vertically integrated business for the testbed offering

Hitachi To demonstrate through the use cases that telecommunication industry is able to make business by the use of the 5G.

KDDI Standardizations to 3GPP SA5 WGMandat International Exploitation actions to be performed in 5G!Pagoda should be performed through

focus groups with industrial partners and through standardisation at the ITUNEC To develop a promotional demonstrator to show 5GPagoda concepts, values and

benefits for services and applicationsOrange No specific planUniversity of Tokyo Exploitation actions to be performed in 5G!Pagoda are:

- standardizations; - demonstration and exhibitions; - co-authored papers and presentations.

Waseda University No specific plan

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  80  of  95  

 

7.2.5. Specific  results  to  be  exploited    After  inviting  the  partners  to  assess  the  exploitation  potential  of  the  project  as  a  whole,  we  invited  them  to  identify  and  analyse  specific  developments  they  are  working  on.  The  results  provided  by  the  partners  were  quite  interesting  and  were  globally  consistent  with  the  initial  high  level  analysis.    

According  to  the  tables  the  main  results  to  be  exploited  are:  

• Software  systems  

• Multi-­‐domain  slice  orchestrator    

• Lightweight  core  and  deep  data  plan  

• Services  (MVNO  service,  Online  IoT  service)  

Table  10  -­‐  Answers  on  results  to  be  exploited  

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  81  of  95  

 

 

Category  of  exploitable  results  

Considering   the   survey   results,   it   seems   that   5G!Pagoda   exploitable   results   belong   most   likely   to   the  Software  category  as  shown  in  the  Figure  22  –  Category  of  exploitable  results.    

 

Figure  22  –  Category  of  exploitable  results  

0  20  40  60  80  100  

So�ware   IPR   Hardware  

Category  of  exploitable  results  

Partners  (%)  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  82  of  95  

 

Exploitable  results  

According  to  the  inputs  received,  the  main  exploitable  results  of  5G!Pagoda  are;  

• Dynamic  slicing  

• Contribution  to  the  orchestrator  and  the  architecture  

• Scientific  publications  

• Software  licenses  

• Software  securing  product  quality  

• Platform    

• Integration  of  IoT  devise  in  the  5G  network  

When  will  it  be  mature  enough  to  be  commercialized?  

According  to  the   information  provided  by  the  partners,  there   is  no  short-­‐term  exploitation.  This   is  due  to  the   constant   evolution   of   the  market.   Furthermore,   the   technology   choice   concerning   standardization   is  still   uncertain.   It   is   therefore   difficult   to   establish   a   precise  marketing   position   for   5G!Pagoda.  However,  there  is  no  limit  to  5G!Pagoda’s  contribution  to  current  standardization  efforts  and  its  ability  to  influence  its  evolution  and  communication  technologies.  

7.2.6. Freedom  to  use  results  The  general  perception  is  that  5G!Pagoda  is  not  IPR-­‐protected.  Results  show  that  5G!Pagoda  is  seen  as  IPR-­‐unprotected  by  more  than  half  of  the  partners  and  partially  protected  by  most  of  the  other  partners.  This  lack  of   IPR  protection   could   render   the   competition  harsher   as  nothing  would  prevent   competitors   from  simply  copying  the  code.    

 

Figure  23  –  IPR  policy  

However,   when   asked   if   other   members   of   the   consortium   can   use   the   results   developed   by   the   partners,  majority  of  partners  replied  that  it  needs  to  be  discussed  among  the  partners.  Only  one  partner  opposed  to  it.  It  is  to  be  noticed  that  the  consortium  agreement  includes  provision  on  foreground  and  background  access  to  IPR.  The  following  figure  details  the  results.  

0  10  20  30  40  50  60  70  

Yes   Par�ally   No  

IPR  protected  

Partners  (%)  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  83  of  95  

 

 

Figure  24  –  Free  exploitation  to  the  partners  

When  partners  are  invited  to  clarify  if  they  would  be  ready  to  share  their  developments  with  third  parties,  outside  of  the  consortium,  the  position  is  quite  more  negative,  with  about  half  of  the  partners  opposed  to  it.   Unlike   the   previous   table,   there   is   a   stronger   opposition   to   the   free   exploitation   by   third   parties.  Regarding   this   table   from   an   economic   point   of   view,   this   opposition   can   be   explained   as   a   wish   to  commercialize  and  make  profit  from  the  code.  If  third  parties  could  freely  exploit  it,  then  there  would  be  no  economic  gains.  

 

Figure  25  –  Free  exploitation  to  the  3rd  party  

Value  proposition  and  uniqueness  

The  followings  are  the  list  of  value  proposition  and  uniqueness  what  partners  consider:  

• Support  for  5G-­‐IoT  integration  

• Ability  to  consider  features  outside  orchestration    

• Key  technology  element  of  the  5G  architecture.    

• Solutions  for  testbeds    

0  

20  

40  

60  

80  

Yes   To  be  discussed   No  

Other  members  can  freely  exploit  it  

Partners  (%)  

0  

10  

20  

30  

40  

50  

60  

Yes   To  be  discussed   No  

Third  par�es  can  freely  exploit  it  

Partners  (%)  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  84  of  95  

 

• The  platform  allows  the  service  provider  to  implement  their  service  without  vendor  help  nor  with  less  help  than  it  currently  has  

• FLARE  System  has  competitive  advantage  over  Network  Slicing.  

Competitive  advantage  

The  main  competitive  advantages  stated  by  the  5G!Pagoda  partners  in  the  survey  are:  

• The  large-­‐scale  tests  across  the  world  

• Speed  and  cost  to  deploy  new  communication  services  

• Experience  gained    

Elements  that  would  prevent  the  competitors  from  simply  copying  or  reproducing  it  

There  is  a  consensus  among  the  partners  concerning  the  element  to  prevent  any  copying:  

• Learning  curve  

• IPR  elements  

• Testbed  undergone  

• Customization  mechanism  of  the  software  

• Application  capability  on  top  of  FLARE  system  

Potential  customer  

According  to  the  inputs  received,  the  major  potential  customers  are:  

• IoT  markets  

• Telecommunication  operators  

• Network  operators  

• Manufacturers  

• Factories  

• Stores  

• R&D  laboratories  of  operators  

• Institutions  

• Services  providers    

• MVNO  and  MNO.  

This  confirms  the  initial  appreciation  that  the  5G!Pagoda  technology  is  essentially  positioned  in  a  B2B  market.    

   

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  85  of  95  

 

7.3. Considerations  on  the  exploitation  strategy  Focus  of  exploitation  

In  the  survey,  8  partners  out  of  11  partners  answered  that  EU-­‐Japan  synergies  should  be  the  first  focus  of  5G!Pagoda   exploitation.   5G!Pagoda   enablers   are   chosen   by   6   partners   in   the   multiple-­‐choice   question.  Obviously   consortium  members   expect   that   the  5G!Pagoda  enablers  will   be  meaningful   in   5G   studies   by  realizing   dynamic   slicing   in   5G.   However,   considering   that   5G!Pagoda   is   not   the   only   research   project  working   on   5G   dynamic   slicing,   the   partners’   answer   on   EU-­‐Japan   synergies   on   top   of   such   technical  building  is  meaningful.      

This  result  is  matching  in  5G!Pagoda  objectives  as  well.  One  important  5G!Pagoda  objective  is  to  develop  a  coherent  proof  of  concept  with  two  testbeds  in  Europe  and  in  Japan,  using  a  uniform  network  orchestration  and   a   set   of   slice-­‐support   mechanisms.     The   other   important   one   is   to   establish   long-­‐term   research  collaboration   between   leading   industry   players,   top   research   institutes   and   universities   in   Europe   and  Japan.    

The  survey  results  confirm  that  the  real  added  value  of  5G!Pagoda  eventually  comes  from  strong  building  of   long-­‐term   collaboration   between   Europe   and   Japan.   Thus   the   exploitation   strategies   should   focus   on  maximizing  the  EU-­‐Japan  collaboration  synergies.    

Priority  geographic  markets  

There  is  a  converging  view  on  the  priority  geographic  markets.  The  two  main  markets  are  the  Japanese  and  European  ones.  This   is  due  to  the  strong  collaboration  of  the  partners  from  these  parts  of  the  world.  The  American  market  also  represents  an  important  potential  market  because  of  its  size.  The  exploitation  of  the  code  at  the  global  level  is  conceivable.  

7.3.1. Comparative  SWOT  analysis  After   reviewing   the  perception  of   the  partners   regarding   the  potential  exploitation  of  5G!Pagoda   results,  we   will   complement   our   analysis   by   comparing   the   two   main   collective   exploitation   options:   collective  commercial   exploitation   and   standardization.   The   following   SWOT   analysis   compares   two   different  approaches  of  building  EU-­‐Japan  collaborative  exploitation  plan:  centralized  and  common  exploitation  vs.  exploitation  by  third  parties  through  standardization  and  dissemination.    

A.  Common  commercial  exploitation  

STRENGTHS   WEAKNESSES  

• Mix  of  industry  and  academic  partners  from  both  regions;  

• Complementary   expertise   and   market  accesses.  

• Diverse   and   diverging   expectations   among  the  partners;  

• The   project   tends   towards   a   set   of  heterogeneous   enablers   and   individual  research  outputs  rather  than  a  common  and  well  integrated  research  output;  

• Some   enablers   are   linked   to   other   projects  and   may   be   bound   by   complex   IPR  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  86  of  95  

 

constraints;  

• Diverging   views   on   a   potential   collective  exploitation;  

• Fast  moving  and  highly  competitive  market.  

OPPORTUNITIES   THREATS  

• Possibility   to  ease  market  access   to  partner  of  the  other  region  and  reciprocally.  

• Risk   of   tensions   in   case   of   unbalanced  strategy   or   disagreement   on   collective  exploitation.  

After  analysing  the  survey  responses  from  each  partner,  it  is  noticed  that  the  level  of  expectation  from  the  project  outputs  are  diverse  and  have  different  IPR  policies.  The  collective  exploitation  is  unlikely  to  occur.  This  is  confirmed  by  the  first  SWOT  analysis.  It  shows  that  there  are  more  disadvantages  than  advantages  concerning  a  centralized  exploitation.    

B.  Exploitation  through  standardization  

STRENGTHS   WEAKNESSES  

• Capacity   to   represent   two   geographic  regions;  

• Complementary  leadership  roles  in  SDOs;  

• Enables  each  partner  to  freely  position  itself  and  exploit  the  identified  opportunities.  

• Requires   clear   commitment,   information  sharing,  and  trust  building.  

OPPORTUNITIES   THREATS  

• Opportunity   to   push   coordinated   and  consolidated  views  with  a  stronger  impact;  

• Possibility   to   support   each   other   on   a  reciprocity  basis;  

• Possibility   to   influence   the   future   5G  standard  and  to  align  the  technology  to  the  expertise  of  EU  and  Japanese  partners.    

• Potential  reaction  from  other  regions.  

The   second   SWOT   analysis   is   focused   on   the   dissemination   and   standardization   process.   It   seems   to  indicate  that  enabling  exploitation  by  third  parties  through  standardization  provides  more  advantages  than  disadvantages.  This  result  should  be  taken  into  account   in  development  of  the  future  exploitation  plan  of  the  project.  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  87  of  95  

 

8. Legal,  regulatory  and  corporate  policy  issues  Non-­‐technical,  contextual  issues  have  been  briefly  mentioned  previously.  It  should,  again,  be  borne  in  mind  that   non-­‐business   issues   have   never   been   so   important   to   business   as   they   are   now.   These   may   be  clustered  into  several  groups  as  indicated  below:  

The  corporate  issues  

Corporate  issues  pertaining  to  a  firm’s  business  model  are:    

a)   the   normal   questions   of   profitability,   competitiveness   and   agility   to   adapt   in   a   brutally   fast-­‐changing  environment  and,    

b)  the  context  of  ethics  and  proper  code  of  conduct.    

In   the   life   sciences  area,   this   includes   “good   laboratory  practices”,   as  well   as   the   regulated  development  path  for  bringing  a  new  molecule,  or  medical  device,  to  market.  

Novel  legal  and  regulatory  issues  

Legal   and   regulatory   issues   are   raised   by   the   perspective   of   the   near-­‐term   advent   of   5G   and   IoT,   but  accompanied  with   AI   and   block-­‐chain.   Such   issues   are   only   beginning   to   be   discussed   or   tackled   by   the  regulatory  bodies.  It  would  be  healthy  to  have  more  debates  on  them.  

One   issue   has   been  mentioned   earlier   concerning   the   driverless   car:   ethical   and   insurance   issues.   Faced  with  a  choice,  how  will   the  autonomous  car  be  programmed  to  respond  to  difficult,  spontaneous,  ethical  situations?   The   insurance   aspect   has   also   been   raised.   It   seems   that,   in   different   countries,   the   car  assembler  is  likely  to  be  considered  responsible,  which  may  considerably  slow  down  the  development  and  introduction  of  autonomous  cars  on  the  roads.  

Another  example  is  the  tax  system  in  the  case  of  automated  factories  (see  below).  It  is  important  to  stress  the   importance  of   a   sound   legal   environment,   not   only   for   the  wellbeing  of   society,   but   also   as   a   factor  promoting  or  hindering  innovation.  

Security  and  privacy  

Developers  must  have  security  and  privacy  present  in  their  mind  so  that  they  may  integrate  these  concerns  as  early  and  as  robustly  as  possible   in  their  development  activities.  Having  this  awareness  at  the  onset  of  developments   is   a  must.   Indeed,   retooling/fixing   after   the   fact   is   expensive   and  much   less   effective.   The  notion  of  security  is  usually  related  to  people,  however,  another  (large)  risk  concerns  infrastructure.    

We  have  heard  of  the  Iranian  centrifugal  machines  for  Uranium  enrichment  who  were  victims  of  malware  injected  by  the  Israeli  and  US  intelligence  services  (see,  for  example:  The  New  York  Times  dated  November  12,  2015).  Pipeline  or  plant  explosions  present  major  risks.  These  will  be  greatly  augmented  when  so  many  objects,   connected   on   the   Internet,   are   poorly,   or   not   at   all,   protected.   These   offer   countless   doors   to  hackers.   The   recent   attacks   on   OVH   via   145,000   connected   objects,   as   well   as   on   Dyn   via   surveillance  cameras,  constitute  stark  alarm  bells  in  this  respect.  (see  Le  Monde”  dated  January  30,  2017,  page  8).  There  is  an  urgent  need  for  robust  and  effective  “smart”  regulation  in  this  area.    

The  point  is  not  for  bureaucracies  to  generate  massive  amounts  of  regulation.  The  point  is  to  have  effective  and   robust,   but   “light-­‐footed”,   regulations.   However,   we’ll   have   to   experience   several   major   disasters  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  88  of  95  

 

before   the   industry   seriously   addresses   these   issues   because   there   are   costs   attached   to  making   the   IT  scene  more  secure.  Several   international  bodies,  such  as  the  European  Union  are  about  to  put  into  effect  regulations  concerning  the  security  and  privacy  of  data.  These  will  be  reviewed  and  discussed   in  the  next  phase  of  this  project.  

Macro  issues  in  the  IT/Telecom  world  

A  macro  issue  concerns  the  concentration  of  many  services  in  the  hands  of  a  small  number  of  very  powerful  firms.  This  goes  against  the  concept  of  net-­‐neutrality  and  considerably  augments  the  anxiety  of  the  public  over  the  innocuousness  of  the  business  practices  touted  by  these  giants.  Probably,  some  regulation,  robust  and  light  but  effective,  is  in  order.  

This  issue  of  size,  control  and  ethics  occurs  at  a  time  when,  in  the  USA,  we  seem  poised  for  another  round  of  megadeals  among  telecommunication  companies,  largely  prompted  by  the  large  infrastructure  costs  to  be  invested  in  preparing  for  5G.  The  following  figure  comes  from  the  Forrester  report  “What  IoT  brings  to  business  (2016).  

 

Figure  26  –  Survey  results  on  business  concerns  in  deploying  M2M  or  IoT  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  89  of  95  

 

9. Future  Steps  The  deliverable  constitutes  a  “work  in  progress”.  The  Market  data  have  been  presented.  Benefits  of  Major  stakeholders  and  challenges  have  been  discussed.  Models  for  business  in  the  industry  and  the  adaptation  of  5G!Pagoda  concepts  have  been  presented  and  discussed.  Finally,  a  comprehensive  survey  with  project  partners  has  been  allowed  to  find  the  direction  of  the  exploitation  plans  of  this  project.    

Clearly,  the  potential  of  network  slicing  is  very  large  and  will  upset  the  current,  established  positions  in  the  various   actors   -­‐   the   telecommunications   companies   in   particular.   It   will   also   open   up   new   market  possibilities,  especially  in  the  service  sectors.  On  the  basis  of  the  work  so  far,  it  is  understood  that:  

• The  technology  landscape  is  evolving  very  quickly  

• The   specific   assets   to   be   exploited   depend   upon   the   progress   of  work   and   effective   outputs   of   the  various  technical  tasks  and  WPs.  

• The  market   demands,   also,   are   fast   evolving   -­‐  we   need   to   better   identify   the   true   added   value   and  uniqueness  of  the  outcome  of  the  project.  

In  this  context,  task  T2.2  will  focus  on  the  following  key  question:    

• What  is  the  uniqueness  of  5G!Pagoda  compared  to  other  research  projects  on  5G?  

• What  can  be  the  business  impact  of  network  slicing  on  the  market?    

• What  could  be  the  business  opportunities  in  leveraging  future  dynamic  slicing  in  5G  networks?  

The  exploitation  survey  results  will  be  used  in  T6.3  to  build  project  exploitation  plan  and  the  output  of  it  will  be  also  used  as  an  input  for  the  continuous  work  on  T2.2.    

 

 

 

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  90  of  95  

 

Appendix  1.  Exploitation  Plan  Survey  

Joint  survey  between  WP2  and  WP6  on  behalf  of  T2.2  and  T6.3    to  be  returned  by  ALL  partners    

Dear  partners,  in  order  to  pave  the  way  to  a  successful  exploitation  plan  of  the  5G!Pagoda  results,  we  need  your  inputs.  We  are  aware  that  as  a  research  project,  not  all  results  are  identified  yet,  but  we  would  like  to  get  from  each  partner  a  clear  description  of  your  expected  exploitable  result  out  of  the  project.  The  results  of   this   survey   will   be   used   by   WP2   and   for   future   work   of   WP6   (T6.3).   The   form   has   to   be   sent   to:  [email protected]  

 

Partner  name:    

Person  of  contact  name:  

Person  of  contact  email:  

Person  of  contact  phone  number:  

 

Part  A  –  Partner  perspective  1.  Please  define  which  exploitable  results  your  organization  is  planning  to  get  from  5G!Pagoda?  (Please  fill  in  multiple  categories  if  applicable)  

q  Open  source  technology  enablers:  

q  Proprietary  technology  enablers:  

q  Products:  

q  Online  services:    

q  Consulting  service  and/or  technology  transfer:  

q  Other  (please  specify):  

 

Please  complete  one  Form  B  (at  the  end)  for  each  5G!Pagoda  exploitable  results.  

 

2.  What  is,  according  to  you,  the  value  proposition  of  what  we  are  developing  in  5G!pagoda?  

 

3.  Could  you  identify  and  describe  the  main  competitors  in  the  scope  of  5G!Pagoda  concepts?  

 

4.  What   competitive   advantage   do  we   have   against   competing   solutions   (advantage   that   cannot   be   easily  reproduced  by  competitors)?  

 

5.  Who  are  the  priority  customers  5G!Pagoda  should  target?  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  91  of  95  

 

 

6.  What  is  your  Intellectual  Property  Strategy?  

-­‐ Do  you  have  or  plan  to  patent  results?  

o If  yes,  could  you  clarify  what  will  be  patented?    

-­‐ Do  you  plan  to  make  results  open  source  and  publicly  available?    

o If  yes,  could  you  clarify  what  will  be  made  open  source?    

 

7.  What  exploitation  strategy  are  you  interested  in:  

-­‐ Collective  exploitation:  by  mutualizing  the  developments  made  by  5G!Pagoda  and  exploiting  them  as  a  consortium  or  joint  venture  among  the  partners:  

q  YES     q  EVENTUALLY     q  NO  

-­‐ Individual  exploitation:  by  using  your  results  independently  from  the  other  partners:  

q  YES     q  EVENTUALLY     q  NO  

 

8.  Where  should  be  the  focus  for  exploitation?    

q  5G!Pagoda  enablers?    

q  5G!Pagoda  network?    

q  EU-­‐Japan  synergies  opportunities?  

q  Other,  please  specify:  

 

9.  Would  you  be  interested  to  develop  partnership  in  5G!Pagoda  in:  

-­‐ Joint  commercial  exploitation  with  5G!Pagoda  partners:    

q  Not  at  all   q  Not  really   q  Perhaps   q  Rather  yes   q  Very  much    

-­‐ Joint  research  activities  with  5G!Pagoda  partners:    

q  Not  at  all   q  Not  really   q  Perhaps   q  Rather  yes   q  Very  much    

-­‐ Joint  standardization  activities  with  5G!Pagoda  partners:    

q  Not  at  all   q  Not  really   q  Perhaps   q  Rather  yes   q  Very  much    

 

10.  Would  you  please  suggest  some  exploitation  actions  to  be  performed  in  5G!Pagoda?  

 

Part  B  –  Exploitable  Result  Description  Please  complete  one  Form  B  for  each  5G!Pagoda  exploitable  results.  Just  copy  and  paste  this  section  for  each.  

1. Name  of  the  result  to  be  exploited:  

 

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  92  of  95  

 

2. Category  of  exploitable  result:  q  Software   q  Hardware   q  IPR  /  patent      q  Other,  specify:  

 

3. Short  description  of  the  exploitable  result  (10-­‐15  lines):  

 

4. Which  5G!Pagoda  partners  are  (or  will  be)  involved  in  its  development?  

 

5. When  will  it  be  mature  enough  to  be  commercially  exploitable?  

 

6. Is  it  (or  will  it  be)  IPR  protected?  

 

7. Can  the  other  members  of  the  5G!Pagoda  freely  exploit  it?  

 

8. Can  third  parties  freely  exploit  it?  

 

9. What  is  the  value  proposition  and  uniqueness  of  this  asset?  

 

10. Does  (or  will)  it  include  competitive  advantage  compared  to  other  existing  solutions?  

 

11. What  are  the  elements  that  would  prevent  the  competitors  to  simply  copy  or  reproduce  it?  

 

12. Who  could  be  the  potential  customers?  

 

13. What  would  be  the  priority  geographic  market?  

 

14. Other  remarks  to  be  specified:  

Thank  you  very  much  for  your  answers!  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  93  of  95  

 

References  

[1] www.thexnode.com  

[2] Ninety  eighty  four,  by  George  Orwell  (Penguin  Books,  London,  1989),  first  published  in  1949  

[3] Digital  Vortex,  by  Jeff  Loucks  et  al.  (IMD,  Lausanne,  2016)  

[4] Cygnus  Research,  2016  

[5] Credit  Suisse-­‐speed  dial  (19  November  2015)  

[6] The  internet  of  things-­‐how  the  next  evolution  of  the  internet  is  changing  everything,  2014  

[7] Frost  &  Sullivan.  Fifth  Generation  Networks.  9AB-­‐65  (Dec.  2015)  

[8] Grand  View  Consulting  ,  2015  

[9] Frost  &  Sullivan-­‐The  global  advent  of  5G  in  cars-­‐1B43-­‐18  (July  2015)  

[10] John  Greenbough,  in  “Business  insider”  (July  2015)  

[11] Prospects  for  Digital  Health,  by  Arthur  D.  Little  (2013)  

[12] http://techon.nikkeibp.co.jp/article/NEWS/20140121/328885/?ST=health  

[13] http://www.seisakukikaku.metro.tokyo.jp/invest_tokyo/english/why-­‐tokyo/industries/medical.html  

[14] https://www.seedplanning.co.jp/press/2016/2016061001.html  

[15] <http://techon.nikkeibp.co.jp/article/NEWS/20140121/328885/?ST=health>  

[16] https://newzoo.com/insights/articles/global-­‐games-­‐market-­‐reaches-­‐99-­‐6-­‐billion-­‐2016-­‐mobile-­‐generating-­‐37/  

[17] http://www.marketsandmarkets.com/Market-­‐Reports/video-­‐streaming-­‐market-­‐181135120.html  

[18] https://www.statista.com/outlook/203/121/video-­‐games/japan#takeaway  

[19] http://english.jr-­‐central.co.jp/company/company/achievement/financeandtransportation/  transportation2.html  

[20] http://www.cisco.com/c/en/us/solutions/collateral/service-­‐provider/visual-­‐networking-­‐index-­‐vni/complete-­‐white-­‐paper-­‐c11-­‐481360.html  

[21] https://www.ericsson.com/res/docs/2015/consumerlab/ericsson-­‐consumerlab-­‐commuters-­‐expect-­‐more.pdf  

[22] http://www.soumu.go.jp/johotsusintokei/whitepaper/h28.html  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  94  of  95  

 

[23] http://www.marketsandmarkets.com/PressReleases/smart-­‐factory.asp  

[24] https://www.ipa.go.jp/files/000044733.pdf  

[25] http://blog.goo.ne.jp/pineapplehank/e/7e839b5d61668d47d397e9c4f59e3c5c  

[26] Cisco,   “Cisco   Visual   Networking   Index   (VNI)   Complete   Forecast   for   2015   to   2020,”   June   7,   2016,  Available:   https://newsroom.cisco.com/press-­‐release-­‐content?type=press-­‐release&articleId=1771211  

[27] Ericsson,   “Ericsson   Mobility   Report,”   June   2016,   Available:  https://www.ericsson.com/res/docs/2016/ericsson-­‐mobility-­‐report-­‐2016.pdf  

[28] Ericsson,   “Ericsson   Mobility   Report,”   November   2015,   Available:  http://www.ericsson.com/res/docs/2015/mobility-­‐report/ericsson-­‐mobility-­‐report-­‐nov-­‐2015.pdf  

[29] Goldman  Sachs  Global  Investment  Research,  “The  Internet  of  Things:  Making  sense  of  the  next  mega-­‐trend,”   September   3,   2014,   Available:   http://www.goldmansachs.com/our-­‐thinking/outlook/internet-­‐of-­‐things/iot-­‐report.pdf  

[30] Juan   Pedro   Tomas,   “Understanding   Network   Slicing,   A   Key   Technology   for   5G,”   6   January   2017,  Available:  http://www.rcrwireless.com/20170106/internet-­‐of-­‐things/network-­‐slicing-­‐5g-­‐tag23-­‐tag99  

[31] Dr.  Harrison  J.  Son  and  Chris  Yoo,  “E2E  Network  Slicing  -­‐  Key  5G  technology:  What  is  it?  Why  do  we  need   it?   How   do   we   implement   it?,”   27   November   2015,   Available:  http://www.netmanias.com/en/post/blog/8325/5g-­‐iot-­‐network-­‐slicing-­‐sdn-­‐nfv/e2e-­‐network-­‐slicing-­‐key-­‐5g-­‐technology-­‐what-­‐is-­‐it-­‐why-­‐do-­‐we-­‐need-­‐it-­‐how-­‐do-­‐we-­‐implement-­‐it  

[32] NGMN   Alliance,   “5G   White   Paper,”   17   February,   2015,   Available:  https://www.ngmn.org/uploads/media/NGMN_5G_White_Paper_V1_0.pdf  

[33] Ericsson,   “Distributed   cloud   for   Capillary   Networks,”   5   May   2015,   Available:  https://www.ericsson.com/research-­‐blog/5g/distributed-­‐cloud-­‐for-­‐capillary-­‐networks/  

[34] Gartner,   Press   release,   10   November   2015,   Available:  http://www.gartner.com/newsroom/id/3165317  

[35] Juniper   Research,   Press   release,   13   December   2016,   Available.  https://www.juniperresearch.com/press/press-­‐releases/%E2%80%98internet-­‐of-­‐things%E2%80%99-­‐connected-­‐devices-­‐to-­‐triple-­‐b  

[36] McKinsey  Global  Institute,  “The  Internet  of  Things:  Mapping  The  Value  Beyong  The  Hype,”  June  2015  

[37] Frost  &  Sullivan  -­‐  Analysis  of  the  Global  Media  Content  Delivery  Network  (CDN)  Market  (June  2016)  

[38] Dan  Mayer,  “Vendors  find  opportunities,  challenges  in  adopting  open  source  platforms,”  31  January  2017,   Available:   http://www.rcrwireless.com/20170125/telecom-­‐software/vendors-­‐find-­‐opportunities-­‐challenges-­‐in-­‐adopting-­‐open-­‐source-­‐platforms-­‐tag2-­‐tag99  

D2.2  –  Initial  business  models,  market  analysis,  and  strategies  for  the  adaptation  of  5G!Pagoda  concept  

5G!Pagoda   Version  1.0.0   Page  95  of  95  

 

[39] http://www.rcrwireless.com/20170125/telecom-­‐software/vendors-­‐find-­‐opportunities-­‐challenges-­‐in-­‐adopting-­‐open-­‐source-­‐platforms-­‐tag2-­‐tag99  

[40] http://www.rcrwireless.com/20170125/telecom-­‐software/vendors-­‐find-­‐opportunities-­‐challenges-­‐in-­‐adopting-­‐open-­‐source-­‐platforms-­‐tag2-­‐tag99  

[41] The   future   of   jobs:   employment,   skills   and  workforce   strategy   for   the   fourth   industrial   revolution  (World  Economic  Forum,  Geneva,  2016.  

[42] Humans   need   not   apply   -­‐   a   guide   to  wealth   and  work   in   the   age   of   artificial   intelligence,   by   Jerry  Kaplan  (Yale  University  Press,  2015)  

[43] Cisco,  “Cisco  Visual  Networking  Index:  Global  Mobile  Data  Traffic  Forecast  Update,  2016–2021  White  Paper,”   28   March   2017,   Available:   http://www.cisco.com/c/en/us/solutions/collateral/service-­‐provider/visual-­‐networking-­‐index-­‐vni/mobile-­‐white-­‐paper-­‐c11-­‐520862.html