D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to...

110
ENVRIplus DELIVERABLE 1 A document of ENVRIplus project - www.envri.eu/envriplus This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654182 D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS: FOSTERING THE INNOVATION POTENTIAL OF RESEARCH INFRASTRUCTURES WORK PACKAGE 1 – NEW SENSOR TECHNOLOGIES: INNOVATION AND SERVICES LEADING BENEFICIARY: CEA Author(s): Beneficiary/Institution Philipp Kozin CEA, LSCE Jean-Daniel Paris CEA, LSCE Jean-François Rolin Ifremer Laurent Delauney Ifremer Federico Carotenuto CNR Mauro Mazzola ISAC-CNR Dario Pappale CMCC Diane Maurissen INRA Florian Haslinger ETH Zürich Eric Delory PLOCAN Olivier Gilbert CNRS Accepted by: Laurent Delauney, IFREMER (WP 1 leader) Deliverable type: [REPORT] Dissemination level: PUBLIC Deliverable due date: 29.5.2018/M1 Actual Date of Submission: 09.10.2018/M1

Transcript of D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to...

Page 1: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

ENVRIplusDELIVERABLE

1

AdocumentofENVRIplusproject-www.envri.eu/envriplus

This project has received funding from the European Union’sHorizon2020 research and innovationprogrammeunder grantagreementNo654182

D1.1EMERGINGTECHNOLOGIES, EMERGINGMARKETS:

FOSTERINGTHE INNOVATIONPOTENTIALOFRESEARCHINFRASTRUCTURES

WORKPACKAGE1–NEWSENSORTECHNOLOGIES:INNOVATIONANDSERVICES

LEADINGBENEFICIARY:CEA

Author(s): Beneficiary/InstitutionPhilippKozin CEA,LSCEJean-DanielParis CEA,LSCEJean-FrançoisRolin IfremerLaurentDelauney IfremerFedericoCarotenuto CNRMauroMazzola ISAC-CNRDarioPappale CMCCDianeMaurissen INRAFlorianHaslinger ETHZürichEricDelory PLOCANOlivierGilbert CNRS

Acceptedby:LaurentDelauney,IFREMER(WP1leader)

Deliverabletype:[REPORT]

Disseminationlevel:PUBLIC

Deliverableduedate:29.5.2018/M1

ActualDateofSubmission:09.10.2018/M1

Page 2: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

2

Abstract

The aimofWP1-task 1.1, is to identify and analyse emerging environmental observationstechnologies (sensors and platforms) that could be useful to, and benefit from, Researchinfrastructures (RIs) to realize and achieve their market potential. The task also aims toexplore technical challenges, market barriers and ongoing initiatives related to thesetechnologies. The deliverable D1.1 is tailored to be a source of inspiration for Small andMediumEnterprises(SMEs),whileinvestigatingnewbusinessopportunities,aswellasfortheEUbodies,pointingthemthespecificareasrequiringadditionalattentionandfinancing.

Environmental observations performed by RIs are dedicated to answering the grandchallenges(ENVRI+Theme4).Thisisatremendousendeavourdealingwithhundredsoftypesofmeasurementsbymeansofnumeroussensors,installedonnumeroustypesofplatformsand performingmeasurements in all environmental domains. D1.1 presents technologicaladvances implemented by the RIs, for observing four environmental domains, i.e. theatmospheric (ICOS, IAGOS, SIOS, ACTRIS), marine (EURO-ARGO, JERICO), ecosystem /biosphere (ANAEE) and solid earth (EPOS) domains. For each of these domains, a limitednumberofselectedvariablesandparameters,crucial fordescribingagivenenvironmentalsystemareidentified.Thedeliverablereviewsemergingtechnologiesalongwithexistingonesfor the measurements of key-parameters, analyses their strength and weakness, andidentifiesthemainproviders.Technologiesdescribedinthisdocument,representthosethataremostlyvaluedbyscientists,andthenthatarethemostwantedorexpectedtobecomeavailableonthemarketinthenearfuture(emergingtechnologies).

Foreachdomain,apreliminarymarketdescriptionisprovided,whereexistingandpotentialregulatory framework that could influence the production and/or market penetration ofsensors is described, together with countries/communities that could be interested indevelopingspecificsensorsandtechnologies.

Alongwithsensors,observingplatformsrepresentpromisingtechnologicalsectorthatrapidlydevelops.Thedocumentpresentsrecentadvancesinthisfield,withfocusontheemerginguse of drones for observations of atmosphere, biosphere and marine environment. It issupplementedbyanassessmentofadvancesonenergysupplyforsensorsandplatformsandthesubsequentemergingopportunityfordeployingsensorsinhardlyaccessibleregions.

Theroleofenvironmentalresearchinfrastructuresinbringingobservingtechnologiestothemarket isalsodiscussed,witha focusonhowRIs can supportand facilitatepublic-privatepartnerships engaging scientists, companies and governmental bodies in promoting thedevelopmentoftechnologiesandbringvaluetoallparties.NewbusinessopportunitiesbasedontheinteractionsofRIswithotherpartiesareprovided.

Projectinternalreviewer(s):

Page 3: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

3

Projectinternalreviewer(s): Beneficiary/Institution

TechnicalReviewer DominiqueDurand/UniResearch

RIReviewer EricDelory/Plocan

Documenthistory:

Date Version

01.05.2018 Draftforcomments

27.09.2018 Correctedversion

09.10.2018 AcceptedbyDelauneyLaurent(WP1Leader)

Documentamendmentprocedure

Amendments,commentsandsuggestionsshouldbesenttotheauthors

PhilippKozin:[email protected]

Jean-DanielParis:[email protected]

Terminology

AcompleteprojectterminologyisincludedasanAppendix2.

Projectsummary

ENVRIplus is a Horizon 2020 project bringing together Environmental and Earth SystemResearchInfrastructures,projectsandnetworkstogetherwithtechnicalspecialistpartnerstocreateamorecoherent,interdisciplinaryandinteroperableclusterofEnvironmentalResearchInfrastructures across Europe. It is driven by three overarching goals: 1) promoting cross-fertilizationbetweeninfrastructures,2)implementinginnovativeconceptsanddevicesacrossRIs,and3)facilitatingresearchandinnovationinthefieldofenvironmentforanincreasingnumberofusersoutsidetheRIs.

ENVRIplus aligns its activities to a core strategic plan where sharing multi-disciplinaryexpertisewillbemosteffective.TheprojectaimstoimproveEarthobservationmonitoringsystems and strategies, including actions to improve harmonization and innovation, andgenerate common solutions to many shared information technology and data relatedchallenges.ItalsoseekstoharmonizepoliciesforaccessandprovidestrategiesforknowledgetransferamongstRIs.

Page 4: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

4

ENVRIplusdevelopsguidelinestoenhancetrans-disciplinaryuseofdataanddata-productssupportedbyapplieduse-casesinvolvingRIsfromdifferentdomains.Theprojectcoordinatesactions to improve communication and cooperation, addressing Environmental RIs at alllevels,frommanagementtoend-users,implementingRI-staffexchangeprograms,generatingmaterial for RI personnel, and proposing common strategic developments and actions forenhancingservicestousersandevaluatingthesocio-economicimpacts.

ENVRIplusisexpectedtofacilitatestructurationandimprovequalityofservicesofferedbothwithinsingleRIsandatthepan-RIlevel.Itpromotesefficientandmulti-disciplinaryresearchoffering new opportunities to users, new tools to RI managers and new communicationstrategies for environmental RI communities. The resulting solutions, services and otherprojectoutcomesaremadeavailabletoallenvironmentalRIinitiatives,thuscontributingtothedevelopmentofacoherentEuropeanRIecosystem.

Page 5: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

5

Tableofcontent

Abstract....................................................................................................................................................2Documentamendmentprocedure..........................................................................................................3Terminology.............................................................................................................................................3Projectsummary......................................................................................................................................3Tableofcontent.......................................................................................................................................5ListofTables.............................................................................................................................................8ListofFigures.........................................................................................................................................101 Introduction..................................................................................................................................11

1.1 Grandchallenges.....................................................................................................................111.2 Positionofthisworkinthecurrentlandscape........................................................................111.3 Approachofthiswork:methodology.....................................................................................121.4 Structureofthisdocument......................................................................................................14

2 Measurementofatmosphericparameters..................................................................................152.1 MeasurementsofGreenhousegases(GHG)............................................................................15

WhymeasuringGHGisimportant..................................................................................15 Existingcommontechniques..........................................................................................16 EmergingtechniquesforGHGmeasurements...............................................................23 DevelopmentofGHGsensorsmarket............................................................................25

2.2 Measurementofatmosphericaerosols...................................................................................27 Whymeasurementofatmosphericaerosolsisimportant.............................................27 Aerosolcommonmeasurementtechniques..................................................................28

Condensationparticlecounters(CPC).......................................................................28 PassiveCavityAerosolSpectroscopyProbe(PCASP).................................................29 PhotoacousticAbsorptionSpectroscopy(PAS)/PhotoacousticExtinctiometer(PAX)30 Absorptionphotometers/aethalometer....................................................................30 Nephelometers..........................................................................................................31 LIDARs........................................................................................................................32 TimeofFlightAerosolMassSpectrometer(TOF-AMS)..............................................33 OpticalParticleCounters(OPC).................................................................................33 DifferentialMobilityParticleSizer(DMPS)................................................................34 AerodynamicParticleSizer.........................................................................................35

Emergingtechnologiesforaerosolpropertiesmeasurements......................................35 Developmentofmarketofaerosolsmeasurements......................................................36

3 Measurementsoflandbiosphereparameters.............................................................................383.1 Whymeasurementsoflandbiosphereparametersareimportant.........................................383.2 CommonmeasurementtechniquesforLandBiosphereparameters......................................40

Eddycovariancetechnique.............................................................................................40 Spectralimaging.............................................................................................................41

3.3 EmergingTechnologies:Fluorescence.....................................................................................43 FluorescenceMeasurementofPhotosynthesis.............................................................43 FluorescenceMeasurementsofMicroorganisms..........................................................44

3.4 Marketoverview......................................................................................................................444 MeasurementofOceanparameters............................................................................................46

4.1 Whymeasurementsofoceanparametersareimportant.......................................................464.2 Existingtechnologiesformarinemeasurements.....................................................................48

Acidificationofoceans...................................................................................................48 CarbonateSystem(pH,pCO2,TotalAlkalinity,DissolvedInorganicCarbon).............48

ReleaseofGreenhouseGases-Methane......................................................................48 METSmethanesensor...............................................................................................49 HydroCsensor............................................................................................................49

Page 6: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

6

MeasurementsofOxygenlevels....................................................................................50 Electrochemicalsensors(SBE43)...............................................................................50 Opticalsensors(optode3835/4330,RINKO,SBE63)..................................................50 TheAanderaaoptodesensors3830-3835............................................................51 TheSBE63sensor.................................................................................................51 TheRINKO-IIIopticaloxygensensor.....................................................................52

Measurementsofinorganicnutrientsconcentrations...................................................52 Salinity/densityvssalinity/conductivity.........................................................................54 Turbidity/OpticalBackscattering/Transmissometry.......................................................55 Currents..........................................................................................................................56 Fluorescence/Chlorophyll-A...........................................................................................57 Underwatersound.........................................................................................................58 Imageryofmicroorganismsandhabitat....................................................................59 TheImagingFlowCytoBot(IFCB)(McLaneResearchLaboratories)......................60 TheFlowCAM(FluidImagingTechnologies).........................................................61 The........................................................................................................................61 CytoSenseandCytoSubinstruments(CytoBuoy)..................................................62

4.3 Specificmattersandcomplicationsofseameasurements......................................................63 Hydrospherevsmarinemeasurements.........................................................................63 Developmentoftechnologiesformarinemeasurements.............................................63 Biofoulingprotectionforunderwaterinstrumentation.................................................63 Platform/instrument/sensor..........................................................................................65

4.4 Marinetechnologiesofthefuture...........................................................................................66 Optics..............................................................................................................................66 Acoustics.........................................................................................................................67 Passiveacoustics........................................................................................................67 Activeacoustics..........................................................................................................69 Fishabundanceandbiodiversity..........................................................................69 Bubblesandfluidflaresandseeps........................................................................69 Currentmeters......................................................................................................69 Industrialaspects..................................................................................................69

Electrochemicalmeasurements/ISFETs........................................................................69 Wetchemistryvs.compactsensors...............................................................................70 Industrialaspects.......................................................................................................71

Spectrometryin-situ.......................................................................................................71 Ramanspectrometry(RS)..........................................................................................71 Massspectrometry....................................................................................................72

4.5 Marketoverview......................................................................................................................72 CountriesInterestedinthesensorsforseameasurements,exportandimport...........72 Countriesseenasgrowingmarketsforthemarinesensors..........................................73 Recentevents,conferences,documents,whichpromotedevelopmentoftechnologyfor

marinedomain.............................................................................................................................745 Solidearthmeasurements............................................................................................................74

5.1 WhymeasurementsofSolidEarthparametersareimportant................................................745.2 Existingtechnologies................................................................................................................755.3 Emergingtechnologies.............................................................................................................765.4 Marketoverview......................................................................................................................77

6 New platforms for environmental measurements. Unmanned aircraft and vehicles (UAVs),Autonomousunderwaterandsurfacevehicles(AUV,ASV)andwirelesssensornetworks(WSNs)......77

6.1 Overview..................................................................................................................................776.2 Systemsforatmosphericmeasurements................................................................................786.3 Systemsforbiospheremeasurements....................................................................................816.4 Systemsforaquaticmeasurements.........................................................................................81

Page 7: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

7

6.5 IssueofenergysupplyforUAVs..............................................................................................826.6 Wirelesssensornetworks........................................................................................................826.7 Useofsingle-boardcomputersasmulti-purposeinstrumentplatforms.................................83

7 Energysupply:atransversalissueforallscientificmeasurements..............................................837.1 Sensorschallenges...................................................................................................................837.2 Moderntechnologicalsolutions..............................................................................................84

Solarpanels....................................................................................................................85 Windturbines.................................................................................................................85 Hydroturbines................................................................................................................85 Fuelcells.........................................................................................................................85 Batteries.........................................................................................................................86

8 PlaceofResearchInfrastructuresonthetechnologicalmarket...................................................888.1 InteractionsofRIswiththemarkets........................................................................................888.2 RIsasinnovativebusinesspartners.........................................................................................898.3 Addressedtechnologies...........................................................................................................908.4 Traditionalandinnovativebusinessmodels............................................................................918.5 Summary..................................................................................................................................93

9 IndustrialproducersintheframeworkofENVRIplusworkshops.................................................9310 Conclusions...................................................................................................................................9611 Referenceslist..............................................................................................................................9912 Appendices......................................................................................Error!Bookmarknotdefined.

Page 8: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

8

ListofTables

Table1ExamplesofGreenhousegasesandtheiranthropogenicsources.............................15Table2StrengthsandlimitationsofFTIR................................................................................17Table3ProducersofdevicesforFTIR.....................................................................................17Table4StrengthsandlimitationofUV-DOAS.........................................................................18Table5ProducersofdevicesforUV-DOAS.............................................................................18Table6StrengthsandlimitationofTDLAS..............................................................................19Table7ProducersofdevicesforTDLAS..................................................................................19Table8StrengthandlimitationsofNDIR................................................................................20Table9CompaniesproducingNDIR........................................................................................20Table10StrengthsandlimitationofCRDS..............................................................................21Table11ProducersofdevicesforCRDS..................................................................................21Table12StrengthsandlimitationsofLIDAR/DIAL..................................................................22Table13ProducersofdevicesforLIDAR.................................................................................23Table14StrengthsandlimitationsOFLDS.............................................................................23Table15ProducersofdevicesforLDS....................................................................................24Table16StrengthsandlimitationsOFLPAS............................................................................24Table17ProducersofdevicesforLPAS..................................................................................24Table18StrengthsandlimitationofCPC................................................................................28Table19CompaniesproducingCPC........................................................................................29Table20StrengthsandlimitationsofPCASP..........................................................................29Table21ProducersofdevicesforPCASP................................................................................29Table22StrengthsandlimitationsofPAS/PAX......................................................................30Table23ProducersofdevicesforPAS....................................................................................30Table24Strengthsandlimitationsofabsorptionphotometers/aethalometers....................31Table25Companiesproducingabsorptionphotometers/aethalometers..............................31Table26Strengthsandlimitationsofnephelometers............................................................31Table27Companiesproducingnephelometers.....................................................................32Table28StrengthsandlimitationsofLIDARs.........................................................................32Table29CompaniesproducingLIDARs...................................................................................32Table30StrengthsandlimitationsofTOF-AMS.....................................................................33Table31ProducersofdevicesforTOF-AMS...........................................................................33Table32Strengthsandlimitationsofopticalparticlecounters..............................................34Table33Companiesproducingopticalparticlecounters.......................................................34Table34Strengthsandlimitationsofdifferentialmobilityparticlesizer...............................34Table35ProducersofdevicesforDMPS................................................................................35Table36Strengthsandlimitationsofaerodynamicparticlesizer..........................................35Table37Companiesproducingaerodynamicparticlesizer....................................................35Table38Strengthsandlimitationsoficenucleationdetection..............................................36Table39StrengthsandlimitationsofAPSD............................................................................36Table40StrengthsandlimitationsofEddycovariancetechnique.........................................40

Page 9: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

9

Table41ProducersofdevicesbasedonEddycovariancetechnique.....................................41Table42Strengthsandlimitationsofspectralimaging..........................................................41Table43Producersofdevicesforspectralimaging................................................................42Table44StrengthsandlimitationsofPTR-MS........................................................................42Table45ProducersofdevicesforPTR-MS..............................................................................42Table46StrengthsandlimitationsofFluorescenceMeasurementofPhotosynthesis..........43Table47ProducersofdevicesforFluorescenceMeasurementofPhotosynthesis................43Table48StrengthsandlimitationsofFluorescenceMeasurementsofMicroorganisms.......44Table49StrengthsandlimitationsofFluorescenceMeasurementsofMicroorganisms.......44Table50Corespecificationsformeasuringconductivity........................................................54Table51Corespecificationsformeasuringturbidityandopticalbackscatter.......................56Table52Corespecificationsformeasuringcurrents..............................................................56Table53Corespecificationsformeasuringfluorescence.......................................................58Table54Corespecificationsformeasuringpassiveacoustics(Geologyspecific)...................59Table55Corespecificationsformeasuringpassiveacoustics(Oceancirculationspecific)....59Table56CorespecificationsofEMSOforrecordingHDvideoandstillimages......................60Table57Proposedhydrophonerequirementsfornoiseandbioacousticsintheopen-ocean–forFixO3/EMSO–EricDelory–PLOCAN................................................................................68Table58AdvantagesanddisadvantagesofMOXandopticalsensorsforGHGmeasurementsaccordingtoMalaver,Mottaetal.(2015)..............................................................................79Table59StrengthsandlimitationsofUAVs............................................................................80Table60Companiesproducingtechnologicalsolutions.........................................................87Table61InteractionofresearchersandRIswithSMEs..........................................................90Table62InteractionofresearchersandRIswithlargecompanies........................................90Table63Applicationsofsensorsforairandwaterqualitymonitoring..................................97

Page 10: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

10

ListofFigures

Figure1Factorsinfluencingthedevelopmentoftechnology.................................................12Figure2Eddy-Covariancetechniqueon-site...........................................................................40Figure3TheAanderaaoptodesensoronaprovorfloat........................................................51Figure4TRIOSfluorometersequippedwithIfremerantifoulingdevices...............................58Figure 5 Fouling on the sensors is the main constraint for in situ ocean autonomousmeasurements........................................................................................................................64Figure6Multiparametersystemforseameasurements........................................................65Figure7Dronesforunderwatermeasurements:(A)Seaexplorer,(B)Seaglider...................82Figure8Powersupplysystems.ENVRIplusWP3.1"Energyreport",2017............................84Figure9Powerstoragesystems.ENVRI+WP3.1"Energyreport",2017................................86Figure10InteractionsofRIswithotherparticipantsinthemarket.......................................88Figure11TechnologyreadinesslevelAxis(1-9)andstagedofthetechnologicalproduct.....91

Page 11: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

11

1 IntroductionSocieties are facing a number of environmental grand challenges (ENVRIplus WP 12)interlinking the four domains covered by ENVRIplus. The data provided by RIs throughenvironmental observation is crucial in tackling these challenges. The present researchsupportsthisenvironmentalmonitoringrolebyfacilitatingthesupplyofnovelmeasurementtechniques,abletoreinforcetheroleandimpactofRIs.

1.1 GrandchallengesClimate change is a global issue caused by anthropogenic emissions of climate forcers,especially long lived greenhouse gases (GHG). Climate positive feedbacks take place inremote, vulnerable regional ecosystems (e.g. permafrost, Kuhry et al. 2013)mediated byGHGsareamajorthreattobeinvestigatedandmonitoredoverthelongterm.Airqualityisanotherbiggest issue.Humandeathassociatedtoairpollutionremainatsignificantlyhighlevels.Ubiquitousaerosolsresultincomplexeffectsonclimateandinadversehealthimpacts.FurtherincreaseoftemperaturescausethethreatthatAmazonianorSiberianforestsbecomemorevulnerabletofires.Changesintheenvironmentincludechangesinthebiosphereand,thus,theagricultureandfoodproduction(Parryetal.2004).Duetodroughts,mostofthefarmlands may turn into deserts, this would in turn challenge food security. Contrary togeneralbelief,theagriculturalactivitieswillnotbeexpandedtothenorthernregionsintheseconditions, because they will be limited with the poor land quality. Meat production,consideredasoneofthemainsourcesofGHG,doesnothelptostabilizethesituation,asittakesmanyplant-basednutrientstoproduceanimal-basedfood.Monitoringenvironmentalparametersoftheoceansisanothertaskofgreat importance.Oceansystemsstayincloserelationtotheotherdomainsandareheavily influencedbyanychangesofenvironmentalparameters.Thus,riseoftheaveragetemperatureswillshiftthehabitualareasofnumerousfishspeciesandmayinfluencetheprocreationofothers.LargeconcentrationsofCO2intheatmosphereaboveseawaterswilldecreasethesolubilityofoxygeninthewaterpreventingseaanimalsfrombreathing.Atthesametime,dissolvedCO2cancauseacidificationofthewater, preventing corals andother sea inhabitants frombinding carbonandbuilding shellstructures.

1.2 PositionofthisworkinthecurrentlandscapeMonitoringenvironmentalparametersandclimatechangeisacomplextaskwhichanswersgrand challenges. It is of crucial importance (Bell and Joseph 2018) for all countries andsocieties.Developmentoftechnologiesforsuchmonitoringisinhugedemandanddrivenbynumerousfactors(fig.1).Amongthemaredemandforthehighqualityofmeasurementsanddevelopmentofnewtypesofmeasurements,reductionofmeasurementscosts,necessitytocontrolthepollutionandavoidingthelegislativeresponsibilityforthecontaminationoftheenvironment.Besides,thereisalargesocietaldemandbasedontheongoingdecreaseofair,soilandwaterquality.Environmentalmonitoringisacomplicatedactivity,becausetechnical

Page 12: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

12

requirements for the innovative measurement platforms, systems and sensors can varysignificantlyacrossregionsanddomains.Suchvariationscertainlycreateunwanteddifficultiesforthetechnologyproducers,especiallysmallandmediumenterprises(SMEs),duetotheirgenerallylimitedresources.Europeanbusinessesarelimitedintheirdevelopmentinthisfieldduetotheinabilitytoovercomethetechnologicaldifferences,tooverviewthepossiblepathsfordevelopmentofcorrespondingmarketsandtoestablishthecontactsin-betweenresearchcommunities, technology producers and other supporting businesses. This deliverable ofENVRIplus1projectservestooverpassmentioneddifficultiesofenvironmentalmeasurementsinEurope.ItisaimedtohelpSMEs,scientificcommunitiesandotherinterestedpartnerstoestablish fruitful, beneficial collaborations and to understand the possible vectors ofdevelopmentofEuropeanenvironmentalmeasurementsandmonitoring.

FIGURE1FACTORSINFLUENCINGTHEDEVELOPMENTOFTECHNOLOGY

1.3 Approachofthiswork:methodologyTheaimofENVRIplusDeliverable1.1wastoanalyzeandidentifyusefultechnologies(sensorsand platform-related) for environmental observations and services with high potential of

1http://www.ENVRIplus.eu/

Page 13: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

13

turningintoprofitablebusinesseswiththehelpofResearchinfrastructures(RIs).Thetaskalsoaimedtoexplorethechallengesandbarriers(technicalandmarket)andinitialinitiativesinthearea.TheresultingDeliverable1.1shallactasaguidelinefortheSMEs,inspiringfuturedevelopmentandproductiondecisions,aswellasfortheEUandnationaldecisionmakersandfundingorganizations,highlightingspecificemergingareas.

TheworkonDeliverable1.1hasstartedfromthe“whiteboard”exercise inPrague(2015),whereparticipants(allexpertsfromRIs)havefirsttimeidentifiedthemeasurementvariables,critical forRIs,correspondingsensors,capableofmeasuringthisvariablesandSMEswhichcouldproducesuchsensors.ThisworkhascontinuedatENVRIweeksuntil2017,whentheface-to-facemeetingbetweenRIsandSMEswasorganizedinGrenobleintheframeofthe1stEUEnvironmentalResearchInfrastructures–IndustryJointInnovationPartneringForum.Theparticipants(SMEsandRIsmembers)sharedtheirvisionondevelopmentofenvironmentalsensorsanddatacommunicationsystemsanddefinedtheirpossibleapplications.

ThedeliverableitselfhasbeenoutlinedatameetingofTheme,workpackageandtaskleaders(IfremerandCEA),inBrest(October2017),wheretheydiscussedthepossiblestructureofthedeliverableanditscontent,mainmeasurementparameterstofocusuponandthebestwaystoshowinter-connectionsbetweenRIs.

Furtheron,thestructureofcurrentdeliverablewasproposedanddiscussedattheENVRIplusmeeting inMalaga,Spain,duringNovember2017.Participants fromvariousRIsagreedon“domain”structureofthedocument,meaningthattheimportantenvironmentalparametersand technologies for their measurements were sorted by four domains (Atmosphere,Biosphere, Hydrosphere and Solid Earth). In addition, participants decided to add the“market” section to the document, where economy-related questions could have beendiscussed,suchasRIsbeing innovativepartnersandcontributorstothenewtechnologies,promotionofbusinessesandmarketdemands.Thischapterwasmeanttoprovidetherelationto the ENVRIplus WP18, “Liaison to users: industry, innovation economics” and identifyexisting and new user communities interested in application of novel environmentaltechnologies.Thetimelines forthedeliverablepreparationandsubmissionwerediscussedtoo.

AfterENVRIplusmeetinginMalaga,thetaskleader,CEA,presenteditsvisionofthedocumentbypracticalexample,referringtotheemergingtechnologies,relevantformeasurementsofGHG.ThissectionwaschosenbyCEAasparticipanttoENVRIplusonbehalfofICOS.Withthispieceofwork, authorshaveapproachednumerous instrumentationexperts toknow theiropinionaboutexistingandemergingtechnologiesforenvironmentalmeasurementswithhighpotential.Among theseexpertswere the specialists fromatmospheric (ICOS, IAGOS,SIOS,ACTRIS)marine(EURO-ARGO,JERICO),ecosystem/biosphere(ANAEE)andsolidearth(EPOS)domains.ParticipantswereofferedtofollowthestructureofthedocumentproposedbythetaskleaderandtowritesimilarlyaboutthetechnologiesofinterestfortheirRIs.Besidesthat,thediscussionshavetouchedtheimportantpointsofavailabilityofnewplatformsforsensors

Page 14: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

14

installations, power supplies for the sensors and international market development ofenvironmentalmonitoringinstrumentation.

DuringtheENVRIplusmeetinginZandvoort,NetherlandsduringMay2018,thetask leaderpresented the resultingwork to theparticipants and requested final comments.After thedeliverable was commented upon, the document had been modified accordingly andsubmitted to the internalandexternal reviewersprior to thesubmission to theENVRIplusheadoffice.

1.4 StructureofthisdocumentThedocumentaimsateasingthereader’swalkthroughthepresentedinformation.

Chapter one, introduction, shows the background and explains the necessity of thisdocument. It describes grand environmental challenges and consequent necessity inadvanced environmental measurements and technologies. It positions the work in thecurrentlandscape,explainsmethodologyofworkandstructureofthedocument.

Chapter two deals with the technologies for atmospheric measurements, such asmeasurements of GHG and Aerosols parameters. This chapter analyses the strengths andweaknesses of the technologies, and identifies main providers. Described technologiesrepresentthosethataremostlyvaluedbyscientistsandthatarethemostwantedorexpectedtobecomeavailableonthemarketinthenearestfuture.Similarstructureisacceptedforthechaptersthree,fourandfive,correspondingtothemeasurementsoflandbiosphere,marine,andsolidearthparameters.

Eachofthechapterstwo-fiveiscomplementedwiththesectionofmarketoverview,whereauthorstalkaboutmainmarkettrendsinfluencingthedevelopmentofcorrespondingsensorsandmaindrivingforcesforsuchdevelopment.

Chapter sixdescribes the on-going development of the new platforms for environmentalmeasurements. Among those are unmanned autonomous vehicles for atmospheric,biosphereandmarinemeasurementsaswellaswirelesssensornetworks.

Chaptersevenisspecificallydedicatedtotheissueofenergysupply,whichisacriticalissueforthemeasurementsperformedintheremote,hard-accessibleareas.Itdescribesvariousmeansofenergysupply,suchassolarpanels,windandwaterturbines,fuelcellsandothers.

Chaptereightdiscussestheplaceofresearchinfrastructuresonthetechnologicalmarket.Thischapter demonstrates the connections of research infrastructures with the other marketplayers,suchasindividualresearchers,SMEs,largecompaniesandgrantholders.Itaddressestraditionalandinnovativebusinessmodelsandsocietiesinterestedindevelopmentofnewsensors.ChapterninegivesanoverviewtothemeetingofENVRIplusparticipantswiththeindustrial producers of environmental sensors in Grenoble (18-19May 2017) in order to

Page 15: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

15

underlinethestrongdedicationofenvironmentalRIstotheestablishmentofstrongrelationswiththemarketplayers.

Finally,chaptertenprovidesthefinalconclusions.Itsummarizesthetrendsoftechnologyandmarketdevelopments,thepossibleapplicationsofsensortechnologies.

ItalsoreferstotheAnnex1table,whereauthorsshowthepossibilitiesofcross-utilisationofsensorsbyvariousresearchinfrastructures,thusunderliningsimilaritiesofRIsinthefieldoftechnologies.

2 Measurementofatmosphericparameters

2.1 MeasurementsofGreenhousegases(GHG). WhymeasuringGHGisimportant.

Climatechangeismainlycausedbyaccumulationoflargeexcessesofgreenhousegases(GHG)intheatmosphere,mainlyCO2andCH4,butalsoN2O,SF6andsomeothers2(Table1).Thus,GHGmeasurements are needed to understand the drivers of climate change and to helpmitigatingadverseclimatechange.

TABLE1EXAMPLESOFGREENHOUSEGASESANDTHEIRANTHROPOGENICSOURCES

Source Electricityand heatproductionthroughburning offossilfuel

Wastewaterhandling

Roadtransportation

Agricultural

Activity(soils)

Refrigeration andclimateequipment

EntericFermentation

Aviation

Gas CO2 CH4,N2O CO2,N2O N2O HFC CH4 CO2, ,N2O,H2O

Thus,alongwiththedevelopmentofsocietalneedforclimateaction,scientificcommunitiesandindustrialcompaniesneedtotakesignificanteffortstoensurepropermeasurementsandquantifications of GHG fluxes. Current environmental legislation in most-economicallydevelopedcountriesprescribelargeemitterstosubmitanannualemissionsreport.Thedataabout the emissions can be collected following two main paths. The companies may (1)estimatetheemissionsbasedoninventories(typicallyexemplifiedbyUNFCCreportingandconstitutes the basis of INDC in the frame of the Paris agreement), or (2) perform GHGconcentration monitoring by means of instruments or sensors combined with inversemodelling to retrieve GHG fluxes (now admitted in the discussion as per UNFCCC

2http://www.ipcc.ch/report/ar5/wg1/

Page 16: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

16

methodology3.Inventoryapproachesarewidelyusednowadays,becausetheyarerelativelycheap and do not require complicated installations or service. On the other hand, directmeasurementsofproducedGHGconcentrationbymeansofspecialsensorsarehighlyprecisebut the finally retrieved GHG fluxes values may have a high uncertainty due to inversemodelling. Assuming that environmental regulations in the EU andworldwide are gettingstricter,onecanseetheinstrumentalmeasurementsofGHGasthetargetthatGHGproducersshallaim.Intruth,producersofGHGshallbegenuinelyinterestedinaccuratemeasurementsofGHG, because itwill help them to copewith the strict environmental legislation in thefuture,reduceoperatingcosts,fuelconsumptionandwasteproduction,etc.

Existingcommontechniques

Overview

ThereisanumberoftechniquesdedicatedtothemeasurementsofGHGconcentrationsintheatmosphereaswellastomeasurementsofvariousgazphasecomponents.Amongthemostusedtechniquesare:

● Optical techniques for concentration measurements: Fourier transform infraredspectroscopy,UV-DOAS,IRcamera,solaroccultationflux.Lasermeasurementsbasedtechniques:tunablediodelaser,cavityringdownspectroscopy,LIDAR(DIAL)

● Non-opticaltechniquesforconcentrationmeasurements:gaschromatography,massspectrometry,photo-acousticalmeasurements,electro-chemicalmeasurements

● Experimental approaches of analysis: radial plume mapping, tracer correlation,backgroundLagrangianstochastic,

FourierTransformInfraredSpectroscopy(FTIR)

FTIRisabroadbandopticalspectroscopymethod,capableofperformingrealtimemonitoringof GHG (Schütze et al. 2013; Hase et al. 2015) and volatile organic substances in the air(Christianetal.2004).FTIRusescharacteristicspectralfeaturesofindividualcompoundsforthedetectionand,thus,candetectnumeroussubstanceseveninhighlypollutedzones.Itcandetectandidentifythevibrationalfrequenciesofallmolecules,capableofabsorptionofIRenergy(Bacsiketal.2007).FTIRsystemsarenormallyrepresentedwithtwotypesofsystems,namelyextractivecellandopen-path.ForextractiveFTIRmeasurements,thebeamispassedthroughthecell,locatedintheinstrumentandcontaininggassampleofinterest.Samplecellpathlengthscanrangefrom10cmto150mfolded-pathcells.

OpenpathFTIRspectrometersarenotequippedwithaninternalmeasurementcell.Indeed,themeasurementisdonealonganexternalopticalpath.Thus,thepathlengthpayvaryfromseveral meters to several hundred meters. Open path FTIR devices are represented bymonostatic or bistatic configurations. Inmonostatic configuration, emitter of light and its

3http://unfccc.int/resource/docs/2017/sbsta/eng/l21.pdf

Page 17: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

17

detectorarelocatedinonecompartment,whileexternallightreflectorsareusedtoreversethelightbeamfromthelightssourcetothedetector.Thisconfigurationisbeneficial,sincebothemitterand receiverof lightcanbeconnected to thesamepowersource. Inbistaticconfiguration, lightemitterandlightdetectorare indifferent locations.Thetypicalbistaticconfiguration uses the sun as the light source (e.g. FTIR spectrometer used in the TCCONproject)andbymeasuringthusthedirectsolarspectra,measuresthemeanconcentrationofGHGandothercompoundsinthetotalatmosphericcolumn.

TABLE2STRENGTHSANDLIMITATIONSOFFTIR

Strengths Limitations

Large number of IR activecomponents

Interferenceof gaseousH2O, interferenceofCOand CO2, cannot detect Cl2, O2, N2, weak IRabsorptionformanyinorganicmolecules

Compounds can be analysedsimultaneously

LimitedwavelengthrangeofIRbeam

Easyportable Setuprequires5-8hoursand2people

Relativelylowinstrumentcost Requires highly skilled professionals for fielddeploymentanddatacollection

FTIRproducingcompaniesarelistedintable3

TABLE3PRODUCERSOFDEVICESFORFTIR

Company website

Imacc https://www.imacc-instruments.com/

Opsis http://www.opsis.se/

MIDACCorporation http://www.midac.com/

ABB http://new.abb.com/

Cerex http://cerexms.com/

Bruker https://www.bruker.com/

Kassay http://www.kassay.com/

UltravioletDifferentialOpticalAbsorptionSpectroscopy(UV-DOAS)

The UV-DOAS is an optical remote sensing technology (Leytem et al. 2009), determiningconcentrationsofgaseousspeciesofinterestthroughmeasuringtheabsorptionofUVlightbychemicalcompoundsinthegasphaseandcalculatingtheirconcentrationthroughBeer-Lambert law (Volkameraet al. 1998).OpenpathUV-DOAS instrument canbedeployed inseveral modes, namely monostatic, bistatic and passive (EPA Handbook: Optical Remote

Page 18: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

18

Sensing for Measurement and Monitoring of Emissions flux, 2011). Constructions ofmonostaticandbistaticconfigurations is similar to thoseofFTIR,describedabove.Passiveconfigurationusestheambient lighttomeasuretheconcentrationsofpollutantsanddoesnotrequireatransmitterinitsconstruction.Suchconfigurationisespeciallysuitablefortheinstallationon theballoonstations tomeasure theconcentrationsof thepollutants in theatmosphere.

TABLE4STRENGTHSANDLIMITATIONOFUV-DOAS

Strengths Limitations

Manycompoundscanbedetectedinlowppbrange

AnumberofspeciesdonothavesuitableUV-visibleabsorptionstructures(invisibleforUV-DOAS)

Broadspectruminstrumentscanmonitorup to three criteria pollutants and tracespecies

Difficulties in aligning the optics at the longpath

Continuous remotemonitoringanddatacollection,nearrealtimedata

Affectedbypoorvisibilityconditions

Longmeasurementpathlength Fixedobservationare,onthelineofthebeam

Portable No point wise measurements, or resolvedalong-pathconcentrations

Relativelylowcostoftheinstrument,lowcostoflongtermdeployment.

-

UV-DOASproducingcompaniesarelistedintable5

TABLE5PRODUCERSOFDEVICESFORUV-DOAS

Company website

Opsis http://opsis.se/

Cerex http://cerexms.com/

ETGRisorseeTechnologia http://www.etgrisorse.com/en/

EnviroTechnologyServices http://www.et.co.uk/

EnvironnementS.A. http://www.environnement-sa.com/

ArgosScientific http://www.argos-sci.com/

TunableDiodeLaserAbsorptionSpectroscopy(TDLAS)

TDLASisafamilyoftechniquesbasedonthegenerationoflightbeam,characterizedwiththenarrowwavelengthandsmallcross-sectionarea(Laser)(Patteyetal.2006).ThisLaserbeam

Page 19: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

19

ispassedthroughthesampleofgas,anddetectorsdeterminegasconcentrationbymeasuringtheamountofabsorbedlight(Lackner2007).Measuredabsorptionspectraismatchedwiththe ambient conditions, such as temperature and pressure and, at known effective pathlength,isusedtodeterminetheconcentrationofthegas.Developedover30yearsago,near-infraredNIR-TDLAS isa technologywith thehigh technology readiness level, commerciallysuccessfulatmultiplemarkets.DuringlastyearstheTDLAStechnologywasimproving,mainlyduetothedevelopmentofnewlasersources,suchassemiconductorquantumcascadelasers(QCLs)andinter-bandcascadelasers(ICLs)(Sonnenfrohetal.2004,Frish,2014).Thesearemidinfrared laser sources (Mid-IR) suitable formeasurements in themolecular fingerprintspectralregion,whereabsorption linestrengthsaremuchstrongerthan intheNIRregion.Becauseofthat,MWIRcanbeusedfordetectionofcomplexmolecules,difficult todetectwith NIR TDLAS. The further efforts are taken to reduceMWIR sensor noise and energyconsumptionbyuseofuncooledpulsedorlow-powerlasersourcesandsmallareauncooleddetectors.FurtherreductionofMWIRlasercostbyhigh-volumeproduction,willmakeMWIRTDLASsensorscommerciallyattractiveandwidelyused.

TABLE6STRENGTHSANDLIMITATIONOFTDLAS

Strengths Limitations

High compound specificity due to thenarrowness of laser wavelength andpossibilityofadditionaltuning

Detects components only within limitedlaserwavelengthrange

Easytocalibrate,rapidresponse,lownoiselevels

Onlycompoundsabsorbingwithinnear-andmid-IRrangecanbedetected

Lowequipmentcost,minimalconsumablesneededforoperation

Only possible to apply in clean, non-dustyenvironments.

Remote long-term monitoring and nearrealtimedata

Easy to transport and deploy, relativelylightweightofdevices

Capabletomeasureconcentrationsfrom1ppbto1000ppmonpath lengthsup to1km

ProducingcompaniesofTDLarepresentedintable7.

TABLE7PRODUCERSOFDEVICESFORTDLAS

Page 20: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

20

Company website

Opsis http://opsis.se/

Aerodyne http://www.aerodyne.com/

AP2E https://www.ap2e.com/

LosGatosResearch http://www.lgrinc.com/

NonDispersiveInfra-Redsensor(NDIR)

NDIRisatechniquethathasalongtrackrecordinthiscommunity.InNDIR,aninfraredlampshinesthelightthroughatubefilledwithsampleofair.GasmoleculesintheexperimentaltubeabsorbthelightofthewavelengthmatchingwiththesizeofgasmoleculesaccordingtoBeer-Lambert Law.Thedetectormeasures theattenuationof thewavelengths inorder todeterminethegasconcentration.Thedetectorisequippedwiththeopticalfilterthatremovesall light wavelengths, except the wavelengths that are absorbed by the gas of interest(Hummelgaetal.2015).

TABLE8STRENGTHANDLIMITATIONSOFNDIR

Strengths Limitations

Lowcostofpurchaseandrunning Detection range and sensitivity for differentgasesvarieswithinverylargerange

Stable long term operation and smallcalibrationefforts,stableevenafterlongtermstorage

Measurements depend strongly on theambientconditions,suchastemperatureandatmosphericpressureduetovariabilityingasdensity

Water vapours interfere with themeasurements

ProducersofNDIRsensorsarepresentedintable13

TABLE9COMPANIESPRODUCINGNDIR

Company website

Alphasense http://www.alphasense.com/

Dynament http://www.dynament.com/

EdinburghSensors https://edinburghsensors.com/

Page 21: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

21

Sensors http://www.sensors-inc.com/

HeimannSensorGmbH http://www.heimannsensor.com/

Li-CorEnvironmental https://www.licor.com/

Senseair https://senseair.com/

Cavityringdownspectroscopy(CRDS)

CRDS is a technique that is a part of TDLAS family. Contrary to traditional adsorptiontechniques measuring the absolute change in light intensity after passing the light beamthroughthecertainvolumeofsample,CRDStechniqueisbasedonthemeasurementsoflightintensitydecayrate,exitingfromahigh-finesseopticalcavity(Berdenetal.2010).Byusingcavity resonance to reach the light intensity threshold before switching the laser off andmeasuring the timeof lightdecay. CRDS techniqueare less sensitive to variations in lasersourceintensity.Inaddition,CRDStechniquesrevealexcellentsensitivitysincethereflectivityoftheclosedopticalcavityyieldsmuchlongereffectivesamplepathlength(uptoseveralkm).

TABLE10STRENGTHSANDLIMITATIONOFCRDS

Strengths Weaknesses

Greatsensitivityduetomuchlongereffectivepath lengths, not influenced by variations inlightsourceintensity.

Highreflectivitymirrorsareonlyabletoreflectthesmallwavelengthrange,whathardensdetectionofmultiplespecies.

Little/nosamplepreparationrequired sensitivetovibrationasthemirrorsmustbe well aligned to get the cavityresonance

ProducingcompaniesofCRDSanditscomponentsarepresentedinthetable9

TABLE11PRODUCERSOFDEVICESFORCRDS

Company website

Picarro http://www.picarro.com/

TigerOpticsmLLC http://www.tigeroptics.com/

LightDetectionandRanging/DiscoveryandLaunch(LIDAR/DIAL)

LIDARisthemethodofremoteatmosphericsensingbasedonthemeasuringthedistancetothetargetbyilluminatingthetargetwiththepulsinglaserlightandmeasuringthereflected

Page 22: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

22

lightimpulses.LIDARdoesnotrequiretheestablishmentoflineofsightorinstallationofretro-reflectors. DIAL is a special application of LIDAR, proposed to locate and measure theconcentrationsofpollutants intheatmosphere (Browelletal.1998).Thedevicesendsthepulsing laserbeam,alternatingbetween twowavelengths, to the regionof interest in theatmosphere. Upon reaching the region of measurements, the light of one wavelength isadsorbedbythecompoundof interestorscatteredatreduced intensity,whilethe lightofanotherwavelengthisscatteredelastically.Thisscatteredlightiscollectedbyreceivingoptics,analysedandusedtodeterminetheconcentrationandlocationofthepollutant.Thelightofthewavelength, scatteredat reduced intensity, isused todetermine the concentrationofsubstanceofinterest,whilethelightscatteredelasticallyisusedtomeasurebackgroundlightscattering.Locationofpollutantcanbemeasuredbasedonthedelayofbackscatteredlightto the detector. Raman LIDAR technique is seen as potentially interesting for CO2measurements. A prototype has been developed in China and is capable tomeasure CO2atmosphericconcentrations,withnight-timemeasurementlimitations(Zhaoetal.2008).

TABLE12STRENGTHSANDLIMITATIONSOFLIDAR/DIAL

Strengths Limitations

Theconcentrationdataispresentedasafunction of distance along the path oflaserbeam

Absorption characteristics of substances aredependent on ambient conditions, such astemperature and pressure, thus additionalcalibration according to the weatherconditionsmightbeneeded

Easilyportable,providesbetteroverviewof the atmospheric region whenmeasurements performed from severallocations

Highcostofthesystem

Fast measurements (up to 15 minutes)overlongdistances(upto3000m)

Beampathmightbelimitedbythelandscape

Can be mounted on the airborneplatforms

Theremustbesufficientbackscatteringintheatmosphereforthedevicetoworkcorrectly

Can measure the concentrations andstateofmultiplespecies

Species with unique absorption bands aremeasurable. Species with the commonabsorptionbandscannotbedistinguished

Page 23: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

23

Providesrealtimedata

ProducersofLIDARsystemsarelistedintable11

TABLE13PRODUCERSOFDEVICESFORLIDAR

Company website

NationalPhysicalLaboratory http://www.npl.co.uk/

Spectrasyne http://www.spectrasyne.ltd.uk/

ITT http://www.itt.com/

LASEN http://www.lasen.com/

GreenValleyInternational http://greenvalleyintl.com/

EmergingtechniquesforGHGmeasurements

Overview

DevelopmentoftechnologiesforGHGmeasurementsisaconstantprocessongoinginseveraldirections.Significanteffortsarededicatedtothedevelopmentoftechnologiesbasedonthenewphysicalprinciplesandimprovingtheexistingtechnologies,makingthemmoresuitablefor the analysis ofGHG. Largework ismade to improve thedetection limits and limits ofquantificationofexistingtechniques,makingthemcapableofin-situandreal-timeanalysisofGHG, working in environmental “dirty” conditions and at wide range of environmentalconditions. Belowweprovide a short summaryof techniques,which,webelieve, deservespecialattention,aswellasthosethathavealargepotentialforfurtherimprovementsanddevelopmentsforthepurposeofGHGmeasurements.

LaserDispersionSpectroscopy(LDS)

Traditionalspectroscopytechniquesdetectlightintensitytodeterminetheconcentrationofgas.Incontrast,LDS(Daghestanietal2014)usesthephaseoflightforthesepurposes.ThismakestheLDStechniquehighlyinsensitivetotheintensityfluctuations.Thus,LDStechniquecanperformpreciserealtimemeasurementsoftracegasmoleculesin“dirty”environments,where intensity fluctuationsmay result fromsoot, fogorother interceptorsof theopticalpath.LDStechniquecandetectthecontaminantsinbroadrange(ppbtopercentagelevel),sincethedispersionapproachshowslinearresponseoverabroadconcentrationrange.

TABLE14STRENGTHSANDLIMITATIONSOFLDS

Strengths Limitations

Highsensitivity Detectsonecompoundperonelaser,fewermeasurablecompounds,limitedsensitivity

Page 24: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

24

Highselectivity Onlycompoundsabsorbingwithinnear-andmid-IRrangecanbedetected

Suitablefordemandingenvironments -

Realtimemeasurements -

Broadrangeofconcentrations -

Companies,producingofLDSarelistedintable15

TABLE15PRODUCERSOFDEVICESFORLDS

Company website

MIRICO http://mirico.co.uk/

LaserPhotoacousticSpectroscopy(LPAS)

Photoacoustic Spectroscopy is a technique, based on the measurements of the acousticeffects,emergingduringabsorptionoflightbytheanalysedmatter(gas).Uponradiationofgasbylight,thetemperatureofgasincreases,leadingtoaperiodicexpansionandcontractionof gas volume, synchronouswith themodulation frequency of radiation. This generates apressure wave (sound) that can be detected by the microphone (Dumitras et al. 2007).Intensityofgeneratedsoundisproportionaltothelightintensity,andthatiswhylaserlightsources are widely applied in this technique. Even though the technique was applied foratmosphericmeasurementsmorethan30yearsago(Meyer,Sigrist1990),thetechnologyissignificantly advancing due to the development of new laser sources (Gondal et al. 2012;WangandWang2016)andotherpartsofexperimentalset-ups,suchasresonators(Tavakolietal.2010).

TABLE16STRENGTHSANDLIMITATIONSOFLPAS

Strengths Limitations

Highsensitivity(ppb) Strict requirements for laser source (power,tuningrange,bandwidth,)

Selectiveexcitationofseveralspecies sound detecting system is sensitive to theenvironmentalnoise

Easytodetectlargemolecules Hardtodetectsmallmolecules

Duetophoto-thermalmechanism,LPASisusefulfortransparentsampleswherethelightabsorptionissmall

ProducersofLPAStechniquearelistedintable17

TABLE17PRODUCERSOFDEVICESFORLPAS

Page 25: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

25

Company website

GASERA http://www.gasera.fi/

LumaSenseTECHNOLOGIES https://www.lumasenseinc.com/

CaliforniaAnalyticalInstruments,Inc. http://www.gasanalysers.com/

MirSense http://mirsense.com/

AEROVIA https://aerovia.fr/

DevelopmentofGHGsensorsmarket

Overview

There is crucial need in the development of technologies and sensors to monitor GHGemissionsintheEarth’satmosphereandespeciallytomonitorindustrialGHGfluxesinEuropeandworldwide.Tofulfilthisneed,anumberofRIssuchasICOSorIAGOS,wereestablishedto provide the access to the GHG measurement facilities to all interested communities.Besidesthat,alargenumberofcompaniesareprovidingservicesanddealingwithproductionof sensors and technologies for GHGmeasurements. It is expected that co-emergence ofdenser networks and national/international legal frameworks will expand marketopportunities inthis field.Belowwedescribethemain internationaleventsand legislationactsthatwillstronglyinfluencethedevelopmentofGHGsensormarket.WealsoprovideanestimateoftheGHGsensorsmarket,thenumbersbeingfoundintheopensources.

Developmentofnormativedocumentsrelatedtoclimatechange

1.Thewell-knownKyotoprotocol4,adoptedon11December1997andenteredinforceon16February2005settheinternationallybindingGHGemissionreductiontargets.

2. In2007 -2009, important international conferences inBali5 (2007)and inCopenhagen6(2009) gave a strong value to the independent information that allows monitoring andverificationofGHGemissionswiththepurposeoftheirreductioninthefuture.Asaresult,atCopenhagenconference(2009),nationalemissionreductiontargetswereagreeduponbytheeconomicallydevelopedcountries.

4http://unfccc.int/kyoto_protocol/items/2830.php

5http://unfccc.int/meetings/bali_dec_2007/meeting/6319.php6http://unfccc.int/meetings/copenhagen_dec_2009/meeting/6295.php

Page 26: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

26

3.In2010,atclimatechangeconferenceinCancun7,Mexico,developedcountriesagreedtostrengthentheGHGemissionsreportingfrequencyandtodeveloplow-carbonnationalplansand strategies. Developing countries were also encouraged to develop such plans andstrategies.

4.In2010inFrance,theprojectofdecreeforGHGemissionreporting8providedanationallegalframeworktomonitortheemissionsfromlargecommunitiesandindustrialsettings.Thisopened the market for simple and relatively cheap sensors for GHG detection aroundindustrialsitesandlandfills.

6.In2012inDoha9Kyotoprotocolwasextendeduntil2020.

7.In2016,Parisagreementonclimatechangewasdeveloped,announcingoneofthemainaims to make finance flow consistent towards lowering greenhouse gas emissions andclimate-resilientdevelopment.Laterin2016,bothUSAandChinajoinedParisagreementforclimate change, the declaration was meant to push other countries to formally join theagreement.AsofOctober2017,195UNFCCCmembershavesignedtheParisagreementand169havebecomepartofit.10

8.InNovember2017UNFCCCsubsidiarybodyforscientificandtechnologicaladvicenoted11the increasing capability to systematically monitor GHG concentrations and emissions,through in situ as well as satellite observations and its relevance in support of the ParisAgreement.

DespitethedifficultiesthatworldcountriesfaceinnegotiationsofinternationalagreementsforGHGflux reductions, there isaclearprogress indevelopmentof legislativedocumentscoveringthisissue.Thus,allEUcountriesarerequiredtomonitortheiremissionsundertheEU’sgreenhousegasmonitoringmechanism,whichsetstheEU’sowninternalreportingrulesbasedoninternationalagreements.ThereportingcoverstheemissionsofsevenGHGfromlanduse,forestry,industrialandenergyprocesses,etc.,projections,policiesandmeasurestocutGHG emissions, nationalmeasures to adapt to climate change, low carbon strategies,financialandtechnicalsupportfordevelopingcountriesaswellasnationalgovernments’useofrevenuesfromtheaccountingofallowancesintheEUemissionstradingsystems.Infuture,EUplanstocutemissionsby40%by2030on1990levelwhiletheUSplansthecutof28%by2025comparedto2205.Otherlargecountriesareexpectedtojointheseplanstoo.Up-risingconcernofsocietyabouttheatmospherepollutionwillincreasetheamountofprivatesector

7http://unfccc.int/meetings/cancun_nov_2010/meeting/6266.php8https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT0000224704349http://unfccc.int/meetings/doha_nov_2012/meeting/6815.php10http://unfccc.int/paris_agreement/items/9485.php11http://unfccc.int/resource/docs/2017/sbsta/eng/l21.pdf

Page 27: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

27

and R&D projects dedicated to the measurements of GHG gases in the atmosphere. Insummary, thecombinationofprivatenationaland international requestswillbroaden thetechnologicalmarketofsensorsforGHGmonitoring.

Marketoverviewbytheleadingplayers

In2010,ChemicalandEngineeringnews(Reisch2010)askedtherepresentativesof largestproducers ofGHG sensors about their vision of themarket in the future and its size. Therepresentatives of Fischer Scientific estimated the global market as 700million USD; theestimate included themonitors of acid rain precursors and other pollutants such as lead,ozoneandGHG.TheysaidthatthesalesofGHGmonitorscouldincreasegreatlyiftheywereaddedtothegovernmentalnetworksofambientairqualitymonitoringstations.Theyaddedthatmeasurements of GHG had only a small share of themarket, but they expected theincrease inthesalesduetothechanging legislationsaroundtheworld.Li-CORBiosciencesconfirmedthattheyexpectedthetangentialexpansionofindustrialmarkets.Thecompanywasstronglycountingontheirgovernmentalandscientificcustomers,planningtosellseveralthousand high precision GHG monitors per year. Representatives of Shimadzu Scientificinstruments agreed that academic customers were their main customers, but they alsostartedtheworktoadapttheirproductsfortheindustrialapplications.Oppositely,Agilenttechnologiesreportedthattheirkeycustomerswereindustrialplayers.Theyhavedevelopedtheir gas chromatograph for easy GHG analysis. Some other companies focused on theinfraredabsorptionGHGmeasurements. For example, representativesof Picarro said thatthey were experiencing strong growth, selling their cavity-ring-down technologies to 47countries around the world. Another instrument maker Los Gatos sold several hundredinstruments to measure the CO2 and methane emissions. Los Gatos owns its own CRDStechnology. They worked with several large partners like General Electric to deploy theirinstrumentsatseveralindustrialfacilities.Additionalcontender,TigerOptics,claimedtosellover800instrumentsformonitoringindustrialgasquality.

2.2 Measurementofatmosphericaerosols Whymeasurementofatmosphericaerosolsisimportant

Aerosolsarerepresentedbysmallparticlessuspendedintheatmosphere.Iftheseparticlesare large and their concentration is sufficiently highwe cannotice their presence as theyscatter light, reduce visibility and cause the redden sunrises and sunsets. There are threeknowntypesofaerosols.Thefirst isthevolcanicaerosol,whichformsaftermajorvolcaniceruptions. This typeof aerosol is formedby Sulphurdioxide gas, converted todropletsofsulphuricacidinthestratospheresometimeaftereruption.Onceformed,theseaerosolscanremainintheatmosphereforabouttwoyears.Secondtypeofaerosolsisdesertdust.Particlesoftheseaerosolsarecomposedofmineralsandthusreadilyabsorbandscattersunradiation.They can be transported over large distances and are believed to be responsible for theformationofstormclouds.Finally,humanmadesulphate-basedaerosolscomeintheformof

Page 28: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

28

smokeoriginatingfromburningfossilfuels.Theconcentrationoftheseaerosolsishighestinthenorthernhemisphere,wheretheindustrialactivityisthehighest.

Itiswellknownthatglobalclimatechangeishighlydependentonthecomplexinteractionsbetweensolarradiationandatmosphericparticles,howeverthemagnitudeofthisinteractionas well as its effects are poorly understood. For example, scientists still argue whetheraerosols are promotingmostly globalwarming or global cooling12.Numerousmodelsweredeveloped for better understanding of interactions of aerosol particles with solar andterrestrialradiation,formationofdropletsandice-crystalsinitiatedbyinteractionsofaerosolparticleswith atmospheric gaseousH2O.Manyofmodels and simulations contradict eachother,becausetheparametersofaerosolsandtheirparticlesarepresentedincorrectly.Thiswrong understanding of aerosol properties is a direct consequence of lack of directmeasurements anddetailed characterizationof all aerosol properties. Instrumentation formeasurementsofaerosolpropertiescanbedividedaccordinglytothespecificcharacteristicsofaerosolstheyaredesignedtomeasure.

● Totalnumberandmassconcentrationofparticles● Opticalpropertiesofaerosol● Chemicalcompositionoftheparticles● Sizedistributionofparticles

Aerosolcommonmeasurementtechniques

Aerosolnumberconcentrations

Condensationparticlecounters(CPC)

Condensation particle counters are normally used to measure the total particleconcentrationsinaerosol(Kestenetal.1991).InthecontinuousflowdiffusionCPC,ambientaerosolenters inthedevicechamberthroughtheinletandisexposedtoasupersaturatedvapourofaworkingfluid.Thisexposureresultsintherapidgrowthofparticles,whichafterthatareexposedtothelightoflaser.Scatteredlightoflaserisdetectedbyphotodiodeandtheindividualparticlesarecounted.Basedontheamountofcalculatedparticlesandknownflow of gas through the system, one can calculate the total number concentration in theaerosol.

AdvantagesofCPCtechniquearepresentedinthetable18.

TABLE18STRENGTHSANDLIMITATIONOFCPC

Strengths Limitations

12https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WGIAR5_SPM_brochure_en.pdf

Page 29: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

29

Cancountparticleswithsizedownto2nm Don’t provide information on size of theparticles

Veryfastresponse(1secorless) Can’tbedeployedoutsideaircraft

Canoperatewithwaterascondensationfluid Needcondensationfluidrefill

ProducersofCPCarepresentedintable19

TABLE19COMPANIESPRODUCINGCPC

Producername Website

TSI www.tsi.com

Kanomax www.kanomax-usa.com

BeckmanCoulter bc-particle.com

PassiveCavityAerosolSpectroscopyProbe(PCASP)

PCASP is one of the few techniques dedicated to the measurements of particle numberconcentrationsasafunctionofsizeinsitu,whilebeingmountedontheexterioroftheaircraft(Jonsson et al. 1995). The instrument measures the intensity of light scattered from theindividualparticleswithintheaerosol,whichpassthroughafocusedlaserbeam.PCASPcollectsidescatteredlight,thecollectedlightbeingproportionaltothetotheparticlesize.Particlenumberconcentrationisderivedfrommeasuredparticlesize,knowingtheparticlerefractiveindex,shapeandwavelengthoftheincidentlight.

AdvantagesofPCASParepresentedintable20.

TABLE20STRENGTHSANDLIMITATIONSOFPCASP

Strengths Limitations

Canbedeployedoutsideaircraft Candetectonlyparticleswithdiameter>100nm

Rapidmeasurements

ProducersofPCASParepresentedintable21.

TABLE21PRODUCERSOFDEVICESFORPCASP

Producername Website

DropletMeasurementTechnologies dropletmeasurement.com

Page 30: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

30

Aerosolopticalproperties

PhotoacousticAbsorptionSpectroscopy(PAS)/PhotoacousticExtinctiometer(PAX)

Photoacoustic absorption spectroscopy is the technique that determines the absorptioncoefficient,throughthemeasurementofsound,producedonradiationofaerosolparticlesbylaserlight(Lacketal.2006).Partofincominglaserintensityisscatteredortransmitted,whiletheremainingfractionisabsorbedbyeitherbylightabsorbingparticlesorsurroundinggas,Absorbedradiationgeneratedparticleheatingandincreaseinpressure,detectedbysensitivemicrophone. Photoacoustic spectrometers have fast response time and arewell fitted forairborne applications. A similar technique is used by photoacoustic extinctiometers tomeasurealsoscatteringcoefficient.

TABLE22STRENGTHSANDLIMITATIONSOFPAS/PAX

Strengths Limitations

Better response time compared to filterinstruments

Calibrationrequired

Canbedeployedoutsideaircraft Problems have been noticed in verynoisyenvironments(laboratory)

Nofilter/loadingcorrectionsareneeded

PAX can measure scattering and absorption atthesametime

ProducersofPASarepresentedintable23.

TABLE23PRODUCERSOFDEVICESFORPAS

Producername Web-site

DropletMeasurementTechnology http://dropletmeasurement.com

Absorptionphotometers/aethalometer

Absorptionphotometers(oraethalometers)aredevicesthatdeterminethelightabsorptioncoefficientofaerosolsthroughthemeasurementoftransmissivityofafilterthatisgraduallyloaded with particles (Arnot et al. 2005). They usually employ light sources at severalwavelengths from the UV to near IR. Most of the available commercial instruments usesystemsforautomaticchangeofthefilterwhentransmissivityisbelowacriticallevel,whilesome of them measure also the backscattered light in order to compensate the finalmeasurementforthiseffect.Someinstrumentsprovidedirectlythevalueoftheequivalent

Page 31: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

31

black carbon (in gram per cubic meter) that would produce this absorption, through theassumptionofaspecificabsorptioncoefficientperunitmass.

TABLE24STRENGTHSANDLIMITATIONSOFABSORPTIONPHOTOMETERS/AETHALOMETERS

Strengths Limitations

No calibration required as themeasurementisrelativetoablankfilter

The conversion to equivalent black carbonconcentration depends critically from theassumedspecificabsorptioncoefficient

Multiplewavelength Highfluxvolumesorlongintegrationtimesarerequiredtomeasurelowconcentrations

Needfilterchange

Corrections are required to take into accountthefilter/loadingeffects

Producersarepresentedintable25.

TABLE25COMPANIESPRODUCINGABSORPTIONPHOTOMETERS/AETHALOMETERS

Producername Web-site

MageeScientific www.mageesci.com/

AethLabs www.aethlabs.com

ThermoFisherScientific www.thermofisher.com

Nephelometers

Nephelometersareinstrumentdevotedtothemeasurementofthescatteringcoefficientoftheaerosolparticles(HeintzenbergandCharlson1996).Theyusuallyworkfollowingtheso-called inversemethod, that is, theymeasure the light scattered the particles in a specificdirectionandthatwasemittedbya(hemi)-sphericalsource.Itisinverseinthesensethatthescatteringcoefficient refers to the light scattered inanydirectionandcoming fromaverynarrowone.Theycanoperateatoneormorewavelengths,fromUVtonearIR.Theyneedperiodiccalibrationwithstandardgas,suchasCO2.

TABLE26STRENGTHSANDLIMITATIONSOFNEPHELOMETERS

Strengths Limitations

Don’tneedfiltersorothersupports Needperiodiccalibration

Multiplewavelength

Veryhightemporalresponse

Producersarepresentedintable27.

Page 32: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

32

TABLE27COMPANIESPRODUCINGNEPHELOMETERS

Producername Web-site

EcotechResearch www.ecotech-research.com

AirPhoton www.airphoton.com

RadianceResearch(discontinued)

TSI(discontinued)

LIDARs

Atmospheric LIDAR is a class of instruments that uses laser light to study atmosphericpropertiesfromthegrounduptothetopoftheatmosphere(KavayaandMenzies1985).Suchinstrumentshavebeenusedtostudy,amongother,atmosphericgases,aerosols,clouds,andtemperature.Thetransmissionunitconsistsofalasersource,followedbyaseriesofmirrors,and a beam expander, which sends the collimated light beam vertically up to the openatmosphere.Partofthetransmittedradiationisscatteredbyatmosphericcomponents(i.e.,gases,molecules,aerosols,clouds)backwardtotheLIDAR,whereatelescopecollectsit.Thebackscatteredlightisdriventoanopticalanalyserwheretheopticalsignalisfirstspectrallyseparated,amplifiedandtransformedtoanelectricalsignal.Finally,thesignalisdigitizedandstored in a computer unit. While knowing the aerosol properties (forward problem) andpredicting the LIDAR signal is a straightforward calculation, the inverse process ismathematicallyill-posed(i.e.,non-uniqueandincompletesolutionspace),showingastrongsensitivityoninputuncertainties.

TABLE28STRENGTHSANDLIMITATIONSOFLIDARS

Strengths Limitations

Provideverticaldistributionofaerosol Inversion is strongly sensitive on inputuncertainties

Canprovidetheshape(degreeofsphericity)oftheparticles

Need integrationwith independentsourceofinformation

Multiplewavelength Works better during night (no sunlightinterference)

Producersarepresentedintable29.

TABLE29COMPANIESPRODUCINGLIDARS

Page 33: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

33

Producername Web-site

Leosphere www.leosphere.com

AlaSystems www.alasystems.it

Aerosolchemicalproperties

TimeofFlightAerosolMassSpectrometer(TOF-AMS)

TOF-AMSisusedtostudythechemicalandphysicalnatureofaerosolparticlesonlineandisconstructed as a combination of AMS vacuum system, particle focusing, sizing andevaporation/ionizationcomponentswithacompactorthogonalaccelerationreflectiontime-of-flightspectrometer(DeCarloetal.2006).Aerosolparticlesinthesizerangeof0.04to1.0micrometresaresampledintoahighvacuumsystemwheretheyarefocusedintoanarrowbeam. This beam is then directed via ionization quadrupole mass spectrometry. Particleaerodynamic diameter is determined from particle time of flight (velocity)measurementsusingabeamchoppingtechnique.

TABLE30STRENGTHSANDLIMITATIONSOFTOF-AMS

Strengths Limitations

Online chemical and physical nature of aerosolparticles

Complexity

particle aerodynamic diameter and aerosolcompositioninasinglemeasurement

Highcost

Quantitativeparticleanalysispossible

directsamplingofaerosol

Fast measurements (1-10 sec) of particle sizedistributions and non-refractory chemicalcomposition

ProducersofTOF-AMSarepresentedintable31.

TABLE31PRODUCERSOFDEVICESFORTOF-AMS

Producername Website

AerodyneResearch http://www.aerodyne.com/

Aerosolsizedistribution

OpticalParticleCounters(OPC)

Ahighintensitylightsourceisusedtoilluminatetheparticleasitpassesthroughthedetectionchamber.Theparticlepassesthroughthelightsource(typicallyalaserorhalogenlight)and

Page 34: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

34

theredirected light isdetectedbyaphotodetector.Theamplitudeofthe lightscattered ismeasuredand theparticle is countedand tabulated intostandardizedcountingbins,afterassumptionoftherefractiveindexoftheparticles(SniderandPetters2008)

TABLE32STRENGTHSANDLIMITATIONSOFOPTICALPARTICLECOUNTERS

Strengths Limitations

Canbeminiaturized Thebinningof theparticlesdependsontheassumedrefractiveindexandontheshapeoftheparticles

Fastresponse Unable to detect particles smaller than50-100nm

Producersarepresentedintable33.

TABLE33COMPANIESPRODUCINGOPTICALPARTICLECOUNTERS

Producername Web-site

FAIInstruments www.fai-instruments.com

TSI www.tsi.com

GRIMMAerosolTechnikAinringGmbH&Co.KG www.grimm-aerosol.com

LighthouseWorldwideSolutions https://www.golighthouse.com/en

DifferentialMobilityParticleSizer(DMPS)

Differential mobility particle sizing is an alternative to the optical sizing technique formeasurementofsubmicronaerosolsizedistributions(Wiedensohleretal.2012).Differentialmobilitytechniquesareabletomeasuremuchsmallerparticles,downto2.5nmandarenotsensitive todifferences in refractive index,butarenotable toachieve thesametemporalresolutionasoptical instruments,andarealsosensitivetovariationsinparticleshape.TheDifferential Mobility Particle Sizer (DMPS) couples a differential mobility analyser, whichclassifieschargedparticlesaccordingtotheirmobilityinanelectricfield,andacondensationparticle counter (CPC) to count particles of a specific mobility. Other instruments usingvariationsonthistechniqueincludetheSMPSandHTDMA.

TABLE34STRENGTHSANDLIMITATIONSOFDIFFERENTIALMOBILITYPARTICLESIZER

Strengths Limitations

Canmeasureparticlesdownto2.5nm For non-spherical particles mobilitydiameterisafunctionofparticleshapeandorientation

Page 35: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

35

Can operate with water as condensationfluid

Needcondensationfluidrefill

Producersarepresentedintable35.

TABLE35PRODUCERSOFDEVICESFORDMPS

Producername Web-site

TSI www.tsi.com

ParticleMeasuringSystems www.pmeasuring.com

AerodynamicParticleSizer

Theaerodynamicparticlesizerusestheprincipleofinertiatosizeparticles(WangandJohn1987). In this instrument the particle and sheath flow are constricted through a nozzle,accelerating the airflow. Particleswithin the airflow are also accelerated, but by differentamountsdependingonparticlesurfaceareaandmass,thusparticlesexitingthejethaveavelocityrelatedtotheiraerodynamicdiameter.Aerodynamicdiameterisdefinedassumingspherical particles and unity density. The APS measures particle velocity by passing theparticlesthroughtwolaserbeamsseparatedbyabout200microns.Aparticlepassingthroughbothbeamsproducestwopulsesofscatteredlight,thetimedelaybetweenthepulsesbeingrelatedtothevelocityandhenceaerodynamicdiameteroftheparticle.

TABLE36STRENGTHSANDLIMITATIONSOFAERODYNAMICPARTICLESIZER

Strengths Limitations

Canoperateatveryhighrate(10Hz) Fornon-sphericalparticlesmobilitydiameterisafunctionofparticleshapeandorientation

Don’tneedanyrefillorfilterchange

Producersarepresentedintable37.

TABLE37COMPANIESPRODUCINGAERODYNAMICPARTICLESIZER

Producername Web-site

TSI www.tsi.com

ParticleMeasuringSystems www.pmeasuring.com

Emergingtechnologiesforaerosolpropertiesmeasurements

Newapproachforicenucleationdetection

Budkeat al 2008describedanoveldevice for icenucleationmeasurementsbasedon thefollowingprinciples.TurbulentmixingofcolddryairwithwarmhumidairisperformedintheFastIceNucleusChamber.Resultingiceparticleswiththesizeover4μmformedduring10s

Page 36: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

36

of experimental time are separated from the droplets based on their individual circulardepolarizationpropertiesandcountedbyanopticaldetector.Biologicalfractionismeasuredbyspecialfluorescencechannel.

TABLE38STRENGTHSANDLIMITATIONSOFICENUCLEATIONDETECTION

Strengths Limitations

Active monitoring of RH and T in the iceactivationregion

Complexdepolarization

Highsampleflow Frostpointmeasurements

GoodcountingstatisticsatlowINconcentrations

Good possibility to vary the experimentalconditionsthroughchangingthegasesflowrates

Measurementsofparticlemorphology

Aerosol Particle SpectrometerwithDepolarization (APSD)measures light scattered at twoangles fromindividualparticlesandtheextentatwhichtheseparticlesrotatethe incidentplaneofpolarizationwhentheypassthroughafocusedlaserbeam.TheamountofscatteredlightisusedtodeterminetheparticlesizeusingMietheory,whilethedirectionofscatteredlightisusedtodeterminethedeviationofparticlesshapefromsphere.

TABLE39STRENGTHSANDLIMITATIONSOFAPSD

Strengths Limitations

Canmeasureparticlesincloud-freeairandintheresidualsofclouds,determiningsourceofcloudnuclei

Notfound

Developmentofmarketofaerosolsmeasurements

Aerosolsimpairvisibility,affectecosystemprocessesandcandepositontosurfaces,damagingmaterials.Theyalsomakeanimpactonclimatechange:mostparticlesarereflectiveandleadto net cooling,while some, especially black carbon particles, absorb energy and promoteglobal warming. Breathing particulatematter/ aerosols can cause coughing, difficulties inbreathing,irregularheartbeat,nonfatalheartattacks,aggravatedasthma,anddecreasedlungfunctioningandgeneralirritationofairways.Itcanbeareasonofprematuredeathofpeoplewithheartorlungdisease,aswellasgeneraldecreaseoflifequalityofexposedpopulation.

Page 37: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

37

This is causing increased demand for the medical services and care, meaning additionalhealthcareexpensesforthegovernmentsandlocalauthorities.

Keepinginmindtheabovementionedproblems,localandstateauthoritieswouldbethefirstinthelistofparties,interestedinmonitoringandpreventingairpollutionwithaerosols,boththose,appearingduetothenaturalreasons,forexamplesandstorms,orforestfiresandduethe anthropogenic activity. State authoritieswould also be interested in development thelegislationthatwouldobligelargeindustrialandenergyproviderstomonitortheirfluxesofaerosols and analyse their composition. Thus, we believe that the main markets for theaerosolmeasurementdeviceswillbe:

● The countries ofMiddle East andNorth Africa (due to the large desert areas andexposuretosandstorms)

● Developingcountries,producingelectricitymostlybyburningoffossilfuels(mainlycoal)

● Countries,whichareinthestateofrapiddevelopmentofinfrastructure.

Increasedconcernofpeopleabouttheirhealthwillincreasetheamountofprivateandstate-fundedresearchprojects,dedicatedtotheinvestigationsofaerosols,especiallyintheurbanareas.Thus,wealsoexpectuniversitiesandprivatecompaniestobecomestrongconsumersofsensorsforaerosolmeasurement.

Measurement responses ofmodern devices for aerosolmeasurements depend largely onaerosolpropertiesincludingparticleshape,compositionanddensity.Theseparametersmayvary significantly depending on the type of aerosol, often remain unknown and bringsignificantuncertaintiestothemeasurements.Thus,wethinkthatmoreeffortneedstobetaken to improve measurement accuracies for realistic atmospheric samples. Themeasurementoforganicspecies inatmosphericparticlesrequiresadditionaldevelopment.Atmospheric aerosols normally include dozens of organic compounds, and only a smallfraction(∼10%)ofthesecanbedetectedandidentifiedbymodernanalyticalmethodologies.Totalparticulateorganiccarbonmassconcentrationmeasurementsisanotherchallengeduetothedifficultiesindeterminationofevaporativelossesduringsampling,adsorptionofgas-phase organic compounds onto sampling substrates and the unknown relations betweencarbon mass and mass of the particulate organics. The development of improvedmethodologies for suchmeasurements should be a high priority for the future. The newmodelsofmassspectrometerscapableofmeasuringthecompositionofindividualparticleshave recently been developed. These instruments have to be improved to providequantitative information on species mass concentrations, and more work is needed toperformroutineinterpretationoflargedatasetsgeneratedduringfieldsampling.

Page 38: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

38

3 Measurementsoflandbiosphereparameters

3.1 WhymeasurementsoflandbiosphereparametersareimportantPopulation of our planet is the large consumer of various products, originating frombiosphere.Thisrefersmainlytoagricultureandforestproducts.Beforetheconsumption,theproducts pass several stages, such as production, packaging anddelivery,withGHGbeingreleasedatallsteps.OneofthelargestsourceofGHG,suchasmethaneandnitrousoxideisfarming.Methane is producedmainly by livestockduring thedigestiondue to the entericfermentation,while nitrous oxide is as indirect product of organic andmineral fertilizers.Within the EU, agriculture was responsible for 10% of total GHG emissions in 2012. Thisnumberappearstobeagoodachievement,sincetheGHGemissionswerereducedby24%duringtimeperiod1990-2012throughdecreaseoflivestocknumberandwisemanagementoffertilizers.(EEA,2015).EventhoughthetrendsofagricultureGHGemissionsinEuropearepromising, theworld’sagricultureshowedopposite trends:From2001 to2011, theglobalGHGemissionsoriginatingfromcropandlivestockproductiongrew14%mainlyduetotherapidgrowthofagriculturalactivityinthedevelopingcountries.Atthesametime,emissionofGHGfromanimalproductiongrew11%andaccountedfornearly40%ofagriculturalGHGoutput in2011.Dueto theconstantgrowthofworld’spopulationandnon-rationaluseofnatural resourcesandproduced food, reductionofagriculture-sourcedGHGappears tobequiteachallengingtask.Tofulfilthistask,agriculturalsectorneedstoinventandintegratebetter,more precise innovative techniques, sensors and platforms formeasurements andcaptureofGHG.Inadditiontothetechnologicalmeasuresthathastobetaken,attentionhasto be paid to the culture of consumption. Society has to contribute to the global cut ofagriculture-derivedGHGemissionsbyconsumptionoffoodproductswiththesmallerglobalcarbonfootprint(lessmeatanddairyproducts)13.

Vegetationisthemainstorageofatmosphericcarbononlandandoneofthemainactorofitscycling from the atmosphere back to the ground. Plant photosynthesis does not onlysequester CO2 from the atmosphere but also emit water vapour as evapotranspiration, acriticalprocessfortheglobalenergybalancethatmodulatesthetransmissionofradiativeandthermalenergybetweensurface,atmosphereandspace.Differentplantcoverscanaffecttheamount of absorbed and reflected radiation (and therefore the sensible and latent heatfluxes)alsoduetotheiropticalproperties.Plantswithanoverallpalershadeofgreenwillhaveahigheralbedo,reflectingmoreincomingradiationand,therefore,contributingtocoolthesurface(i.e.:contrastingclimatechange).Manyplantscanalsoemitsmallorganicvolatilecompounds(VOCs)thatcaninteractwithphotochemistryandgeneratesecondaryaerosols.

13ec.europa.eu/eurostat/statistics - explained/index.php/Agricultural_ production_-_crops

Page 39: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

39

Thelattercanagaincontributetotheradiativebalance,byinfluencingabsorbedandreflectedradiation(Guentheretal.1995).Vegetationalsoharboursahostofmicroorganismslivingontheirleavesthatcanalsobeaerosolizedandcouldactbothascloudcondensationandasicenucleifurthermoreaffectinglocalprecipitationpatterns.Inaddition,biosphereecosystemscanalsoexchangeandemitintheatmosphereothergreenhousegases,inparticularCH4andN2O. Amodification of the vegetation status (i.e.: respiration) and geographical extensioncould yield to significant climatic impacts. For example, Crucifix et al. (2005) found thatremoval of vegetation decreased both precipitation, evapotranspiration and moistureconvergence in central and northern Amazonia. Northeast Brazil would similarly see adecreaseinprecipitationincaseofvegetationremoval(OyamaandNobre2004).CO2isthemost importantgreenhousegas,andfromabiosphereperspective it ismore importanttoassess its exchange between the vegetation and the atmosphere (“flux”) rather than theabsoluteconcentration(i.e.:understandinghowmuchthevegetatedsurfaceisasinkorratherasourceforagivengreenhousegas).Forthisreasonstheinstrumentsandtechniquesusedfor biosphere measurements differ from the atmospheric ones, and have stricterrequirementsintermsoftimeresponseandmorerelaxedrequirementsintermsofabsoluteaccuracy. In biosphere sciences, the main method employed to measure exchange ofgreenhouse gases species from/to the vegetation to/from the atmosphere is the eddycovariance technique. This is also because exchange of CO2 and H2O is related to plantmetabolismandcanbeusedtotrackprimaryproductionandplantgrowth.

Furthermore, plant leaves harbour microorganisms that can potentially serve as cloudcondensationand/oricenuclei(Möhleretal.2007)andcanthereforepotentiallyaffectcloudformation,precipitationandclimate (Amatoetal.2007;Morrisetal.2004)since theyaremore efficient than their inorganic counterparts (Morris et al. 2004). This latter effect ofbiosphere on climate is still investigated and is mainly hindered by lack of knowledge ofemittedmicroorganisms from theplant canopy, since techniques suchas eddy-covariancecannotbeappliedtomicroorganisms’flux.

Foragriculturalpractices, themainconcern isnotcarbonstoragebuthowclimatechangeaffectsyieldandwaterusage.Tothisend,measurementsarefocusedonidentifyingstressesaffectingthevegetationinordertominimizelosses.Generallysuchmeasurementsaredoneviaspectralimaginginwhicheitheraproximal(handheldorsimilar)oraremote(suchasasatelliteoranairbornecarriedinstrument)sensortakesmultiplesnapshotsofthevegetatedareainvariousspectralregionsandspecificwavelengths.Vegetatedsurfaceshavedifferentreflective(intheshort-wavespectraldomain)andemissive(inthelong-wavespectraldomain)properties in different wavelengths depending also on the stresses affecting them andtherefore thiskindofsensingcan identifyandquantifyvegetationstatus.Totalamountofbiomass,whichisrelatedtothetotalgloballysequesteredCO2,canbecharacterizedbothinmanagedandnaturalcontexts(e.g.:crops,forests,pastures,grasslands)inordertocorrelateyield,carbonsequestrationandland-usechangeovertime.Quantificationofbiomassmaybeperformedthroughairbornelaserscanningtechnology.

Page 40: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

40

3.2 Common measurement techniques for Land Biosphereparameters

Eddycovariancetechnique

This technique is employed to measure exchanges between the surface (i.e.: ecosystem,includingvegetationandsoil)andtheatmosphere.

FIGURE2EDDY-COVARIANCETECHNIQUEON-SITE

Itcanbeused,forexample,tomeasurehowmuchagivensurfaceiseitherasinkorasourceforagreenhousegassuchasCO2oranyotherspeciesthatcanbesampledwithasufficientlyfasttimeresponse.Thetechnique isbasedonfast (10Hzormore)measurementsofboththreedimensionalwindvelocity(atmosphericturbulence,usuallydonethroughanultrasonicanemometer)andatmosphericconcentrationofthechemicalspeciesofinterests(generallyCO2,CH4andN2Oinadditiontoenergy).Thesetwomeasurementscanberelatedtogetherfollowingaspecificmathematicalapproachtoyieldafluxwithahightemporalresolutionandintegratedatecosystemscale(1km2).

TABLE40STRENGTHSANDLIMITATIONSOFEDDYCOVARIANCETECHNIQUE

Strengths Limitations

Can measure how much a biosphericcomponent (forest, grassland,…) is either asourceorsinkforgreenhousegas(CO2,CH4,N2O,H2O)orotherspecies,orenergy

Requires specific conditions to workproperly (horizontal homogeneity,absence of strong orography, specificatmosphericconditions)

Canmeasurenetprimaryproductivity(NPP),and infer gross primary productivity (GPP)andecosystemrespiration(ER)

Requires fast response sensors andhighflowsamplinglines

Page 41: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

41

It is not disturbing the ecosystem andintegrates measurements over large areas,allowing a good link with satellitemeasurements

It is complex to apply and relativelyexpensive

TABLE41PRODUCERSOFDEVICESBASEDONEDDYCOVARIANCETECHNIQUE

ProducerName Website

LI-COR (gas analysers, full eddy-covariancesystemsthroughlinktoothercompanies)

https://www.licor.com/env/

Campbell (ultrasonicanemometers,IRGAs)

https://www.campbellsci.com/

Metek(ultrasonicanemometers) http://metek.de/

Gill(ultrasonicanemometers) http://gillinstruments.com/

PICARRO(gasanalysers) https://www.picarro.com/

LosGatosResearch http://www.lgrinc.com/

Spectralimaging

Specialcamerasinvestigatingwavelengthsdifferentfrom(orinadditionto)thevisibleonescangivemuchmoreinformationaboutvegetationstatus.Theyaretoolsofgreatimportanceespecially in precision agriculture since they allow investigating if there are specific areaswheretheplantsarestresseddue,forexample,lackofwaterorthepresenceofpathogens.Thesetoolsworkontheprinciplethatplantsarelivingbreathingorganismsthereforehavingdifferent temperatures and spectral characteristics from the non-living background. Thishappens because they absorb light in specific wavelengths (the photosynthetic activeradiationwindow,between400and700nanometres)andreflectitinvariousspectralregions(especiallyinthenearinfraredabove780nanometres)accordingtobiophysicalpropertiesofthe vegetation. Stresses alters such plant responses and are therefore detectable withthermal (in the long-wave spectral domain) andmultispectral (in the short-wave spectraldomain)imaging,allowingapreciseidentificationofcriticalsituationswhereitispossibletointervenetoimproveagriculturalpractices.

TABLE42STRENGTHSANDLIMITATIONSOFSPECTRALIMAGING

Strengths Limitations

Can detect plant stresses and improveagriculturalactivities

Not easily generalizable, each situationrequires a dedicated campaign andtherefore a certain scientific and economiceffort.

Page 42: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

42

Betteragriculturalactivitiestranslateintogreater yield and less environmentalimpacts

TABLE43PRODUCERSOFDEVICESFORSPECTRALIMAGING

ProducerName Website

FLIR http://www.flir.it/home/

TETRACAM http://www.tetracam.com/

OceanOptics https://oceanoptics.com/

HEADWALLPhotonics http://www.headwallphotonics.com/

SPECIM http://www.specim.fi/

ITRESResearch http://www.itres.com/

Proton-transfer-reactionmassspectrometry(PTR-MS)

PTR-MSisatechniquethatuseshydroniumionstotransferprotonstoanyambientvolatileorganiccompound.VOCshaveahigheraffinitytohydrogenions(theprotons)comparedtowater or air and are therefore proton transfer happens only on substances of interest.ChargedVOCsarethenpassedthroughthemass-spectrometerphaseofthetechniquewhichallowstheiridentificationandquantificationonthebasisofeachVOCspectralpeaks.

Thetechniquehasbeenrecentlyenhancedbycouplingtheprotontransferreactiontoatimeof flightmassspectrometer (PTR-TOF-MS).Thisyieldsahigher resolvingpowerandbetterdutycycle.Allionsaredetectedatoncewithouthavingtocycleondifferentmass-to-chargeratiosfordetectionasithappensinthePTR-MS.

TABLE44STRENGTHSANDLIMITATIONSOFPTR-MS

Strengths Limitations

Real-time CannotdetectsubstanceswithprotonaffinitylowerthanH2O

Nosamplepreparationrequired After 10 ppmv of VOCs the concentrationresponse is not linear anymore. Samples canbedilutedtoovercomethislimitation.

Candetectverylowconcentrations

TABLE45PRODUCERSOFDEVICESFORPTR-MS

ProducerName Website

Page 43: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

43

IONICON http://www.ionicon.com/information/technology/ptr-ms

3.3 EmergingTechnologies:Fluorescence FluorescenceMeasurementofPhotosynthesis

Photosynthesisisthekeymechanismwithwhichbiospherefixates(“absorbs”)CO2fromtheatmosphere.Anychangeingrossphotosynthesiswillbereflectedonthewholecarboncycleand,therefore,photosynthesispredictionisbecomingapriorityeffort.Photosyntheticratescan also give information about plant growth and ecosystem productivity and thereforefeedback mechanisms between vegetation, atmosphere and climate. Photosynthesismeasurementsarealreadycommerciallyavailableforsingleleavesorverysmallcanopies.Itemploysmainlytwomethodsofmeasurements:eithermeasuringonasmallscaletheCO2exchange with the atmosphere (mainly produced by LICOR), either measuring thefluorescence emitted by the vegetation in specific wavelength due to the molecularmechanisms involved in the photosynthetic and energy dissipation processes (mainlyproducedbyWalz).ThelattermethodusesLEDpulsatingacertainfrequenciesfollowedbyaspectralreadoutfromtheplant.Thissystemismanageableatleafscale,butitsactiveprinciple(basedonanexcitation-responsemechanism) isnotapplicable far from theplant canopy.Recently,though,anewESAmissionwilllaunchasatellite,FLEX,in2022thatwillbeabletousepassivemethodforquantifyingplantfluorescence(e.gSIF,SolarInducedFluorescence).

Plantphotosynthesiswillthereforeenterawholenewscenarioinwhichremotesensingwillstartplayinganimportantrole.Thetechnologyemployedbysuchnewobservationsatelliteis actually being developed as aircraft payload by the Forschnungszentrum Jülich and theSpecimCompany,andwillbecommerciallyavailableforgroundoraircraft-basedbiospheremeasurements.

TABLE46STRENGTHSANDLIMITATIONSOFFLUORESCENCEMEASUREMENTOFPHOTOSYNTHESIS

Strengths Limitations

Passive sensor allowing to survey in real timephotosynthesisoflargevegetatedsurface

Stillindevelopmentandcostly

Dataretrievalnon-straightforward

TABLE47PRODUCERSOFDEVICESFORFLUORESCENCEMEASUREMENTOFPHOTOSYNTHESIS

ProducerName Website

Walz(leafphotosynthesis) http://www.walz.com/

SPECIM(SIFpassivesensors) http://www.specim.fi/

Page 44: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

44

FluorescenceMeasurementsofMicroorganisms

LandBiospheremeasurementsofmicroorganismsemittedfromtheplantcanopygenerallyusing a combination ofmeteorologicalmeasurements (such as radiation,wind speed andtemperature,eitherassingle-pointmeasurementorprofiles)andquantitativemicrobiologicaltechniques(formoreinformationseeDespresetal.,2012andCarotenutoetal.,2017).

In the past years, though, a new technology is emerging that would be able to quantifymicroorganisms in real time. This is done through special aerosol samplers that not onlydeterminephysicalcharacteristicsofaerosols(suchassizeandasymmetry)butalsoresponseinfluorescencewavelengthsrelatedtoorganicmolecules(suchasNADHandtheamino-acidtryptophan).Eachaerosolparticleisquicklyilluminated(“flashed”)byexcitingemittersandappropriate detectors collect the fluorescence response. The combination of suchinformationallowsdiscriminatingbetweeninorganicaerosols,bacteria,fungi,etc.measuringtheorganicfractionthatcanpotentiallyriseupintheatmosphereandactasbiologicaliceorcloudcondensationnuclei.

TABLE48STRENGTHSANDLIMITATIONSOFFLUORESCENCEMEASUREMENTSOFMICROORGANISMS

Strengths Limitations

Realtimesensor Highcost

Allowdiscriminationbetweendifferenttypesofbiologicalaerosols

Potentialinterferencesonthesignals

Portable

TABLE49STRENGTHSANDLIMITATIONSOFFLUORESCENCEMEASUREMENTSOFMICROORGANISMS

ProducerName Website

DropletMeasurementTechnologies http://www.dropletmeasurement.com/

FLIR http://www.flir.it/home/

3.4 MarketoverviewAgricultureisoneofthesectorswithlargestenvironmentalimpact,whichisexpectedtogroweven further. The demand for the food is expected to grow 70% during next decades.Providing the food resources is the key to the international social stability, reducing theamountsofproducedfoodisnottheoptimalsolution.Thustheregulatorymeasureshavetobetakentomakeagriculturalsectorproducelargeramountsoffoodwithlessharmtotheenvironment.Thereareanumberofpoliciesandstrategiesinfluencingthedevelopmentof

Page 45: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

45

agriculturalsectorfromthepointofviewofGHGemissions.Firstofallthesearethegloballybinding agreements such as Kyoto protocol and Paris agreement, which led to theintroduction of systems for Emissions quotes trading in the EU, but also such long termstrategiesastheEUlowcarbonroadmap,climateandenergypolicy.Policiesandstrategieshelptoundertakeclimatemitigationactivitiesintheagriculturalsectorintheshortterm.Forexample,NitratesDirectivedeterminestheamountofnitrogenthatcouldbeappliedtotheagricultural soils, while the National Emissions Ceiling Directive (Directive 2001/81/EC),establishes the limit values for ammonia, precursor to N2O. (Allen and Maréchal 2017)Agriculture GHG emissions: determining the potential contribution to the Effort SharingRegulation. Report prepared for Transport and Environment. Institute for EuropeanEnvironmentalPolicy,London).

In2016,EuropeanCommissionpresentedthewinterpackageofproposalsforcleanenergytransitioninEurope.Thispackageincludesanumberofupdatestotheexistingregulations,among them are revisions to the Renewable Energy Directive and setting of proposedGovernance Regulation (COM 2016 759 final/2). Article 14 of this Regulation requires EUmember states to prepare and report the EuropeanCommission their long-termemissionstrategiesforthenext50yearperiodperspectivetocontributetothereductionandremovalsofemissionsintheEU.Suchstrategyshallincludetheplansforthereductionsandremovalsofemissionsinseveralindividualsectors,includingagricultureandforestry.

Themainpolicythatdirectlyinfluencesthedevelopmentofagriculturalsectoristhecommonagriculturalpolicy(CAP)ofEuropeanUnion.Itwasestablishedin1962andnowadaysincludesthreecoreobjectives:Viablefoodproduction,sustainablemanagementofnaturalresourcesandclimateactionand,finally,balancedterritorialdevelopment.

Agriculturalproductionrequirescertainamountsofsoil,water,sunlightandheattodevelop.Availabilityofthesefactorshaveagreatinfluenceonthelengthofgrowingseason,floweringandharvestdatesforcrops.Assumingthattheclimatechangecharacterizedbythegeneralincreaseof temperaturewill continue, thenortherncountrieswillbeable toenlarge theiragriculturalsectorandcultivatemorecrops,whilesoutherncountieswillsufferfromextremeheatandwilleithershifttheproductiontothecolderseasonsorreducethetotalproduction.Mainmarketsforthesensorsare:

Developing countries, with large population: China, India, Brazil developing countries ofAfrica.Hugepopulationofthesecountriesrequireslargeamountsoffood.Forexample,Chinaisaworldleaderinproductionofpork,sheep,goatandduckmeat,whileIndiaisthebiggestproducerofdairyproducts.Duetothesteepeconomicgrowthand increasingdemandforbetterlifequalitybylargepopulation,thesecountriescanbeconsideredaslargemarketsforsensorsforGHGmeasurementsintheshortandmedium-periodperspective.

Developing countries with large agricultural potential and large producers of fertilizers:Russia,Ukraine,Belarus,Kazakhstan.Thesecountrieshavethelargestpotentialofagriculturedevelopment,duetotheavailabilityoflargeterritoriesandgoodsoilquality.Forexample,in

Page 46: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

46

2017 Russia showed large increase in crops production and export. In addition, thesecountriesare largeproducersandconsumersofvariousfertilizers.Currentdemandforthesensors forGHGmeasurements in thesecountries isdoubtful,because theenvironmentalregulation are not very strict. However, they can become large markets for the GHGmeasurementsensorsinthemediumandlong-termperspective.

Northern countries with the potential to develop agriculture due to the global warming:Canada,Sweden,Finland,Russia.Duetothe increaseofaverageyeartemperatures, thesecountrieshaveagreatpotentialtogrowtheagriculturesector,sincenewterritorieswillbeavailableforthecropandanimalproduction.

Developedcountries,traditionallystronginagriculture,interestedinfurtherreductionofGHGemissions:USA,France,Germany,(EU)etc.Thesetraditionalplayersofagriculturalmarketsectorareinterestedinmoreefficientproductionofagriculturalgoodsandprecisemonitoringof resulting emissions due to the very strict environmental regulations. These countriesrepresent today’s largest market for the distribution of sensors for measurements ofagricultureproducedGHG.

4 MeasurementofOceanparameters

4.1 WhymeasurementsofoceanparametersareimportantGlobalOceanisasensitivesystem,closelyinteractingwithalldomainsofplanetEarthand,thus,servingasanindicatorofglobalprocesses.Mankindinteresthasbeenfocusedonlandand it tooka long timebefore the importanceof theocean investigations formostof thenatural sciences disciplines was acknowledged. Nowadays, there are plenty of paradigmsbasedoncertainobservations.ThusBluePlanetparadigmisbasedonsatelliteobservations(remotesensing),the“HiddenPlanet”isbasedonseafloorresearch(deepseaobservatoryoriented-“IlluminatingtheHiddenPlanet:TheFutureofSeafloorObservatoryScience”14),theSourcetosinkvisionof thecoastalprocesseseitherconsidersdilutionofpollutantsorhydrologyandsedimenttransport,theeco-systemicapproachofmarinelifedealswiththetremendous marine biodiversity, the Energy buffer vision addresses the globalcirculation/vorticity and thermodynamic coupling with atmosphere, the Fluid interface tocontinentalplatefocusesonactiveboundariesorcontinentalmarginseepingprocessesandBlueGrowthEconomyaimsatdevelopingsustainableindustries.

Themarineenvironmentresearchinfrastructureapproachbringstogetherseveralscientificquestionsfromseveraldisciplineswithanobjectiveofprovidinglong-termin-situdata.Themeasurementsofmarinevariablescanlastfromhourstoseveraldecadeswhileevenlonger

14http://www.nap.edu/catalog/9920

Page 47: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

47

processesareinvestigatedbycryology(icecores)orgeology(sedimentcores).Observationscoming mainly from the sea surface and from underwater measurements are by far tooscarce.Thephysicallimitationsdrivethetechnologicalchallenges:electromagneticwavesandphotons hardly propagate through seawater. The imaging and signal transmission underwateraregenerallybasedonacousticsprinciples.

Theoceansciencecommunitybasesthestrategyofknowledgeacquisitiononthejunctionofmodelling and in-situ collecting of “Essential Ocean Variables” (EOV). After the 2009OceanOBS15 conference, the post-OceanOBS’09 task team prepared the report called“IntegratedFrameworkforSustainedOceanObserving”(Lindstrometal2009).Thefocusofthisreportwasto:

● Use“EssentialOceanVariables”(EOVs)asthecommonfocus● Defineasystembasedonrequirements● Overviewobservations,dataandinformation● Use“TechnologyReadiness Levels” (TRL) scale,basedonassessmentof feasibility,

capacity,andimpact,foreachofthesystemcomponents● Incorporatebothcoastalandopenoceanobservations

ThecurrentdocumentwillprovideinformationabouttechnologiesmeasuringmentionedEOVparameters. The report “Marine Board Paper”16 provides the rationale behind themarineresearchinfrastructuresconstitutionandtheprioritiesinENVRIplus.Thein-situcomponentofmarineobservationsaddressessomeEOVs.Whilestudyingclimatechange,thegroupofscientistshasinvestigatedtheconcentrationsofGHGintheicecores(Lüthietal.2008)andconcluded,thatGHGcontributedsignificantlyinglobaltemperatureriseandclimatechangethrough theentirehistory. They also showed thatGHG concentrations in the atmospherehavebeengrowingrapidlyafterindustrialrevolution,provingthathumanactivityisthemaincontributortoclimatechange.Climatechangeinfluencesoceansystemssignificantly,mainlythrough changing multiple parameters of seawater, such as water temperature, pH andothers. These changes result in numerous negative phenomena, such as coral bleaching,stormyweather,alterationoflifestyleofseaorganisms,risingsealevel,oceanacidificationanddecreaseofverticalmixingand,mostimportantlyreleaseofGHG.

15http://www.oceanobs09.net/proceedings/summary/16http://www.marineboard.eu/navigating-future-0

Page 48: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

48

4.2 Existingtechnologiesformarinemeasurements Acidificationofoceans

Carbonate System (pH, pCO2, Total Alkalinity, Dissolved InorganicCarbon)

Togetherwithdissolvedinorganiccarbon(DIC),totalalkalinity(TA),pHandpCO2determinesthe characteristics of the carbonate system of seawater (Sarmiento and Gruber 2006;EmersonandHedges2008).Foraquatic in situmeasurementsofpCO2 (Atamanchuketal.2014),twodifferentdetectionprincipleshavebeenused. Infraredmethod isbasedontheequilibrationoftheCO2gasdissolvedinwater,withtheinnerair-filledcompartmentoftheanalyser throughagaspermeablemembrane. In theanalyser, theconcentrationofCO2 ismeasured optically by means of nondispersive infrared absorption spectrometry(HydroC™/CO2,Kongsberg,andCO2-Pro™,PSI,www.pro-oceanus.com).ColorimetricmethodisbasedonopticaldetectionofthepHinducedcolourchangeoftheindicatorsolution,whichisequilibratedwithambientseawaterpCO2throughagas-permeablemembrane(Goyetetal.1992;DeGrandpre 1993; Lefèvre et al. 1993;DeGrandpre et al. 1995). A compact, energyefficient optodepCO2 sensor designed for oceanographic applicationsopens theway to alargernumberofmeasurementpointsinthenearfuture.Possibilitiesforsuchmeasurementsare investigated in ENVRIplus task 1.2 for the needs of Research Infrastructures such asEUROARGO and GROOM. PreSens GmbH produces the foils of the optodes while theinstrument isdesignedandbuiltbyAanderaainNorway.pHsensorsforoceanographyarebasedonspectrophotometricprinciple,manyR&Ddevelopmentsareinprogressbutsomesensorsarealreadyon themarket, Sensorlab (Spain)or FLUIDION (France) companiesaresome of them. pH sensors can be based aswell on IFET principle like the Seabird Seafetproduct.Precisionandaccuracy,typicalofmentionedtechnologiesare:

● pCO2:0.1μatm(surfaceflux),1μatm(oceanacidification)● pH0.001(acidification),TA<2μM,DIC<2μM

ReleaseofGreenhouseGases-Methane

Hugeamountsofmethanearestoredaroundtheworldintheseafloorintheformofsolidmethanehydrates.Risingwatertemperaturewilldestabilizethisstorageandmethanewillgettotheatmosphere,destabilizingclimateevenfurther(Boulart2008;Moore2009).

Dissolvedmethanemeasurementsrelyonthetime-consumingcollectionofdiscretewatersamplesfollowedbygas-chromatographyanalysis.Todate,thisapproachhasprovedtobeusefulforbroadinterpretationofenvironmentalprocesses.However,itlimitscomprehensionof environmental processes that are highly variable in space and time. This has led toincreasedinterestinin-situdissolvedmethanesensorstoaugmentdatafrompointsampling.To date, a limited number of techniques have been developed to measure methane inseawater. The most commonly used technique is based on the gas-extraction systemrepresented by hydrophobic silicone membrane with high permeability to methane. The

Page 49: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

49

knowndisadvantageofthissystemisthatsuchmembranesinfluencetheperformanceofthewhole sensor in terms of response time and LODs. Recent developments in the field ofmembranecompoundsensorshaveledtothecombineduseofhydrophobicgas-permeablemembraneswithinfraredabsorptionspectrometry.Withpermeabilityratesdependingonthecharacteristicsofthemembrane,dissolvedgasmolecules inthewaterdiffusethroughthislayer,whichseparatestheouterwaterfromtheinnergas-volumeofthesensor.Thisfirststepalonedoesnotleadtoasensorbeingsolelysensitiveforacertaingas.Theusageofaparticularinfrared wavelength leads to the unambiguous sensitivity of the sensor for the providedanalytewhileotherphenomenaassociatedwithinfraredspectrometry,suchaswatervapourcross sensitivity, are also characterized. The used wavelength is matched to a certainvibrational mode of the target molecule. There are two known manufacturers for thismembrane sensor type,whoseproductsdifferwith respect tomembranedesign,possibleanalyses(CH4,CO2),depthcapabilityandresponsetime.

METSmethanesensor

TheMETSmethanesensorwaspresentedin1999,asthefirstsensorforunderwatermethanemonitoring and detection, using a gas-permeable membrane with tin-oxide (SnO2)semiconductordetection.Itisdescribedasbeingabletodetectmethaneintheconcentrationrange50nM–10μMinitsstandardversion,andupto2mMforsomeversions.Itcanperformatwaterdepthsdownto3500mandtemperaturesof2–40°C.TheMETSsensorhasbeenwidelyusedforthedetectionofmethane-richplumesignalsinthewatercolumnoverlyingcold-seepenvironmentsorforlong-termmonitoring.

HydroCsensor

HydroC(Konsberg)isthesensor,comparabletotheMETSsensorexceptthatthedetectionprincipleisbasedondirectIRabsorptionspectroscopyinthe3.4-μmregion.Thisdetectionmethoddoesnotconsumemethane,whatsimplifiescalibrationandreducesmeasurementerrorsinflowingfluid.Thesystemcanmeasureconcentrationsofmethaneintherange30nM–500μmwitharesolutionof3–30nM.TheT90ofthedetectorisquotedtobe30s.TheHydroC/CH4wasdeployedin2007duringRVSonnecruise190(27/02/07–22/03/07)andwasable to measure methane plumes (10–50 nM) over the New Zealand continental margin(ControsGmBH,personalcommunication).

Themainlimitationofmethanesensorsoperatinginthegasphaseistheuseofgas-extractionmembranes,whicharesensitivetoenvironmentalconditions,whatcausesdeviationsintheresponsetimes.Theseproblemsareexacerbatedifthesensorconsumesmethane,aschangesinmembranediffusivitycausechangesincalibrationofthesensor.

Futureavenuesinmethanesensordevelopmentmayinvolvethetransferoftechniquesandtechnologiesfromotherfieldsexternaltoenvironmentalscience,whichcouldresultinbettersensitivity, better selectivity and better response times. Raman spectroscopy, surface-

Page 50: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

50

enhancedRamanspectroscopyandmassspectroscopyareunderinvestigationtoovercomethemembranelimitations.

MeasurementsofOxygenlevels

Oxygenisakeyparameterforbiogeochemicalcyclesandamajorplayerinthecarbonsystemoftheocean(Boppetal.2002)aswellasthemarinenitrogencycle(Bangeetal.2005).Theoxygenconcentrationsareverysensitivetophysicalprocessesastheair-seafluxesandtheinterior ocean advection (Karstensen et al. 2008). Consequently, dissolved oxygen is animportant parameter for understanding the ocean’s role in climate (Joos et al. 2003).Dissolvedoxygen(aswellasdissolvedinorganicnutrients)maybeusedtotracewatermasses,tounderstandmixingprocesses,andtounderstandthebiogeochemicalconditionsoftheirformation regions. Concerning the fate of organicmatter in aqueous systems, the role ofdissolvedoxygenisessential.Itinfluencesthedegradationofsinkingparticlesandinparticularthe final extent of degradation (Van Mooy et al. 2002). Oceanic dissolved oxygenconcentrationisoneoftheoldestoceanographicparametersobservedintheglobalocean.Nevertheless,theaccuracyofthedissolvedoxygenmeasurementsthatwecanperformtodayisaround8μmol/kgwhichisfarfromthecurrentscientificneeds(1μmolkg/1).DissolvedoxygeninseawaterisusuallydeterminedbyusingtheWinkler'sreactionscheme,achemicaltitrationmethodusedfordecades(Winkler1888).Nowadays,Winklertitrationisastandardmethod used by many marine laboratories. Its main advantage is a good precision andaccuracy(±2μmol/l).Evenwhenothermethodsareused,theyareusuallycalibratedagainstthis method (Emerson et al. 2002; Kuss et al., 2006). However, this method cannot bepractically used for continuousmeasurements (ship cruises, autonomous platforms, deepmoorings,coastalbuoys)asspeciallaboratoryequipmentisneeded.Nowadays,autonomoussensorsarebasedontwotechniques:anelectrochemicalmethodandanopticalmethod.

Electrochemicalsensors(SBE43)

The SBE 43, from Seabird Electronics, is an electrochemical sensor based on a Clarkpolarographicmembrane(Clarketal.1953)usedmainlyonSeabirdshipboardCTDunits.TheSBE43sensor isadapted forautonomousmeasurementssystem, inparticular for theCTDcastsduetoitsveryfastresponsetime(<1s).Theinitialaccuracyis2%ofoxygensaturationwhileprecisionisaround1μmol/kg.Evenifthissensorhasgoodspecifications,anextensivecalibrationandmaintenanceworkhastobedoneprioritsinstallationinordertoreduceanyelectrochemical drift for improving long-term data quality. The chemistry of the sensorelectrolytechangescontinuouslyasoxygenismeasured,resultinginaslowbutcontinuousloss of sensitivity that produces a predictable drift in the sensor calibration with time.Membranefoulingalsocontributestodriftbyalteringtheoxygendiffusionratethroughthemembrane,thusreducingsensitivity.

Opticalsensors(optode3835/4330,RINKO,SBE63)

Optical sensorsoperatebasedon theprincipleof fluorescencequenching (Tengbergetal.2006). Nowadays, the Aanderaa optodes 3835 & 4330 are the most used sensors

Page 51: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

51

implemented in ARGO floats, gliders and onmoorings. Oxygen optodes are based on theoxygenluminescencequenchingofaplatinumporphyrincomplex(fluorescentindicator)thatis immobilizedinasensingfoil.Optodesshowanonlineardecreasein luminescencedecaytime with increasing oxygen concentration. The signal can be linearized bymeans of theStern–Volmerequation:[O2]=(τ0/τ–1)/Ksv,where[O2]isoxygenconcentrationinμmol/L,τisluminescencedecaytime,τ0isthedecaytimeintheabsenceof[O2],andKsvistheStern–Volmerconstant(Demasetal.1999).Theadvantagesoftheopticalsensorsaretheirexcellentlong-termstabilityandhighprecision.Theyalsoappeartobeaccurateprovidedtheyhavesufficient time to come into equilibrium with the surrounding temperature and oxygenconcentrationandprovided that their temperature responsehasbeencarefully calibrated(possibly by individual sensor factory-calibration plus in-situ calibration check/correctionbasedonconcomitantWinklerprofile).

TheAanderaaoptodesensors3830-3835

Thissensorshaveameasuringrangeof0-500μM,aresolutionof1μMandanaccuracyof5μM as well as an operating depth of up to 6000 m. Due to their small size and powerrequirements,thefirstgenerationofoptodesensors(3830/3835)havebeenalsotestedonprofilingfloats(Kortzingeretal.2005).Thefirstresultsobtainedin2004demonstratedthathighqualitylong-termoxygenmeasurementsfromARGOfloatsarefeasible.

FIGURE 3 THE AANDERAA OPTODE SENSORONAPROVORFLOAT

TheSBE63sensor

AnewopticalDOsensorsetformooringsandARGOfloats.TheSBE63isdesignedforuseinthe CTD's pumped flow path.Water does not freely flow through the plumbing between

Page 52: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

52

samples, allowing the biocide (TBT ring dissolution) concentration inside the system tomaintain high,maximizing bio-fouling protection. The elapsed time between the CTD andassociatedoxygenmeasurementiseasilyquantified,andcorrectedforinpost-processing.TheSBE 63 initial accuracy proposed by Seabird is around ±3 μmol/kg and resolution of 0.2μmol/kg. The response time is lower than 6s. Each SBE 63 is calibrated individually in atemperature-controlledbath.

TheRINKO-IIIopticaloxygensensor

Oneofthemaindisadvantagesofrecentopticaloxygensensorshasbeentheirlongresponsetimeofseveralseconds,whichdoesnotfittherequirementsofanoxygensensorbeingusedin profiling CTD-systems. The RINKO oxygen sensor is a fast optical oxygen sensormanufactured by JFE Advantech Co., Ltd, Kobe, Japan. The specifications given by themanufacturerare:Accuracy:<+/-2%,resolution:0.4%andaresponsetime(90%)of≤1second.

OpticalDOsensorsarecomingtobeconsideredasanattractivealternativetopolarographicsensorsbecauseoftheirinsensitivitytostirringandthecompactnessoftheunderlyingsensingtechnology. However, these sensors too are sensitive to temperature and pressure, andemploymembranecoveringstomakethemmorerobustanddealwithinterference.Itistobeexpected that thiswillmake themsusceptible tomanyof thesameproblemsaffectingtheir electrochemical counterpart, with the difference that the possible effects onperformance are more poorly known, less well characterized, and hence harder tocompensatefornow.Typicalspecificationsofthissensorare:

•Range0-350μM,accuracy5μM(coastal),2μM(deepocean),<0.1μMincubators

Measurementsofinorganicnutrientsconcentrations

Itisimportanttoconductcontinuousandautomaticmeasurementsofnutrientsinseawater,such as dissolved inorganic nitrogen and phosphoric and silicic acid ions; however, suchcontinuousmeasurementsaredifficultbecausethedatamustoftenbeobtainedbychemicalanalysis(ReiAraietal.2001;Vuilleminetal.2009).

Incoastalseaareas,wastewatercarryinghighconcentrationsofnutrientsandorganicmatteroften flows into the seawater, leading to the so-called eutrophication phenomenon.Eutrophication refers to increases in nutrient concentrations that may cause densephytoplankton growth. In coastal waters, eutrophication causes various environmentalproblems,suchasredtideandanoxicwater.Themeasurementsofnutrientssuchasdissolvedinorganicnitrogen(DIN),whichcomprisesnitrateNO3

−,nitriteNO2−andammoniumNH4

+ions,andorthophosphoricacidPO4andsilicicacidionsareveryimportantbecausetheyareusefulforunderstandingthespecificbehavioursoftheprimaryproductionofphytoplankton.DINandphosphoricandsilicicacidionsaretypicallyanalysedinlaboratories.

Page 53: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

53

Spectrometryintheultraviolet(UV)wavelengthrangeisveryeffectiveformeasuringchemicalconcentrationsoforganicsubstanceswithoutanychemicaltreatment.AsnitrateandnitriteionsshowparticularabsorptiondecaysofradiationintheUVwavelengthrange,spectrometryhasbeenusedformanyyearstomonitornitratesinfreshwater,asdiscussedbyArmstrong(1963). However, In the case of seawater, it is difficult tomeasure the nitrate and nitriteconcentrationsduetothepresenceofbromidesanddissolvedorganicmatter.Johnsonetal.(1986)andPlantetal.(2009)reportedsignificantadvancesinthistaskthroughtheapplicationof a high-resolution in situ UV spectrometer (ISUS) for the measurements of nitrateconcentrationsindepthprofilesinoceans.

Contrarytonitriteandnitrateions,ammoniaandphosphorusionsdonotabsorblightintheUVregionandthuscannotbemeasuredwiththismethod.Howeveronecannotneglecttheseionssincetheyareessentialforthegrowthofphytoplanktonincoastalseas.FlowInjectionAnalysis(FIA)isaneffectivetechniqueforcontinuousmeasurementsofalltypesofchemicalmatter.Jaromiretal.,whosefirstpaperonthesubjectappearedin1975,conceivedtheFIAconcept.Johnsonetal.(1986,1989,1994)developedaninsituinstrumentusingFIAandusedittomeasurethenitrateandnitriteionconcentrationsatadepthover2000m.Davidetal.(1998,1999)measuredthenitrate,nitriteandammoniaionconcentrationsinseawaterusingFIA with fluorescence detection. This technique provides precise measurements at lowconcentrations (μM/L).These remarkable results indicate it ispossible todeterminemanytypesofcompoundsusingFIA:nitrate,nitriteandammonia ionsbutalsophosphoricacid,silicicacidandironions.

Several fieldanalysersbasedonflowanalysisandcolorimetryweredevelopedat IFREMERduringthe1990sfollowingthefirstprototypesdevelopedintheUnitedStates(Jannaschetal.1994)andinJapan(Gamoetal.,1994).Alchimist(LeBrisetal.,2000)wasthefirstinsituchemicalanalyserdevelopedbyIfremerandabletoworkatadepthofupto6000m.Itwasusedforthedeterminationofironandsulphideinhydrothermalzones(LeBrisetal.,2003;Sarradinetal.2005),andforthedeterminationofsubnanomolarconcentrationsof iron incoastalwaters(Laesetal.2005).AsurfacemodelwastestedonacoastalbuoytomonitornitrateconcentrationintheIroisesea(Blainetal.2004)andafirstprototypeofafluorimetricanalyserforthedeterminationofammoniainshallowwaterswasbuilt(Aminotetal.2001).In parallel, ANAIS (Autonomous Nutrients analyser In Situ) (Vuillemin et al. 1999) wasdevelopedtobeintegratedintoaverticalprofilervehiclefornitrate,silicate,andphosphatemeasurements(Thouronetal.2003).Allthesesystemsarebasedonflowanalysismethodswithapump,detector,andnarrowboremanifoldtube.Thesampleispropelledbythepumpandmixedinthemanifoldtubewiththereagentsinordertoformthedetectablespecies.Theresulting analyte is then measured using optical (colorimetry or fluorimetry) orelectrochemical detectors. A selection valve added to themanifold allows the analysis ofstandards,neededtoperforminsitucalibration.

CHEMINI is the new generation of analysers developed by Ifremer to monitor seawaterchemicalparameters.CHEMINIisamono-parameterinsituchemicalanalyser.Ithasseveral

Page 54: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

54

advantages suchas theability tomakesimultaneousmeasurements, the independenceofeachmeasurement,increasedreliability,thepossibleuseofdifferentdetectionmethods,andthemodularityofthesystemandthepossibilityofmeasurementofmultipleparameters.Theanalyserscanbesetseriallyonasamplinglineandoperatedbyasinglecontroller.Calibrationof the analyticalmethods is performed in-situ. This analysermay be deployed on variouscarriers such as buoy systems, AUVor ROV, inhabited submersibles or seabed stations toperform long-term monitoring. The deep-sea version of CHEMINI intended for in situdetermination of dissolved iron and total sulphide in hydrothermal environments wasdevelopedduringtheEXOCET/DEuropeanproject(Sarradinetal.2007).Thesystemsrevealsthe following characteristics: range of concentrations 0.1 nM - 2mM, LOD 0.1 nM (openocean),0.1μM(profiling),1-5μMcoastal/riversandupwelling.

Salinity/densityvssalinity/conductivity

Salinity is theparameter thatcharacterizesglobalcirculationand localexchangesofwatermasses. Itmustbeknowntounderstandthespatial significanceofameasurementand inmanycasestocorrecttherawdataofsensors(soundspeed,chemicalconcentrationsuchasnitrate).Marinesciencesingeneralfocusandrelyontheassessmentof“absolutesalinity”.

Conductivityisassociatedwithmostoftheseameasurementsincludingtransitionzonessuchas estuaries. It is a proxy to “practical salinity” with two drawbacks when one wants tomeasure “absolute salinity”. The first drawback is that being an electrical property,conductivitydependsontheioncompositionofseawater.Thisissueispartlysolvedthroughcorrectionsofempiricalvaluesbymodelingadjustments,whatgivingacceptable results insome parts of the global ocean such as Pacific Oceanwith a rather fixed bias due to thepresence of silicates (non-ionic), but not in coastal and estuarine waters. The seconddrawback is the calibration of salinometers which requires a reference water (so-calledIAPSO/standardwater).Therearetwomaintechniquesformeasuringconductivity:inductionand electrode cell sensors. The choice of these techniques shall mainly depend on theavailableresources,deploymentcapabilitiesandconditions.Inductivesensors(FSI,Aanderaa)are less accuratewhilemore impervious to fouling andmore robust. Glass electrode cellsensors(SeaBird,Idronaut)however,givethebestperformancefromanoceanographicpointofview,butaremoresensitivetofouling.

Themeasurementsofseawaterdensitydoesnotfacethesamedrawbacksasmeasurementsof conductivity. Densitymay bemeasured through refractive index. Suchmeasurement isbasedonthecomparisonofthedeviationangleofthebeampassingthroughtwoprismsofdifferent indexdelimitingaseawatervolume.Thevalueofabsolutesalinitycanbedirectlyaccessedthroughthesemeasurements.AsensorcalledNOSS(nkeMarineElectronicsOpticalSalinity Sensor)hasbeendevelopedandvalidated (LeMennetal. 2011) for the seawaterdensitymeasurements.ItiscurrentlymarketedbynkeMarineElectronics.

TABLE50CORESPECIFICATIONSFORMEASURINGCONDUCTIVITY

Page 55: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

55

CONDUCTIVITY

MeasurementRange 0-7 S/m

Accuracy 0,001 S/m

Sensitivity 0,00005 S/m

Turbidity/OpticalBackscattering/Transmissometry

Turbidity is an optical characteristic of seawater, which expresses the amount of lightscatteredby thematerial in thewater.Thus turbidityofwaterdependson theamountofsuspendedsolidparticlesofdifferentsizesandtheirsedimentationrates.Intheoceantheseparticlescanberepresentedbyphytoplankton,micro-zooplanktonandsuspendedsedimentssuchasclayorparticulatemineraleffluentfromhydrothermalvents.Themeasurementofturbidityand its relatedvariableshaveseveralapplications.Oneof them ismeasuring theabundanceofparticlesinthewatercolumn,whichcanberelatedtoprimaryproductivityandchlorophyll-alevels.Anotherapplicationisquantificationoftheparticlesdominatedbothbyphytoplanktonandbyclays.Insuchsystems,re-suspensionmightchangetheproportionoftheconstituentparticlesandindicatechangesinthepredominanceofsomeprocessesoverthe others in controlling environmental conditions over time. Depending on the way theturbidity is measured and other parameters measured together with it, multiplebiogeochemicalparameterscanbeestimatedincludingsuspendedsedimentload,particulateorganiccarbon(POC)concentration,andlimitedinformationonparticlesize.

Threetechniquesforturbiditymeasurements,availableascommercialsystems,are(1)directbeamattenuation,(2)lightscattering90°fromthebeampath(nephelometer),and(3)opticalbackscatter at specific wavelengths. A nephelometer emits one ormore light beams andmeasurestheintensityofthescatteredlightfromthesuspendedparticlesinthefluid.Thistechniqueiswidelyconsideredasthemostdirectmeasurementofturbidity.Theunitsthatare commonly used in this optical measuring technique are called NTU (NephelometricTurbidityUnits).Turbiditycanbeaslowas0,3NTUfordrinkingwaterandashighas2000NTUinriversandlakes.Themeasuringrangeinallmodernnephelometersisuser-selectablebutthemoretherangeisincreasedthelessthesensitivityis.Typicallyfor0–50NTUrangethesensitivitygoesdownto0,01NTU,whilefor0–1000NTUranges,0,12NTUsensitivityistypical.FortheEMSOsitesthemeasurementscanvarysignificantlysothemeasuringrangeshouldbeadaptedtothesiteneeds.

Opticalbackscattertechniquecanoperateacrossavarietyofwavelengthswhilethechosencombinationsandmeasurementimplementationdeterminesthefinalmeasurementresult.Forexampleasinglewavelengthsystemmeasuringat700nmcanquantifysuspendedparticleconcentrations within the sizes of 0,2 to 20 µm. Spikes in this signal can indicate largerparticles, and the addition of other wavelengths can also expand particle quantificationcapability. The data obtained from optical backscattering measurements can also be

Page 56: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

56

calibrated to various quantities including POC concentration, using samples that aresufficiently specific. The ratio of chlorophyll-A to optical backscatter can also indicatevariations in phytoplankton community. Conveniently, optical backscatter across twowavelengths and chlorophyll-a can bemeasured in a compact and power efficient tripletfluorescenceinstrumentofferedbyWetlabs.

TABLE51CORESPECIFICATIONSFORMEASURINGTURBIDITYANDOPTICALBACKSCATTER

TURBIDITYandOPTICALBACKSCATTER(OBS)

MeasurementRange 0-150 NTU

Accuracy 0,1 NTU

Sensitivity 0,02 NTU

Currents

Watercurrentscan influencea rangeofprocessesandcanalsobeused to translatestatevariablestoflux,suchasthetransportofparticlesintime,currentspeedanddirection.Theinfluenceofcurrentsonheatflux,nutrientavailability,andproductioninthesurfaceoceanareallfundamentalareasofoceanographicresearch.Attheseafloor,theinfluenceofcurrentsonre-suspension,transportofheatandmineralquantitiesarealsoimportant.

ThespeedanddirectionofacurrentcanbeperfectlymeasuredbymeansofAcousticDopplerCurrent Profilers (ADCP). The measurement is performed using the Doppler Effect frommovingparticlesinsidethewatercolumnthatreflectaprecisesoundwaveemittedfromtheinstrument. The frequency of the sound wave determines the measuring distance, thesensitivityandaccuracyofthemeasurement.TypicallyanADCPworksat1200KHzfrequencyandhasameasuringrangeof20meters,whileanADCPworkingwithafrequencyof300KHzcanmeasureatthedistanceof150meters.Aminimumconcentrationofsuspendedparticlesinthewaterisnecessarytoproducedetectableacousticbackscatterforthesystemtowork.

Measurementsaremultipointmeaningthatthecolumnofwaterfromtheinstrumenttoitsfurthestmeasuringpointisdividedinzonescalledcells.Themeasurementofthevelocityanddirectionofsuspendedparticleswithinthesecellsconstituteameasurementprofileofthevelocityanddirectionofcurrentsinthewatercolumn.Typicallyanumberofcellsrangesfrom1to128.

For the instrument to work properly, several parameters have to be defined before themeasurementstart.Usuallytheuserdefinesafixedpressuredependingonthedepthoftheinstrument, a fixed salinity value (assuming it is uniform for the column of water that ismeasured).Internaltemperaturesensoroftheinstrumenthelpstodeterminecorrectspeedofsoundinwater.Theinstrumentsisalsoequippedwiththetiltsensorandcompass.

TABLE52CORESPECIFICATIONSFORMEASURINGCURRENTS

Page 57: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

57

CURRENTS

VelocityAccuracy 1%±0,5cm/s cm/s

DirectionAccuracy ±2 Degrees

VelocitySensitivity 0,1 cm/s

DirectionSensitivity 0,01 Degrees

Fluorescence/Chlorophyll-A

Fluorescencecanbetailoredtolookatavarietyofbiogeochemicalproperties,themostwell-known of which is chlorophyll-a. Primary productivity can be correlated to chlorophyll-aconcentrations, which in turn are correlated to the amount of fluorescence excitations.Primary productivity has fundamental applications including helping to interpret carbonuptakedynamicsfromtheatmosphereintotheocean,quantifyingorganiccarbonproductionfrom photosynthesis, and determining of the amounts of organic carbon available to fuelbiologicalactivity.Chlorophyll-adatacanprovideinformationonlocalconditionsinrelationtoinsitudata,butcanalsohelpincalibrationsofoceancolourdatacollectedbysatellites.MoreadvancedtechniquesuseFastRepetitionRatefluorometer(FRRf)systemsthatcanalsocollectinformationonthephysiologicalconditionofphytoplanktonandprovideanimportantinformationonproductivityandecologicalfunctioning.Thedetectionofcoloureddissolvedorganicmatter (CDOM)canalsohavespecificbiogeochemicalapplications thatwillnotbecoveredhere.

Several companies sell in situ fluorometer systems that come with biofouling protection.TherearealsoFRRFsystemsthatcanbefittedtoobservatoriesandautonomoussystems.Inthepastfiveyearstherehavebeenmanylongtermdeploymentsoffluorimetersystemsthathaveprovidedusefulandsensibledatadespitepotentialbiofoulingorothercalibrationissues.Likeforthemostothersensors,pre-andpost-deploymentinsitucalibrationmeasurementsis thebestway to correct thedrift.Moreover, if the intent is to convert the fluorescencevaluestochlorophyll-Aorotherspecificvalues,itisadvisedtocollectsizefractionatedalgalpigmentsamplesforcalibrationpurposes.WetLabsECOTriplet,orTriOSmicroFlu,nanoFlu,matrixFluVIS;TurnerDesignsCyclopsandChelseaAquaTrackaIIIareexamplesofwidelyusedsystems.

Page 58: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

58

FIGURE4TRIOSFLUOROMETERSEQUIPPEDWITHIFREMERANTIFOULINGDEVICES

TABLE53CORESPECIFICATIONSFORMEASURINGFLUORESCENCE

FLUORESCENCE/Chlorophyll-Α

MeasurementRange 0-125 µg/l

Sensitivity 0,02 µg/l

Underwatersound

Theoceanisfullofsounds.Underwatersoundisgeneratedbyavarietyofnaturalsources,suchasbreakingwaves,rain,andmarinelife.Itisalsogeneratedbyavarietyofman-madesources,suchasshipsandsonars.Thereisanincreasingneedtomeasureandreportlevelsofunderwater sound in the ocean, partly driven by the need to conform to regulatoryrequirementswithregardtoassessmentoftheenvironmentalimpactofanthropogenicnoise.Acousticmeasurementsarerequiredforapplicationsasdiverseasacousticaloceanography,sonarperformanceassessment,geophysicalexploration,underwatercommunications,andoffshore engineering. More recently, there has been an increased need to make in situmeasurementsofunderwaternoisefortheassessmentofriskstomarinelife.

Somesoundsarepresentmoreorlesseverywhereintheoceanallthetime.Thebackgroundsound in theocean is called ambient noise. Theprimary sourcesof ambient noise canbecategorizedbythefrequencyofthesound.Inthefrequencyrangeof20-500Hz,ambientnoiseappearsprimarilyduetodistantshipping.Evenafterremovingthenoisegeneratedbyshipsclosetothereceiver,distantshipscanbedetected.Theamountofnoiseisgreaterinregionswithheavyshipping traffic. In thesouthernhemisphere, thereare fewerships than in thenorthern,thuslow-frequencyambientnoiselevelsaregenerallyatleast10dBlower.Inthefrequencyrangeof500-100.000Hz,ambientnoiseappearsmostlyduetosprayandbubblescoming from breaking waves. These sounds increase with increasing wind speed. Atfrequenciesgreater thanabout100.000Hz, thenoisegeneratedbytherandommotionofwatermolecules,calledthermalnoiseispredominant.Thisnoisesetstheultimatelimittotheminimumsoundlevelsthatcanbemeasured.Unlikeambientnoisediscussedabove,whichisalmostalwayspresent,somesoundsareintermittentoronlyoccurinlimitedregionsofthe

Page 59: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

59

ocean. There are a largenumberof intermittent sources of sound in theocean, includingnaturalphysicalprocesses,marinelife,andman-madesources.

Devicescalledhydrophonesarewidelyusedtotracktheunderwatersounds.Hydrophonesconvert sound inwater intoelectrical signals thatcanbeamplified, recorded,playedbackoverloudspeakers,andusedtomeasurethecharacteristicsofthesound.Mosthydrophonesaremadefromapiezoelectricmaterial.Underthepressureofasoundwave,thepiezoelectricelement flexes and produces electrical signals. Some hydrophones, called omnidirectionalhydrophones, recordsounds fromalldirectionswithequal sensitivity.Otherhydrophones,calleddirectionalhydrophones,haveahighersensitivitytosignalsfromaparticulardirection.Directional receivers are most often constructed using a number of omnidirectionalhydrophones combined inanarray.Directionalhydrophonesare typicallyused in systemsconstructed for locating and tracking objects. Hydrophones are specially designed forunderwateruse.Theyarenormallyencasedinrubberorpolyurethanetoprovideprotectionfromseawater.Theycanbemountedinseveraldifferentways,suchasattachedtoaboat,towed,orplacedinafixedpositionunderwater.

TABLE54CORESPECIFICATIONSFORMEASURINGPASSIVEACOUSTICS(GEOLOGYSPECIFIC)

PASSIVEACOUSTICS(Geologyspecific)

MeasurementRange 0,1–100 Hz

Accuracy 1 V/µPa

Sensitivity -190 dB(re1V/µPa)

TABLE55CORESPECIFICATIONSFORMEASURINGPASSIVEACOUSTICS(OCEANCIRCULATIONSPECIFIC)

PASSIVEACOUSTICS(Oceancirculationspecific)

MeasurementRange 20–200.000 Hz

Accuracy 1 V/µPa

Sensitivity -190 dB(re1V/µPa)

Imageryofmicroorganismsandhabitat

Capturingunderwater imagesormakinganunderwatervideocanbeaveryusefultoolforconductingscientificresearchaswellasafunhobby.Underwaterphotographyisveryusefulwhenscientistsneedtoexamineobjectsontheseafloorovertime.Forexample,scientistsmayuseunderwaterphotographytotakephotoquadratstolookattheabundanceofcoralsovertimeatseveralreeflocations.Aphotoquadratisaphotographofaparticularhabitatwithina standardizedsquarearea,orquadrat.Underwaterphotoscanbeused tohelp toidentifyspecieswithoutremovingthemfromthewater,especiallythosethatareslow-moving(e.g.,nudibranchs)orsessile(e.g.,barnacles).Underwatervideocanbeusedtoobservethebehaviourofmotilespecies,suchastheinteractionbetweenmatepairsinbutterflyfishor

Page 60: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

60

social behaviour in seals. Video can even be used to examine phenomena such ashydrothermalventsandunderwatervolcaniceruptions.

Underwaterphotography and video facemany challenges. For example, camerasmustbeplaced in watertight housings. Light attenuationmeans that red wavelengths of light areabsorbednearthesurfaceandlightintensitydecreaseswithdepth.Lightsourcesareusedtoaddthemissingcoloursbackandcapturecolourmarkingsofspeciesthatmaybeimportantforidentification.Anotherchallengewithtakingunderwaterphotoorvideoisthatthereareoften large particles of sediment and plankton in between the camera and the object ofinterest.Whenphotographerstakephotoswithaflash,lightreflectsfromtheseparticlesandshowupasbrightdotsonthefinalimage.Toaddressthisproblem,photographersuseflashesthatareoff tothesideofthecamera,calledstrobes,sothatwhenaphotograph is taken,mostofthelightreflectsbackatthestrobeandnotatthecameraobjective.

Theanalysisofunderwaterimageryimposesaseriesofuniquechallenges,whichneedtobetackledbytheITcommunityincollaborationwithbiologistsandoceanscientists.Amongthechallenges are image enhancement, scene understanding, classification, detection,segmentation; detection and monitoring of marine life, form tracking, automatic videoannotationandsummarization,context-awaremachine learningand imageunderstanding,imagecompression.

TABLE56CORESPECIFICATIONSOFEMSOFORRECORDINGHDVIDEOANDSTILLIMAGES

HighDefinitionvideoandStillimagingSpecifications

Resolution 4240×2824 pixels

Minimum video capturespeed

7 Framespersecond

Sensitivity Minimum46% QE

Sensortype CCD+CMOS

Sensorsize 1 inches

Outputprotocol TCP/IP,USB3

SensitivitytoIRlight 850-900 Nanometres

TheImagingFlowCytoBot(IFCB)(McLaneResearchLaboratories)

IFCB is an in-situ automated submersible imaging flow cytometer that generates highresolution(1380x1034pixels)imagesofsuspendedparticlesin-flow,inthesizerange<10to150μm(suchasdiatomsanddinoflagellates).Theinstrumentcontinuouslysamplesatarateof15ml seawaterperhour,and,dependingon the targetpopulation, cangenerateup to30,000highresolutionimagesperhour.IFCBusesacombinationofflowcytometryandvideotechnology. Laser-induced fluorescence and light scattering from individual particles are

Page 61: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

61

measuredandusedtotriggertargetedimageacquisition.Theopticalandimagedataisthentransmitted to the computer in real time, through an Ethernet link. Collected images arecontinuously monitored and processed externally by the specific automated imageclassificationsoftware.Foreachimagedparticle,approximately200differentparametersareextracted. Images can be automatically classified to the genus or even species level withdemonstratedaccuracycomparabletothatofhumanexperts(OlsonandSosik2007).

TheFlowCAM(FluidImagingTechnologies)

FlowCAMcombinesselectivecapabilitiesofdifferent technologies suchas flowcytometry,opticalmicroscopy and fluorescence detection. It can generate high resolution (1280x960pixels) images of particles in-flow, in the size range 2 μm to 2000 μm (depending on thecombination«magnification/flowcell»usedfortheopticalsystem,i.e.2X/600μm,4X/300μm,10X/100μmor20X/100μm).Thesampleintroducedinthedeviceispassedbyaperistalticorasyringepumpintoaflowcell(orflowchamber)withknowndimensions,locatedinfrontofamicroscopeobjective,connectedtoavideocamera.«VisualSpreadSheet»isthesoftwareprovidedtogetherwithFlowCAM.Itisessentialforallthemajoraspectsofsampleanalysis:setupfordataacquisitionthroughthecontextsettings,controllingthedevice,managingfilesand setting preferences, data acquisition and post-processing of collected data. For eachparticle,thesoftwareprovidesasetof26parameters.

TheFastCAMprototype(IFREMER-LDCM)

Thissystemisbasedonahighresolution(2Megapixels)andhighspeedcameraallowingtheacquisition of 340 frames per second. It digitizes 10 mL of sample with a 10 timesmagnificationwithinonly15min(whichisnotpossiblewiththefirstgenerationofFlowCAMdevices).Comparisonof grayscale imageswith thoseobtainedwith the first generationofFlowCAMshowedthatthisnewsystemanalysessamplesmuchfasterandprovideshighimagequality.ALED,drivenbyacontrolboxemitslightpulsesof5μsduration.Lightisinjectedintoalargecorediameter(1mm)opticalfibertohomogenizethebeam.Upontheexitfromtheoptical fiber, light illuminates the flow cell. A 10X magnification microscope objectiveassociatedwithatube lens imagestheorganismsthatcirculate intheflowcell.TheframegrabbingissynchronizedwiththeLEDlightemission.Apixeloftheimagecorrespondsto0.5μm.TheimagesaresavedonthePCinrealtimethankstoafastharddrive.Fortheimageacquisition,aspecificsoftwareisdevelopedinVisualBasic12.AsecondsoftwaredevelopedinClanguageisusedforimageprocessing.Thankstothe«MatroxMIL10»library,nearly50parametersarecomputedbasedoneachimage.Theseparametersthenareusedtoclassifyimagesbyapplyingexistingclassificationtools,like«PlanktonIdentifier»(DelphiandTanagraenvironments)or«ZooImage»(Renvironment).

UnderwaterVisionProfilerUVP5(Hydroptic)

TheUVP5imageslargeplankton(equivalentsphericaldiameter,ESD>600μm)(Picheraletal.2008) usuallymetazoansbut also largeunicellular organismsor colonies of those (diatom

Page 62: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

62

mats,rhizariaandprokaryotessuchascyanobacteriacolonies)(Biardetal.2016;Guidietal.2012).TheUVP5samplingvolumevariesfrom0.5to1Landimagesarerecordedevery5to20cmalongverticalprofiles,leadingtoanobservedvolumeof1m3fora100mdepthprofile.MountedonaCTDrosetteframe,theUVP5startsrecordingatthedepthofafewmeters,eventuallyleadingtotheunderestimationinthequantificationofobjectsjustbeneaththeseasurface.ImagesproducedbytheUVP5areextractedusingtheZooProcesssoftware.Imageidentificationispossibleforobjectslargerthan600μm(totalnumberofobjectsisapprox.1millionasshownduringtheBalticSeacruise).Acomputer-assistedmethodisusedtoclassifyallorganismswithaRandomForestclassification.AllimagesarecheckedusingtheEcotaxawebapplication17byexpertstodiscriminateplankton(includingcyanobacteriacolonies)fromother plankton and detritus. Differences in shapes and grey level assessment are used todistinguishbetweenspecies.

CytoSenseandCytoSubinstruments(CytoBuoy)

Eachparticle interceptsa laserbeamandthegeneratedpulseshapesofopticalproperties(twoscatters,uptothreefluorescences)inducedbytheparticlearerecorded.Pulseshapesrecordingallowchainsformingcellstoberecorded.IncreaseinlaserpowerandoptimizationofsheathcleaningenabletheresolutionofProchlorococcus.Animage-inflowdevicerecordspictures of preselected groups of cells, resolving cells at its best above 20 μmbut also iscapabletocollectpicturesof2μmbeads(withlowresolution).Particlesarerecordedabovethedefinedthreshold(scatterorfluorescence)andphytoplanktoncellsareseparatedfromnon-photosynthetic particles due to their red autofluorescence properties. The CytoSensesensors can be installed on ships of opportunity and scientific vessels, whereas thesubmersibleversion(CytoSub)canbefittedtofixedstationsandbuoys.Theycanrunsamplesfromasubsamplingdedicatedsystemisolatingseawaterfromacontinuousflowofpumpedseawater.Obtainedresultsareanalysedusingdedicatedsoftwareformanualandautomaticclustering.Formanualclustering,eachparticleisrepresentedontwodimensionalcytograms.Availabilityofdifferentcytogramsmakesthemanualclusteringpossible.CytoBuoyCompanybuilt its own manual clustering software (CytoClus). However, today, CytoClus does notprocess images. This iswhy automatedmethodsof imagesprocessing for size calibration,speciesrecognitioninmicrophytoplankton,andcellscountingincoloniesarecurrentlyunderdevelopment. These new functionalities will be integrated to the Rclus Tool package (Renvironment)developedbytheLISIClaboratoryincollaborationwithCNRSLOG(ULCO).

17http://ecotaxa.obs-vlfr.fr/

Page 63: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

63

4.3 Specificmattersandcomplicationsofseameasurements Hydrospherevsmarinemeasurements

Seawater is chemicallydifferent to inlandwater. Thatmeans that the instrumentation formeasurementsofseaandinlandwaterparametersareoftenquitedifferenteitherinsensingprinciples or in the range of use. The European experience of implementing the WaterFrameworkDirectivenearlytwodecadesago18ledtobetterdefinitionofthetoolsneededforcharacterizationof“softwater”,“transitionwater”and“coastalwater”.

The seawatermatrix includes ions interacting with dissolved chemical components.Mostchemical sensor principles and/or ranges are different in seawater. Thus, most chemicalanalysers used in rivers have tobeeitherdiscardedor significantly redesigned formarineapplication. Only fewmanufacturers of freshwater instrumentation (physical, chemical orbiologicalparameters)areaddressingthemarketofmarinemeasurementstoo.

Developmentoftechnologiesformarinemeasurements

ThetechnologicallevelsofmarineinstrumentationR&Dactors,bothfromprivateorresearchsectors, allow to envisage the adaptation of advanced sensing techniques to sea surface,underwaterandevenlargedepthconstraints.Thisopensoceanographytonewperspectivesof sensing but with a higher cost. The TRL 7 or 8 of on-shore instruments will provide atechnologywithareadinesslevelofTRL5or6onthemarinescale.

Biofoulingprotectionforunderwaterinstrumentation19

Oceansenvironmentalmonitoringandseafloorexploitationneedsinsitusensorsandopticaldevices(cameras,lights)invariouslocationsandonvariouscarriersinordertoinitiateandtocalibrate environmental models or to perform the supervision of underwater industrialprocesses.Tobeeconomicallyoperational,thesesystemsmustbeequippedwithabiofoulingprotection of sensors and optical devices used in situ. Indeed, biofouling canmodify thetransducing interfaces of the sensors and cause unacceptable bias on themeasurementsperformedbytheinsitumonitoringsysteminlessthan15days.Inthesamewaybiofoulingcandecreasetheopticalpropertiesofwindowsandthusalterthelightingandthequalityoftheimagesrecordedbythecameras.

18http://ec.europa.eu/environment/water/water-framework/info/intro_en.htm19https://doi.org/10.1109/OCEANSE.2017.8084636

Page 64: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

64

FIGURE 5 FOULING ON THE SENSORS IS THE MAIN CONSTRAINTFORINSITUOCEANAUTONOMOUSMEASUREMENTS

Itisacknowledgedthatacoastalmonitoringsystemmustbeabletorunwithoutmaintenancefor 3 months in order for the system to be economically acceptable. For deep-seaobservatories, actual maintenance interval for the Canadian Venus system is 6 months.ESONET,theEuropeannetworkofexcellencefordeep-seaobservatoriesdefinesmaintenanceintervalrecommendationfrom12upto36months.

Protectionstrategiesadoptedbyoceanographicsensorsmanufacturersrelyontwomethods.Onemethod is classified as active and is generally based onwipers. This technique has asignificantweakness,asafteronemonthinseawaterthematerialusedforthewiperisgettingineffectiveduetoitsdeterioration.Moreover,thedesignofthesensor-transducinginterfacemust be adapted to allow thewiper towork properly,which is sometimes impossible. Inanother,passivemethod,thesurfacesthatneedtobeprotectedarecoveredwithcopper.This techniqueworksquitewellwhena closedcell canbearrangedaround theprotectedarea.However,insomeinvestigations,suchasdissolvedoxygenmonitoring,copperionscandisruptthemeasurementprocessandcausebiasontheperformedmeasurements.Recently,theCanadiancompanyAMLhasproposedaUVirradiationbiofoulingprotectionschemeforsensors.Thesystem,calledUV•Xchange,isbasedonUVBulbsthatirradiatetheareatobeprotected.Insomesituations,whereenergyisnottoomuchofaconcern,thissolutionseemstobeagoodchoice.

Anotherwaytopreventbiofoulingofinsituoceanographicmonitoringsystems,isbasedonseawaterelectrolysisperformedinordertoproducehypochlorousacid.Thismethodhasbeensuccessfully applied in various marine monitoring applications for autonomous andtransportablesystemslikenkeMarineElectronicsSmatchmultiparameterprobes,orseafloor

Page 65: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

65

observatorieslikeMomar,Venus,Neptune,orIfremerTempomodulewherethesensorsaredirectlyimmersedinseawaterwithoutanyproxieslikepumpingdevices.Foropticalsensors,electrolysis principle can be applied on a “transparent” conductive coating of the opticalwindow.Thisrobusttransparentconductivelayerispolarizedinordertogenerateaverylowquantityofhypochlorousacidontheentiresurfaceoftheopticalport.Thistechnicoffersahigh levelof robustness (nomovingparts),ahigh levelofprotectionefficiency (thewholeopticalwindowisprotected)andconsumesverylowenergy.Polarizationcanbeturnedonand off in order to control the generation of biocide. This specific biofouling protectiontechniquecanbecoupledtoanALVIMSrlbiofilmsensorinordertoapplytheactivebiofoulingprotectiononlywhen fouling pressure is indeed sensedby thebiofilm sensor. This allowsoptimizationofsensorfunctioningintermsofbiocideproductionandenergyconsumption.

Platform/instrument/sensor

Platforminnovationisoneofthedriversofincreasingcapabilitiesofmarinesystems.ItisastructuringpointfortheconstitutionofseveralRIs(EUROARGO-profilingfloats,GROOM-gliders, EMSO - sea floor +water column fixed point observatories, EuroFLEETS -oceanographic vessels). Each RI needs to mobilize the providers to cope with its ownspecifications and at the same time to benefit from inter RI cooperation. In this respect,manufacturers of sensors have to adapt to niche markets with highcommercial/manufacturing cost ratio. That is why there is a market tendency for theinstrumentstoincludeseveralsensors(multiprobeinstrumentssincethe90s,EMSOGenericInstrumentationModulein2017EGIM).

FIGURE6MULTIPARAMETERSYSTEMFORSEAMEASUREMENTS.

AUVsandGliders(marinedrones)usetheaircraftconceptof“payload”toofferaninterfacetoanysensoroftheclient.ResearchInfrastructuresneedacarefulmetrologyapproach(WP2ENVRIPLUS)andaneasyplugandplaysensorinterfacepolicy(seeWP1Task4inENVRIPLUS)todealwiththisindustrialstructuration.

Page 66: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

66

4.4 Marinetechnologiesofthefuture Optics

Throughouttheworld,asignificantnumberofresearchinstitutionsandcommercialentitiesareengagedintheresearch,developmentandmanufacturingofopticalinstrumentationforoceanographic research and observations. Two broad trends encompass many of theadvancesseenintoday’stechnologies.First,manyinstrumentshaveemergedfromstudiesoftraditional “optical oceanography”, and provide measurements or products such asdetermination of ocean colour, scattering, absorption, attenuation, and particleconcentrations.Moreadvancedapproachesarecurrentlydevelopedonthesefundamentalobservationstoprovidedataaboutbiologicalandchemicaloceanographicrelatedparameterssuchasnutrientconcentrations,standingstock,productivity,particlesizeandcomposition,andtaxonomicidentificationoforganisms.(Moore2009).

Scientistsandtechnologistsarenowengagedindevelopmentsofinversionmethodstoobtainbiogeochemicalandphysicalproductsfromoceanopticalmeasurements.Thedevicesforthemeasurements,arerepresentedbyspectralradiometers(radianceandirradiance),spectralbackscattering,spectralabsorption,andspectralbeamattenuationmeters.Thediversityofproducts demonstrates the real potential of optical measurements in water. Absorptionmetersdeterminenitrateconcentrationand identifyharmfulalgalbloomspecies. Spectralfluorometersyieldvaluableinformationonphytoplanktonspeciesidentificationanddissolvedorganic chemistry. Devices that characterize the Volume Scattering Function are used todetermine particle size distribution and classification. Excitation – relaxation fluorometersprovidebiologicalproductivityparameters.Advancesincorephotonicsandmaterialssciencesaswellasembeddedcomputingmakeanewrealmofoptionsavailable inapplyingopticaltechniques for identification ofmaterials in the ocean. In-water flow cytometers are nowcapable of conducting automated and continuous sampling for the long periods (up tomonths) to identify concentrations of multiple phytoplankton and zooplankton species.Complex spectral excitation-emission and time-resolved fluorescence are getting better inidentifyingvolatilehydrocarbons.LaserRamanspectroscopy,andlaser-inducedbreakdownspectroscopy (LIBS) strive to identify the molecular and elemental composition of solids,liquidsandgasesinsitu.MembranesandanalyserscoupledwithopticalsensorscanprovideinformationonpH,nutrients,dissolvedgases,andmetalconcentrations.Allthesetoolswillresultinsignificantadvancesinobservingoceanchemistry,biology,andgeology.

Opticaltechniqueshavealsodemonstratedtheabilitytodeterminephysicalparameterssuchas temperature, density, and turbulence, and tomeasure directly the absorption of solarphotonsthatcontributetothelocalheatingoftheoceanandthedevelopmentofthermalstructureanddynamics.Whileit isunlikelythatalltheseeffortswillresult incommerciallyviabletechnologies,theycollectivelymanifestasasignificantcrosscuttingdriverinmodernobservationaloceansciences.

Page 67: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

67

For those sensors that are already commercialized there are still significant issues inintegratingthemintothecurrentoceanmonitoringinfrastructure.Forturbiditysensorsandsingle channel fluorometers, this is a relatively straightforward process. However, as thesensors become more complex so does the problem of integration. Beyond the basicchallengesof coupling sensors intoplatformsand systems, thereareother issues, suchasproduction of data products appropriate for models, examination with other samplingmethods and tools, and development of general usage protocols and expectations foraccuracy,stabilityandotherqualitiesthatmakeasensorwidelyuseful.

The new generation optical sensors are now beginning to address the wide diversity ofpropertiesinvolvedinunderstandingecosystems.Spectrophotometrycoupledwithreactionchemistryandsemi-permeablemembranes,alongwithdirectabsorptionprocesseshavenowallowedadirectobservationallinkamongbiology,physicsandchemistry.

With optical techniques, one has the potential to estimate everything from temperature(Hickman,1991;Fry,2002)tosalinitytodissolvedgasesconcentrationsandalonglistofotherconstituentsinwater.Inaddition,opticalmethodsareoptimalinallcases.Ingeneral,sensorsbasedonoptical techniquesarebecoming increasinglysignificant inoceanmonitoringandresearch, and their further development is highly needed within a growing base ofapplications.

Acoustics

Passiveacoustics

Listeningtounderwatersoundhasbeenrestrictedtomilitaryusageduringalongtime.TheoveralloceancoverageendeavouredbytheCTBTO(ComprehensiveNuclear-Test-BanTreatyOrganization–www.ctbto.org)isnowimplementedandthedataisopenafteragivendelay.ThisopensthewaytocooperationwithResearchInfrastructuressuchasEMSOERIC.Sensortechnologiesarenowquitesimilarbetweenresearchandsecurityfields.

Noisepollution inparticularhasbecomea subjectof interest, in relation tonotonlyhighintensity anthropogenic sounds (naval sonar, pile driving, seismic reflection, etc.) that cancausedirectharmtooceanspecies,butalsowithrespecttothecontinuoussoundsproducedbye.g.shippingtrafficordrillingplatformsthatcanmaskbiologicalsignals.Duetoanincreaseintheseactivitiesoverthelastcentury,theambientsoundlevelsespeciallyatlowfrequencieshavebeenslowlyincreasing,raisingenvironmentalconcerns.Marinemammalsandmanyfishspeciesdependonsoundsignals,andmaskingcanreducetheirexplorationorcommunicationrangepromptingbehaviouralchangesordrivinganimalsawayfromtheirhabitat.OfspecialinterestistheEuropeanMarineStrategyFrameworkDirective-GoodEnvironmentalStatus20

20http://ec.europa.eu/environment/marine/pdf/MSFD_reportTSG_Noise.pdf

Page 68: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

68

thatrequiresthemonitoringofanthropogenicnoise.Therearearound125knownspeciesofmarine mammals in the world, comprising 84 cetacean species (whales, dolphins andporpoises),33speciesofPinnipeds(sealsandsealions),fiveSirenians(Manatees,DugongsandSeaCow),plusottersandpolarbears(threespecies).Thesespeciesproduceadiversearrayofsounds,rangingfromthelowfrequency(10–15Hz,approx.15sduration)moansofbluewhalestoultrasonic(130kHz,approx.100µsduration)echolocationsclicksofporpoisesandsomedolphinspecies.Betweentheseextremecases,cetaceancallscanbefoundinallpartsofthespectrum.Somespecies,suchastheharbourporpoiseandmostbeakedwhales,appeartoproducehighlystereotypedclickswith littlevariationbetween individuals,otherspecies, such as blue whales have stereotyped but region specific calls, with differentpopulations and sub species producing different call types. Other species produce highlyvariablecalltypesanddemonstratestrongevidenceofsociallearning,changingthecallstheymakeoverperiodsofmonthsandyears.Theclassicexampleofthisbehaviourishumpbackwhales,which exchange and learn different songs during their annualmigratory cycles. Itshouldalsobenotedthatseveralspecieshavenotyetbeenrecordedandforsomespecies,recordingscomefromasmallnumberof individualsandmaynotberepresentativeofthespeciesasawhole.Itisnotuncommontohearsoundsduringsurveyswhichareclearlymarinemammallike,butcannotbeassignedtoanyspecies.

Theenergyconstraintandthevolumeofdataarelimitationsforlongtimemonitoring.Theselimitationsareaddressedbyimplementingdutycycles,datacompressionandtentativein-situdatatreatment.TheResearchInfrastructuressuchasJERICO,GROOMandEMSOareleadingactors in implementing new generations of hydrophones and hydrophone interfaces tomonitorbothnoiseandmarinemammalsounds.

TABLE57PROPOSEDHYDROPHONEREQUIREMENTSFORNOISEANDBIOACOUSTICSINTHEOPEN-OCEAN–FORFIXO3/EMSO–ERICDELORY–PLOCAN

Resolution

Dynamic

Range(DR)

Directivity

Accuracy

Samplingfrequency

Specialrequirements

Other1 Other2

16 to 24bits, withdifferentgainstofitDR

<SS0;50to180dBre1μPa

Omni-

Directional

+/-3dB 100kSps Embeddednoiseandbioacousticsstatistics

Storeondetection, Solid-statestorage

Lowpower forstand-alonesystems

*ESONETLabel

Page 69: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

69

Activeacoustics

Fishabundanceandbiodiversity

ThemanagementoffishstocksisakeyparameterofGEO(GlobalEnvironmentalOutlook).Avoidingextinctionoflargestocksisnotsufficientaimtodayandtheresearchinfrastructuremissionistostudyandimplementcriteriafortheecosystemicoperationoffisheries.Scientificfishing with oceanographic vessels is used as the basis for the stock estimation andestablishmentoffishandzoo-planctonabundancetimeseries.Thetechniquesarenowlessandlessintrusiveandbasedonechosoundingfromacousticsoundersontheshiphulls.Fixed-pointobservatoriesarenowabletocarrysuchechosounders.Dataistreatedwiththehelpofechointegrationalgorithmslimitingthedataflowofthisacousticimagery.

Bubblesandfluidflaresandseeps

Fluidseepsareamajorunknownoftheinteractionbetweenearthcrustandoceans.Theorderofmagnitudeofthefluxesisstillamatterofresearch.Whilethemappingoftheseepageareasfromtheseabedisdevotedtooceanographicvessels,innovativeimagerysensorsareundertesttoinvestigatethevariationintimeofthosefluidescapes.

Currentmeters

OceancurrentdirectionandvelocityareEssentialOceanVariables.Theyareoftenmeasuredin thevicinityofothersensors tounderstandtheirvariationsbut theneed is toomeasurealong large ranges thanks to Acoustic Doppler Current Profilers (ADCP). ADCPs are now amaturetechnologybutadaptationstolongtermobservatoriesisamajorissue.

Industrialaspects

Somecivilsectorinstitutes(BergenUniversity,Scripps,WoodsHole,Ifremer)interactcloselywiththeindustryofacousticmeasurementsinordertoguidethedevelopmentofinnovativetechnologies,accessthenewimprovedsoftwareproductsandhelptoformulatetheneedsofresearchcommunity.Similarlytothisapproach,recentprojectssuchasNeXOS,ESONETandFixO3showed theway to influence thedevelopmentofnewmarine technologies throughEuropeanResearchInfrastructurecommunities.

Electrochemicalmeasurements/ISFETs

Theuseofmicrosensorsforinsitumonitoringofenvironmentalparametersisgaininginterestduetotheiradvantagesoverconventionalsensors.(Jimenez-Jorqueraetal2010;Denuault2009)Afewcommonelectrochemicaltechniquessuccessfullyoperateoutsidethelabsandhaveacquiredsuchanimportancethatseveralkeyenvironmentalparameterswouldbehardtomeasuredifferently. Inaquaticsystemsoxidation-reductionpotentials(ORP)andpHaremeasuredbypotentiometry(measurementofapotential),dissolvedoxygen(DO)ismeasuredbyamperometry(measurementofacurrent),tracemetalsandspeciationaremeasuredbyvoltammetry (measurementof currentsovera rangeofpotentials)while conductivityand

Page 70: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

70

thereforesalinityaremeasuredbyimpedimetry(measurementofanelectricalimpedance).Overthelasttwentyfiveyearsvoltammetryhasbeensuccessfullyusedwithmicroelectrodestodeterminetheconcentrationandspeciationofsomeredoxspecies insitu(Lutheretal.,1999).Microelectrodeshavealsobeenemployedasamperometricsensorstocontrolmasstransportandalleviatetheneedformembranes(Prienetal.,2001,2005;Sosnaetal.,2007,2008).

Microsensorsbasedonsemiconductortechnologyofferadditionaladvantagessuchassmallsize, robustness, low output impedance and rapid response. These characteristics allowintegrationofcircuitryandmultiplesensorsinthesamesubstrateandaccordinglytheycanbeimplementedincompactprobesforparticularapplicationse.g.,insitumonitoringand/oron-line measurements. In the field of micro sensors for environmental applications, IonSelectiveFieldEffectTransistors(ISFETs)isofspecialinterest.TheyareparticularlyhelpfulformeasuringpHandvariousionsinsmallvolumesandtheycanbeintegratedincompactflowcellsforcontinuousmeasurements.TheapplicationofISFETbasedsensorsindifferentareasof analytical chemistry has advanced new technological developments and theimplementationofsensorsinmoreautomatedsystems.Themainexampleistheirapplicationin continuous flow systems such as Flow Injection Analysis (FIA) and Sequential InjectionAnalysis (SIA)with theirkey featuressuchasminiaturizationof the flowcell, resulting lowreagentconsumptionandfastanalysisthroughput.

ApplicationofISFET-basedsensorstooceanmonitoring,whereminiaturizationisnotcritical(sampleisalmostunlimited)appearstobeoflimitedinterestasafirstoption.However,thereareverychallenginganalyticalapplicationsinthisfield.Forexamplemultiparameterdetectionprobes,integratingvarioussensorsondemandforinsitumeasurementsarehighlyrequiredformarinewatermonitoring.ItisinthiscontextwhereISFETsofferahighaddedvalueduetotheir small size, robustness and low power consumption. Besides, ISFETs are ideal forintegration in (semi)automated flow systems (i.e., FIA, SIA) or in miniaturized analyticalsystems(i.e.,μTAS,LoC)providinghighthroughputanalysis, lowreagentconsumptionandautomatic sampling conditioning and calibration. Such benefits would be absolutelyunachievablewhenworkingwithconventionalelectrodes.SensorsemployingISFETsconsumelowpower,haverapidresponsetimes,anddonotrequiremovingparts.ISFETstechnologyiscapableoflong-termdeploymentswithlittledriftonly(Grayetal.2011;Hofmannetal.2011).OnecommercialproductbasedonsuchtechnologyistheSEA-BIRDScientificSeaFET™OceanpHsensorthatisanionselectivefieldeffecttransistor(ISFET)typesensorforaccuratelong-termpHmeasurementsinsaltywater.

Wetchemistryvs.compactsensors

It is possible to transfer some of the reference analytical methods used in the lab toautomatedin-situanalysers.Itrequirescertaineffortstoadaptthelaboratory-basedmethod,electronics,mechanicalintegrationandopticsforthemarine-basedmeasurements.Themaindrawbackincaseofutilizationofchemicalreagentsunderwateroronbuoyscomesfromthe

Page 71: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

71

needtoavoidtheirreleaseinthenaturalenvironment.FlowinjectionanalysisFIAiswidelyusedfortheautomationofwetchemicaltechniquesfortheanalysisof,e.g.,nutrients,iron,manganese, sulphur-compounds, and carbonate system (pH, CO2, DIC, alkalinity). Theseawater sample is pumped andmixedwith specific reagents and the reaction product isanalysed by colorimetry, fluorescence, chemiluminescence or electrochemistry. Someinstruments can also perform in situ preconcentration of analytes as well as automaticcalibration.

Industrialaspects

FIAorsimilarflowtechniques(SegmentedFluxAnalysers-SFA,ReverseFlowAnalysis-RFIA)areusedonboardsofresearchvesselsinthelaboratoryinstrumentsfromcompaniessuchasTechnicon,SEALAnalytical,BranLuebbe.CompaniessuchasAMSAllianceandSysteaproposeruggedversionofinstrumentsfornutrientsmeasurements.Systeashallowwaterimmersedversion calledWIZ performs nitrate and nitrite analysis. Few institutes such as Ifremer inFranceandMBARIinCaliforniaareabletoperformwetchemistryanalysisformanyanalytesdownto4000mwaterdepthormore.Inshallowwater,in-situmeasurementofsilicateandammoniahasbeenperformedbyprototypes.Somecompaniesmarketdedicatedinstrumentsare using flow injection for the measurements of one specific parameter. The pCO2measurements of nkeMarine Electronics Cariocabuoyor of SUNBURST Sensors SAMI areperformed by flow analysis including gas equilibrium. Some of the promising automatedcarbonatesystemmeasurementsonboardferry-boxesarealsousingflowanalysis.Labonachip(LOC)technologiesareavailableinresearchlabsfortheanalysisofnutrients,carbonatesystemcompounds,andtracemetals.Currentdevelopmentsincludeapplicationsfororganicspeciation, measurements of nucleic acids (RNA, DNA, including in situ PCR), ATP, andmicroflow-cytometry (microbial abundance,biomass) to characterizeparticles. Themarketproduct based on these techniques is not available yet.More compact sensors based onopticalorelectrochemicalpropertiesarecurrentlyunderdevelopment.ThefirstofthemtobewidelyusedistheoxygenoptodebyAanderaa.Thestoryofitsdevelopmentandtheheavywork of validation in all ocean conditionswere presented during the ENVRIplusGrenoblemeetingin2017.Thenitratedirectmeasuringbyopticalmethodintheseaisnowvalidatedfor SUNA V2. Other sensors are expected to reach TRL=7 for pH, pCO2 and silicatemeasurements.

Spectrometryin-situ

Ramanspectrometry(RS)

RSisanopticaltechniquethatidentifiesandquantifiesmoleculesbasedonspecificvibrationalspectra that are emitted upon excitationwith lasers. So far, only very few in situ Ramanspectrometers for deep sea applications have been developed. RS can be used foridentificationof gases, solids and solutes includingmethane,minerals,hydrates,dissolvedhydrocarbons, sulphates etc. Surface Enhanced Raman Scattering (SERS) provides highsensitivityalsofordissolvedcompoundsandmayresolveconcentrations intheppbrange.

Page 72: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

72

TheworldleadingcompanyinRamanspectrometry,HoribaJobinYvon,workswithIfremertowardsdefiningindustrialversionsofdeepseaIfremerprototypes.

Massspectrometry

ForinsituMassSpectrometrymeasurements,theanalytepassesfromtheseawaterthroughamembranetotheevacuatedinstrumentbody.Alimitationisthatwatermoleculescanalsocross the membrane, which affects the quality of the vacuum and the sensitivity of theanalysis. Compounds that are typically analysed includemethane and other small organiccompounds, sulphide, carbon dioxide, helium, nitrogen, argon, and oxygen. In-situ MassSpectrometersarenotavailableonthemarket.SeveralprototypeshavebeenproducedfordeepseausebyUSresearchinstitutesandSMEpartners.

4.5 MarketoverviewMarinesensorsarewidelyusedforthebroadrangeofactivitiessuchasmappingtheseafloor,underwatercommunications,locatingunderwaterobjectsorobservingunderwateranimalsandplants.Theseactivitiescanbecarriedoutbygovernment,industriesorscientificresearchcommunity and serve for legal, R&D, ormonitoring applications acrossmarket segments.Sensorrequirementsaremainlydefinedbythepurposeoftheirapplication. Inthatsense,industrialapplicationsrequiresensorswith increasedrobustness,R&Dapplicationsrequireimprovedaccuracyandstability,whilelegalapplicationswoulddeterminepricesofsensors.

Duetotheconstantnewdevelopmentsofsensorsandcreationofnewmarkets,theentiremarketofmarinesensorsisfarfromreachingthebalancepointandcharacterizedwiththesignificant potential of growth, increase of revenues and flexibility of business models.Europeansensorsandinstrumentationindustryis,probably,thestrongestsensorindustryinthe world, thanks to the reach traditions of environmental protection and strongenvironmentallegislationinEurope.However,EuropeansensorsprovidersstruggletoenterNorth Americanmarket due to its strong innovation potential, while same difficulties areexpectedinAsianandSouth-Americanregionsduetothelowerpricesofsensorsthere.

As inotherdomains, thereare four stakeholdergroups,determining thecharacteristicsofsensors.Thesearesensormanufacturers,developers,serviceprovidersandendusers.Theroleofthesegroupsindeterminationofsensorscharacteristicswillofcoursedependontheirinteractionandcooperation,whichinturnwillbedeterminedbymarketsegmentmaturity,purposeofactivity,sizeofsubsequentmarketandotherspecialconditions,determinedbylocalnationalmarkets(Gilleet.al2014).

Countries Interested in the sensors for seameasurements, exportandimport

The numbers of world’s exports of navigational and survey instruments for marineapplicationsreflectthestrongpotentialofthemarket.Thusfrom2001to2011theexportsgrewfrom7.5$billionto16$billion.Outofthese16$billion,10$billionwereaccountedfor

Page 73: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

73

surveying, hydrographic, oceanographic, hydrological, meteorological or geophysicalinstruments, while other 5.8$ were accounted for navigational instruments. In 2011, theexportofUSArepresented26.4%oftotalworld’sexportsofsurveyinginstruments,followedby the UK (13.4%), France (9.5%), Germany (8.3%) and China (6.3%). Among the top 20exporters,Germany,ChinaandCanadaincreasedtheirshearintheworld’smarketby6%,3%and3%respectively,whileUSAandtheUKlosttheirshares10%and7%respectively.

Asfortheimports,USAwasalsothelargestimporterofnavigationalandsurveyinstruments,accountingfor17.4%oftheworldimportin2011.USAexportwasfollowedbytheUK(10.8%),Germany(7.0%)mCanada(6.7%)andChina(6.6%).Amongthetop20importers,marketsofChinaandSingaporehadexpandedthemostby2011.Theresharesinworldimportincreasedby 2.2% and 1.4% respectively. At the same time market, shares of the UK and Francedecreasedby4.6%and1.3%respectivelyby2011.

Even though the above-mentioned figures demonstrate the predominance of westerncountries on themarket of marine sensors, there are several emergingmarkets showingtremendousgrowthduringlastyears.Thus,in2011,Colombiashowedandexplosiveimportgrowth of 452%, followed by Indonesia (279%), Russia (245%) and Brazil (158%). Brazil isexpectedtobecomeastrongimporterofunderwateracoustictechnologiesduetotherapiddevelopmentofoffshoreoilindustry.(Leeetal.2012).

Countriesseenasgrowingmarketsforthemarinesensors

Needless to say that all countries shall be interested in monitoring the environmentalconditionsandclimatechangeinthemarinedomain,becauseallcountrieswillbeinfluencedbythechangeshappeningwiththeoceans.However,wewouldliketopointseveralgroupsof countries, which, as we believe, will become rapidly growing markets for the marinesensorsduetotheirgeographicallocationandtraditionalsourcesofincome.

Northern countries: Norway, Sweden, Denmark, Canada, USA, Russia. In these northerncountrieswiththelargecoastalarea,riseofseatemperaturewillcausechangesinavailabilityofsearesourcesandburstsofGHGfromseafloor.Inaddition,manysearegionsaregettingfreeofice,whichmakespossibleforthenortherncountriestoexploreunderwaterresourcesandestablishnewnavigationroutes.

Countriestraditionallyrelyingonsearesources,coastaland islandstates:Norway, Iceland,Japan,developingislandstates.Changeofseawaterparametersinthesecountrieswillstriketheireconomiesanddecreasethequalityoflifeforlargegroupsofpopulation.

Countries,whosewellbeinglargelydependsonthesealevel:Netherlands,island/archipelagocountries,Indonesia,Singapore.Risingofsealevelwillcausefloodingofentireterritoriesofthesecountriesortheirsignificantpartsandwillmakethepopulationtorelocateortomovetodifferentcountries.Inaddition,thesecountriesneedtomonitorthenaturaldisasters,suchastsunamithatareoftenhappeningintheregionandexpectedtohappenevenmoreduetotheclimatechange.

Page 74: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

74

Recent events, conferences, documents, which promotedevelopmentoftechnologyformarinedomain

AtWorld level, the Blue economy concept is supported by company leaders for instancethroughtheWorldOceanCouncil.TheWOCalsoworksonensuringthatCorporateOceanResponsibilityisatthecoreofnewbusinessmodelsdevelopedbythemaritimeindustryandfosteringthefinancialsupportofprivateandpublicinvestorstooceansustainabilityprojects.Throughitsnetwork,itaimsatcreatingfruitfulcollaborationbetweenthemaritimeindustryandinvestors.Suchinstitutionsareattheforefrontoflow-carboninvestmentsininnovationandtechnologiestomitigateandadapttoclimatechangeconsequences.

AveryefficienttoolfortheEuropeancommunityofoceanandcoastalinstrumentationandinterventionistheOceanologyInternational(OI)ConferenceandShowinLondontakingplaceeveryevenyearinMarch.AmirrorconferenceisorganizedintheFarEastonoddyears.OIistheopportunitytopresenttheproductsonthemarketandinnovativedevelopments.MarineDomain RIs are very active and organize sessions on relations with industry, market,standardizationissues.

5 Solidearthmeasurements

5.1 WhymeasurementsofSolidEarthparametersareimportantMeasurements in the solid Earth sciences concern everything related to the composition,structureanddynamicsoftheinteriorofourplanet,fromtheshallowsubsurfacetothedeepinterior. Scientific goals behind these measurements range from the general quest tounderstandhowourplanetworks(e.g.planetformation,geo-dynamo)throughabettergraspof geo-hazards (volcanoes, earthquakes) and geo-resources (mineral, ore, and carbondeposits)tothemodelingandmonitoringofhumaninteractionwiththesubsurface(resourceexploitation,energyproduction,carboncapture&storage,wasterepositories).SolidEarthresearchcoversawidevarietyofspecializeddisciplines(Geology,Seismology,Volcanology,Geomagnetism, Geodesy, Geodynamics) as well as multi-disciplinary application fields(monitoring tectonically active structures or anthropogenic hazards, geo-energy research,analyticallaboratories,numericalmodelling).RelevantmeasurementsinSolidEarthsciencescoverstandardandnon-standardlaboratoryanalysis(chemistry,spectroscopy,imagingfromgamma rays to infrared, specialized material properties and behaviour studies), groundmotionanddeformationonallscales(temporalandspatial),electromagneticfieldproperties,andatmosphericcomposition.

While in the past the various disciplines often remained within their own “bubble” ofmeasurementdataandphysicalparameters,inparticularthechallengestobetterunderstandgeo-hazardandgeo-resource issues,with theirdirect impactonsociety, requiremoreandmorecross-andmultidisciplinarydatagenerationandprocessing,togetherwillallthemoderndatahandlingandcurationissues.

Page 75: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

75

5.2 ExistingtechnologiesTherangeoftechnologiesemployedinsolidEarthmatchesthewidthofthedomains,diversityofmeasurementsandparameters.Alotoflaboratorybasedmeasurementsrelyonstandardinstrumentationwherethedevelopmentdrivecomesmainlyfromother,economicallymuchmore relevant disciplines (material sciences, biomedical, etc.), and specializedinstrumentation is often custombuilt in collaboration between academic researchers andexpertcompanies,oftenwithcloseestablishedtiestoparticularresearchgroups,ordirectlyby specializedworkshopsattached to theacademic institutions.Rather randomly selectedexamplesaree.g.theBRAVArockdeformationapparatus(Colettinietal.2014),ortheSHIVAsample shearing apparatus (Di Toro et al. 2010) developed by Italian research groups.Dependingonpurchasingregulations,publictendersfollowingWTOregulationsmayalsobeopened, based on specific instrumentation design requirements, in principle offering anypotentialproviderthechancetobid.Onerecentexampleisthecallforthedevelopmentofanintegratedrocktestingsystem'LabQuake'publishedbyETHZürich21.

Inotherfields(e.g.seismologicalorgeodeticinstrumentation),measurementtechnologyandinstrumentation development is mainly driven by big industry (resource exploration,surveying,construction)oreventhemilitarysector.Thushighsensitivityseismicrecordinginstrumentationdevelopmentwasmainlypushedinthe1950sto1970sbynuclearexplosionmonitoring needs, while implementation and installation of satellite-based positioningsystems(suchasGPS)wasfundedbymilitarytocovertheirprecisionnavigationneeds.Foracademicuse,specificadaptationsmaythenberequired,sometimesleadingtonichemarketswith a small number of specialized companies (usually SMEs, but sometimesmerged intolarger industrial companies or holdings). Important companies in seismologicalinstrumentationinEuropearee.g.StreckeisenofSwitzerland(nowebpresence,salesthroughKinemetrics), Guralp22 and EarthData23 of the UK, or Lennartz of Germany24, while globalmarketleadersarelocatedintheU.S.andCanada(Kinemetrics25,Nanometrics26,RefTek27).For geodetic (GNSS) instruments the main providers globally are Leica28 and Trimble29.UNAVCOmaintains awebsite listingGNSS receivers and their providers in use by them30.

21www.simap.ch,projectID167804,published02-Mar-201822www.guralp.com23www.earthdata.co.uk24www.lennartz-electronic.de25www.kinemetrics.com26www.nanometrics.com27www.reftek.com28leica-geosystems.com29geospatial.trimble.com30http://kb.unavco.org/kb/article/unavco-resources-gnss-receivers-434.html

Page 76: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

76

Cefaloetal.(2018)presentaselectionofpapersfroma2016workshoponNewAdvancedGNSS and 3D Spatial Techniques - Applications to Civil and Environmental Engineering,Geophysics,Architecture,ArchaeologyandCulturalHeritage31thatcomprehensivelydescribecurrentscientificandcorrespondinginstrumentationchallengesinthefield.

Probably the largest markets (in terms of economic volume) in solid Earth sciences areseismologicalandgeodetic(GNSS)instrumentation(includingnotonlysensorsbutalsodataloggers / digitizers), where the academic sector and the relevant governmental agenciescreateademandofhundredsto(tensof)thousandsunitsofinstruments.

Ancillaryequipment,e.g.powersupplysystemsorcommunicationdevices,isasnecessaryinsolidEarthsciencesasinothersectorscoveredinthisdocument,andtheissuesmentionedthereallapply.

5.3 EmergingtechnologiesOnekindofnewtechnologydevelopmentisdrivenbynewscientificinsights(orideas)thatleadtoadesiretomeasurenewphysicalparameters,orestablishedparametersundernewconditions. This is e.g. the case for laboratory instruments allowing higher/ lowertemperature, pressure, electromagnetic fields, or better precision control of applied andmeasuredconditions.Theeconomicimpactofsuchdevelopmentsisusuallyratherlimited,asinstrumentation is produced in prototypes or very small numbers of units, even though asingleinstrumentmaycostuptoa(few)millionsEur.

Economicallymore interesting, inparticular forSMEs,maybescientificdevelopmentsthatrequire larger number of instruments, corresponding data acquisition and transmissiontechnology.InsolidEarthsciencestoday,relevantfieldswouldbe(incompletelist):

● Large-N seismological studies, where hundreds to thousands of low- to mid-performance instruments (nodalsensorsornodes)areused indensedeployments(potentially expandable to geodetic / GNSS and perhaps even electromagneticmeasurements);

● Theemergenceof'rotationalseismology'instrumentsthatallowhigh-precisionand-resolutionmeasurementsofgroundrotationsinall3dimensions,basicallyleadingtoa new family of seismological sensors (various developments under way, firstcommercialproductse.g.fromiXblue(France),www.blueseis.com);

● The increasing potential of instruments for the oceanic applications, both withstationaryobservatoriesandroaminginstruments(floats,gliders),mainlyfocusingonseismo-acousticmeasurements.Recentflagshipprojectsworthmentioningherearethe free-floating Mermaids32 (commercially produced by Osean33 France),) or the

31https://gnss.dia.units.it32https://www.geoazur.fr/GLOBALSEIS/Mermaid.html33http://www.osean.fr/pdf/osean_oceanographic_profiler_V1.pdf

Page 77: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

77

oceanbottomobservatorydevelopedbyScripps,UCSD(USA)thatcombinesanoceanbottomunitwithawaveglider(Bergeretal.2016).

Allthesenewdevelopmentsaredrivenbythescientificneedtogatherdataeitheratmoredensespacingortoprovidemeasurementsinpreviouslynotcoveredgeographicareasortomeasurepreviouslyunattainablequantities(respectivelymeasurethosequantitiesathigherresolutionorwithhigheraccuracy).

Ofparticular importance forat least someof these fieldsaredevelopments inopticalandopto-mechanicalmeasurementsystems(e.g. fiber-opticgyros,opto-mechanicalstrain-andseismometers) that allow the development of instruments with particular low energyconsumption,hightemperaturetolerance,orprovidelongsignaltransmissioncapabilities.

5.4 MarketoverviewComprehensivemarketoverviews/assessmentsthatcoverthewholeorevenrelevantpartsoftheSolidEarthsciencesinstrumentationdonotexist.Whileonthegovernmentalagencyside,certainlytheinstrumentationdensityishigherinrichercountriesandinthosethathaveahigherexposuretogeo-hazards(volcanoes,earthquakes),activeresearchgroupsinallSolidEarth sectors exist in all countries in Europe. The funding available for investments ininstrumentation is, however, highly variable and depends both on the overall funding forgeosciences (or geo-monitoring) in a specific country as well as on specific projects andinitiatives, e.g. to promote further understanding and development of geo-energy, or toimplementspecificgeo-hazardmonitoringinfrastructures.

Withrespecttorecentorexpectedlegislation,themonitoringofanthropogenichazards,i.e.the potential hazardous impact of subsurface industrial infrastructures (deep geothermalenergy,CO2storage,fracking-basedexploration,ornuclearwasterepositories)mayhaveasignificantpotentialtogeneratenewinstrumentationrequirementsandassociatedfunding,butitistooearlytoputanyconfidenceorevennumbertothat.

6 New platforms for environmental measurements.Unmannedaircraftandvehicles(UAVs),Autonomousunderwater and surface vehicles (AUV, ASV) andwirelesssensornetworks(WSNs)

6.1 OverviewLargescalemonitoringofclimatechangeinfourdomains(atmosphere,biosphere,seaandsolidearth)appearstobeanon-trivialtaskthatrequiresplatformswhichcancarryalargenumberofvarioussensors,performobservationsinremoteareasduringlongperiodsoftime,providenecessarycomputational resources fordatagatheringandmanagementandtoberelativelyindependentofaccesstoenergy.Currently,wirelesssensornetworks(WSNs)and

Page 78: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

78

UnmannedAerialVehicles(UAVs)correspondwelltotheserequirementsand,thus,representthebestalternativetomonitordifferentparametersofclimatechange.

6.2 SystemsforatmosphericmeasurementsRecent technological improvements ingas sensors,electronics, communicationandpowersupplytechnologiesmadepossiblethedevelopmentofWSNsandUAVsequippedwithgassensingsystems.WSNsareessentialtomonitorlargeareas,suchascities,roadsandforests.Theirabilitytocommunicatevianodesormultihopnetworkscanbeusedtomapandtrackthe gas plumes to identify its source. Currently they are widely used in commercialapplications34tomonitorGHGemissionsfromanthropogenicsources,suchasCO2(Stockeretal.2014),NO2(Capeetal.2004)andCH4(Sihotaetal.2013).SuggestionshasbeenmadetomonitorothergasessuchasNH3andN2Oresultingfromfertilizeruse(Jungetal.,2008;Ruiz-Garcia et al., 2009). The most popular gas sensing technology used in WSNs for theenvironmentalmonitoring is based uponmetal oxide resistive sensors. Such sensors havedevelopedquite rapidly togetherwith the development of nanotechnologies,which allowmanufacturingofsmaller,moresensitivesensors(Comini2013),performinginthequantumregime.

UAVsplayanimportantroleingassensing,especiallyintheremoteareasorareaswithlimitedaccessibility. For example, drones are widely used to perform measurements of volcanicgases.Thus,McGonigleetal.(2008)carriedoutmeasurementsofvolcanicgasesatlaFossavolcanocraterinItaly.TheyusedtheUAVhelicoptercapableof12minutesflighttimeandequippedwith the ultraviolet and infrared spectrometers for SO2 and CO2measurements.Khanetal.2012developedagreenhousegasanalyserfortheinstallationonthehelicopterUAV,usingavertical cavity surfaceemitting laser (VCSEL) for thesepurposes.Wataietal.(2005)mountedNDIRsensingsystemonUAVtomonitoratmosphericCO2.Authorsdesignedeconomicandaccurategassensorandperformedseveralflighttestswiththepayloadof3.5kgandoperationtimeofnolongerthan1hour.WhileWSNsareusuallyequippedwithMOXsensorsaswasdiscussedabove,UAVmostlyapplyopticalsensingdevices.Malaver,Mottaetal. (2015)performedanalysisofapplicationsofbothMOXandopticaldevices to integratebothsensingtechnologiesatbothplatformsandreducethecosts.Thetablepresentedinthisstudyisshownbelow.

34http://www.figaro.co.jp/en/product/entry/tgs2444.html

Page 79: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

79

TABLE 58 ADVANTAGES AND DISADVANTAGES OF MOX AND OPTICAL SENSORS FOR GHGMEASUREMENTSACCORDINGTOMALAVER,MOTTAETAL.(2015)

Category MOXsensors OpticalSensingTechniques

Advantages Disadvantages Advantages Disadvantages

Aerialmissions Low energyconsumptionand lightweight

Slow sensorresponsehinder aerialapplications

Tested andproved

Energyconsumption andweight may limitflightendurance

Groundmissions

Tested andproved

Crossreference todifferentgasesand sensitivetohumidity

High samplingfrequency,highspecificity totargetgas

No data/sensor istooexpensivetobeleftunattended

Continuousreleasemission

Low energyconsumptionand lightweight,coverswide range ofgasses

Nodata High samplingfrequency,highspecificity totargetgas

Energyconsumption andweight may limitflightendurance

Instantaneousrelease

Low energyconsumptionand lightweight,coverswide range ofgasses

Low sensorresponsetime

High samplingfrequency,highspecificity totargetgas

Energyconsumption andweight may limitflightendurance

Computationalresources

Few outputvariables.Somevariablesremain overlarge range ofgases

Nodata Nodata The number ofoutput variables tomeasure dependson the opticaltechnique andtargetgas

Resolution Regularresistivesensorsachieve ppmgases

Few sensorsachieve ppbresolution

Severaltechniquesachieve ppmand ppbresolution

Nodata

Costpositioninmarketcost

Low None Low for NDIRmodules

Medium too highfor complexsystems

Page 80: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

80

UAVsordronesarerelativelynewmeasurementplatformsthathavebeenusedinmostofthecountrieswithstrongclimateresearchprograms.Theirgreatadvantageisthattheycanbeusedintheconditionswherepresenceofhumanisnotdesirableornotpossible.Theseplatformsarerepresentedbythemachinesofdiverseconstructionsandcapabilities.Basedontheabilitytoperformthemeasurements,UAVcanbedividedintofollowinggroups:

● LALE(LongAltitudeLongEndurance)● MALE(MediumAltitudeLongEndurance)● HALE(HighAltitudeLongEndurance)● LAME(LowAltitudeMediumEndurance)

Theweightofdronescanvaryfrom500gtonearly15tons,whilethetimeofautonomousactivityvariesfromseveralminutestoseveraldays.Thepriceofdronesmayvaryfromseveralhundredeuro (dollars) to severalmillions incase largeautonomousmachinesareutilized.Integrationofinstrumentationonthisplatformalsoappearsasnon-trivialtask,becausetheinstruments shall be light and well balanced on the platform. They also shall have thepossibility for wireless communication (GPS, IRIDIUM, GLONASS) and data transfer.Environmental parameters that canbemeasuredbymeansofUAVs include temperature,pressure,humidityandwindparameters.Drones canalsobeequippedwithvisibleand IRcameras, laser altimetry andmultispectral imagery. In the future, various gas and aerosolanalysers will be developed for the installation on this platform. The potential of dronesincludesmeasurementsinremotelocations,routinelong-termmeasurements,measurementcampaignsandvalidationofinformationobtainedfromsatellites.

Most ofUAV systems find their application in theprojects of the economically developedcountries. However, these countries are not responsible for global pollution in the sameextentasmanydevelopingcountries,wherepeoplelacktotakecareoftheenvironmentduetotheconstantfightfortheirwellbeing.Inthesecountries,thehealthofpopulationisoftenunderstrikeduetodecreasingqualityofwaterandairresources.Cost-effectivedronescanbeusedinthesecountriestosampleandmonitorwaterquality,compositionofatmosphereandclimatepatterns.

TABLE59STRENGTHSANDLIMITATIONSOFUAVS

Strengths Limitations

Eco-friendlyifbatterypowered Specialpersonrequiredfornavigation

Silent,notdisturbingnature Special person required for theinterpretationoftheresults

Cheapversionsavailable Agreedairpathisrequired

Canflyinremoteareas Unmannedtechnologyistakenasathreat

Can collect results on routinebasis for alongtime

Canbehacked

Page 81: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

81

6.3 SystemsforbiospheremeasurementsMost of the drones employed in biosphere sciences are similar to the UAVs used inatmosphericapplications.Generallyrotarydrones(e.g.:hexacopters,octocopters,etcetera)areused,sincetheyhaveahighstabilityandareabletostayfixedatcertainpositionsandaltitudes in order to perform measurements. Payloads that are used in biosphere dronemeasurementsaregenerallyrelatedtotheassessmentofvegetationstatus(i.e.:stressesandinhomogeneities)ortheamountoftotalbiomass.Forthefirstassessmentacombinationofthermal,RGBandhyperspectral camerasareused;while for the latter techniques suchasLightDetectionandRanging(LIDAR)areused.

DevelopmentshavetakenplaceintheframeworkoftheOceanofTomorrowwiththedesign,development and testing of passive acoustics tomonitor bioacoustic sources (whales anddolphins),alsoaddressingnoisemeasurementthatcouldaffectanumberofaquaticmammalsincoastalareasoralongintense-shippingroutes.Anexampleisthedesignanddevelopmentofnewhydrophoneswithembeddedprocessing,basedoncommunitysoftwareandmadeavailableopen-source,inordertoadaptneedsastheycomeandtakenewrequirementsasafunction of geography and known populations in given areas (Delory et al. 2017). Thesesensorswere integrated on commercial gliders and profilers, as reported byMemè et al.(2017).TechnologyReadinessremainsatalevelwheremoretestsareneededinoperationalconditionsinordertovalidatespeciesorgroupsofspeciesidentification,increasereliabilitysuchasviareductionoffalsepositivesandsensitivitytonoiseartefacts.

6.4 SystemsforaquaticmeasurementsUnderwaterUnmannedAutonomousVehicles(glidersandotherUAVs)arecommonlyusedby oceanographers for research and monitoring of the physical and biogeochemicalcharacteristicsof the first1000mof theocean.TherecentlycreatedGOOSprogramcalled“OceanGliders”(currentwebdomainishttp://www.ego-network.org)isgatheringthemajorpartoftheworldwideglidersfleetandfocusesitsactivityonthesustainablemeasurementsof five Essential Ocean Variables (EOVs): temperature, salinity, chlorophyll a, oxygen andColouredDissolvedOrganicMatter (CDOM).Unlessonly theseparameters arepartof thenetwork, many other sensors have been developed, integrated, tested and operationallydeployed on AUVs such as passive acoustics, ADCP (current sensor), turbulence,hydrocarbonic sensor, nutrients, pHetc. Currently these sensors arenot integrated in thenetworkmainlyforharmonizeddatamanagementreasonsbutalsobecausethetechnologyissporadicallyusedbythecommunity.Theincreasingcapacitiesofgliders(depth,enduranceandpayload)andtherelativelylowcostofthetechnology,makeitaveryinterestingtoolformarineandmaritimeindustries.OceanglidersnaturallycomplementexistingelementsoftheGOOSwith their utility on the continental slopes, ability to complete repeat surveys andresolvemesoscaleoceanographicfeaturessuchasfronts.

Page 82: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

82

FIGURE7DRONESFORUNDERWATERMEASUREMENTS:(A)SEAEXPLORER,(B)SEAGLIDER

TheEuropeanGliderNetworkiscomposedofabout100platformsthataredeployedintheAtlantic, Mediterranean Sea and Baltic Sea. It is important to precise that some of theEuropeanglidersarealsodeployed innon-Europeanregion forspecific researchpurposes.The EuropeanGliderNetworkwill certainly keep growing asmany “new” laboratories arecurrentlypurchasingplatforms(IrelandandSwedenforexample).

Itisalsonoticeablethatifthecurrentaveragecapacityofoceanglidersis1000mdepth,newfeature able to dive to 6000m depth are now available on the market and will sooncomplementthegliderfleetinEurope.

6.5 IssueofenergysupplyforUAVsGliders are powered by three different types of technology: non rechargeable alkalinebatteries,non-rechargeablelithiumbatteries,andrechargeablelithiumbatteries.Thechoiceofthetechnologyisdeterminedbyitscostbutalsobytheuseoftheplatform,whetheritisfor long deployment (more than a month) or more frequent deployment (rechargeablebatterydonot lastmorethanamonthortwo,dependingonthepayload). Ifrechargeabletechnologycouldincreasegliderenduranceatseainthefuture,wecancertainlyexpectthistechnologytobemorepopularasitispracticalandcheaperonthelongerterm.Inanycase,thenext cutting-edgeglider technology in termsofenergywill probablybe related to thedevelopmentofthethermalgliderthatusesthethermalgradientbetweensurfacewateranddeepwatertoprovideenergytotheplatform.

6.6 WirelesssensornetworksSincealreadyanumberofyears,theadvancesofwirelesscommunicationtechnology(bothbandwidth increase and power consumption decrease) has allowed the development ofsensor packages with wireless communication interfaces that can then be deployed aswireless sensor networks (WSN). In addition, the possibilities of 'automatic' routingconfigurationviaself-organizingwirelessmeshnetworks(WMN),allowsforparticularlyeasy(and fast) field installations. For example, Picozzi et al. (2010) describe aWMN targetedtowardssmallerscaledeployments inseismology, investigating local subsurfaceproperties(site effects), and Pereira et al. (2014) use a WSN for monitoring seismic activities and

A B

Page 83: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

83

volcanoes.WSNsareparticularlyusefultosupportthe'dirt-(toDMS-)todesktop'(D3)rapidproductionofresearch-readydatasets,andareexpectedtoplayamajorroleinanyfuturelarge-Ninstrumentpools(andfieldexperiments).

6.7 Use of single-board computers as multi-purpose instrumentplatforms

Another technological development over the last decade that has a growing impact oninstrumentationdevelopment intheenvironmentalandEarthsciences istheavailabilityoflightweight,robust, low-powercomputers(ofteninsingle-boarddesigns)thatneverthelessoffer enough processing and storage capacity to be usefully integrated in scientific gradeinstrumentation. One example is the DataCube, an extremely low power and lightweightseismic recording system developed at GFZ Potsdam and now industrially produced byOmnirecs35. Another example already in use is the RaspberryPi platform, e.g. in theRaspberryShakeseismometersystemdevelopedbyOSOP36.Ibrahimetal.(2015)describethedevelopment of a standardizedmulti-parameter environmental monitoring device on theRaspberryPi platform that combines environmental parameter measurements liketemperature, humidity and CO even with the capacity to add a seismic sensor. Thestandardization of instrumentation interfaces together with the increasing capabilities ofthesecomputationalplatformsoffers thepotential for thedevelopmentofhighlyversatileand modular instrumentation that can serve a large variety of environmental and Earthscienceinstrumentationandmeasurementchallenges.

7 Energy supply: a transversal issue for all scientificmeasurements

7.1 SensorschallengesScientificmeasurementsaresometimesperformedinextremeenvironments:PolarRegions,bottomofoceansandhighatmosphere.Consequently,allequipment(sensors,energysupplyunits,telecommunications,etc.)needtofaceveryhardenvironmentalconditions.Thus,theyhavetobeconstructedinresistantandsustainablemanner.

AsfarasitisknownfromtheENVRI+network,theenergysystemsneedtobeableto:

35www.omnirecs.de36www.raspberryshake.org

Page 84: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

84

● Faceverylowtemperatures.Energysystemsneedtobeabletooperatenotonlytothe“classical” testingtemperaturesof -20°C,butalsoat thetemperaturesbelow-50°C,oftenmeasuredinthepolarregions.

● Face humidity and dust. Most of RIs (Research Infrastructures) are constructedaccordingto“IP6.3”standard,whereIPmeans“InternationalProtectionMarking”.Inthesamecode,thefirstnumberrevealsthecapacitytofacedust,whilethesecondmeansthelevelofprotectionagainstwater.

● Haveahighoperatingratewithoutregularmaintenance(oranytankrefuel).● Tobeaslightaspossible.Alldevicesforisolatedscientificstationsaredesignedtobe

portableashumansusuallycarrythem.● Tobemechanicallystrong.Equipmenthastofaceverystrongwinds,orhighsalinity

environmentthatreadilyleadstocorrosion.

For all known sensors (working in all knowndomains), an autonomous energy supply is acritical issue. The main remaining problem for the energy supply is that some of themeasurementsitesareveryisolated,whileonlyonemissionperyear(orevenlessfrequent)isorganizedtomaintaintheequipmentandenergysupplyunits.Thatonceagainprovesthatpower supplies systems have to be sustainable and robust, while all scientific ortelecommunicationmechanismsneedtoconsumeaslowenergyaspossibletoensurelongerfunctionalityoftheset-up.

7.2 ModerntechnologicalsolutionsAsknownfromtheENVRIpluscommunity,technologiesfortheenergysupplyarerepresentedbysolarcells(63%),windandhydroturbines(4%each)andothersolutions(29%).Thus,solarpanelsisbyfarthemostusedtechnology,usedtoprovideenergyforisolatedsites.Figure8showsthediagramofusageofvariouspowersupplysolutionsforisolatedscientificstationswithinENVRIplusnetwork.

FIGURE8POWERSUPPLYSYSTEMS.ENVRIPLUSWP3.1"ENERGYREPORT",2017

Page 85: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

85

Solarpanels

Typicalsolarpanelwillbehavespecificationsasmentionedbelow:

● Siliconcrystaltechnology.● Outputpowerwillrangefrom50Wto100Wpersolarpanelinaverage,inorderto

minimizetherisksfortransportationandfacingthewind.● Theconstructionshallhavestrongmechanicshape.● The construction shall be linkedwithMPPT (Most Power Point Tracking) or PWM

(PulseWidthModulation)solarchargecontrollers.

Both MPPT and PWM are the technologies which optimize the current needed for thechargingofbattery.ThepricedifferencebetweenPWMtechnology(“theoldone”)andMPPTone (“the newer one”) is so small thatMPPT shall definitely be the one preferred. SuchpreferenceshallbegiventoMPPTatanysitesexceptfortheveryisolatedones(suchasPolarsites)whereZenerdiodesareusedtominimizeenergyconsumptionoftheregulatingparts.

Windturbines

VeryfewexamplesofsmallwindturbineshavebeenfoundthroughtheENVRIRIscommunity.Mostofthemdemonstratedthepoweroutputrangingfrom50Wto400W(nominaloutputthatisdifferentfromon-siteoutput).

Fromthemechanicalpointofview,windturbinesarewayweakerthansolarpanels,whenfacing extreme conditions. Their bearings and joints shall be a subject to very strong, notregularandsometimesturbulentwindsandverycoldtemperatureswhichlikelyleadtoearlywearandmalfunction.Thus,turbinescannotbenamedasthefullysuitabletechnologyfortheremotesites.Still,fortheterritorieswithverylowsunirradiance,turbinescanrepresentaveryinterestingsolutionthatisworthfurtherdevelopmentsandimprovements.Themainimprovementofturbinestechnologyshallbemadetofindthemostefficientratiobetweenusedspace,weightofturbineandproducedpower.

Hydroturbines

Only one hydro-turbine, used in the deep Amazonian forest,was registered in the ENVRIcommunity. This was a 10 kW “Pelleton” hydro-turbine. This hydro-turbine can becharacterizedasratherlargecomparedtopreviouslydescribedwindturbinesorsolarpanels.Aspecialtechnicalbuildingwouldberequiredtoinstallthisturbineandoperateit.Thus,thisturbinecannotbenamedasfullyportablesolutionforpowersupply.

Fuelcells

Fuelcellsrepresentanothertechnologicalsolutionthatiswidelyused,howeverlessabundantthansolarcellsandturbines.AmongthemostpopularfuelcellsonecannamethoseofEFOY(manufacturer), running on methanol. Due to production of CO2 and H20 vapours duringproductionofenergy,thistechnologyisnotagoodsolutionforcoldconditions(under0°C).Toensurethepossibilityofutilizationofthesefuelcellsinthecoldconditions,EFOYprovidethermally insulatedboxes for their fuel cells,which (according tomanufacturer) canmake

Page 86: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

86

them run down to -40°C (not tested yet). The technology of such fuel cells is still veryexpensive. Obvious limitations apply due to the fact that methanol is highly poisonoussubstanceandshallbetransported/manipulatedwithmanyrestrictions.

Batteries

Leadacidbatteries,VRLA(ValveRegulatedLeadAcid),withgelorAGMare,byfar,themostusedonesthroughtheENVRIRIcommunity.Theyareespeciallywidelyusedforterrestrialmeasurements.Figure9showsthedistribution(%)amongbatterytechnologiesusedforthemeasurementsat27scientificstationswithinENVRInetwork.Ascanbeseen,69%aretakenby the lead batteries and 23% by lithium batteries,while alkaline and other technologiesrepresent4%each.

FIGURE9POWERSTORAGESYSTEMS.ENVRI+WP3.1"ENERGYREPORT",2017

Thebiggestchallengesof thebatteriesare that theyneed to faceandrunundervery lowtemperatures,downto-20°C,andsometimesdownto-40°to50°Candbeaslightaspossible.The weight of batteries is especially important when one considers their installation ondrones. Light weight of the batteries allows larger amount of scientific equipment to beinstalledand,thus,ismoredesirable.Lithiumbatteriesarecurrentlytheoneswiththehighestenergy-to-weightratio.Thatiswhytheyarewidelyusedfortheenvironmentalmeasurementswithinoceanicdomain,andfortheinstallationondrones.Inthetable60wesummarizethecompanies providing technologies for the power supply and specify the type/ model oftechnology.

Page 87: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

87

TABLE60COMPANIESPRODUCINGTECHNOLOGICALSOLUTIONS

Technology Manufacturer Specification/model Comments

Solarpanels Kyocera Any,Monoorpolycrystallinefrom10to100W(typically)

The market of solarpanels is a new andvery dynamic market,wherenewcompaniesappear and disappeareveryday.

Victron Any,Monoorpolycrystallinefrom10to100W(typically)

PhotoWatt(notexistanymore)

Any,Monoorpolycrystallinefrom10to100W(typically)

SolarWorld(not existanymore)

Any,Monoorpolycrystallinefrom10to100W(typically)

Windturbines Primus PrimusAIR30

PrimusAIR40

FORGEN ForgenVentus70

ForgenAntarctic

Wind-Kinetic Polar

FuelCell EFOY EFOYPro600

Batteries Sonnenschein Gel Dryfit, cycling, 30 to 100Ah.

YUASA AGMcycling,30to100Ah.

Victron GelorAGMcycling,30to100Ah.

Enersys Cyclon

Shaft LithiumSulfurylChloride Non rechargeable.Mainly used for themeasurements in theoceanicdomain.

Victron LithiumFePO4 Rechargeablebattery.

Page 88: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

88

8 Place of Research Infrastructures on thetechnologicalmarket

8.1 InteractionsofRIswiththemarketsThecoreof the scientificbusinessdedicated toenvironmentalmeasurementsandclimatechangeobservationscanbeseenininteractionsofproducingcompanieswiththeconsumersof their products. Such interactions are developed, facilitated, and actively promoted.However,theseinteractionsarenotalwaysbeneficialorsuccessfulduetothedifferentviewsand capabilitiesofproducersand consumers communities. Thus,producersdonotalwayshavethepossibilitytounderstandtheneedsofconsumersduetothelackofcommunicationor inabilitytodedicatethefundsforthemarketresearch.Thisresults intheproductionoflow-functional,expensivedevicesand,consequently,decreaseofcompanies revenuesandincomes.Atthesametime,theend-usersdonothavethechancetoexplaintheproducerstheir needs and cannot afford purchasing expensive devices directly from them. Researchinfrastructures are the bodies that act as intermediates between producers of thetechnologies,theirend-usersandthirdparties,suchasgrantholders,providingbenefitsforallmarketplayersasshownbelowatfigure10.

FIGURE10INTERACTIONSOFRISWITHOTHERPARTICIPANTSINTHEMARKET.

ThearrowsbetweentheRIbodyandthecompaniesrepresent:

1. ServicesthatcanbeprovidedbyRIstothecompanies● Representing large groups of the end-users, RIs are capable of purchasing

productsofhighcost,whichcanbesharedamongthemultipleend-users.● As large entities, connecting numerous research institutes and governmental

structures,RIscancollectthedemandsforthestandardizationandmetrologyandpassthemtothecompaniesforthefutureimplementation.

● RIscanpredictnaturaldisastersaffectingbusinessandhumanwell-being.Thisisavaluablecapabilityforbusinessmanagementandcrisisprevention.

● Co-designinginnovation.RIscanpromotethedevelopmentofnewproductsandservicesaswellastoadaptthemtothemarketneedsandrules.

Page 89: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

89

● RIscanprovidethefacilities,necessaryfortestingofnewtechnologies● RIs can perform data collection and management, to support companies and

generateincome2. ServicesthatcompaniescanprovidetoRIs

● CompaniescanselltheirinnovativedevicestoRIs.Incasethedevicesareofhighcost,RIswillbeabletopurchasethemincontrasttothesingleusers/scientists.

● CompaniescanprovidenewservicestotheRI,inlargerextentthantothesingleusers.

● Datacollectionandtransmission.WhileusingthefacilitiesofRIs,companiescancollectdataatlowcost.ThisdatacanbesharedwiththemembersofRIstomaketheirworkmoreefficient.

3. ServicesthatRIscanprovidetocustomers(end-users)● RIscanassurethatallthecustomers(endusers)haveequalpossibilitiestoaccess

the facilities for the environmental measurements and climate changeinvestigations,aswellastothedataprovidedbyeachandeveryRI.

● RIsprovidetransferableandreusabledataandknowledge.4. RIsbecomeanattractivereceiverofgrantsandfunding

● Giventhesameamountof financial support,RIscanprovidetheaccess to theresearchfacilitiestolargeramountofscientistsorotherinterestedcommunities.

5. Directinteractionsbetweentheendusersandproducingcompanies● Direct interactions are possible, but are never as beneficial as interactions

throughtheRIsduetothereasonsmentionedinpoints1-4.

8.2 RIsasinnovativebusinesspartnersFrom the types of interactions described above, it can be seen that RIs can catalyse thedevelopmentoftechnologiesbybeingtheirdirectusersandactingasinnovationpartners:

RIsascontributorstonewproductsandservices–RIscanworkascompetitiveinfrastructuresforbusinesses.Start-upcompanieswithlimitedpossibilitiesofpurchasingofhigh-techdevicescanbecomemorebeneficialbyusingshareddeviceswithinRIs.SuchaccesstothesystemsthroughtheRIswillreducethecostofsystemoperation,ensurethefulltime-loadofdevicesand,thus,increasetheeffectivenessofwork.

RIsasusersofinnovativetechniques–Upontheirdevelopmentandgrowth,RIswilldemandnew technological solutions with better measurement characteristics and thus promoteresearch,developmentandmanufacturingofnewtechnologicaldevices forenvironmentalmeasurementsandclimatechangeinvestigations.

RIsasinnovationpartners–RIswillworkcloselytogetherwiththecompaniestoestablishtherequirementsfortheemergingtechnologiesandtoimprovetheexistingones.Bydoingso,themeasurementsprecisionandqualitywillbeimproved;whilethecompanieswillbeabletoimprovetheirproductionlinesandselldevicesofbetterquality.

It is important to note, that companies, interested in the collaboration with RIs can berepresentedbySmallandMediumsizedcompanies(SMEs)aswellasbylargeconsortiumsand conglomerates. Both SMEs and larger companies will have their own benefits from

Page 90: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

90

collaborationwithRIs, however the interactionsof theentities in such casesmightdiffer.Table61comparestheinteractionsofsingleresearcherswithSMEsandRIswithSMEs.

TABLE61INTERACTIONOFRESEARCHERSANDRISWITHSMES

ResearchertoSMEs RIstoSMEs

Purchasesatthesmallscale Purchasesatthelargescale

Precisely specifies the requirements fortheinstrument

Providesspecificationsfortheinstrument

Visionofsmallscientificniche Visionoftheworldwidemarketforresearchandapplications

Share experience in their own scientificcommunity

Promotesexchangeofexperiencesbetweencommunities

Table62comparesinteractionsofscientistswiththelargeindustrialagglomeratesandsuchinteractionsofRIs.

TABLE62INTERACTIONOFRESEARCHERSANDRISWITHLARGECOMPANIES

Researchertolargecompanies RIstolargecompanies

Provides knowledge in very specific fieldofexpertise

Providesallspectraofknowledgeinthefield

Interested to use the infrastructure oflargecompany

Providesinfrastructureforbusiness

Improves image of innovative industrialcompany

Broadcasttheimageofinnovativeindustrialcompany

8.3 AddressedtechnologiesOnthewayofdevelopment,technologiespassseveralstages.Thesestagesarerepresentedby the Technology Readiness Level (TRL) ranging from1 to 9,where 1 refers to the leastdeveloped technology and 9 to the most developed one. Usually it is assumed, thattechnologieswiththeTRLfrom1to5areimmaturetechnologies,developedandworkedonby individual scientists. Contrary, technologies with the TRL from 8 to 9 are maturetechnologies,readytobecomecommercialproducts.Ascanbenoticed,technologieswiththeTRL6-7areintheintermediatestate.Inthisstagetheycannotbefurtherdevelopedwiththecapacitiesofscientists,assuchdevelopmentwouldrequiresignificantallocationoffunds.Atthisintermediatestage,theyarealsounlikelytoattractfundsfromthecommercialsector,asthecompaniesarenotreadytoinvestinthetechnologiesthatwillnotbringtheprofitintheshort-termperspective.TRLscaleisillustratedinfigure11.

Page 91: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

91

FIGURE11TECHNOLOGYREADINESSLEVELAXIS(1-9)ANDSTAGEDOFTHETECHNOLOGICALPRODUCT.

RIsthusrefertotheemergingtechnologieswiththeTRLfrom6to7,toensurethattheywilloverpassthefinancialbarrierandbecomethecommerciallysuccessfultechnologieswiththegreatpotentialoffurtherdevelopmentandimprovement.AlsoRIswilltargetimprovementoftechnologies,suchastheirminiaturizationandbetteringofprecision,astheseparameterscanalsobereferredasinnovation.

8.4 TraditionalandinnovativebusinessmodelsRIs provide a great basis for the development of numerous businesses, bothwithinwell-knownandestablishedbusinessnetworksandwithinthenewbusinessniches,whicharenotfullydevelopedbytoday.Ingeneral,thesebusinessescanbedividedintotwogroups,suchasproductionandservices.

Developmentandsalesofhardware-researchanddevelopmentoftechnologiesaswellasmanufacturing of the devices based on these technologies is one of the main pillars ofbusiness in science. At the same time, this business consumes many financial and timeresourcesandrequireslongtimetobringtheprofit.Tostartthistypeofbusinessoneneedstoowna“know-how”.RIscanprovidefreeaccesstoscientificfacilitiestoperformtheinitialR&D activities and potentially can help to acquire start capital for the SMEs throughinteractionswithgrantholders.

Software development – development of software products is a modern and effectivebusinesssolutionthatdoesnotrequirelargeinvestments.Thebasicneedtostartthisbusinessincludes the access to the computer, knowledge in programming and in environmentalscience. Development of software for climate change monitoring is especially profitablenowadays,whenthecompaniesusesoftwareprogramstomonitortheGHGemissionsbasedontheamountofusedfuels.Inthefuture,whenthedirectmeasurementsofGHGfluxeswillbe required by the governments, software companiesmay develop the interfaces for thedevices,ordevelopthesolutionstointegratemultipledevicesinonenetwork.RIscanhelpsoftwarecompaniestodeveloptheirproductsbyprovidingnetworkofcontactsofSMEsandresearchers,inneedoftheirproducts.

Resellingandadvertisement–resellingofgoodsisprobablythemostprofitablebusiness,asitdoesnotrequirelargeinvestmentsattheinitialstageofbusiness,andthemarketsaroundtheglobearealwayssaturatednon-equally,meaningthattherearealwayspossibilitiesfortheexportofdevicesfromthecountryofproducertothecountryofconsumer.RIsastheinternational projects can help the customers to get in contact with the producers or

Page 92: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

92

distributors of the technological devices and to facilitate spreading of new technologiesglobally.RIscanalsoserveasadvertisingplatformtomaketheinformationaboutthenewdevelopmentsofhigh-techsectoravailabletoallinterestedparties.

Serviceandtransportation–everynewlyproduceddeviceneedtobecarefullytransportedtothecustomerandmountedonsite.Transportationoffragilescientificdevicesisabusinessopportunitythathasagoodpotentialastherearenomanycompaniesonthemarketthatprovidethisspecificservice.Companiesprovidingtransportationservicecanalsoprovidetheinstallationand tuning services too.RIs canopenaccess to the contactsofproducers andcustomers to let the transportation and installation companies to establish their businessmoreeffectively.

Standardsandcalibration–Communitiesdealingwithenvironmentalmeasurementsstronglydependonthestandardsubstancesandcalibrationoftheirdevices.Providingofcalibrationservices or standardized substances can be a side business of companies producing thescientificdevicesorinstalling/tuningthem.

Subscriptionforthedata/products–thisisthenovelmodelofbusiness,whenthecompanyowningthedeviceforclimatechangeinvestigationsperformsthemeasurementsofinterestand sells the results to the interested parties on the basis of long-term contracts. Suchapproach allows the customers to buy the data or products based on the data withoutpurchasingtheexpensivedevice.Atthesametime,companiesprovidingtheseservicesgetstableincomeoverlong-timeperiodandcansellthesamedatatoseveralcustomersatthesametime.RIscanassistsuchbusinessbyprovidingtheaccesstothisservicetothe largeinterestedcommunity.

Business consulting – this is the possibility for experienced entrepreneurs and consultingagenciestohelptheyoungcompaniestoestablishanddevelop.Helpmightbeprovidedinperformingmarketanalysis,determinationofbusinessniches,etc.

Legal affairs – every company needs the legal counselling. This is especially true for thescientificSMEsbecausetheydealwithIntellectualproperty.Assistancecanbeprovidedwithregistering patents, registration of devices in the regulatory bodies, communicating withenvironmental agencies and other governmental and over-governmental structuresnationallyandinternationally.

Asmainobjective,environmentalRIsstriveforthesocietalchallengeofsustainablymanagenatural resources. Towards this goal, ERI support regulation and entrepreneurship.Policymakersdependonthescientificcommunitytoestablishanenablingenvironment.Theycomplement this inputwith socio economic studies. Environmental RIs should proactivelyproposemeasurestopolicymakersformitigationandadaptationpurposes.Theyensureaninformative role to society at the same time. Integrate the circular economy requiresadaptation from theprivate sectorandconsumers.Policymakersneed to stimulate these

Page 93: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

93

markets.EnvironmentalRIsupportactasoneoftheincentivestotheprivatesectortoengageinenvironmentalmonitoringtechnologies.

8.5 SummaryRIs are relatively new entities, not sufficiently known by the scientific community ortechnologyproducers.Ascanbeseenfromchapter9,theyrepresentgenuineinteresttobothcommunities. For the producers, such as construction, instrumentation and informaticscompanies,RIsrepresentlargeandimportantmarket,mainlyduetothehighconstructionalandoperationalcostofRIs.Fortheend-users,RIsrepresentagoodchancetobeheardandtaken in account by other market players. For the executives, existence of RIs is a greatopportunitytogetsupportfortheirbusinessesandsignificantlydecreasethecostofbusinessrunning. Thus, one of themain aims of RIs on themarket is to becomewell-known andacknowledgedplayersinordertorealizetheirfullpotential.

9 Industrial producers in the framework of ENVRIplusworkshops

Within the framework of ENVRIplus and particularly work package one, “new sensortechnologies, innovation and services” it is of paramount importance to emphasize therelationof thecurrentdocumentwith theviewsofSMEson thedevelopmentof researchinfrastructures,andparticular importanceofexistingandemergingtechnologies.ForthesepurposesauthorswouldliketosummarizetheopinionsofindustrialpartnersofENVRIplus,gainedduringthemeetinginGrenoble(18-19May2017),aswellastheirviewsonthemostimportanttechnologicaladvancesofsensorsanddatacommunicationsystems.

CSUG (Space Center of Grenoble University) paid special attention to the miniaturizedspectrometric instrumentationsuchasNono-carbdrone,basedonahyperspectral sensor.Thesensorishighlysuitableforthestudiesofvegetation,canworkin14spectralchannelsbetween400and1000nmwavelength,andhas30x30pixelsoffieldandspatialdistributionof20cm.Theyhavealsomentionedsomehighly innovativetechnologies,suchascubesatsatellites, equippedwith the SPOC imaging spectrometerorVIPA, high spectral resolutionechelle spectrometer.Theyhavementionedseveral companies, suchasSwiftsTechnologyandResolutionSpectraSystems,producingsuchinnovativedevicesaslaserspectrumanalyserwavelengthmeters,BraggInterrogatorsandRAMANanalyserswithexcellentcharacteristics.

Representatives of EMSODEV37 introduced the EGIM, EMSO Generic Instrument Module.EGIMwasdesignedtomeasureparametersofinterestformostmajorscienceareas(coveredbyEMSO)inaconsistentandcontinuousmanner.ItisexpectedtooperateonanyEMSOnode,

37http://www.emsodev.eu/

Page 94: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

94

mooringline,seabedstation,surfacebuoy,incabledornon-cabledmode.Themainaimofthisinstrumentistohaveanumberofoceanlocations,wherethesamesetofcorevariablescould be measured homogeneously, using the same hardware, sensor references, samequalificationandcalibrationmethods,dataformatandaccess,aswellassamemaintenanceprocedures.Thedeviceiscapableofmeasuringanumberofvariables,includingtemperature,conductivity, pressure, concentration of dissolved O2, turbidity, ocean currents. It is alsocapableofpassiveacoustics.EGIMisreadytobeusedforsuchchallengesasglobaloceanwarmingandacidification,impactandsustainabilityofmarineresourceexploitationsandrealtimeobservationsofearthquakesandtsunamis.

GermanCentreforIntegrativeBiodiversityResearch(iDiv)togetherwiththeHelmholtzCentreforEnvironmentalResearchpresented the iDivEcotron,a scientificunitproducedbyEMCGmbHandUGTGmbHandaimedtomonitortheecosystemsundercontrolledenvironmentalconditions.Representingagoodcompromisebetweennaturalandlaboratoryconditions,iDivEcotronisequippedbyLEDlights,ventilation,irrigation,airhumidityandtemperaturecontrolsystems.Itcanalsocontrolsoiltemperature,moistureandtension.Theunitisequippedbyopeningsforsamplingandacrylictubesforrootscanner,soilcoolingdeviceandsoilwatersampling.

RepresentativesofEGIfoundationshasfocusedontheEGIInformationandcommunicationtechnology (ICT) e-infrastructure and services. This infrastructure federates tje digitalcapabilities resources andexpertiseofnational and international research communities inEuropeandworldwide.Itempowersresearchersfromalldisciplinestocollaborateandcarryoutdataandcompute-intensivescienceandinnovation.

ColleaguesfromGASMET,theleadingproducerofgasanalysersandmonitoringsystemsforindustrial, environmental, health & safety and research applications has presented theirsolutions for GHG measurements, particularly the FTIR gas analysers for soil fluxmeasurements. The announced mission was to produce portable and easy-to-use tool,capable of quick analysis and cheap in handling and operation, performing onlineconcentration readings and providing trend view with full sample spectrum. Resultinginstrumentsatisfiedtheabove-mentionedcriteriaandwascapableofmeasuringsixGHGwiththe possibility ofmeasurement of other 350 GHG from the library of devicewithout anyspecial modifications of hardware. Variable calibration ranges and simultaneousmeasurements of several gases are available to the potential users. No recalibrationwasneededduringfurtherapplications.

METECGmbH presented their new approach in 3Dwind and turbulence sensing, such asmultipathsonicset-up.Thisset-upisunique,becausepossibleinterferencesaredetectedatearlystagesofsignalprocessing,thedetectionmodeishighlyreliableandpotentialdatagapsareavoided.Moreover,special“diagnosticoperationmode”providesdetailedinformationonacoustictransducerhealthstatus.

Page 95: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

95

PerkinElmerreportedabouttheirportablechromatographysolutionsfordetectionofvolatileand semi volatile organic compounds. Their TORION T-9 GC/MS portablemachine is fullycapableoffieldapplicationsandeasytouseformanypurposes,suchassafetyandsecurity,environmentalorfoodandfragrancesanalysis.Itisequippedwiththeactiverealtimedisplay,easytousesampleinjectionport,cananalysedozensofchemicalcompounds,andhasalightweightof14.5kgandshorttimeofworkinitiationandfinish.

SENOW togetherwith partners spoke about their innovative developments in the field ofsensors for the detection of dissolved gases. Their sensors are characterized by very fastresponsetime,highsensitivity,possibilitytoanalysemultiplespeciesinsituandlargerangeofapplications,suchasoilandgasoffshoremonitoring,processstudies,etc.

MIRICOoverviewedtheirtechnologiesforrealtimeprecisiongassensing.MID-IRLaserGasSensingallowshighersensitivity(ppb/ppt),wideselectionoftargetmoleculesandrobustness,while high resolution spectroscopy is not influenced by interfering species and providesaccurate and precise measurements. Presented product lines included open path andextractivegasanalysers.Openpathanalyserswerecharacterizedashighlysensitive,resilienttoopticalinterferences,andcapableofmeasurementsatultra-longpathlengthsandat360degrees for large area mapping. Extractive gas analysers were manufactured as modularplatformsformulti-speciesanalysishighlysensitive,realtimeanalysers,whichcouldperformautocalibrationandworkoverbroadrangeofconcentrations.

AirmodusOy,Ltd,presentedtechnologiesforcountingtheairbornesubmicronparticlesinawide range of sizes. Their sensors were capable of counting neutral and charged aerosolparticles down to 1 nm in diameter as well as to provide size distribution for smallestnanoparticles. These solutions could be readily applied in field campaigns and laboratorystudiesaroundtheworldtostudytheexhaustsofvehiclesandnaturalgasengines

PICARRO representativeswere talking about various environmentalmeasurements as thecompanyisrepresentedinnumeroussectors,suchasagriculture,soilscience,ecology,plantphysiology, GHG flux emissions testing, atmospheric science and global GHG monitoringnetworks,urbanandairquality,hydrologyandgroundwater,aquaticchemistryandoceaniccarboncyclingandmanyothers. Thecompanyworkshardly toprovide thepossibilitiesofvarious measurements in rugged field conditions. Their devices and sensors are madeextremely compact, compatiblewith continuousmeasurements duringwalking or driving.They are demanded to perform measurements of multiple species in a wide range ofconcentrationsandbeeasy-to-use.

Anotherwell-known producer of sensors formultiple applications, LI-COR focused on thesensorsforlight,soilgasflux,photosynthesis,leafareaindexdetectionandEddyCovariance.Theysaidthatthemaincharacteristicsofthesesensorsarerobustnessandreliability,accuratedataandcarefuldesign,andpowerfulsoftware.Accordingtotheiropinion,devicesneedtoperformfast,real-timeandcost-effectivenon-destructivemeasurements.

Page 96: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

96

NEON(NationalEcologicalObservatorynetwork)focusedonthewaysofpublicandprivatescience engagement, what is of crucial importance to the research infrastructures anddevelopmentofinnovations.Theyhaveconcludedthatdifferentmodelsofengagementshallbeavailable.Themainstructuralelementsforsuchengagementwouldbevarioussynthesisactivities, legal protection, availability of physical workspace, provision of business andfinancialservices,availabilityofcorrectmanagementandgovernance,etc.

Fromtheexamplesmentionedabove, itcanbeclearlyseenthatproducersofsensorsandnew technologies in general agree on the future requirements for the devices forenvironmentalmeasurements and paths for their future development. The tendencies oftechnologiesandsensorsdevelopmentaresummarizedintheSummarysection.

10 Conclusions

Newmarketdemandsconstantlychallengecompaniestodevelopnewsensorsandplatformsforenvironmentalmeasurements.Advancesoftechnologyandmanufacturingprocesseshaveled to theminiaturization of existing sensors, their increased energy efficiency, enhancedspeedandqualityofworkaswellaspossibility towork inassemblies tocarryout specificmeasurements.Currentsectionsummarizesthetrendoftechnologydevelopmentbasedontheinformationpresentedinthecurrentdocument.

Miniaturizationandpowerefficiency-Theglobaltrendforsensorsforallmeasurementsistobecomesmallerandmoreenergyefficient.Smallersizeofsensorsmeansthatmoresensorscanbeinstalledatoneplatformandlessmaterialsshallbeusedfortheirmanufacturing.Todecreasethesizeofsensors,companiesuseadvancedtechnologies,suchasMEMS(Micro-Electro-Mechanical-systems) and nanotechnology solutions. Enhanced energy efficiency ofsensorsallowslongerdeploymentofsensors.Toallowlongerfunctioning,companiesdevelopnovelaccumulatorordevicescapableofproducingelectricityfromwind,sunlight,tides,etc.Future sensors will be smaller, lighter and easier to deploy and retrieve from themeasurementsite.

Integrationofmultiplesensorsonasingleplatform-hereisatendencytousesingleplatformtoinstallmultiplesensors,connectedthroughthesystemintegrators.Systemintegratorscanberepresentedbyhardwaredevicesorsoftwarethatsynchronizetheworkofsensorsandenabletheirconnection.Integratorscancombineseveralsensorsintoasystemtocarryoutaspecificmeasurement,providedatacollectionandtransmissionofobtaineddata.Integratorsarealsokeysolutionfordevelopmentofmodulartechnologies,whichcanintegratesensorsandplatformsofdifferentbrandsandproducers.

Ruggedsensorsandinstrumentation–nowadays,humanactivityhasexpandedtotheregionswith the severe climate conditions, such as Polar Regions, deep sea, high altitude regions(airbornemeasurements) and even space. To work in these conditions, there is a strongrequest for the equipmentwith greater robustness, energy efficiency, longer lifetime and

Page 97: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

97

capabilitytoworkremotely.Measurestoprotectthesensorsfromthesevereconditionsarealsodeveloped.

Marketconsolidation-thediversityofrequirementsforvarioussensorshascreatedalargeamountofsmallcompaniesonthemarket. Inaneffort toenlargetheproduction lineandproducethesensorsofhigherquality, somecompaniespurchaseothersmallercompaniesand start-ups, becoming market leaders. Such acquiring help companies to sharetechnological knowledge, cover larger segments of themarket and bemore economicallyprofitable.Suchmergersandacquisitionsrepresentglobaltrendandlikelywillcontinueinthefuture.

Pricedecreaseandmass-production-largemarketplayersareinterestedinmassproductionofsensors,accountingthousandsormillionsofsensors.Massproductionofsensorsaccordingto thewell-known and established technology is getting cheaper,what can be taken as ageneralfuturetrend.

Applicationofsensorsinvariousfieldsofhumanactivity-itisacommonmistaketothinkthatexistingandnovelsensorscanfindtheirapplicationsonlyinthescientificresearch.Commonapplicationareasalsoincludeprivateandpublichealthcare,educationandincreasinggeneralinformationandawareness.Increaseofnumberofsphereswherethesensorswillbeappliedisanotherwell-seentrend.

TABLE63APPLICATIONSOFSENSORSFORAIRANDWATERQUALITYMONITORING

Application Description Example

Research Scientific studies andexperiments to track air orwaterpollution

Network of sensors aimed tomeasure atmospheric and waterquality/state in urban or naturalareas

Personalexposuremonitoring

Monitoring air and waterquality,thatasingleindividualisexposedtoinnormal,everydayconditions

Monitoringairandwaterquality intheprivatelocationof(forair)inthecar

Controlofhealth Monitoringpollutionlevelsthatmightpromotepatientsickness

Apersonhavingaclinicalconditionwears a sensor to identify thesuddenchangeinambientpollutionofairorwater,potentiallyaffectinghis/herhealth

SupplementingExistingMonitoringData

Sensors areplacedwithin localmonitoring area to fill thecoverage

Increasing the density of sensornetwork to improve theunderstandingofpollutiongradient

Page 98: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

98

Identification ofsource ofpollution

Identification of pollutionsource by deploying a networkof sensors in the vicinity ofsuspectedsource

A network of sensors can beinstalled near to the industrialfacility to monitor the pollutiongradientasafunctionoftime

Educationactivities

Using various sensors toeducate students about thesourceofpollutionsandmeansofitsmeasurement

Sensorsareprovidedtostudentstounderstand the principles ofmeasurements and importance ofclimatechangetracking

Generalinformation andawareness

Usingsensorsinpublicplaces

To increase the awareness ofpeopleaboutpollution

Install the sensors in the zones ofpublic access to illustrate thecurrentstateofpollutionofairandwater

Asaresultofthiswork,authorspresentthetable,summarizingthetechnologiesmentionedin the current document, in relation to the RIs, they are applied in and in relation to thedomains,wheretheyareused.Thetablecanbefoundinaseparateannex1.

Impactonproject

ThequalityofscientificmeasurementsperformedwithintheRIsstronglydependsontheusedinstrumentation, such as sensors and platforms for sensors installation. Even though newinstruments are constantly under development, there are only few physical principles,underlyingallmeasurements.SuchsimilaritiesisagreatbasisfortheRIstosharetheireffortsindevelopmentofinnovation,inter-exchangemeasurementsdataandco-runtheavailablefacilities.SuchapproachwillsavethetimeandfinancialresourcestoRIsandRIsuserswithinthe European framework. Current deliverable stays in a good fit to the ENVRIplus projectbecause it defines the parameters, most important for the future environmentalmeasurements,consolidatestherequirementsforexistingandemergingsensortechnologiesand gives the overview of the markets and business activities related to environmentalmeasurements.

Impactonstakeholders

The main objective of the current deliverable is to stimulate the industry innovation byopeningnewmarketopportunities.TheworkisdevotedtobothRIsandcompanies,producingthesensorsandtechnologies.Duetothiswork,RIsgetthechancetooverviewthepotentialinnovations and to integrate them in timely and smoothmanner. Companies, (both largeproducers and SMEs) observe themarket needs and identify the futuremarket requests.Scientific partners, responsible for the current deliverable impose their instrumentationneedsandshowbothproducersandRIsthedirectionofenvironmentalresearchdevelopmentinthefuture.

Page 99: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

99

11 Referenceslist

1. P.Kuhryetal.20132. Parryetal.20043. BelandJoseph,20184. Schützeetal.20135. Haseetal.20156. Christianetal.20047. Bacsiketal.20078. Leytemetal.20099. Volkameraetal.199810. EPAHandbook:OpticalRemoteSensingforMeasurementandMonitoringofEmissions

Flux,201111. Patteyetal.200612. Lackner,200713. Sonnenfrohetal.200414. Frish,201415. Hummelgaetal.201516. Berdenetal.201017. Browelletal.199818. Zhaoetal.200819. Daghestanietal.201420. Dumitrasetal.200721. MeyerandSigrist,199022. Gondaletal.2012.23. WangandWang,201624. Tavakolietal.201025. Reisch,201026. Kestenetal.199127. Jonssonetal.199528. Lacketal.200629. Arnottetal.200530. HeintzenbergandCharlson,199631. KavayaandMenzies,198532. DeCarloetal.200633. SniderandPetters,200834. Wiedensohleretal.201235. WangandJohn,198736. Budkeatal.200837. EEA201538. Guentheretal.199539. Crucifixetal.200540. OyamaandNobre,200441. Möhleretal.200742. Amatoetal.200743. Morrisetal.200444. Despresetal.2012

Page 100: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

100

45. Carotenutoetal.201746. Directive2001/81/EC47. AllenandMaréchal,201748. COM2016759final/249. Lindstrometal.200950. Lüthietal.200851. SarmientoandGruber,200652. EmersonandHedges,200853. Atamanchuketal.201454. Goyetetal.199255. DeGrandpre,199356. Lefèvreetal.199357. DeGrandpreetal.199558. Boulart,200859. Mooreetal.200960. ControsGmBH,personalcommunication61. Boppetal.200262. Bangeetal.200563. Karstensenetal.200864. Joosetal.200365. VanMooyetal.200266. Winkler,188867. Emersonetal.200268. Kussetal.200669. Clarketal.195370. Tengbergetal.200671. Demasetal.199972. Kortzingeretal.200573. ReiAraietal.200174. Vuilleminetal.200975. Armstrong,196376. Johnsonetal.198677. Plantetal.200978. Jaromiretal.197579. Johnsonetal.198680. Johnsonetal.198981. Johnsonetal.199482. Davidetal.199883. Davidetal.199984. Jannaschetal.199485. Gamoetal.199486. LeBrisetal.200087. LeBrisetal.200388. Sarradinetal.200589. Laesetal.200590. Blainetal.200491. Aminotetal.200192. Vuilleminetal.1999

Page 101: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

101

93. Thouronetal.200394. Sarradinetal.200795. LeMennetal.201196. OlsonandSosik,200797. Picheraletal.200898. Biardetal.2016;99. Guidietal.2012100. Moore,2009101. Hickman,1991102. Fry,2002103. Jimenez-Jorquera,2010104. Denuault,2009105. Prienetal.2001106. Prienetal.2005107. Sosnaetal.2007108. Sosnaetal.2008109. Grayetal.2011110. Hofmannetal.2011111. Gilleetal.2014112. Leeetal.2012113. Colettinietal.2014114. DiToroetal.2010115. Cefaloetal.2018116. Bergeretal.2016117. Stockeretal.2013118. Capeetal.2004,119. Sihotaetal.2013120. Jungetal.2008121. Ruiz-Garciaetal.2009122. Comini,2013123. McGonigleetal.2008124. Khanetal.2012125. Wataietal.2005126. Malaveretal.2015127. Deloryetal.2017128. Memèetal.2017129. Picozzietal.2010130. Pereiraetal.2014131. Ibrahimetal.2015

Page 102: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

12 Appendices

Appendix 1: Table, summarizing important measurement parameters and measurement techniques (both existing and emerging), required for the

measurements of these parameters.

Domains Atmospheric Biosphere Marine Solid Earth

RIs ICOS IAGOS ACTRIS ANAEE EURO-ARGO EMSO JERICO GROOM EUROFLEETS EPOS

Measurement parameters

CO2 ATM+MAR+BIO FTIR, CRDS, GC,

NDIR CRDS NDIR

Optode (New float)

Optode (Yearly Visit)

Wet Chem (Ferry Box)

Optode

CH4 ATM+MAR+BIO

FTIR, CRDS, GC, Near infrared

laser spectroscopy

CRDS Near infrared

laser spectroscopy

Electric Sensing, Optical (Yearly Visit)

Other GHG

ATM

+B

IO

CRDS, OA-ICOS, GC - MS

(isotopes), NDIR,

Quantum cascade laser

NDIR,

Quantum cascade laser

Aerosol concentration

Condensation

Particle Counter (CPC)

Condensation Particle Counter

(CPC) / Differential

mobility Particle Sizer / Aerosol

lidars / Sun Photometry

Fast OPCs

Page 103: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

Domains Atmospheric Biosphere Marine Solid Earth

RIs ICOS IAGOS ACTRIS ANAEE EURO-ARGO EMSO JERICO GROOM EUROFLEETS EPOS

Aerosol optical properties

Atm

osp

heric

CAPS

PMex light extinction

Nephelometers, Absorption

Photometers, aerosol lidars, sun-

photometry

Aerosol chemistry ACMCC, off-line

chemistry

Aerosol Size

Optcal Particle Counter

(OPC)

Optical Particle Counters,

DIfferential Mobility Particle

Sizer, sun-photometry

Aerosol Hydroscopicity

CCN, HTDMA, aerosol lidars

Turbulence

Bio

sph

ere

Sonic anemometry

Sonic anemometry

VOCs PTR-MS

Photosynthesis Fluorescence

Plant Stress Multi/Hyperspectral

imaging

GAI DHP, ceptometer

Page 104: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

Domains Atmospheric Biosphere Marine Solid Earth

RIs ICOS IAGOS ACTRIS ANAEE EURO-ARGO EMSO JERICO GROOM EUROFLEETS EPOS

Soil Respiration

Chambers

Phenology PhenoCam

Microorganisms BIO+MAR UV-LIF

Phytoplangton-Flux Cytometry and Image Analysis

Zooplancton-Image analysis

Temperature

Marin

e

Thermistance Thermistance Thermistance (Yearly Visit)

Thermistance Thermistance Thermistance

Salinity Conductivity Conductivity (Yearly Visit)

Conductivity Conductivity Conductivity

Density Refractometry Refractometry (Yearly Visit)

Dissolved oxygen Optode Optode

(Yearly Visit) Optode Optode

Sea currents ADCP

(Yearly Visit) ADCP

Chemicals concentration

RAMAN Spectro

(Yearly Visit)

RAMAN Spectro (ROV)

Mass Spectro (Yearly Visit)

Mass Spectro

(AUV)

Page 105: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

Domains Atmospheric Biosphere Marine Solid Earth

RIs ICOS IAGOS ACTRIS ANAEE EURO-ARGO EMSO JERICO GROOM EUROFLEETS EPOS

pH

Marin

e

Carbon data

Wet Chem (Ferry Box)

Isfet (New float?)

Isfet

Optode (New float?)

Optode (Yearly Visit)

Optode

Alkalinity Carbon

data Wet Chem

(Ferry Box)

Nitrate UV Spectro(Bio Argo float)

UV Spectro(Moorings)(Yearly

Visit)

UV spectro(Moorings

& FB)

UV Spectro(Glider)

Ammonia Wet chemistry -

Lab On Chip (Moorings & FB)

Phosphate Wet chemistry -

Lab On Chip (Moorings & FB)

Iron

Wet chemistry Lab On Chip

(Seafloor) (Yearly Visit)

Wet chemistry - Lab On Chip

(Moorings & FB)

Sulfure

Wet chemistry Lab On Chip

(Seafloor) (Yearly Visit)

Page 106: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

Domains Atmospheric Biosphere Marine Solid Earth

RIs ICOS IAGOS ACTRIS ANAEE EURO-ARGO EMSO JERICO GROOM EUROFLEETS EPOS

Silicate

Marin

e

Wet chemistry -

Lab On Chip (Moorings &

FB)

Chlorophyll Fluorescence

(Bio Argo float)

Multi Spectral

Fluo (Ferry Box)

Fluorescence (Glider)

PAHs

Pollutants SBSE Passive

sampling

Sound Hydrophones Hydrophones Hydrophones

Big organisms imagery

Image analysis

EchoSounders (Seafloor)

Echo

Sounders (From ship)

Video Imaging

(Seafloor)

Seismology (seismic

ground motion recording)

Solid

Earth

Seismometer (short-period, mid-period)

Geophone

Rotational seismometer

Accelerometer (classical)

Accelerometer (MEMS)

Ocean-bottom

seismometer (package)

Hydrophone

Page 107: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

Domains Atmospheric Biosphere Marine Solid Earth

RIs ICOS

IAGOS ACTRIS ANAEE EURO-ARGO

EMSO JERICO GROOM EUROFLEETS EPOS

Seismology (seismic

ground motion recording)

Solid

Earth

Seismic data logger /

Digitizer

Geodetic (position and

(slow) velocity)

GPS receiver (single frequency)

GPS receiver (dual frequency)

Gravity

Absolute Gravimeter

Relative Gravimeter

(Superconducting Gravimeter) [a special type

of relative gravimeter]

Magnetic field

Vector magnetometer

Scalar (total field)

magnetometer

Page 108: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

Appendix 2: Complete list of terminology

No Acronym Definition

1 ADCP Acoustic Doppler Current Profilers

2 APS Aerodynamic Particle Sizer

3 APSD Aerosol Particle Spectrometer with Depolarization

4 ATP Adenosine triphosphate

5 AUV Autonomous Underwater Vehicle

6 CAP Common Agricultural Policy

7 CDOM Coloured Dissolved Organic Matter

8 CPC Condensation Particle Counters

9 CRDS Cavity Ring Down Spectroscopy

10 CTBTO Comprehensive Nuclear-Test-Ban Treaty Organization

11 DIAL Differential Absorption Light Detection and Ranging

12 DIC dissolved organic carbon

13 DIN Dissolved Inorganic Nitrogen

14 DMPS Differential Mobility Particle Sizer

15 DNA Deoxyribonucleic acid

16 DO Dissolved Oxygen

17 EEA European Economic Area

18 EGIM EMSO Generic Instrumentation Module

19 ENVRI Environmental Research Infrastructures

20 EOV Essential Ocean Variables

21 ER Ecosystem Respiration

22 ESA European Space Agency

23 ESFRI European Strategy Forum of Research Infrastructures

24 EU European Union

25 FIA Flow Injection Analysis

26 FRRf Fast repetition Rate fluorometer

27 FTIR Fourier Transform InfraraRed spectroscopy

28 GHG Green House Gases

29 GLONASS

Global Navigation Satellite System

30 GNSS Global Navigation Satellite System

31 GPP Gross Primary Productivity

32 GPS Global positioning system

33 HALE High Altitude Long Endurance

34 HD (video)

High Definition

35 HTDMA Humidified Tandem Differential Mobility Analyzer

36 ICL Inter Band Cascade Laser

37 IFCB Imaging FlowCytoBot

38 IFSOO Integrated Framework for Sustained Ocean Observing

39 IPCC Intergovernmental Panel on Climate Change

40 IR Infra Red

Page 109: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

41 ISFET Ion Selective Field Effect Transistor

42 LALE Long Altitude Long Endurance

43 LAME Low Altitude Medium Endurance

44 LDS Laser Dispersion Spectroscopy

45 LIBS Laser- Induced Breakdown Spectroscopy

46 LIDAR Light Detection And Ranging

47 LoC Lab-on-a-chip devices

48 LOD Limit Of Detection

49 LPAS Laser Photoacoustic Spectroscopy

50 MALE Medium Altitude Long Endurance

51 Mid-IR Mid Infra Red

52 MOX Metal Oxide

53 MPPT Most Power Point Tracking

54 MWIR Medium Wavelength Infra Red

55 NADH Nicotinamide Adenine Dinucleotide

56 NDIR Non Dispersive Infra-Red Sensor

57 NIR Near Infra Red

58 NPP Net Primary Productivity

59 NTU Nephelometric Turbidity Units

60 OBS Optical BackScatter

61 OI Oceanology International Conference

62 OPC Optical Particle Counters

63 ORP oxidation-reduction potentials

64 PAS Photoaccoustic Absorption Spectroscopy

65 PAX Photoaccoustic Extinctiometer

66 PC Personal Computer

67 PCASP Passive Cavity Aerosol Spectroscopy Probe

68 PCR polymerase chain reaction

69 POC Particulate Organic Carbon

70 PTR-MS Proton Transfer Reaction Mass Spectrometry

71 PTR-TOF-MS

Proton Transfer Reaction to a Time Of Flight Mass Spectrometer

72 PWM Pulse Width Modulation

73 QCL Quantum Cascade Laser

74 R&D Research and Development

75 RFIA Reverse Flow Analysis

76 RI Research Infrastructures

77 RNA Ribonucleic acid

78 ROV Remotely Operated Underwater Vehicle

79 RS Raman Spectroscopy

80 SERS Surface Enhanced Raman Scattering

81 SFA Segmented Flux Analyzers

82 SIA Sequential Injection Analysis

83 SIF Solar Induced Fluorescence

Page 110: D1.1 EMERGING TECHNOLOGIES, EMERGING MARKETS ......2 Abstract The aim of WP1-task 1.1, is to identify and analyse emerging environmental observations technologies (sensors and platforms)

84 SME Small and Medium Enterprise

85 SMPS Scanning Mobility Particle Sizer

86 TA Total Alkalinity

87 TCCON Total carbon Column Observing Network

88 TDL Tunable Diode Laser

89 TDLAS Tunable Diode Laser Absorption Spectroscopy

90 TOF-AMS Time of Flight Aerosol Mass Spectrometer

91 TRL Technology Readiness Level

92 UAV Unmanned Aerial Vehicle

93 UCSD University of California, San Diego

94 UNAVCO non-profit university-governed consortium that facilitates geoscience research and education using Geodesy

95 UNESCO United Nations Science and Culture Organisation

96 UNFCCC United Nations Framework Convention on Climate Change

97 US/ USA United States of America

98 UV Ultra Violet

99 UV-DOAS Ultra Violet Differential Optical Absorption Spectroscopy

100 VCSEL vertical cavity surface emitting laser

101 VOC Volatile Organic Compounds

102 VRLA Valve Regulated Lead Acid

103 WMN wireless mesh networks

104 WOC World Ocean Council

105 WP Work Package

106 WSN wireless sensor network

107 WTO World Trade Organisation

108 μTAS Micro Total Analysis Systems