D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1...

20
. Orlov 1 , A.S. Terekhov 2 , C. Krantz 1 , S.N. Kosolobov 2 , A.S. Jaroshevich 2 , A. x-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany stitute of semiconductor Physics, 630090, Novosibirsk, Russia Motivation: Photocathode multiple recleaning technique. Reliable, closed cycle, QY recovering. TSR target. Photocathode performance. Atomic hydrogen cleaning. Capillary AH source at TSR target. Results: UV-spectroscopy (H-treatment optimization). Results: Multiple recleaning. Outlook Detectors (ions and neutrals) Photoelectron e- target Interaction section 1.5m Electron gun with magnetic expansion ≈10...90 Collecto r Ion beam e - e-source TSR ~0.2 ... 8 MeV/u Long term operation of high quantum yield GaAs- photocathodes at the electron target of the Heidelberg TSR using multiple recleaning by atomic hydrogen

Transcript of D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1...

Page 1: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

D. A. Orlov1, A.S. Terekhov2, C. Krantz1, S.N. Kosolobov2, A.S. Jaroshevich2, A. Wolf1

1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany2 Institute of semiconductor Physics, 630090, Novosibirsk, Russia

Motivation: Photocathode multiple recleaning technique. Reliable, closed cycle, QY recovering.

TSR target. Photocathode performance.

Atomic hydrogen cleaning.

Capillary AH source at TSR target.

Results: UV-spectroscopy

(H-treatment optimization).

Results: Multiple recleaning.

Outlook

Detectors (ions and neutrals)

Photoelectron e-target

Interaction section 1.5m

Electron gun withmagnetic expansion

≈10...90

Collector

Ion beam

e-

e-source

TSR

~0.2 ... 8 MeV/u

Long term operation of high quantum yield GaAs-photocathodes

at the electron target of the Heidelberg TSR using multiple recleaning by atomic hydrogen

Page 2: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

2

Photocathode performance at the electron target (A)

Currents up to 1 mA (2 mA)

Lifetime - 24 h at 1 mA (2mA)

kT = 0.5-1.0 meV kT|| = 0.02 meV

Photoelectron target

Superconducting solenoid

Preparation chamber

Loading chamber Hydrogen chamber

Gun chamber

Manipulator

E-gun

E-gun

collector

Mer

ging

reg

ion

Page 3: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

3

End of lifetime

Photocathode performance (B): Lifetime

1. Dark lifetime (RT) > weeks (UHV)

GaAs

H2OO2 CO2

2. Dark lifetime (LT): hour-weeks

(temperature)

GaAs

H2OO2 CO2

CO CH4

Cold Cryosorption! T > 130 K

(e-current, energy, pressure, geometry)

3. Operating high-current lifetime:

Ion back stream!

GaA

s

E B

e

CO+, CH4+…

Ion deflection, barrier!

Beam profiles (D=12 mm)

Start Degraded

Page 4: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

4

Atomic hydrogen cleaning

H2

H

RF coil

GaAs

oven

2. Hot filament source.

GaAs

ovenH

2

Energetic particles from the source!Risk of photocathode damage!

Low efficiency!Cathode heating!

High partial pressure of W!

3. Hot capillary source

1. RF plasma discharge source.

GaA

s

oven

W-capillary

H2

Just good ;-).

ove

n

Page 5: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

5

AH treatment at the TSR target. Hot capillary source.

EfficientNarrow angular distribution of H-atoms

Low capillary temperature (no W-contamination)

H2

samplefilament

oven

palladium tube

W-capillary

H2

palladium tube

Leak valve

Leak valve

manipulator

manipulatorH

GaA

s

oven

W-capillary

H2

1900 K

ove

n

P=1.0E-08 mbar

Page 6: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

6

AH treatment at the TSR target. Hot capillary source.

H2

samplefilament

oven

palladium tube

W-capillary

Feeding pressure

mbar

Capillary conductance

cm3/s

Degree ofdissociation

%

Angular distribution

sr

H-flux

atoms/cm2/s

H-flux

L/sL

0.75 2.3 2.4 0.65 7.71014 0.380.5 2.6 2.6 0.57 7.11014 0.35

0.15 2.8 3.2 0.41 4.01014 0.160.05 3.3 3.8 0.33 2.01014 0.10

Leak valve

manipulator

GaA

s

oven

W-capillary

H2

1900 K

ove

n

P=1.0E-08 mbar

T=450o C

t=5-10 min

When heat-cleaning does not help (after 3-5 times)

H-treatment (typical): Tcathode=4500 CH-flux: 5E14 atoms/cm2/sExposure time: 5-10 minExposure: 50-200 L

In 5 min transfer the sample to Prep. ChamberHeat-cleaning at 400-4500 C for 30 min.

Based on the data: K.G. Tschersich, JAP 87, 2565 (2000)

Page 7: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

AH cleaning: UV spectroscopy

QY

(e

lec

tro

n/p

ho

ton

), %

3.0 4.0 5.0 6.0

different H0-exposures

10 L

200 L

Photon energy, eV

Cs/O layer removing by H0:

H-dose optimization

Cs/O layer removing by H0:

Clean -> CsO -> H

2. Clean (HCL + ISO)

1. After 4 CsO activations + heat-cleaning

4. H-cleaning

3. Cs + heat-cleaningQY

(e

lec

tro

n/p

ho

ton

), %

3.0 4.0 5.0 6.0

Photon energy, eV

To remove Ga and As oxides the AH exposure of about 100 L is enough.

- Accumulation of Ga/As oxides after multiple reactivations.

- AH efficiently removes oxides.

- The small presence of Cs.

Page 8: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

H0 dose, L

1.5 year of operation!

(21 AH treatment, > 80 activation, 120 heat cleaning)

QY

(el

ectr

on

/ph

oto

n),

%

H0 dose, L

Atomic hydrogen: multiple recleaning

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500Q

Y (

elec

tro

n/p

ho

ton

), %

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 0

MOCVD grown

transmission mode photcathode

LPE grown

transmission mode photcathode

AH multiple cleaning works almost perfectly with only slow QY decrease for MOCVD grown photocathodes.

Page 9: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

9

QY degradation: heat-induced?

1. Accumulation of oxygen? NO!

3. Heat-cleaning induced degradation of transmission mode cathodes (mechanical strain)? YES!

2. Arsenic vacancies defects? NO!

Page 10: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

AFM-image of photocathode with “smooth” surface

RMS = 0.2 nm

AFM-image of photocathode after multiple recleaning

Outside of peaks RMS = 0.5 nm

Peaks height 30-50 nm

QY degradation: heat-induced dislocations?

Dislocation net

1. Accumulation of oxygen? NO!

3. Heat-cleaning induced dislocations at the substrate (sapphire)-heterostructure interface?

2. Arsenic defects (vacancies)? NO!

Page 11: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

11

Multiple recleaning of high QY photocathodes – it works!

Slow QY degradation is probably due to heat-induced defects (dislocations at the sapphire-heterostrucrure interface).

Still can be improved.

Conclusions & Outlook

Page 12: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

12

Page 13: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

13

Acceleration section

Toroid section TSR

quadrupole

Interaction section

Collector section

Detectors

TSR dipole

1.5 m

Ion beamIon beam

Photocathodesetup

vertical correction dipoles

TSR electron target section - overview

Page 14: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

14

Superconducting solenoid

Preparation chamber

Loading chamber Hydrogen chamber

Gun chamber

Manipulator

Photocathode section - overview

Page 15: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

Closed cycle of operation with atomic hydrogen treatment

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

QY, %

Cycling number (H-treatment, HCL, or heating)

Lifetime of N5 photocathode in the target setup

'N5-h2_June01_2008.dat' u 1:7

1.5 mbar x 10 min

(1st AH), 2280 ML

1 mbar x 10 min,

1520 ML

0.3 mbar x 10 min, 456 ML

HCL

0.1 mbar x 10 min, 152 ML

1 mbar x 10 min,

1520 ML

0.3 mbar x 5 min

228 ML

HCL

5 A

H

3 A

H

3 A

H

3 A

H

2 A

H

H2

samplefilament

oven

palladium tube

W-capillary

The evolution of QY UV spectra

for different AH-exposures

QY

(el

ect

ron

/ph

oto

n),

%

QY

(el

ect

ron

/ph

oto

n),

%

Page 16: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

16

TSR photoelectron target

~0.2 ... 8 MeV/uDetectors

(ions and neutrals)

e-target

Interaction section 1.5m

Electron gun withmagnetic expansion

≈10...90

Adiabaticacceleration

Collector

TSR dipole

Movable ion detector

Neutrals detector

Ion beam

e-

e-source

Page 17: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

Fig.3 The figure shows the “history” of the N5-photocathode in the Heidelberg target (>1 year). In total the sample experienced more than 100 heat-treatment. Each minimum correspond “Cs-activation” which typically goes after H-treatment, except of N=85, where no Cs-cleaning was used. Others intermediate points correspond to 1, 2, 3 or 4-th activation. The values of AH-exposure are also indicated on the figure.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

QY, %

Cycling number (H-treatment, HCL, or heating)

Lifetime of N5 photocathode in the target setup

'N5-h2_June01_2008.dat' u 1:7

1.5 mbar x 10 min

(1st AH), 2280 ML

1 mbar x 10 min,

1520 ML

0.3 mbar x 10 min, 456 ML

HCL

0.1 mbar x 10 min, 152 ML

1 mbar x 10 min,

1520 ML

0.3 mbar x 5 min

228 ML

HCL

5 A

H

3 A

H

3 A

H

3 A

H

2 A

H

Page 18: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

Fig.1 The spectra was measured after HCL or H-treatment or after activation by Cs or Cs/O with subsequent heating. The steps are described in the picture and ordering goes from up to down (the first step “before HCL”, the last on – “Cs/O2 +6.5 A” for N5 and “7.0 A + Cs +6.5 A” for N6). Find on the next page detailed description of the steps.

Atomic hydrogen cleaning: UV

spectroscopy

Page 19: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

19

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

QY, %

Cycling number (H-treatment, HCL, or heating)

Lifetime of N5 photocathode in the target setup

'N5-h2_June01_2008.dat' u 1:7

Cryogenic photocathode source

Vacuum conditions:UHV (5∙10-12 mbar)H2O, O2, CO2 <10-14 mbar

High requirements for surface preparation

Atomic hydrogen cleaning:

Photocathode at 100 K

Photocathode setup

Quantum Yield vs

UV photon energy

QY

(e

lec

tro

n/p

ho

ton

), %

QY

(e

lec

tro

n/p

ho

ton

), %

1 year of operation!

120 cycles (23 AH treatment)

3.0 4.0 5.0 6.0

different H0-exposureslow

high

Photon energy, eV

Cs/O layer removing by H0

Number of steps (H0 or heat-cleaning)

Page 20: D. A. Orlov 1, A.S. Terekhov 2, C. Krantz 1, S.N. Kosolobov 2, A.S. Jaroshevich 2, A. Wolf 1 1 Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany.

20

Photocathode performance at the electron target (A)

T-control (heat cleaning, operation): Photoluminescence & IR transmission spectroscopes, photoelectron spectra

Surface cleaning quality: UV QY spectroscopy

Emission properties: 2D energy distribution

Currents up to 1 mA (2 mA)

Lifetime - 24 h at 1 mA (2mA)

kT = 0.5-1.0 meV kT|| = 0.02 meV

Photoelectron target