Current Techniques in Language-based Security David Walker COS 441 With slides stolen from: Steve...

52
Current Techniques in Language-based Security David Walker COS 441 With slides stolen from: Steve Zdancewic University of Pennsylvania
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    224
  • download

    1

Transcript of Current Techniques in Language-based Security David Walker COS 441 With slides stolen from: Steve...

Current Techniques in Language-based Security

David WalkerCOS 441

With slides stolen from:Steve ZdancewicUniversity of Pennsylvania

COS 441 2

Mobile Code Modern languages like Java and C#

have been designed for Internet applications and extensible systems

PDAs, Cell Phones, Smart Cards, …

operating system

web browser

applet applet applet

COS 441 3

Applet Security Problems Protect OS & other valuable resources. Applets should not:

crash browser or OS execute “rm –rf /” be able to exhaust resources

Applets should: be able to access some system resources

(e.g. to display a picture) be isolated from each other

Principles of least privileges and complete mediation apply

COS 441 4

Java and C# Security Static Type Systems

Memory safety and jump safety Run-time checks for

Array index bounds Downcasts Access controls

Virtual Machine / JIT compilation Bytecode verification Enforces encapsulation boundaries (e.g. private field)

Garbage Collected Eliminates memory management errors

Library support Cryptography, authentication, …

These lectures

COS 441 5

Access Control for Applets What level of granularity?

Applets can touch some parts of the file system but not others

Applets can make network connections to some locations but not others

Different code has different levels of trustworthiness www.l33t-hax0rs.com vs. www.java.sun.com

Trusted code can call untrusted code e.g. to ask an applet to repaint its window

Untrusted code can call trusted code e.g. the paint routine may load a font

How is the access control policy specified?

COS 441 6

Outline Java Security Model (C# similar)

Stack inspection Concrete examples To discuss: what security principles does the

Java security model obey or not obey?

Semantics from a PL perspective Formalizing stack inspection

how exactly does it work?

Reasoning about programs that use stack inspection

COS 441 7

Java Security Model

a.classb.classc.classd.classe.class

Domain A

Domain B

Permissions

Permissions

Security PolicyVM Runtime

http://java.sun.com/j2se/1.4.2/docs/guide/security/spec/security-specTOC.fm.html

ClassloaderSecurityManager

COS 441 8

Kinds of Permissions java.security.Permission Class

perm = new java.io.FilePermission("/tmp/abc","read");

java.security.AllPermission java.security.SecurityPermission java.security.UnresolvedPermission java.awt.AWTPermission java.io.FilePermission java.io.SerializablePermission java.lang.reflect.ReflectPermission java.lang.RuntimePermissionjava.net.NetPermission java.net.SocketPermission …

COS 441 9

Code Trustworthiness How does one decide what protection

domain the code is in? Source (e.g. local or applet) Digital signatures C# calls this “evidence based”

How does one decide what permissions a protection domain has? Configurable – administrator file or

command line

Enforced by the classloader

COS 441 10

Classloaders In order to pull new code into the virtual machine,

we use an object from the ClassLoader class A class loader will look in the file system, or

across the network for a class file, or possibly dynamically generate the class When loading the first class of an application, a new

instance of the URLClassLoader is used. When loading the first class of an applet, a new instance

of the AppletClassLoader is used. Class loaders are responsible for placing classes

into their security domains AppletClassLoader places classes in domains depending

on where they are from Other ClassLoaders places classes in domains based on

digital signatures, or origin (such as local file system)

COS 441 11

Classloader Hierarchy

ClassLoader

SecureClassLoader URLClassLoader

AppletClassLoader

Primordial ClassLoade

r

COS 441 12

Associating Privileges with Domains

grant codeBase “http://www.l33t-hax0rz.com/*” { permission java.io.FilePermission(“/tmp/*”, “read,write”);}

grant codeBase “file://$JAVA_HOME/lib/ext/*” { permission java.security.AllPermission;}

grant signedBy “trusted-company.com” { permission java.net.SocketPermission(…); permission java.io.FilePermission(“/tmp/*”, “read,write”); …}

Policy information stored in: $JAVA_HOME/lib/security/java.policy $USER_HOME/.java.policy (or passed on command line)

COS 441 13

Example Trusted Code

void fileWrite(String filename, String s) { SecurityManager sm = System.getSecurityManager(); if (sm != null) { FilePermission fp = new FilePermission(filename,“write”); sm.checkPermission(fp); /* … write s to file filename (native code) … */ } else { throw new SecurityException(); }}

public static void main(…) { SecurityManager sm = System.getSecurityManager(); FilePermission fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run();}

Code in the System protection domain

COS 441 14

Example Client

class UntrustedApplet { void run() { ... s.FileWrite(“/tmp/foo.txt”, “Hello!”); ... s.FileWrite(“/home/dpw/grades.txt”, “Ginsburg: A+”); ... }}

Applet code obtained from http://www.l33t-hax0rz.com/

COS 441 15

Stack Inspection Stack frames are annotated with their

protection domains and any enabled privileges.

During inspection, stack frames are searched from most to least recent: fail if a frame belonging to someone not

authorized for privilege is encountered succeed if activated privilege is found in

frame

COS 441 16

Stack Inspection Example

main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run();}

Policy

Data

base

COS 441 17

Stack Inspection Example

main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run();}

fp

Policy

Data

base

COS 441 18

Stack Inspection Example

main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run();}

void run() { … s.FileWrite(“/tmp/foo.txt”, “Hello!”); …}

fp

Policy

Data

base

COS 441 19

Stack Inspection Example

main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run();}

void run() { … s.FileWrite(“/tmp/foo.txt”, “Hello!”); …}

void fileWrite(“/tmp/foo.txt”, “Hello!”) { fp = new FilePermission(“/tmp/foo.txt”,“write”) sm.checkPermission(fp); /* … write s to file filename … */

fp

Policy

Data

base

COS 441 20

Stack Inspection Example

main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run();}

void run() { … s.FileWrite(“/tmp/foo.txt”, “Hello!”); …}

void fileWrite(“/tmp/foo.txt”, “Hello!”) { fp = new FilePermission(“/tmp/foo.txt”,“write”) sm.checkPermission(fp); /* … write s to file filename … */

fp

Policy

Data

base

Succeed!

COS 441 21

Stack Inspection Example

main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run();}

void run() { … s.FileWrite(“/home/dpw/grades.txt”, “Ginsburg: A+”);}

fp

Policy

Data

base

COS 441 22

Stack Inspection Example

main(…){ fp = new FilePermission(“/tmp/*”,“write,…”); sm.enablePrivilege(fp); UntrustedApplet.run();}

void fileWrite(“…/important.txt”, “kwijibo”) { fp = new FilePermission(“important.txt”, “write”); sm.checkPermission(fp);

fp

Policy

Data

base

void run() { … s.FileWrite(“/home/dpw/grades.txt”, “Ginsburg: A+”);}

Fail

COS 441 23

Other Possibilities The fileWrite method could enable

the write permission itself Potentially dangerous, should not base the

file to write on data from the applet … but no enforcement in Java

A trusted piece of code could disable a previously granted permission Terminate the stack inspection early

COS 441 24

Stack Inspection AlgorithmcheckPermission(T) { // loop newest to oldest stack frame foreach stackFrame { if (local policy forbids access to T by class executing in stack frame) throw ForbiddenException;

if (stackFrame has enabled privilege for T) return; // allow access

if (stackFrame has disabled privilege for T) throw ForbiddenException; }

// end of stack if (Netscape || …) throw ForbiddenException; if (MS IE4.0 || JDK 1.2 || …) return;}

COS 441 25

Two Implementations On demand –

On a checkPermission invocation, actually crawl down the stack, checking on the way

Used in practice

Eagerly – Keep track of the current set of available

permissions during execution (security-passing style Wallach & Felten)

+ more apparent (could print current perms.)- more expensive (checkPermission occurs

infrequently)

COS 441 26

Stack Inspection Stack inspection seems appealing:

Fine grained, flexible, configurable policies Distinguishes between code of varying degrees of

trust But…

How do we understand what the policy is? Semantics tied to the operational behavior of the

program (defined in terms of stacks!) How do we compare implementations Changing the program (e.g. optimizing it) may

change the security policy Policy is distributed throughout the software, and is

not apparent from the program interfaces. Is it any good?

COS 441 27

Stack Inspection Literature

Stack Inspection: Theory and VariantsCédric Fournet and Andrew D. Gordon Use operational semantics like in class

Understanding Java Stack InspectionDan S. Wallach and Edward W. Felten Formalize Java Stack Inspection using a special logic

of authentication

Formalizing Stack Inspection

COS 441 29

Abstract Stack Inspection Abstract permissions

p,q Permissions (left abstract in the

theory) R,S Principals (sets of permissions)

Hide the details of classloading, etc. Examples:

System = {fileWrite(“f1”), fileWrite(“f2”),…}Applet = {fileWrite(“f1”)}

COS 441 30

sec Syntax Language syntax:

e ::= expressions x variable x.e function e1 e2 application R{e} framed expr enable p in e enable test p then e1 else e2 check perm. fail failure

v ::= x | x.e valueso ::= v | fail outcome

COS 441 31

Framing a Term Models the Classloader that marks the

(unframed) code with its protection domain:

Load(R,x) = x

Load(R,x.e) = x. R{ Load(R,e) }

Load(R,e1 e2) = Load(R,e1) Load(R,e2)

Load(R,enable p in e) = enable p in Load(R,e)

Load(R,test p then e2 else e2)

= test p then Load(R,e1) else Load(R,e2)

Load(R,fail) = fail

COS 441 32

Example

readFile = fileName.System{ test fileWrite(fileName) then

… // primitive file IO (native code) else fail }

Applet{readFile “f2”} -->* fail System{readFile “f2”} -->* <f2 contents>

COS 441 33

sec Operational Semantics Evaluation contexts:

E ::= [] Hole E e Eval function

v E Eval argenable p in E Tag on stack

frame R{E} Stack frame

E models the control stack

COS 441 34

sec Operational SemanticsE[(lx.e) v] --> E[e{v/x}]

E[enable p in v] --> E[v]

E[R{v}] --> E[v]

E[fail] --> fail

E[test p then e else f] --> E[e] if Stack(E) |-- p

E[test p then e else f] --> E[f] if (Stack(E) |-- p)

COS 441 35

Example Evaluation Context

Applet{readFile “f2”}

E = Applet{[]}r = readfile “f2”

COS 441 36

Example Evaluation Context

E = Applet{[]}r = (fileName.System{ test fileWrite(fileName) then

… // primitive file IO (native code) else fail } ) “f2”

Applet{readFile “f2”}

COS 441 37

Example Evaluation Context

Applet{readFile “f2”}

E = Applet{[]}r = System{ test fileWrite(“f2”) then

… // primitive file IO (native code) else fail }

COS 441 38

Example Evaluation Context

Applet{System{ test fileWrite(“f2”) then

… // primitive file IO (native code) else fail }}

COS 441 39

Example Evaluation Context

Applet{System{ test fileWrite(“f2”) then

… // primitive file IO (native code) else fail }}

E’ = Applet{System{[]}}r’ = test fileWrite(“f2”) then

… // primitive file IO (native code) else fail

COS 441 40

Formal Stack Inspection

E’ = Applet{System{[]}}r’ = test fileWrite(“f2”) then

… // primitive file IO (native code) else fail

When does stack E’ allow permissionfileWrite(“f2”)?

Stack(E’) |-- fileWrite(“f2”)

COS 441 41

Formal Stack Inspection

Structure of Stacks:

s ::= . (Empty Stack) | s.R (Stack for code of principal R) | s.enable(p) (Privelege p enabled)

COS 441 42

Stack of an Eval. Context

Stack([]) = .Stack(E e) = Stack(E)Stack(v E) = Stack(E)Stack(enable p in E) = enable(p).Stack(E)Stack(R{E}) = R.Stack(E)

Stack(E’) = Stack(Applet{System{[]}}) = Applet.Stack(System{[]}) = Applet.System.Stack([]) = Applet.System.

COS 441 43

Abstract Stack Inspection

. |-- p empty stack axiom

s |-- p p Rs.R |-- p

s |-- ps.enable(q) |-- p

protection domain check

p q irrelevant enable

s |= ps.enable(p) |-- p

check enable

COS 441 44

Abstract Stack Inspection

. |= p empty stack enables all

p Rx.R |= p enable succeeds

x |= px.enable(q) |=

p

irrelevant enable

COS 441 45

Equational Reasoning

e iff there exists o such that e -->* o

Let C[] be an arbitrary program context.

Say that e = e’ iff for all C[], if C[e] and C[e’] are closed then C[e] iff C[e’].

COS 441 46

Example Inequality

ok = x.x

loop = (x.x x)(x.x x) (note: loop )

f = x. let z = x ok in _.zg = x. let z = x ok in _.(x ok)

Claim: f ≠ g

Proof:Let C[] = {[ ] _.test p then loop else ok} ok

COS 441 47

Example Continued

C[f] = {f _.test p then loop else ok} ok • {let z = (_.test p then loop else ok) ok in _.z} ok• {let z = test p then loop else ok in _.z} ok• {let z = ok in _.z} ok• {_.ok} ok• (_.ok) ok• ok stack({ [ ] }) = ..

.. |-- p is not valid

COS 441 48

Example Continued

C[g] = {g _.test p then loop else ok} ok• {let z = (_.test p then loop else ok) ok in _.((_.test p then loop else ok) ok)} ok• {let z = test p then loop else ok in _. ((_.test p then loop else ok) ok)} ok• {let z = ok in _. ((_.test p then loop else ok) ok)} ok• {_. ((_.test p then loop else ok) ok)} ok• (_. ((_.test p then loop else ok) ok)) ok• (_.test p then loop else ok) ok• test p then loop else ok• loop loop loop …

stack([ ] ) = .. |-- p is valid!

return from function ==> pop frame

COS 441 49

Example Applications

Eliminate redundant annotations:

x.R{y.R{e}} = x.y.R{e}

Decrease stack inspection costs:

e = test p then (enable p in e) else e

Formal reasoning about the semantics of stack inspection makes it possible to perform

safe optimizations:

COS 441 50

Axiomatic Equivalence

Can give a sound set of equations that characterize =. Example axioms:

• (x.e) v e{v/x} (beta equivalence)• x fv(v) x.v v• enable p in o o• enable p in (enable q in e) enable q in (enable p in e)• R S R{S{e}} S{e}• R{S{enable p in e}} R{p}{S{enable p in e}}• … many, many more

Implies =

COS 441 53

Other Problems Applets returning closures can

circumvent stack inspection. Possible solution:

Values of the form: R{v} (i.e. keep track of the protection domain of the source)

Similarly, one could have closures capture their current security context

Integrity analysis (i.e. where data comes from)

Fournet & Gordon prove some properties of strengthened versions of stack inspection.

COS 441 54

Conclusions What security properties does the Java

security model guarantee?

What optimizations are legal?

Formal semantics helps us find the answers & suggests improvements