Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th...

51
Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1

Transcript of Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th...

Page 1: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Current status of the liquid lithium target

development

LiLiT Teampresented by S. Halfon

4th High-Power Targetry Workshop

May 3, 2011

1

Page 2: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Outline

SSoreq AApplied RResearch AAccelerator

FFacility (SARAFSARAF) overview

Liquid Lithium Target

research application and requirements

(BNCT, astrophysics)

design features

lithium circulation and e-gun experiments2

Page 3: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

RFQ 1.5 MeV/u PSM

p: 4 MeV, d: 5 MeV

EIS20 keV/u

Phase I2009

Phase II2015

5 × SC Modules

40 MeV

Radio Pharmaceuticals

Radioactive beams

Nuclear Astrophysics

Thermal neutron diffraction

Thermal neutron radiography

ParameterValue

Ionsp / d

Energy5 – 40 MeV

Current0.04 – 2 mA

MaintenanceHands-On

•Current upgradeable to 4 mA

Accelerator Parameters

SARAF Accelerator

3שקף

Page 4: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

SARAF Phase I – Upstream View

4

EISLEBT

RFQMEBT

PSM

A. Nagler, Linac-2006 C. Piel, EPAC-2008 A. Nagler, Linac-2008 I. Mardor, PAC-2009

Page 5: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

SARAF Phase I – downstream PSM

D-Plate

Beam Dump

Target beam line

Commissioning of Phase-I is approaching finalization

The current challenges include conditioning the RFQ to enable acceleration of CW deuterons

1 mA CW proton beam have been accelerated through the entire Phase-I up energy of 3.7 MeV

Low duty cycle 2.5 mA deuteron beam have been accelerated to energy of 4.3 MeV

Page 6: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

6

Neutron producing lithium target - 7Li(p,n)7Be

Ethr(p)= 1.881 MeV ,Q = -1.644 MeV . Produces keV-energy forward-collimated neutrons near threshold.

C.L. Lee, X.-L. Zhou, Nucl. Instr. and Meth. in Phys. Res. B 152 (1999) 1-11

0

0.1

0.2

0.3

0.4

0.5

0.6

1.5 2 2.5 3 3.5

Proton energy (MeV)C

ross

sec

tion

(bar

ns)

R. taschek,1948

7 Li+p 22.196

7 Be+n 23.84

8 Be gs 4.942

7 Be*+n 24.3320.429

Ep=1.9-2

Ep=2.32

Page 7: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Boron Neutron Capture Therapy

1. Selectively deliver 10B to the tumor cells2. Irradiate the target region with neutrons3. The short range of the 10B(n,a)7Li reaction product, 5-8

mm in tissue, restrict the dose to the boron loaded area

n

n

n

n

n

Li

B10

B10

B10B10

B10

B10

B10 B10

B10 B10

B10

B10

B10

~ 109 10B atoms in cell

α

7

Page 8: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

8

The neutron energy effect on therapy

Bisceglie et. al. Phys. Med. Biol. 45 (2000) 49–58.

Optimal Energy for deep-seated tumor: 0.5 eV – 10 keV

– Neutron spectrum from lithium target bombarded with 1.91 MeV protons

Neu

tron

inte

nsity

(a.

u.)

Neutron flux: Optimal ≈109 s-1 cm-2 on beam port ** (for ~1 hour therapy)

SARAF lithium target >1010 s-1 mA-1

Accelerator based BNCT with lithium target:

1. Produce most suitable neutrons for therapy

2. Small- in hospital

3. Good public acceptability

4. Relatively cheap

Page 9: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Astrophysical research: at Ep=1.91 MeV a neutron spectrum of maxwellian with kT= ~ 28 keV is produced-

typical stellar neutron energy in s-proces

2.3 × 1010 n/s.mA

LiLiT full-geometry simulation (GEANT4)

Page 10: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

LiLiT – High flux keV neutron source Both researches require high neutron flux (~109 n/cm2/s) hence high power

Lithium Target 4 – 10 kW beam power (p, 2-4 mA, 1.9-2.5 MeV) Gaussian beam (=2 mm, D=12 mm)

The target should dissipate power densities of more then ~1 MW/cm3

ProjectIFMIF* SPIRAL II* LiLiT

Reaction specificationd(40 MeV) +Lid(40 MeV) + Cp(2 MeV) +Li

Projectile range in target (mm)19.14.30.2

Maximum beam current (mA)2 x 12552

Beam spot on the target (cm2)~100~10 ~1

Beam density on the target (mA/cm2)2.50.5>2( peak)

* D.Ridikas et.al. “Neutrons For Science (NFS) at SPIRAL-2 (Part I: material irradiations), Internal Report DSM/DAPNIA/SPhN, CEA Saclay (Dec 2003) 10

Page 11: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Liquid lithium loop

EM pumploop

Vacuum chamberSARAF Proton Beam

Lithium containment

tank ,heat

exchanger and Be-7 cold trap

11

Proton Beam

Accelerator portNeutron port

Page 12: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

12

beam

view port

Lithium nozzle

Target chamber

Beam Direction

10 cm

Page 13: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

13

Lithium Nozzleliquid

lithium

beam

18 mm wide 1.5 mm thick

1 cm

beam

Page 14: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Concave jet - Water test

Meas. flow rate: 48 l/min extracted velocity: 26 m/s

Water Film

18 mm wide

1.5 mm thick

Water direction

Page 15: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

15

Be Trap

Heat Exchanger

Cross Section

Design to remove ~12 kW

Lithium tank

Page 16: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Oil cycle

Flexible tubes

Oil pump

Heat exchanger

Oil chamber

Inside the lab

Outside the lab

Page 17: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Electro-magnetic pump

PermanentSmCo

Magnets

Electrical Motor

Page 18: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

DC electro-magnetic flow meter

Page 19: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Lithium vapor trap

beam

Tantalum foil

Page 20: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

20

Thermal evaluations

Peak temperature elevation at the beam bombarding area Conservative saturation point:

350C (lithium boiling point at 10-5 Torr)

5 mm downstream

max. temp. on surface

V=20 m/s

Page 21: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

21

Be-7 production 7Be: half-life of 53 days, 478 keV gamma

radiation. Annual irradiation with 4 mA, 2 MeV proton

beam, 8 hours a day, will produce the following dose rate, 30 cm from the system.

0 50 100 150 200 250 300 350 4000

200

400

600

800

1000

1200

1400

Time (days)

Dos

e ra

te (

mre

m/h

)

Solutions: 1. Most of the Be-7 will be accumulating at the cold

trap and heat exchanger area[1]. The temperature in the loop and in the cold trap will be set according thermodynamic analysis of 7Be in molten lithium.

2. The area will be shielded (~ 1.5-3 cm of Pb).

3. The irradiation periods were calculated in advance in order to control the radiation levels.

[1] M. Ida et. al., Fusion Engineering and Design 82 (2007) 2490-2496.

Page 22: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

22

Lithium circulation test Lithium heated up to 200C. Pressure: 8×10-6 Torr Velocity: up to 5 m/s Stable and full lithium film

Page 23: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

23

Lithium insertion and circulation movie

Page 24: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

1 A, 20 keV (20 kW) electron gun at LiLiT

Magnetic lensBeam

dump

Page 25: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

25

Electron gun off line tests

20 µmenergy deposition of 20 keV electrons in lithium

E-gun simulation: High intensity – 20 keV, ~1 Aelectron gun will simulate thermal deposition of SARAF proton beam.

E-gun power density: 5.8 MW/cm3 at 1 A

energy deposition of 2 MeV, 2mA protons in lithium

~2 MW/cm3 >5.8 MW/cm3

Page 26: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

E-gun experiment E-beam focusing, using magnetic lens, on diagnostic

plate Measurement of e-beam distribution (up to 10 mA) Applying higher beam power on the lithium flow

E-Beam hitting diagnostic plate

Electrons beam distribution

26

Page 27: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

e-gun experiment results

Electron Beam shape measurement Velocity measurement - ~3 m/s (~30 % of

EM pump capability)Stable lithium flow at irradiation up to 2 kW

(at 3 m/s) Excessive evaporation when ~2.2 kW

beam was applied (at 3 m/s)

27

Page 28: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

e-gun on lithium

29

Page 29: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Lithium vapors on viewport window

Page 30: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Temperature calculation for 2.2 kW electron irradiation

31

Calculated Max temperature= 380˚CExpected saturation temperature:350˚C

Flow

Page 31: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Our future plans

E-gun irradiation at higher flow velocityTransportation and connection to SARAF

accelerator beam lineProton beam heat removal experimentsBe-7 dynamics in the systemNeutron measurements

32

Page 32: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Thank you

The LiLiT Team:M. Paul, A. Arenshtam, D. Berkovits, M. Bisyakoev, I. Eliyahu, G. Feinberg, N. Hazenshprung, D. Kijel, A. Nagler,I. Silverman

33

Thanks to J. Nolen, C. Reed & Y. Momozaki for the help with design and training

Page 33: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

34

As built systemFire-proof dry room for 20 keV

e-gun experiments

Page 34: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

LiLit @ 4kW heating power

Depth wise temperature distribution

Beam

35

Page 35: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

LiLit @ 4kW heating power

Temperature distribution at the center of the jet

Flow direction

Beam36

Page 36: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

CFD simulations 3D flow simulations are done with OpenFoam (open source CFD

code) Currently only strait wall jet flow is simulated Planed improvements include concave flow and power deposition

37שקף

Page 37: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

LiLiT jet chamber built for 2 MeV 3.5 mA protons Gaussian beam spot size with =2 mm

heat exchanger

and 7Be cold trap

liquid lithium

secondary sample

chamber

view port

20 m/s jet18 mm wide 1.5 mm thick

beam

beam

38שקף

Page 38: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Stainless steel fire protection

enclosure

Explosion roof, held on hinges

Stainless walls

Inspection window

E-gun port

Argon inlet

39

Page 39: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Radiation from 7Be

The LiLiT loop dose rate as function of integral irradiation duration and intensity. Based on the assumption that 5% of

the Li is left in the loop40

Page 40: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Radiation shielding

Li reservoir dose rate 30 cm behind a lead shield as function of the lead thickness

41

Page 41: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Electro-magnetic pump parameters Sm2Co17 permanent magnets: 12 units, 40x40x20 mm

Operating temperature: up to 300 C Electrical Motor: Three Phase, 1.5 kW, 2800 rpm Variable Speed Motion Control: Three Phase, 1.5 kW Pump Dimensions: L= 700, D=350, H=320

Loop sizes: OD 173.5 mm, width 20 mm, thickness 6 mm Magnetic Field at center: 3.2 kG Momentum Test: 115 N.m Calculated pressure: 8 At

42

Page 42: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Titanium adsorption vacuum pump

Page 43: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

44

Oil temperature

Page 44: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

EMP מהירויות של המשאבהטמפרטורה /

הספקהספק

מקסימאלי) - mA(זרם

kW

מהירות m/s

EMPיחידות SPEED 1-10

(%)

מס' הרצה

1) 50(2) 20%(1 -4

1.2kW/615oC* 1.4) 70(2.352) 20%(5

1.2kW/614oC* 1.6) 80(2.752.5) 25%(6

1.2kW/571oC* 2.2) 110(3.143) 30%(7

הפרשי טמפרטורות ביחס למהירות זרימה הם על פי רישום ידני*

45

Page 45: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

והצפיפות kW/cm2 2.85צפיפות ההספק המקסימאלית בנסויי הינה MW/cm3 0.83ההספק הנפחית שהופעלה הינה

(כחול) והתאמתם mA 10פרופיל קרן האלקטרונים בזרם של כ-.mm 78לגאוסיין (אדום) אשר מרכזו ב-

mm 3.5 וסיגמא של mm 8.3 בעל רוחב מחצית גובה של 46

Page 46: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

טמפרטורת הליתיום המינימאלית שנמדדה במיכל במקביל לטמפרטורת אוזני הנחיר

במהלך ארבעת ההקרנות האחרונות בתותח האלקטרונים

47

Page 47: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

צילום הליתיום מסוחרר בנחיר בעת הקרנה בתותח אלקטרונים

Electron Beam spot on lithium

Lithium flow direction

48

Page 48: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

Lithium Vapor Pressure & Evaporation Rate

Lithium Vapor Pressure & Evaporation Rate

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0 100 200 300 400 500 600 700 800 900 1000

T [C]

P [

To

rr]

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

Eva

p. R

ate

[mg

/cm

2s]

49

Page 49: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

50

Page 50: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

51

Page 51: Current status of the liquid lithium target development LiLiT Team presented by S. Halfon 4 th High-Power Targetry Workshop May 3, 2011 1.

SARAFSARAF – SoresSores AApplied RResearch AAccelerator FFacility

To enlarge the experimental nuclear science infrastructure and promote the research in Israel

To develop and produce radioisotopes primarily for bio-medical applications

To modernize the source of neutrons at Soreq and extend neutron based research and applications

52