CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

51
CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS Space & Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources (Theme for Advanced Nuclear Power Plant Lectures at CSU–Spring ’07) by Dr. Albert J. Juhasz In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the “Next Generation Nuclear Plant Project” (NGNP) has been established by DOE under the “Generation IV Nuclear Systems Initiative”. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series.. As an attractive alternate heat source the “Liquid Fluoride Reactor” (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960’s, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U 233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H 2 ) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H 2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is expected within the next 30 to 50 years, as predicted by the Hubbert model and confirmed by other global energy consumption prognoses. Having invested national resources into the development of NGNP, the technology and experience accumulated during the project needs to be documented clearly and in sufficient detail for young engineers coming on-board at both DOE and NASA to acquire it. Hands on training on reactor operation, test rigs of turbomachinery, and heat exchanger components, as well as computational tools will be needed. Senior scientist/engineers involved with the development of NGNP should also be encouraged to participate as lecturers, instructors, or adjunct professors at local universities having engineering (mechanical, electrical, nuclear/chemical, and/or materials) as one of their fields of study.

Transcript of CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

Page 1: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS

Space & Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants

With Nuclear Reactor Heat Sources

(Theme for Advanced Nuclear Power Plant Lectures at CSU–Spring ’07)

by Dr. Albert J. Juhasz

In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the “Next Generation Nuclear Plant Project” (NGNP) has been established by DOE under the “Generation IV Nuclear Systems Initiative”. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series.. As an attractive alternate heat source the “Liquid Fluoride Reactor” (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960’s, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is expected within the next 30 to 50 years, as predicted by the Hubbert model and confirmed by other global energy consumption prognoses. Having invested national resources into the development of NGNP, the technology and experience accumulated during the project needs to be documented clearly and in sufficient detail for young engineers coming on-board at both DOE and NASA to acquire it. Hands on training on reactor operation, test rigs of turbomachinery, and heat exchanger components, as well as computational tools will be needed. Senior scientist/engineers involved with the development of NGNP should also be encouraged to participate as lecturers, instructors, or adjunct professors at local universities having engineering (mechanical, electrical, nuclear/chemical, and/or materials) as one of their fields of study.

Page 2: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

Gle

nn R

esea

rch

Cen

ter a

t Lew

is F

ield

CSU

Lec

ture

on

Thor

ium

–LF

R N

UC

LEA

R P

OW

ER P

LAN

TS

Spac

e &

Terr

estr

ial

Pow

er S

yste

m In

tegr

atio

n

Opt

imiz

atio

n C

ode

BR

MA

PS

for

Gas

Tur

bine

Spa

ce P

ower

Pla

nts

with

Nuc

lear

Rea

ctor

Hea

t Sou

rces

Dr.

Alb

ert

J. J

uh

asz

Feb

ruar

y 13

th, 2

007

Page 3: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

2G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

INTR

OD

UC

TIO

N

•Fo

cus

of T

alk

on N

umer

ical

Met

hods

(BR

MA

PS

to

anal

yze

Pow

er S

yste

ms

com

pose

d of

–Th

erm

al E

nerg

y S

ourc

e (ie

. Fis

sion

Rea

ctor

, Sol

ar C

onc.

& H

eat R

ecei

ver,

Che

mic

al)

–E

nerg

y C

onve

rsio

n (E

CS

) via

Bra

yton

cyc

le (C

ompr

esso

r, Tu

rbin

e, A

ltern

ator

/Gen

erat

or, E

lect

r. C

ontro

ls)

–H

eat S

ourc

e H

eat E

xcha

nger

s C

oupl

ed to

Rea

ctor

& E

CS

–H

eat S

ink

Hea

t Exc

hang

ers

Con

nect

ing

EC

S to

Hea

t Sin

k–

Hea

t Rej

ectio

n S

ubsy

stem

s ( R

adia

tor f

or S

pace

, Bod

ies

of

Wat

er fo

r Gro

und

Bas

ed P

lant

s)–

Pum

ps a

nd C

ontro

ls a

s P

aras

itic

Load

s

•S

elec

ted

Out

put R

esul

ts

Page 4: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

3G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Topi

cal O

utlin

e –

Pow

er S

yste

m D

esig

n D

river

s

•S

pace

(Lun

ar) P

ower

Sys

tem

s–

Em

phas

is is

on

Min

imum

Sys

tem

Mas

s–

Hig

h S

yste

m R

elia

bilit

y, A

uton

omy

and

long

Ope

ratio

nal L

ife

requ

ired

to c

ompe

nsat

e fo

r litt

le o

r no

mai

nten

ance

–N

eed

leas

t com

plex

sys

tem

s w

. min

imum

com

pone

nts

–Th

erm

al E

ffici

ency

can

be

trade

d to

ach

ieve

Low

Mas

s, i.

e.

non-

rege

nera

ted

and

dire

ct h

eate

d/co

oled

cyc

les

elim

inat

e he

at e

xcha

nger

(reg

ener

ator

HX

, HS

HX

, CS

HX

) mas

s•

Terr

estri

al N

ucle

ar P

ower

Sys

tem

s–

Em

phas

is is

on

Max

imiz

ing

Ther

mal

Effi

cien

cy a

nd th

us

Pow

er O

utpu

t, R

even

ue, P

rofit

& R

etur

n on

Inve

stm

ent

–S

yste

m M

aint

enan

ce d

urin

g re

gula

rly s

ched

uled

Per

iods

–H

igh

Sys

tem

Mas

s an

d C

ompl

exity

are

acc

epta

ble

as lo

ng

as h

igh

Pow

er P

lant

Ava

ilabi

lity/

Rel

iabi

lity

is a

ssur

ed

Page 5: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

4G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

BR

MA

PS S

yste

m C

ode

Hig

hlig

hts

•W

ide

oper

atin

g ra

nge

capa

bilit

y al

low

s ef

ficie

nt n

arro

win

g of

des

ign

spac

e:

Turb

, Inl

et T

emp.

, Cyc

le T

emp.

Rat

io, P

ress

. Rat

io•

Cod

e M

odel

s In

tera

ctin

g P

rinci

pal S

ub-s

yste

ms

of C

lose

d C

ycle

Gas

Tur

bine

(CC

GT)

Spa

ce P

ower

Sys

tem

s–

Hea

t Sou

rce

(Nuc

lear

Rea

ctor

+ S

hiel

d)(S

olar

Con

cent

rato

r + H

eat R

ecei

ver)

–Th

erm

al-to

-Ele

ctric

Ene

rgy

Con

verte

r –Tu

rbo-

Alte

rnat

or–

Hea

t Rej

ectio

n S

ubsy

stem

–Th

erm

al L

oop

and

Spa

ce R

adia

tor

•C

ode

Inco

rpor

ates

new

Trip

le O

bjec

tive

Opt

imiz

atio

n –

PR

Var

iabl

e–

Ope

ratin

g C

ondi

tions

for M

axim

um C

ycle

Effi

cien

cy, M

inim

um R

adia

tor

Are

a, M

inim

um O

vera

ll S

yste

m M

ass

–G

loba

l Opt

imiz

atio

n Lo

ops

for S

yste

mat

ic V

aria

tion

of C

ycle

Tem

p.R

atio

and

Pea

k C

ycle

Tem

pera

ture

–TI

T–

Rap

id V

isua

lizat

ion

of S

ys. M

ass

trend

s w

ith T

urbi

ne In

let T

emp.

–TI

T–

Cod

e re

sults

val

idat

ed a

gain

st A

ero

and

Gro

und

Bas

ed P

ower

Pla

nts

•S

ub-C

odes

for S

pace

Env

ironm

ent a

nd S

yste

m R

elia

bilit

y Is

sues

–Tu

rbom

achi

ne S

ize

& S

peed

; Com

pres

sor &

Tur

bine

Pow

er;

Rec

uper

ator

& H

X; H

eat R

ejec

tion

Sub

syst

em

Page 6: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

5G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Ther

mod

ynam

ic S

yste

m B

lock

Dia

gram

Com

prisi

ng th

ree

maj

or S

ubsy

stem

s

ENER

GY

CON

VER

SIO

NU

NIT

S (E

CU)

HEA

T RE

JECT

ION

Subs

yste

m &

SPA

CE R

AD

IATO

RN

ucle

arSo

lar

Chem

ical

HEA

T SO

URC

E

Size

d by

Hea

t Loa

d &

Effe

ctiv

e Sur

face

Tem

pera

ture

•E C

U S

ubsy

stem

Tra

nsfo

rms P

art o

f Hea

t Sou

rce

Ther

mal

Ener

gy, W

t, to

Ele

ctric

Wor

k -W

e•U

ncon

verte

d “L

ow G

rade

” H

eat,

Wt-

We

, is R

ejec

ted

to

Spac

e at

TSI

NKby

The

rmal

Rad

iatio

n H

eat T

rans

fer

We

Wt

Wt-

We

at T

hot

at T

cold

Spac

e env

ironm

ent t

empe

ratu

re at

TSI

NK

•Hea

t Sou

rces

ends

The

rmal

Ene

rgy

(Hea

t) to

E C

U

Syno

psis

of C

lose

d B

rayt

on C

ycle

Cod

e -B

RMAP

S

Page 7: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

6G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Reg

ener

ated

Bra

yton

Cyc

le C

onfig

urat

ions

w. F

issi

on R

eact

or H

eat S

ourc

es

Page 8: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

7G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Non

-reg

ener

ated

Bra

yton

Cyc

leC

onfig

urat

ions

w. F

issi

on R

eact

or H

eat S

ourc

es

Page 9: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

8G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Trad

ition

al C

BC

Con

figur

atio

n fo

r Spa

ce(C

onta

ins

3 H

eat E

xcha

nger

s, 2

Pum

ps)

Page 10: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

9G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ldNon

-reg

ener

ated

Cyc

leC

onfig

urat

ion

(No

Hea

t Exc

hang

ers)

Gas

Rea

ctor

Gas

Flo

ws o

ver

Hea

t pip

eEv

apor

ator

s

Page 11: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

10G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Clo

sed

Bra

yton

Cyc

le w

ith S

olar

Hea

t Sou

rce

Page 12: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

11G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Clo

sed

Cyc

le G

as T

urbi

nes

(a)1

0 kW

e R

adia

l BR

U; (

b) 3

0 M

We

Axi

al M

achi

nes

(a) 1

0 kW

e B

RU

(b) 3

0 M

We

Axi

al T

urbi

nes

Page 13: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

12G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Page 14: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

13G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Page 15: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

14G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ldTurb

ine

Mat

eria

ls T

echn

olog

y M

ap

Page 16: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

15G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Page 17: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

16G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Isen

trop

ic C

ompr

esso

r Effi

cien

cy -η c

A fu

nctio

n of

pre

ssur

e ra

tio, γ

, ηpc

()

()

PC

ICOCICOC

C

PPPP

ηγγ

γγ

η11

−−

⎟⎟ ⎠⎞⎜⎜ ⎝⎛

⎟⎟ ⎠⎞⎜⎜ ⎝⎛

=

Isen

trop

ic T

urbi

ne E

ffici

ency

-η t

A fu

nctio

n of

pre

ssur

e ra

tio, γ

, ηpt

()

()

γγγγ

η

η−

⎟⎟ ⎠⎞⎜⎜ ⎝⎛

⎟⎟ ⎠⎞⎜⎜ ⎝⎛

−=

1

1

11

OTIT

OTIT

t

PPPPpt

Isen

trop

ic a

nd P

olyt

ropi

c Ef

ficie

ncy

Rel

atio

nshi

ps

γIs

spec

ific

heat

ratio

η pc

is p

olyt

ropi

c or

infin

itesi

mal

com

pres

sor s

tage

eff

icie

ncy

η pt

is p

olyt

ropi

c or

infin

itesi

mal

com

pres

sor s

tage

eff

icie

ncy

Page 18: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

17G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Isen

tropi

c E

ffici

ency

for C

ompr

esso

rs a

nd T

urbi

nes

as a

Fun

ctio

n of

Pre

ssur

e R

atio

for v

ario

us In

finite

sim

al S

tage

E

ffici

enci

es(E

TAPC

and

ETA

PT)

ETA

PC=

.95 0.9

0.85

0.8

0.75

ETA

PT=

0.9 0.85 0.8

Page 19: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

18G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Page 20: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

19G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Influ

ence

of R

egen

erat

or E

ffect

iven

ess

(ER

G) o

n C

ycle

Effi

cien

cyat

Cyc

le T

emp.

Rat

io o

f 3.0

and

4.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50 1.0

2.03.0

4.05.0

6.07.0

8.0Cy

cle Pr

essu

re Ra

tio

Cycle Efficiency

ERG=

0.95;

ALFA

=4ER

G=.80

ERG=

0.50

ERG=

00.0

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 1.0

02.0

03.0

04.0

05.0

0Cy

cle Pr

essu

re Ra

tio

Cycle Efficiency

ERG=

.95; A

LFA=

3ER

G=0.8

0ER

G=0.5

ERG=

0

666

.1;9.0

==

ηη

PTPC

666

1;9

0=

==

γη

η

(a) T

emp.

Rat

io =

3.0

(b) T

emp.

Rat

io =

4.0

Page 21: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

20G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Reg

ener

ator

Spe

cific

Mas

s vs

. Effe

ctiv

enes

s w

ith

Ove

rall

Hea

t Tra

nsfe

r Coe

ffici

ent U

as

a Pa

ram

eter

for H

e W

orki

ng F

luid

U =

28

.4 W

/sq.

m-K

+ +

= 5

6.8

““

□□

= 11

3.6

““

0 0

=

284.

2 “

“◊◊

Rege

nera

torE

ffect

iven

ess

Specific Mass –kg/(kg/sec)

Page 22: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

21G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Spac

e Sy

stem

Mas

s fo

r 10

MW

e C

BC

vs.

Cyc

le T

emp

erat

ure

Rat

iow

ith

Tu

rbin

e In

let

Tem

per

atu

re T

IT a

s a

Par

amet

er

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Cycle

Tem

perat

ure R

atio

Mass in TonnesTI

T=11

00 K

TIT=

1200

KTI

T=13

50 K

TIT=

1600

KM

in. Lo

cus

Page 23: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

22G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Spac

e Sy

stem

Mas

s fo

r 10

MW

e C

BC

vs.

Cyc

le E

ffic

ien

cyw

ith

Tu

rbin

e In

let

Tem

per

atu

re T

IT a

s a

Par

amet

er

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

0.20.2

50.3

0.35

0.40.4

5

Cycle

The

rmal

Effic

iency

Mass - Metric TonsTIT

= 1

100

K

TIT =

120

0 K

TIT =

135

0 K

TIT =

160

0 K

Min.

Mas

s Lo

cus

Page 24: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

23G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Car

bon-

Car

bon

Hea

t Pip

e an

d SP

-100

Rad

iato

r Ass

embl

y

Page 25: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

24G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Segm

ente

d R

adia

tor

Ch

arac

teri

stic

s fo

r Su

rviv

al P

rob

abili

ty S

=0.

999

Rel

ativ

e W

eigh

tR

elat

ive

Th

ickn

ess

nn

NN

n

Nn

pp

nN

nN

Ss

−= =

−−

=∑

)1(

!)(!

!

()

()

[]

3/1/1

ln/

−≡

pN

NN

wS

S

Segm

ente

d R

adia

tor

Ch

arac

teri

stic

s fo

r Su

rviv

al P

rob

abili

ty S

=0.

999

Rel

ativ

e W

eigh

tR

elat

ive

Th

ickn

ess

nn

NN

n

Nn

pp

nN

nN

Ss

−= =

−−

=∑

)1(

!)(!

!

()

()

[]

3/1/1

ln/

−≡

pN

NN

wS

S

Page 26: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

25G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Bra

yton

Cyc

le M

app

ing

Cod

e -

BR

MA

PS

Page 27: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

26G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Op

tim

izat

ion

Cod

e –

TST

3B

rayt

on C

ycle

Cod

e B

RC

Y1

Page 28: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

27G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Th

eore

tica

l Bas

is f

or S

pac

e Si

nk

Tem

per

atu

re A

nal

ysis

Cod

eT

SCA

LC

(d

evel

oped

by

auth

or)

Page 29: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

28G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Sol

ar F

usio

n E

nerg

y G

ener

atio

n vi

a P

roto

n-P

roto

n C

hain

Rea

ctio

n

1.1 1H

+ 1 1H

2 1H

+ e

++ ν(

neut

rino)

(0.4

2 M

eV)

2.e+

+ e

(rad

iatio

n)(1

.02

MeV

)3.

1 1H +

2 1H

3 2H

e +

γ(5

.49

MeV

)4.

3 2He

+ 3 2H

e 4 2H

e +

1 1H +

1 1H

(1

2.86

MeV

)N

et E

ffect

: 4

1 1H

4 2He

+ 2

e++

2 ν

4*1.

0078

265

u =

4.0

0260

3 u

+ (2

e+

+ 2ν

+ 2 γ

+ 12

.86

MeV

)To

tal E

nerg

y G

ener

ated

–E

= m

*c2

Et=

(4.0

3130

08 –

4.00

2603

) u *

1.6

6*10

-27

kg/u

* (3

*108

m/s

ec)2

= 2

6.76

MeV

/p-p

cyc

lew

hich

che

cks Σ

reac

tion

step

ene

rgie

s, E

RS

ER

S=

2*(0

.42

MeV

+1.

02 M

eV +

5.4

9 M

eV) +

12.

86 M

eV =

26.

76 M

eV/p

-pS

olar

Lum

inos

ity, L

, is

due

to 9

*103

7 p-

p cy

c/se

cL

= 26

.76

MeV

*1.6

02*1

0-13

J/M

eV *

9*1

037 /s

ec =

3.8

6*10

26 W

atts

Sol

ar M

ass

Loss

(4.0

3130

08 –

4.00

2603

) u*1

.66*

10-2

7kg

/u *

9*10

37/s

ec =

4.3

*109

kg/s

ec=

4.3

Milli

on to

nnes

/sec

Page 30: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

29G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Sol

ar a

nd A

rbitr

ary

Infra

red

Spe

ctra

05. 1

07

1. 1

06

1.5. 1

06

2. 1

06

0

2. 1

013

4. 1

013

6. 1

013

8. 1

013

1. 1

014

Wav

elen

gth

mu

- met

ers

Radiation Intensity - Watts/m*2 mu

5780

,(

)

3500

,(

)

410

7−

⋅7

107

−⋅

λ

Vis

ible

Ran

ge

Sola

r Spe

ctru

m

Infr

ared

Spe

ctru

m

Page 31: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

30G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Equi

libriu

m T

empe

ratu

res,

TS(

K),

at V

ario

us A

U D

ista

nces

90.0

1

.0

.9

.9

2

1

.00

1

372.

5

386

M

oon

@ N

oon

Page 32: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

Gle

nn R

esea

rch

Cen

ter a

t Lew

is F

ield

SUN

MER

CU

RY

9149

W /

m 2

448K

0.38

7 AU

EAR

TH13

71 W

/ m

2

279K

1 AU VE

NU

S26

20 W

/ m

2

328K

0.72

3 AU

MA

RS

591

W /

m 2

226K

1.53

AU

AS

TER

OID

S15

2 W

/ m

2

161K

~ 3

AU

JUP

ITE

R51

W /

m 2

122K

5.2

AU

SATU

RN

15 W

/ m

2

90K

9.54

AU

UR

ANU

S3.

7 W

/ m

2

64K

19.2

AU

NEP

TUN

E1.

5 W

/ m

2

51K

30.1

AU

PLU

TO0.

9 W

/ m

2

44K

39.4

4 A

U

Sola

r H

eat

Flu

x &

Sp

ace

Pro

be

Tem

per

atu

res

At

Var

iou

s O

rbit

al D

ista

nce

s (A

U)

A. J

uhas

z

NA

SA

GR

C.

10/3

1/03

Page 33: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

32G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Rad

iato

r Are

a R

equi

rem

ent f

or 3

00 k

WtH

eat L

oad

at A

vg. R

adia

tor S

urfa

ce T

empe

ratu

re =

390

K(θ

= 25

°; F

V =

1; α

/εra

ngin

g 0.

1 to

1.0

)

5010

015

020

025

030

035

025

0

300

350

400

450

500

550

Spac

e Si

nk T

empe

ratu

re -

K

Radiator Area in Square meters

RdA

R

138

325

Tsin

k

Jupi

ter O

rbit

AU

Earth

Orb

it A

U

KK

Page 34: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

33G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Spa

cecr

aft w

ith T

rape

zoid

al H

eat P

ipe

Rad

iato

r

Payl

oad

Rad

iato

r

Rea

ctor

Shie

ldTu

rbo-

Alte

rnat

ors

Page 35: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

34G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Ther

mal

Ene

rgy

Tran

sfer

in a

Hea

t Pip

e R

adia

tor

Page 36: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

35G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Rel

atio

nshi

ps R

esul

ting

from

Clo

sed

Bra

yton

Cyc

le A

naly

sis

()

()(

)(

)()

⎥⎥ ⎦⎤

⎢⎢ ⎣⎡

⎥⎥ ⎦⎤

⎢⎢ ⎣⎡⎟⎟ ⎠⎞

⎜⎜ ⎝⎛⋅

−⋅

⋅−

+⋅

−+

⋅−

⋅⋅

⋅⋅

+ ⎟⎟ ⎠⎞⎜⎜ ⎝⎛

−−⋅

⋅⋅

=−

swex

swin

sw

ins

wex

sw

exs

win

ss

wex

sw

in

rp

rTT

TTT

TT

TT

TT

T

TT

TT

Th

Cm

A1

1

34

4

44

tan

tan

2ln

4

1ln

1

εσ

()

()

RR

CC

CR

Tt

RR

CCt

C

Tb

th

εε

ηε

αη

εε

α

ηη

αη

η−

Θ+

Θ−

+−

+⎟⎟ ⎠⎞

⎜⎜ ⎝⎛Θ

−+

⎟⎟ ⎠⎞⎜⎜ ⎝⎛

Θ−

⎟⎟ ⎠⎞⎜⎜ ⎝⎛

Θ−

Θ

=1

11

11

1

1

Bray

ton

Cyc

le T

herm

al E

ffici

ency

whe

re

ΘC

= (P

OC

/ PIC

) (γ-1

)/γis

the

com

pres

sor p

ress

ure

ratio

par

amet

er

ΘT

= (P

IT/ P

OT)

(γ-1

)/γis

the

turb

ine

pres

sure

ratio

par

amet

er

Rad

iato

r Are

a

Page 37: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

36G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Dua

l Loo

p 20

0 M

We

Clo

sed

Cyc

le (H

e) G

as T

urbi

ne (C

CG

T)Po

wer

Sys

tem

with

Nuc

lear

Fus

ion

Rea

ctor

Hea

t Sou

rce

Sam

ple

Pow

er P

lant

Ana

lyze

dfo

r Lar

ge In

ter-

plan

etar

y S

pace

craf

t

Page 38: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

37G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Inte

rpla

neta

ry C

rew

Tra

nspo

rt V

ehic

le

Art

ific

ial G

ravi

ty

Cre

w P

aylo

ad

Bra

yton

Cyc

le

Rad

iato

rs

Rea

ctor

Coo

lant

Rad

iato

rs

Prop

ella

nt

Cry

o-T

anka

ge

Bra

yton

Pow

er C

onve

rsio

n

Sphe

rica

l Tor

us

Fus

ion

Rea

ctor

Mag

neti

c N

ozzl

e

90 m

40 m

37 m

24 m

25 m

240

m

60 m

Page 39: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

38G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Ad

van

ced

Pow

er S

yste

m A

pp

licat

ion

s

Luna

r Bas

e Po

wer

Sys

tem

Arti

ficia

l Gra

vity

Cr

ew P

aylo

ad

Bray

ton

Cycl

e Ra

diat

ors

Reac

tor C

oola

ntRa

diat

ors

Prop

ella

nt

Cryo

-Tan

kage

Bray

ton

Pow

er C

onve

rsio

n

Sphe

rical

Tor

us

Fus

ion

Reac

tor

Mag

netic

Noz

zle

90 m

40 m

37 m

24 m25 m

240

m

60 m

Inte

rplan

etar

y Fu

sion

Prop

ulsio

n Sp

ace

Veh

icle

Page 40: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

39G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

For S

pace

Nuc

lear

Pow

ered

Mul

ti-M

egaw

att C

lose

d C

ycle

Gas

Tur

bine

(C

CG

T) S

yste

ms

with

Nuc

lear

can

ach

ieve

Spe

cific

Mas

s (S

PM

) < 5

kg/k

w

•B

y ut

ilizi

ng a

ircra

ft en

gine

axi

al c

ompr

esso

r/tur

bine

tech

nolo

gy–

Hig

her p

ress

ure

ratio

s al

low

rem

ovin

g he

avy

rege

nera

tor

–A

xial

turb

o-m

achi

nery

has

hig

her e

ffici

ency

than

radi

al–

Turb

ine

Inle

t tem

pera

ture

s (T

IT) c

an b

e in

crea

sed

to ~

1600

K u

sing

He

wor

king

flui

d an

d ce

ram

ic tu

rbin

e te

chno

logy

•U

sing

Hig

h Te

mpe

ratu

re G

as R

eact

ors

(HTG

R-V

HTR

) –

Dire

ct h

eatin

g of

He

wor

king

flui

d m

akes

hea

vy h

eat s

ourc

e liq

uid/

gas

heat

exc

hang

er a

nd li

quid

circ

ulat

ing

pum

p un

nece

ssar

y–

Hig

h TI

T pe

rmits

hig

h cy

cle

effic

ienc

y w

hile

per

mitt

ing

elev

ated

heat

re

ject

ion

tem

pera

ture

s, th

us re

duci

ng ra

diat

or a

rea

•B

y di

rect

coo

ling

of tu

rbin

e ex

haus

t gas

via

Hea

t Pip

e (H

P) R

adia

tor

–D

irect

coo

ling

of H

e w

orki

ng fl

uid

mak

es h

eavy

hea

t sin

k ga

s/liq

uid

heat

ex

chan

ger a

nd li

quid

circ

ulat

ing

pum

p un

nece

ssar

y–

Inhe

rent

redu

ndan

cy o

f HP

radi

ator

per

mits

redu

cing

radi

ator

spec

ific

mas

s w

hile

incr

easi

ng o

vera

ll sy

stem

relia

bilit

y•

Use

of a

ircra

ft en

gine

tech

nolo

gy (m

odifi

ed fo

r He

wor

king

flui

das

pe

r CFD

cod

es) l

ower

s de

velo

pmen

t cos

ts.

Page 41: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

40G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Terr

estri

al N

ucle

ar P

ower

Pla

nt w

. LFR

and

HP,

MP,

LP

Hea

t Exc

hang

ers

for R

ehea

t/Int

erco

ol B

rayt

on C

ycle

Page 42: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

41G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Page 43: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

42G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Page 44: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

43G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Thre

e S

tage

Reh

eat &

Inte

rcoo

l Bra

yton

Cyc

leTe

mpe

ratu

re –

Ent

ropy

Dia

gram

Entro

py –

J/kg

-K

Temp -K

Turb

ine

Out

let

Tem

p.

Turb

ine

Inle

t Tem

p

Com

pres

sor I

nlet

Tem

p.

Com

pres

sor O

utle

t Tem

p.

Page 45: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

44G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Pow

er C

ycle

Sch

emat

ic a

nd T

-S D

iagr

am fo

r Sin

gle

Exp

ansi

onIn

ter-

Coo

led

Trip

le C

ompr

essi

on S

yste

m

(Fru

tsch

i)

Page 46: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

45G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Typi

cal M

achi

ne S

izes

for 1

000

MW

e H

e P

lant

•S

ingl

e Tu

rbo-

Alt

at 1

0 M

P a

and

Pr=

2; (T

IT=1

200K

; TR

=4)

–M

ass

Flow

rate

~ 1

420

kg/s

ec–

Dia

. = 6

.5 m

; L =

~20

m; S

peed

= 1

800

rpm

–R

ecup

erat

or V

olum

e ~

360

m3

–Th

erm

al E

ff. =

48%

•Th

ree

Reh

eat/I

nter

cool

edTu

rbo-

Alt’

s–

Mas

s Fl

owra

te ~

474

kg/

sec

–P

=20

Mpa

(Pr=

2); D

ia=

1.9

m, L

= 4

.5m

, Spe

ed =

800

0 rp

m–

P=1

0 M

pa (P

r=2)

; Dia

= 2.

7 m

, L =

6.3

m, S

peed

= 5

670

rpm

–P

= 5

Mpa

(Pr=

2); D

ia=

3.8

m,

L =

8.5m

, Spe

ed =

400

0 rp

m–

Rec

uper

ator

Vol

ume

~ 12

0 m

3

–Th

erm

al E

ff. =

51.

5%

Page 47: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

46G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Typi

cal M

achi

ne S

izes

for 3

00 M

We

He

Pla

nt

•S

ingl

e Tu

rbo-

Alt

at 1

0 M

P a

and

Pr=

2; (T

IT=1

200K

; TR

=4)

–M

ass

Flow

rate

~ 4

34 k

g/se

c (O

ne 3

00 M

We

Turb

o-G

en.)

–D

ia. =

3.8

m; L

= ~

8.8

m; S

peed

= 3

600

rpm

–R

ecup

erat

or V

olum

e ~

96 m

3

–Th

erm

al E

ff. =

48%

•Th

ree

Reh

eat/I

nter

cool

edTu

rbo-

Alt’

s (T

IT=1

200K

; TR

=4)

–M

ass

Flow

rate

~ 1

42 k

g/se

c (T

hree

100

MW

e Tu

rbo-

Gen

s.)

–P

=20

Mpa

(Pr=

2); D

ia=

1.4

m, L

= 3

.3 m

, Spe

ed =

870

0 rp

m–

P=1

0 M

pa (P

r=2)

; Dia

= 1.

9 m

, L =

4.4

m, S

peed

= 6

200

rpm

–P

= 5

Mpa

(Pr=

2); D

ia=

2.7

m, L

= 6

.3 m

, Spe

ed =

436

0 rp

m–

Rec

uper

ator

Vol

ume

~ 34

m3

–Th

erm

al E

ff. =

51.

6%

Page 48: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

47G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Typi

cal M

achi

ne S

izes

for 1

50 M

We

He

Pla

nt

•S

ingl

e Tu

rbo-

Alt

at 1

0 M

Pa

and

Pr=

2; (T

IT=1

200K

; TR

=4)

–M

ass

Flow

rate

~ 2

17 k

g/se

c (O

ne 1

50 M

We

Turb

o-G

en.)

–D

ia. =

2.3

m; L

= ~

5.3

m; S

peed

= 5

040

rpm

–R

ecup

erat

or V

olum

e ~

48 m

3

–Th

erm

al E

ff. =

48.

4%

•Th

ree

Reh

eat/I

nter

cool

edTu

rbo-

Alt’

s (T

IT=1

200K

; TR

=4)

–M

ass

Flow

rate

~ 7

2 kg

/sec

(Thr

ee 5

0 M

We

Turb

o-G

ens.

)–

P=2

0 M

pa (P

r=2)

; Dia

= 0.

92 m

, L =

2.2

m, S

peed

= 1

2,50

0 rp

m–

P=1

0 M

pa (P

r=2)

; Dia

= 1.

30 m

, L =

3.0

m, S

peed

= 8

800

rpm

–P

= 5

Mpa

(Pr=

2); D

ia=

1.80

m, L

= 4

.2 m

, Spe

ed =

620

0 rp

m–

Rec

uper

ator

Vol

ume

~ 16

m3

–Th

erm

al E

ff. =

51.

6%

Page 49: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

48G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Typi

cal M

achi

ne S

izes

for 1

50 M

We

He

Pla

nt

•S

ingl

e Tu

rbo-

Alt

at 1

0 M

Pa

and

Pr=

2; (T

IT=1

300K

; TR

=4.3

33)

–M

ass

Flow

rate

~ 1

78 k

g/se

c (O

ne 1

50 M

We

Turb

o-G

en.)

–D

ia. =

2.2

m; L

= ~

5.1

m; S

peed

= 5

240

rpm

–R

ecup

erat

or V

olum

e ~

38 m

3

–Th

erm

al E

ff. =

51.

4%

•Th

ree

Reh

eat/I

nter

cool

edTu

rbo-

Alt’

s (T

IT=1

300K

; TR

=4.3

33)

–M

ass

Flow

rate

~ 5

9.5

kg/s

ec (T

hree

50

MW

e Tu

rbo-

Gen

s.)

–P

=20

Mpa

(Pr=

2); D

ia=

0.87

m, L

= 2

.0 m

, Spe

ed =

13,

150

rpm

–P

=10

Mpa

(Pr=

2); D

ia=

1.23

m, L

= 2

.9 m

, Spe

ed =

930

0 rp

m–

P=

5 M

pa (P

r=2)

; Dia

= 1.

74 m

, L =

4.0

m, S

peed

= 6

600

rpm

–R

ecup

erat

or V

olum

e ~

13.5

m3

–Th

erm

al E

ff. =

53.

7%

Page 50: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

49G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Ene

rgy

Ext

ract

ion

Com

paris

on fo

r U23

8an

d Th

232

Ura

nium

-fuel

ed li

ght-w

ater

reac

tor:

35

GW

*hr/M

T of

nat

ural

ura

nium

1000

MW

*yr

of e

lect

ricity

33%

con

vers

ion

effic

ienc

y (ty

pica

l st

eam

turb

ine)

3000

MW

*yr o

f th

erm

al e

nerg

y

32,0

00 M

W*d

ays/

MT

heav

y m

etal

(typ

ical

LW

R fu

el b

urnu

p)

39 M

T of

enr

iche

d (1

4.2%

) UO

2(3

5 M

T U

)

Con

vers

ion

and

fabr

icat

ion

365

MT

of n

atur

al

UF 6

(247

MT

U)

293

MT

of

natu

ral U

3O8

(248

MT

U)

Thor

ium

-fuel

ed li

quid

-fluo

ride

reac

tor:

11,

000

GW

*hr/M

T of

nat

ural

thor

ium

Con

vers

ion

to U

F6

1000

MW

*yr

of e

lect

ricity

50%

con

vers

ion

effic

ienc

y (tr

iple

-re

heat

clo

sed-

cycl

e he

lium

gas

-turb

ine)

2000

MW

*yr

of th

erm

al

ener

gy

914,

000

MW

*day

s/M

T 23

3 U (c

ompl

ete

burn

up)

0.8

MT

of 23

3 Pa

form

ed in

re

acto

r bla

nket

from

th

oriu

m (d

ecay

s to

233 U

)

Thor

ium

met

al a

dded

to

bla

nket

sal

t thr

ough

ex

chan

ge w

ith

prot

actin

ium

0.8

MT

of th

oriu

m

met

al0.

9 M

T of

na

tura

l ThO

2

Con

vers

ion

to m

etal

Ura

nium

fuel

cyc

le c

alcu

latio

ns d

one

usin

g W

ISE

nucl

ear f

uel m

ater

ial c

alcu

lato

r: h

ttp://

ww

w.w

ise-

uran

ium

.org

/nfc

m.h

tml

Page 51: CSU Lecture on Thorium –LFR NUCLEAR POWER PLANTS ... - NASA

50G

lenn

Res

earc

h C

ente

r at L

ewis

Fie

ld

Sum

mar

y of

MM

W -

CC

GT

Pow

er S

yste

ms

& B

RM

AP

S P

oten

tial

•C

ode

can

be u

sed

for a

naly

sis

and

optim

izat

ion

of m

inim

um m

ass

spac

e po

wer

sys

tem

s (1

0 M

We)

and

als

o ~

1000

MW

e gr

ound

bas

ed p

ower

pla

nts.

•U

tiliz

ing

airc

raft

pow

er p

lant

tech

nolo

gyle

ads

to li

ght w

eigh

t and

hig

h ef

ficie

ncy

turb

o-m

achi

nery

•U

se o

f He

wor

king

flui

d re

duce

s H

eat e

xcha

nger

siz

e&

turb

o-m

achi

nery

di

amet

er, b

ut in

crea

ses

num

ber o

f axi

al s

tage

sfo

r a s

peci

fied

pres

sure

ratio

.Fo

r Spa

ce A

pplic

atio

ns•

Hig

h Te

mpe

ratu

re G

as R

eact

or(H

TGR

) allo

ws

a re

lativ

ely

high

cyc

le

tem

pera

ture

ratio

, but

indi

rect

hea

ting

as w

ith L

FR a

nd s

ever

al H

S he

at

exch

ange

rs is

nee

ded

to p

erm

it tu

rbin

e re

heat

cyc

le o

f ~50

% th

erm

al

effic

ienc

y at

low

mas

s flo

w ra

te.

•Fo

r spa

ce a

pplic

atio

ns h

ighe

r hea

t rej

ectio

n te

mpe

ratu

res

and

dire

ct c

oolin

g of

turb

ine

gas

stre

am p

erm

its lo

wer

ing

of ra

diat

or a

rea

and

mas

sre

quire

men

t•

Hea

t Pip

e R

adia

tor w

ith h

igh

inhe

rent

redu

ndan

cy p

erm

its re

duct

ion

of

radi

ator

spe

cific

mas

s w

ith in

crea

sed

radi

ator

sur

viva

bilit

yto

mic

ro-m

eteo

roid

pu

nctu

res,

thus

enh

anci

ng o

vera

ll sy

stem

relia

bilit

y•

BR

MA

PS C

ode

Enab

les

Pow

er S

yste

m O

ptim

izat

ion

Stud

ies

to b

e C

ondu

cted

O

rder

s of

Mag

nitu

de F

aste

r tha

n w

ith C

ase

by C

ase

Cod

es.

For G

roun

d B

ased

App

licat

ions

•Li

quid

Flu

orid

e R

eact

orca

n tr

ansf

er h

eat t

o se

vera

l CB

C c

onne

cted

in s

erie

s (T

urbi

ne R

ehea

t con

figur

atio

n) v

ia H

SHX

(Hea

t Sou

rce

heat

Exc

hang

ers)

. Th

erm

odyn

amic

per

form

ance

can

be

anal

yzed

via

BR

MA

PS(b

ut n

ot N

PSS)

Cod

e. A

ltern

ator

win

dage

and

bea

ring

cool

ing

loss

es a

t spe

cifie

dop

erat

ing

cond

ition

s ca

n be

add

ed a

s co

mpu

tatio

nal r

efin

emen

ts.