CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang...

59
CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Transcript of CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang...

Page 1: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

CSI661/ASTR530Spring, 2009

Chap. 2 An Overview of Stellar Evolution

Jan 28, 2009

Jie ZhangCopyright ©

Page 2: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Outline

•Basics (from “Universe” by Freedman & Kaufmann)•Young Stellar Objects•Zero-Age Main Sequence •Leaving the Main Sequence•Red Giants and Supergiants•Helium Flash•Later Phase and Advanced Phase•Core Collapse and Nucleosynthesis•Variable Stars•Novae and Supernovae•White dwarfs, neutron stars and black holes•Binary Stars

Page 3: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©
Page 4: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Parallax• The apparent displacement of a nearby object against a

distant fixed background from two different viewpoints.

Page 5: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Stellar Parallax• The apparent position shift of a star as the Earth moves from

one side of its orbit to the other (the largest separation of two viewpoints possibly from the Earth)

Page 6: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

• Distances to the nearer stars can be determined by parallax, the apparent shift of a star against the background stars observed as the Earth moves along its orbit

1 pc = 3.26 ly 1 pc = 206,265 AU = 3.09 X 1013 km

Stellar Parallax and Distance

Page 7: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Once a star’s distance is known …..Luminosity and brightness

• A star’s luminosity (total light output), apparent brightness, and distance from the Earth are related by the inverse-square law

• If any two of these quantities are known, the third can be calculated

Page 8: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Luminosity, Brightness and Distance

• Many visible stars turn out to be more luminous than the Sun

Page 9: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Magnitude Scale to Denote brightness

• Apparent magnitude scale is a traditional way to denote a star’s apparent brightness (~ 200 B.C. by Greek astronomer Hipparchus)

• First magnitude, the brightest

• Second magnitude, less bright

• Sixth magnitude, the dimmest one human naked eyes see

Page 10: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©
Page 11: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Apparent Magnitude and Absolute Magnitude

• Apparent magnitude is a measure of a star’s apparent brightness as seen from Earth– the magnitude depends on the distance of the star

• Absolute magnitude is the apparent magnitude a star would have if it were located exactly 10 parsecs from Earth– This magnitude is independent of the distance– One way to denote the intrinsic luminosity of a star in

the unit of magnitude

• The Sun’s apparent magnitude is -26.7• The Sun absolute magnitude is +4.8

Page 12: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

A star’s color depends on its surface temperature

Wien’s Law

Page 13: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©
Page 14: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Photometry, Filters and Color Ratios

• Photometry measures the apparent brightness of a star• Standard filters, such as U (Ultraviolet), B (Blue) and V (Visual, yellow-green) filters, • Color ratios of a star are the ratios of brightness values obtained through different filters• These ratios are a good measure of the star’s surface temperature; this is an easy way

to get temperature

Page 15: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Stellar Spectrum

• E.g., Balmer lines: Hydrogen lines of transition from higher orbits to n=2 orbit; Hα (orbit 3 -> 2) at 656 nm

Page 16: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

The spectral class and type of a star is directly related to its surface temperature: O stars are the hottest and M stars are the coolest

Classic Spectral Types

Page 17: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Classic Spectral Types

• O B A F G K M • (Oh, Be A Fine Girl, Kiss Me!) (mnemonic)• Spectral type is directly related to temperature• From O to M, the temperature decreases• O type, the hottest, blue color, Temp ~ 25000 K• M type, the coolest, red color, Temp ~ 3000 K• Sub-classes, e.g. B0, B1…B9, A0, A1…A9• The Sun is a G2 type of star (temp. 5800 K)

Page 18: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Luminosity, Radius, and Surface Temperature

• Reminder: Stefan-Boltzmann law states that a blackbody radiates electromagnetic waves with a total energy flux F directly proportional to the fourth power of the Kelvin temperature T of the object:

F = T4

Page 19: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Luminosity, Radius, and Surface Temperature

• A more luminous star could be due to– Larger size (in radius)– Higher Surface Temperature

• Example: The first magnitude reddish star Betelgeuse is 60,000 time more luminous than the Sun and has a surface temperature of 3500 K, what is its radius (in unit of the solar radius)?

R = 670 Rs (radius of the Sun)

A Supergiant star

Page 20: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Finding Key Properties of Nearby Stars

Page 21: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Hertzsprung-Russell (H-R) diagrams revealthe patterns of stars

• The H-R diagram is a graph plotting the absolute magnitudes of stars against their spectral types—or, equivalently, their luminosities against surface temperatures

• There are patterns

Page 22: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

•The size can be denoted(dotted lines)0.001 Rs To 1000 Rs

Hertzsprung-Russell (H-R) diagramthe patterns of stars

Page 23: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

•Main Sequence: the band stretching diagonally from top-left (high luminosity and high surface temperature) to bottom-right (low luminosity and low surface temperature)

– 90% stars in this band– The Sun is one of main

sequence stars– Hydrogen burning as energy

source

Hertzsprung-Russell (H-R) diagramthe patterns of stars

Page 24: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

•Main Sequence•Giants

– upper- right side– Luminous (100 – 1000 Lsun)– Cool (3000 to 6000 K)– Large size (10 – 100 Rsun)

• Supergiants– Most upper-right side– Luminous (10000 - 100000 Lsun)– Cool (3000 to 6000 K)– Huge (1000 Rsun)

•White Dwarfs– Lower-middle– Dim (0.01 Ls)– Hot (10000 K)– Small (0.01 Rs)

Hertzsprung-Russell (H-R) diagramthe patterns of stars

Page 25: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

A way to obtain the MASS of starsBinary Star System

Period: ~ 80 days

Page 26: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Binary Stars

• Binary stars are two stars which are held in orbit around each other by their mutual gravitational attraction, are surprisingly common

• Visual binaries: those that can be resolved into two distinct star images by a telescope

• Each of the two stars in a binary system moves in an elliptical orbit about the center of mass of the system

Page 27: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Binary Stars•Each of the two stars in a binary system moves in an elliptical orbit about the center of mass of the system

Page 28: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Binary star systems: stellar masses

• The masses can be computed from measurements of the orbital period and orbital size of the system

• The mass ratio of M1 and M2 is inversely proportional to the distance of stars to the center of mass

• This formula is a generalized format of Kepler’s 3rd law• When M1+M2 = 1 Msun, it reduces to

a3 = P2

Page 29: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Mass-Luminosity Relation for Main-Sequence Stars

• The greater the mass of a main-sequence star, the greater its luminosity

Page 30: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

• Masses from 0.2 MΘ

• to 60 MΘ

• The greater the mass• The greater the

luminosity• The greater the surface

temperature• The greater the radius

Mass-Luminosity Relation for Main-Sequence Stars

Page 31: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Note: This is the end of the basics, which is from “Universe” by Freedman & Kaufmann

Feb. 11, 2009 (continued)

Page 32: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.1) Young Stellar Objects

Four stages of star formation

1. Form proto-star core within molecular cloud

2. Core grows from surrounding rotating disk

3. Bipolar flow along rotation axis

4. New star clears away the surrounding nebular material http://www.skyofplenty.com/wp-content/uploads/2008/09/esa_-

_star_formation1.jpg

Page 33: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.1) Young Stellar Objects

• Energy source for a proto-star is gravitational potential energy.

• The contract life is about 0.1% its potential nuclear life at the main sequence

• Proto-stars are convective throughout, thus a new star is chemically homogeneous

Proto-star Evolution Track

Page 34: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.2) ZAMS

• Zero-age main sequence star: a star just ignites the hydrogen fusion

• In practice, “zero-age” means that the star has changed so little in radius, effective temperature and luminosity– Means a few thousand years for a massive star– Means 10 million years for the Sun– Means 1 billion years for the least massive stars

Page 35: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.2.1) Main Sequence• Two kinds of nuclear fusion converting H to He

1. pp-chain– for stars less than 1.5 Msun

2. CNO cycle• For stars more than 1.5 Msun, Tc > 1.8 X 107 K• Fusion is much faster than PP-chain• C, N, O act as catalysts

• Because of P=nKT=ρ/μ NAKT, number density decreases

• Temperature must increase to maintain the pressure• Core must slowly contract and heat up• Faster energy generation, more luminous star

Page 36: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.2.2) Brown Dwarfs

• Proto-stars which never get hot enough to fuse hydrogen to helium

• The brown dwarf/main sequence cut is about 0.085 Msun

Page 37: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.3) Post-main Sequence

< 0.05: No 2D fusion “planet”<0.085: No 1H Fusion brown dwarf=0.85: Hubble time scale<1.50: PP chain, Helium flash, radiative core, He WD<5.0: CNO cycle, no He flash, convective core, Carbon

WD<8.0: planetary nebula, O, Ne, Mg WD<25: supernovae, neutron star> 25: supernovae, black hole

Mass Cut versus star fate (also see Fig. 2.4)

Page 38: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.3.1) Cluster HR Diagram

Fig. 2.7. HR diagram of globular cluster M3

• Stars in a cluster form at nearly the same time

• “TOP” turnoff point can be used to determine the age of a cluster

• SGB: sub-giant branch• RGB: red-giant branch

– H-shell burning

• Horizontal Branch– Helium core burning

• AGB: Asymptotic Giant Branch

– Helium shell burning

– Variable stars caused RR Lyrae

– by thermal instability

Page 39: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.3.1) Cluster HR Diagram

Fig. 2.8: theoretical HR for clusters

Page 40: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.4) Red Giants

• The stage that hydrogen shell burning ignites• The shell burning adds helium ash into the

core, causing the dormant core to contract• The shell burning causes the outer envelope to

expand and thus cooling, producing red giants• The hydrogen shell burning occurs via the

CNO cycle, the main source of N in the universe

Page 41: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Chap. 2 (continued)

Feb.18, 2009

Page 42: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.5) Helium Flash• Core contracts, and density increases• Core becomes degenerate, that is the electron

degeneracy pressure is larger than the gas thermal pressure

2-3/513 cm dyne )(10004.1e

Pe

• Degeneracy pressure is caused by the electron momentum associated with the Heisenberg uncertainty principle (ΔxΔp=ħ). It is also associated with Pauli-exclusive principle

Page 43: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.5) Helium Flash• Star M < 0.4 Msun

– core degenerate (ρ > 106 g cm-3)– but low temperature (< 107 K)– no further helium burning, produce helium white dwarf

• Star M > 1.5 Msun– core not degenerate (ρ < 106 g cm-3)– but high temperature (> 108 K), ignite helium burning– Peaceful transition to helium burning

• Star 0.4 Msun < M < 1.5 Msun– core degenerate (ρ < 106 g cm-3)– and high temperature (> 108 K)– helium flash: explosive helium burning

Page 44: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.5) Helium Flash• For a degenerate gas, the ignition of helium burning will

heat the gas, but do not cause expand• The increased temperature makes the reaction go faster,

which further heats the gas, which makes the reaction goes faster.

• This cycle of explosive nuclear reaction continues until temperature is high enough so that thermal pressure exceeds degenerate pressure.

• After helium flash, the core expands to a density about 103 g cm-3

• It is mirrored by envelope contraction• Luminosity decreases, and effective temperature

increases; the star heads to the left in the HR diagram

Page 45: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.5) Helium Flash

Density Evolution for model 1 Msun, z=0.02

Page 46: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.5.1) Horizontal Branches (HB)• Giant stars with

• Helium burning in the core– Through triple-α reaction– 34He 12C and 12C (4He, γ)16O

• Hydrogen burning in the surrounding shell through CNO cycle

Page 47: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.5.2) Asymptotic Giant Branches (AGB)

• When helium core is exhausted, HB star becomes AGB

• The C-O core contracts and heats up• Double shell burning

• Helium burning in the shell surrounding the core

• Hydrogen burning in the shell surrounding He shell

Page 48: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.5.2) AGB

Fig. 2.14. Double Shell Burning

Page 49: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.6) Later Phases, Initial Masses 6-10 Msun

• During the Giant star phases, a star may lose a large fraction of mass through– Super wind– Pulsation

• The blown-off envelope becomes planetary nebula (PN)• The residual core becomes a white dwarf

– Composition: Carbon-oxygen– Mass: 0.55 – 1.3 Ms– Radius: 10-2 Rsun, or the size of the Earth– Energy source: residual heat of the atomic nuclei

• Luminosity: 10-5 Lsun• Fading time: 1010 years

Page 50: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.6) Planetary Nebula

NGC 6543IC 418

Page 51: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.6.1) White Dwarfs

Fig. 2.15. Color-Magnitude HR diagram

Page 52: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Chap. 2 (continued)

Apr. 8, 2009

Page 53: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.7) Advanced Evolution Phases, Initial Masses Greater Than 6-10 Msun

• The core is composed of iron-peak elevemts• Silicon burning is taking place, adding to the iron core• Lighter elements are burning progressively in outer

layers

Page 54: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.8) Core Collapse and Nucleosynthesis

• The core collapses at about ρc=6 x 109 g cm-3 and Tc=8 x 109 K

• The core collapses catastrophically• Inner core mass 1.2 Msun• Density from 109 to 1015 g cm-3

• Dynamic time scale is only a few seconds• Forming neutron stars• Releasing 1053 ergs gravitational energy

– Most comes out in neutrinos– 1% in kinetic energy– 0.1% in visible light and other EM radiation

Page 55: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.11.2) Supernovae

• Further collapse is effectively halted by the very stiff equation of state of nuclear matter

• To convert 1 Ms iron core to all neutrons (binding energy 9 Mev/nucleon) requires 1052 ergs energy

• As core material reaches the nuclear density, it “bounces” and collide with informing material thus forming a shock

• Shock propagates outward lifting most or all of the remainder of the star

Page 56: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

(2.11.2) Supernovae

Crab Nebula – supernova in 1054 AD; a pulsar or neutron star is at the center

Page 57: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Neutron Star or Pulsar

Page 58: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Chap. 2 (to be continued)

Page 59: CSI661/ASTR530 Spring, 2009 Chap. 2 An Overview of Stellar Evolution Jan 28, 2009 Jie Zhang Copyright ©

Endof Chap. 2

Note: