C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________...

26
1 C.Shalem et al, IEEE 2004, Rome, October 18 Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico Thick GEM-like multipliers: Thick GEM-like multipliers: a simple solution for large area a simple solution for large area UV-RICH detectors UV-RICH detectors R. Chechik, A. Breskin and C. Shalem Dept. of Particle Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel

Transcript of C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________...

11C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Thick GEM-like multipliers: Thick GEM-like multipliers: a simple solution for large area a simple solution for large area

UV-RICH detectorsUV-RICH detectors 

R. Chechik, A. Breskin and C. Shalem 

Dept. of Particle Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel

22C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

30 years of “Hole-multiplication” history:30 years of “Hole-multiplication” history:

•Breskin, Charpak NIM108(1973)427 discharge in glass capillaries

•Lum et al. IEEE NS27(1980)157, Del Guerra et al. NIMA257(1987)609 Avalanches in holes

•Bartol, Lemonnier et al. J.Phys.III France 6(1996)337 CAT

•Sakurai et al. NIMA374(1996)341, Peskov et al. NIMA433(1999)492 Glass Capillary Plates

•Sauli NIMA386(1997)531 GEMGEM

•Ostling, Peskov et al, IEEE NS50(2003)809 G-10 “Capillary plates”

33C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Expanding the standard GEM…Expanding the standard GEM…

• 1-2 holes/mm2

• PCB tech. of etching + drilling • Simple and robust Simple and robust • Sub-mm to mm spatial

resolution• VTGEM~2KV (at atm. pressure)• 101055 gain in single-TGEM, 101077 gain in double-TGEM • Fast (few ns) • Low pressure (<1 Torr(<1 Torr) gain 10104 4

• 50 holes/mm2

• Microlithography + etching• High Spatial resolution (tens of microns) • VGEM~400V• >10>1033 gain in single GEM• 10106 6 gain in cascaded GEMs• Fast (ns)• Low pressure – gain~30

1mm

TGEMStandard GEMGeometry:

similar to “Optimized

GEM” [Peskov]

But: etched rim

44C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Expanding the standard GEM Expanding the standard GEM ??

What scales up? •The GEM geometry

and what does not?

•Electric fields•Electron diffusion•Electron transport•Gain•Timing properties•Rate capability•Ions transport

-> it is a new device that has to be studied from scratch !

55C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

The TGEMs:The TGEMs:

A TGEM costs ~4$ /unit. With minimum order of 400$ ~120 TGEMs.>10 times cheaper than standard GEM from CERN.

66C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Various TGEMs studied at WISVarious TGEMs studied at WIS

Manufactured by standard PCB techniques of precise drilling drilling in G-10 (+ other materials) and Cu etchingCu etching.

Typical Atm.pressure geometry Low pressure geometryHole

diameter d=0.3mm

Distance between holes a=0.7mm

Thickness t=0.4mm

Hole diameter d=1mm

Distance between holes a=1.5mm

Thickness t=1.6mm

0.1mm rim to prevent discharges

Important for high gains!

0.1mm

Cu G-10

3cm

77C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Electric field Electric field && e e-- transport calculations: transport calculations: Maxwell / GarfieldMaxwell / Garfield

E~4 (KV/cm)

E~25 (KV/cm)

Operated at VTGEM~2KV

•Field values on electrode surfaces•Field value inside the holes•Field direction->focusing into the holes•Dependence on the hole parameters

-1.0 -0.5 0.0 0.5 1.00

5

10

15

20

25

30Electric field along the hole center

E [

kv/c

m]

Z [mm]

multiplication

Hole length

88C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Operation principleOperation principle

Edrift

ETGEM

Etrans

Garfield simulation of electron multiplication in Ar/CO2 (70:30)

Multiplication inside holes -> reduces secondary effects

Each hole acts as an individual multiplier

99C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

TGEM as a Photon detectorTGEM as a Photon detectorConsiderations:1. High field on the pc surface, to minimize back

scattering.2. Good e- focusing into the holes, to maximize effective

QE.3. Low sensitivity for ionizing background radiation. Solution: a reflective pc on top of the TGEM.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60.0

0.5

1.0

1.5

2.0

0

Gain~103

1 Atm. Ar/CH4(95:5)

40

20

80

60

100

e- tra

nsf

er

effic

iency

[%

]

Edrift [kv/cm]Slightly reversed Edrift (~50V/cm)

• good photoelectron collection!• Low sensitivity to MIPS

1010C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

For typical operation voltages: Surface field > 5kV/cm • Full photoelectron extraction • High effective QE

TGEM as a Photon detector (‘cont)TGEM as a Photon detector (‘cont)

• TGEMs studied so far are more optically transparent than standard GEM. • Cu: 40-50% area

0.4mm thick0.3mm holes0.7mm pitch

1111C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

EffectiveEffective gain and gain and effectiveeffective QE QE

measured gain in current mode is an effective gaineffective gain::

Effective gain = true gain in X efficiency to focus the holes the e- into the holes.

QE in the detector is an effective QEeffective QE:

Eff. QE = true QE X efficiency to X efficiency to of the pc extract the ph.e. detect the ph.e.

i

PCGEM

Reflective pc

i

PC

GEM

Semitransparent pc

1212C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Gain 104-105

Single-photon detection no photon feedback Rise time < 10ns

10ns

Example: TGEM with reflective CsI photocathode(Similar results with semitransparent pc)

Single-TGEM: GainSingle-TGEM: Gain

105

1313C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Higher total gain (106-107) >103 higher gain at same VTGEM

Better stability

Double-TGEM: GainDouble-TGEM: Gain

5 mmEtrans=

3kv/cm

e-

Important for double TGEM: • high Etrans

• Large transfer gap

107

Example: TGEM with a semitransparent CsI photocathode(similar results with reflective pc)

1414C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Problem:•Requires high TGEM voltage.•Damage due to sparks is fatal: after a spark the TGEM deteriorates continuously. (We suspect effects of etching to the SiO2 fibers).• Fatal spark damage was also observed in standard GEMs operating in CF4, due to the high operating voltages.

Solutions:•Segment the TGEM•Cascade several TGEMs.•Test other materials: Kevlar, Teflon, etc.

Operation in CFOperation in CF44

R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

1515C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Electron transfer efficiency Electron transfer efficiency TGEM with a reflective pc (Edrift=0)

e affects energy resolution, detection efficiency, effective QE

Compared to standard GEM, very high fields are reached at the TGEM surface already at low VTGEM . Good e- extraction in all gases.

F

f

Tra

nsf

er

effi

ciency

0.4mm thick0.3mm holes0.7mm pitch

1616C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Electron transfer efficiency Electron transfer efficiency

TGEM with a semitransparent pc is important also for double TGEM operation

(more complex measurement)•Double-sided pc•Double normalization•Single e- pulse counting as before

Full efficiency already at low gains gains 10-100 !

0.4mm thick0.3mm holes0.7mm pitch

1717C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Electron transfer efficiency Electron transfer efficiency -cont’ -cont’TGEM with a semitransparent pc - dependence on Edrift/VTGEM

ETGEM/Edrfit > 1

e- focused to hole

ETGEM/Edrfit < 1

e- collected on GEM top

With typical TGEM operation voltage:

full eff. up to Edrift = 4kv/cm

0.4mm thick0.3mm holes0.7mm pitch

1818C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Energy resolution: 6 keV x-raysEnergy resolution: 6 keV x-rays

FWHM=~20%

E resolution similar to standard GEM

6 keV x-rays

1919C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Counting rate capabilityCounting rate capability

Reflective CsI pc UV photons (185nm)

Total current limit 4*10-7 [Amp/mm2]

0.4mm thick0.3mm holes0.7mm pitch

2020C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Ion back flowIon back flow Affects pc longevity and secondary effects

TGEM with a semitransparent pc

s.t. pc

Start amplification

IBF = ipc/iTGEM

12%

With high VTGEM most of the ions are collected on the top of the TGEM.

0.4mm thick0.3mm holes0.7mm pitch

2121C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Ion back flowIon back flowAffects pc longevity and secondary effects

TGEM with a reflective pc

Reflective pc

IBF = ipc/iTGEM

1400 1500 1600 1700 1800 1900

0.0

0.2

0.4

0.6

0.8

1.0

1.2

98%

Edrift = 0

Ar/CO2(70:30) 760 Torr

10410310 Gain

No

rmal

ized

Io

n B

ack

flo

w

VTGEM (v)

Ion back flow to TGEM top Ion Back flow to upper Mesh

With a reflective photocathode, most of the ions are collected on the top of the TGEM (like in a GEM).

2222C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

SummarySummary

1. G-10 TGEMs tested with several gases.

2. Gains: 105 with a single TGEM; 107 with cascaded double TGEM

3. Fast signals: r.t. <10 ns.

4. The e- transfer efficiency (into the holes) is well understood.

5. Counting rate capability: ~ 106 avalnches/sec x mm2 @ gain 4x104

6. Ion backflow: study in course

7. In TPC-like conditions: IBF with a single TGEM is 12%.

In GPM/reflective pc: IBF with a single TGEM is 98%.

A cascade + other “tricks” (see GEM/MHSP) should reduce IBF .

8. TGEMs of different materials (e.g. Kevlar, Teflon…) for CF4 ?.

9. Will study TGEM of lower optical transparency (higher eff. QE)

2323C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

The endThe end

2424C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

TGEM: Low pressure TGEM: Low pressure operationoperation

0 400 800 1200 160010-3

10-1

101

103

105

107

low pressure isobutane

20 Torr

50 Torr

10 Torr

5 Torr

1 Torr

effe

ctiv

e G

ain

VTGEM

[v]

Single TGEM

10 Torr IsobutaneGain~105; Rise time~5ns

low pressure isobutane

semi-transparent CsI photocathode

2525C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

TGEM: Low pressure TGEM: Low pressure operationoperation

0 1000 2000 3000 4000 500010-2

100

102

104

106

108

.

.doublesingle

doublesingle double

single

0.5 Torr

1 Torr.

10 Torr

low pressure Isobutane2.2mm thickness TGEM

Effe

ctiv

e G

ain

E [V/cm]

low pressure isobutane

semi-transparent CsI photocathode

2626C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico

Electron transfer efficiencyElectron transfer efficiencythe efficiency to focus an electron into the TGEM

Pulse counting measurement: •A way to separate the true gain from the effective gain. •Based on single e- pulses• same pc, lamp, gain and electronics, different e- path.• Comparing counting rate provides the fraction of single e events reaching TGEM bottom. (1)

normalization

(2)efficiency

measurment

Example: ref pc