CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

44
CSE554 Contouring II Slide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015

description

CSE554Contouring IISlide 3 Efficiency Iso-contours are often used for visualizing (3D) medical images – The data can be large (e.g, 500^3) – The user often wants to change iso-values and see the result in real-time An efficient contouring algorithm is needed – Optimized for viewing one volume at multiple iso-values

Transcript of CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

Page 1: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 1

CSE 554Lecture 5: Contouring (faster)

Fall 2015

Page 2: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 2

Review

• Iso-contours– Points where a function evaluates to be a

given value (iso-value)

• Smooth thresholded boundaries

• Contouring methods– Primal methods

• Marching Squares (2D) and Cubes (3D)

• Placing vertices on grid edges

– Dual methods

• Dual Contouring (2D,3D)

• Placing vertices in grid cellsPrimal Dual

Page 3: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 3

Efficiency

• Iso-contours are often used for visualizing (3D) medical images– The data can be large (e.g, 500^3)

– The user often wants to change iso-values and see the result in real-time

• An efficient contouring algorithm is needed– Optimized for viewing one volume at multiple iso-values

Page 4: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 4

Marching Squares - Revisited

• Active cell/edge– A grid cell/edge where {min, max} of its

corner/end values encloses the iso-value

• Algorithm– Visit each cell.

– If active, create vertices on active edges and connect them by lines

• Time complexity?• n: the number of all grid cells

• k: the number of active cells

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3

2 3 4 3 2

1 2 3 2 1

Iso-value = 3.5

O(n)

O(k)

O(n+k)

Page 5: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 5

0 50 10 0 150 200 250

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

0 50 10 0 150 200 250

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

Marching Squares - Revisited

Running time (seconds)

Iso-value

Only visiting each square and checking if it is active (without creating vertices and edges) O(n)

Marching Squares O(n+k)

Page 6: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 6

Speeding Up Contouring

• Data structures that allow faster query of active cells– Quadtrees (2D), Octrees (3D)

• Hierarchical spatial structures for quickly pruning large areas of inactive cells

• Complexity: O(k*Log(n))

– Interval trees

• An optimal data structure for range finding

• Complexity: O(k+Log(n))

Page 7: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 7

0 50 100 150 200 250

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

Interval Trees

Running time (seconds)

Iso-value

Marching Squares O(k+n)

QuadtreeO(k*Log(n))

Interval treeO(k+Log(n))

Page 8: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 8

Speeding Up Contouring

• Data structures that allow faster query of active cells– Quadtrees (2D), Octrees (3D)

• Hierarchical spatial structures for quickly pruning large areas of inactive cells

• Complexity: O(k*Log(n))

– Interval trees

• An optimal data structure for range finding

• Complexity: O(k+Log(n))

Page 9: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 9

Quadtrees (2D)

• Basic idea: coarse-to-fine search– Start with the entire grid:

• If the {min, max} of all grid values does not enclose the iso-value, stop.

• Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it’s an active cell.

Page 10: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 10

Quadtrees (2D)

• Basic idea: coarse-to-fine search– Start with the entire grid:

• If the {min, max} of all grid values does not enclose the iso-value, stop.

• Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it’s an active cell.

Iso-value in {min,max}

Iso-value not in {min,max}

Page 11: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 11

Quadtrees (2D)

• Basic idea: coarse-to-fine search– Start with the entire grid:

• If the {min, max} of all grid values does not enclose the iso-value, stop.

• Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it’s an active cell.

Iso-value in {min,max}

Iso-value not in {min,max}

Page 12: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 12

Quadtrees (2D)

• Basic idea: coarse-to-fine search– Start with the entire grid:

• If the {min, max} of all grid values does not enclose the iso-value, stop.

• Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it’s an active cell.

Iso-value in {min,max}

Iso-value not in {min,max}

Page 13: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 13

Quadtrees (2D)

• Basic idea: coarse-to-fine search– Start with the entire grid:

• If the {min, max} of all grid values does not enclose the iso-value, stop.

• Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it’s an active cell.

Iso-value in {min,max}

Iso-value not in {min,max}

Page 14: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 14

Quadtrees (2D)

• Basic idea: coarse-to-fine search– Start with the entire grid:

• If the {min, max} of all grid values does not enclose the iso-value, stop.

• Otherwise, divide the grid into four sub-grids and repeat the check within each sub-grid. If the sub-grid is a unit cell, it’s an active cell.

Iso-value in {min,max}

Iso-value not in {min,max}

Page 15: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 15

Quadtrees (2D)

• A degree-4 tree– Root node represents the entire image

– Each node represents a square part of the image:

• {min, max} in the square

• (in a non-leaf node) one child node for each quadrant of the square

1 2 3

2 3 4

3 4 5

{1,5}

{1,3} {2,4} {2,4} {3,5}Grid

Level-1 nodes(leaves)

Root node

Quadtree

Page 16: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 16

Quadtrees (2D)

• Tree building (pre-computation)– Each grid cell becomes a leaf node

– Assign a parent node to every group of 4 nodes

• Compute the {min, max} of the parent node from those of the children nodes

• Padding dummy leaf nodes (e.g., {∞,∞}) if the dimension of grid is not power of 2

{1,3} {2,4}

{3,5}{2,4}

1 2 3

2 3 4

3 4 5

{1,5}

Grid

Leaf nodes

Root node

Page 17: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 17

• Tree building: a recursive algorithm

Quadtrees (2D)

// A recursive function to build a single quadtree node// for a sub-grid at corner (lowX, lowY) and with length lenbuildSubTree (lowX, lowY, len)1. If (lowX, lowY) is out of range: Return a leaf node with {∞,∞}2. If len = 1: Return a leaf node with {min, max} of corner values3. Else

1. c1 = buildSubTree (lowX, lowY, len/2)2. c2 = buildSubTree (lowX + len/2, lowY, len/2)3. c3 = buildSubTree (lowX, lowY + len/2, len/2)4. c4 = buildSubTree (lowX + len/2, lowY + len/2, len/2)5. Return a node with children {c1,…,c4} and {min, max} of all

{min, max} of these children

// Building a quadtree for a grid whose longest dimension is lenReturn buildSubTree (1, 1, 2^Ceiling[Log[2,len]])

Page 18: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 18

Quadtrees (2D)

• Tree building: bottom-up– Complexity: O(n)

• But we only need to do this once (after that, the tree can be used to speed up contouring at any iso-value)

Page 19: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 19

Quadtrees (2D)

• Contouring with a quadtree: top-down– Starting from the root node

– If {min, max} of the node encloses the iso-value

• If it is not a leaf, continue onto its children

• If the node is a leaf, contour in that grid cell

{1,5}

{1,3} {2,4}

{3,5}{2,4}

Leaf nodes

Root node

1 2 3

2 3 4

3 4 5

Grid

iso-value = 2.5

Page 20: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 20

Quadtrees (2D)

// A recursive function to contour in a quadtree node // for a sub-grid at corner (lowX, lowY) and with length lenctSubTree (node, iso, lowX, lowY, len)1. If iso is within {min, max} of node

1. If len = 1: do Marching Squares in this grid square2. Else (let the 4 children be c1,…,c4)

1. ctSubTree (c1, iso, lowX, lowY, len/2)2. ctSubTree (c2, iso, lowX + len/2, lowY, len/2)3. ctSubTree (c3, iso, lowX, lowY + len/2, len/2)4. ctSubTree (c4, iso, lowX + len/2, lowY + len/2, len/2)

// Contouring using a quadtree whose root node is Root // for a grid whose longest dimension is lenctSubTree (Root, iso, 1, 1, 2^Ceiling[Log[2,len]])

• Contouring with a quadtree: a recursive algorithm

Page 21: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 21

Quadtrees (2D)

• Contouring with a quadtree: top-down– Complexity (a loose bound): O(k*Log(n))

• Much faster than O(k+n) (Marching Squares) if k<<n

• But not efficient when k is large (can be as slow as O(n))

Page 22: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 22

0 50 100 150 200 250

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

Quadtrees (2D)

Running time (seconds)

Iso-value

Marching Squares O(n+k)

QuadtreeO(k*Log(n))

Page 23: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 23

Quadtrees (2D): Summary

• Algorithm– Preprocessing: building the quad tree

• Independent of iso-values

– Contouring: traversing the quad tree

– Both are recursive algorithms

• Time complexity– Tree building: O(n)

• Slow, but one-time only

– Contouring: O(k*Log(n))

Page 24: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 24

Octrees (3D): Overview

• Algorithm: similar to quadtrees– Preprocessing: building the octree

• Each non-leaf node has 8 children nodes, one for each octant of grid

– Contouring: traversing the octree

– Both are recursive algorithms

• Time complexity: same as quadtrees– Tree building: O(n)

• Slow, but one-time only

– Contouring: O(k*Log(n))

Page 25: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 25

Speeding Up Contouring

• Data structures that allow faster query of active cells– Quadtrees (2D), Octrees (3D)

• Hierarchical spatial structures for quickly pruning large areas of inactive cells

• Complexity: O(k*Log(n))

– Interval trees

• An optimal data structure for range finding

• Complexity: O(k+Log(n))

Page 26: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 26

Interval Trees

• Basic idea– Each grid cell occupies an interval of values {min, max}

• An active cell’s interval intersects the iso-value

– Stores all intervals in a search tree for efficient intersection queries

0 255

Iso-value

Page 27: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 27

Interval Trees

• A binary tree– Root node: all intervals in the grid

– Each node maintains:

• δ: Median of end values of all intervals (used to split the children intervals)

• (in a non-leaf node) Two child nodes

– Left child: intervals < δ

– Right child: intervals > δ

• Two sorted lists of intervals intersecting δ

– Left list (AL): ascending order of min-end of each interval

– Right list (DR): descending order of max-end of each interval

Page 28: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 28

Interval Trees

Intervals:

Interval tree:

δ=7

δ=4 δ=10

AL: d,e,f,g,h,iDR: i,e,g,h,d,f

AL: j,k,lDR: l,j,k

AL: mDR: m

AL: a,b,cDR: c,a,b

δ=12

Page 29: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 29

Interval Trees• Intersection queries: top-down

– Starting with the root node

• If the iso-value is smaller than median δ

– Scan through AL: output all intervals whose min-end <= iso-value.

– Go to the left child.

• If the iso-value is larger than δ

– Scan through DR: output all intervals whose max-end >= iso-value.

– Go to the right child.

• If iso-value equals δ

– Output AL (or DR).

Page 30: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 30

Interval Trees

Intervals:

Interval tree:

δ=7

δ=4 δ=10

AL: d,e,f,g,h,iDR: i,e,g,h,d,f

AL: j,k,lDR: l,j,k

AL: mDR: m

AL: a,b,cDR: c,a,b

δ=12

iso-value = 9

Page 31: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 31

Interval Trees

Intervals:

Interval tree:

δ=7

δ=4 δ=10

AL: d,e,f,g,h,iDR: i,e,g,h,d,f

AL: j,k,lDR: l,j,k

AL: mDR: m

AL: a,b,cDR: c,a,b

δ=12

iso-value = 9

Page 32: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 32

Interval Trees

Intervals:

Interval tree:

δ=7

δ=4 δ=10

AL: d,e,f,g,h,iDR: i,e,g,h,d,f

AL: j,k,lDR: l,j,k

AL: mDR: m

AL: a,b,cDR: c,a,b

δ=12

iso-value = 9

Page 33: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 33

Interval Trees• Intersection queries: top-down

– Complexity: O(k + Log(n))

• Much faster than O(k+n) (Marching squares/cubes)

Page 34: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 34

0 50 100 150 200 250

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

Interval Trees

Running time (seconds)

Iso-value

Marching Squares O(n+k)

QuadtreeO(k*Log(n))

Interval treeO(k+Log(n))

Page 35: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 35

Interval Trees

• Tree building: top-down – Starting with the root node (which includes all intervals)

– To create a node from a set of intervals,

• Find δ (the median of all ends of the intervals).

• Sort all intervals intersecting with δ into the AL, DR

• Construct the left (right) child from intervals strictly below (above) δ

– A recursive algorithm

Page 36: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 36

Interval Trees

Intervals:

Interval tree:

Page 37: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 37

Interval Trees

Intervals:

Interval tree:

δ=7

AL: d,e,f,g,h,iDR: i,e,g,h,d,f

Page 38: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 38

Interval Trees

Intervals:

Interval tree:

δ=7

δ=4

AL: d,e,f,g,h,iDR: i,e,g,h,d,f

AL: a,b,cDR: c,a,b

Page 39: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 39

Interval Trees

Intervals:

Interval tree:

δ=7

δ=4 δ=10

AL: d,e,f,g,h,iDR: i,e,g,h,d,f

AL: j,k,lDR: l,j,k

AL: a,b,cDR: c,a,b

Page 40: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 40

Interval Trees

Intervals:

Interval tree:

δ=7

δ=4 δ=10

AL: d,e,f,g,h,iDR: i,e,g,h,d,f

AL: j,k,lDR: l,j,k

AL: mDR: m

AL: a,b,cDR: c,a,b

δ=12

Page 41: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 41

Interval Trees

• Tree building: top-down – Complexity: O(n*Log(n))

• O(n) at each level of the tree (after pre-sorting all intervals in O(n*Log(n)))

• Depth of the tree is O(Log(n))

• Again, this is one-time only

Page 42: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 42

Interval Trees: Summary

• Algorithm– Preprocessing: building the interval tree

• Independent of iso-values

– Contouring: traversing the interval tree

– Both are recursive algorithms

• Tree-building and traversing are same in 2D and 3D

• Time complexity– Tree building: O(n*log(n))

• Slow, but one-time

– Contouring: O(k+log(n))

Page 43: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 43

Further Readings

• Quadtree/Octrees:

– “Octrees for Faster Isosurface Generation”, Wilhelms and van Gelder (1992)

• Interval trees:

– “Dynamic Data Structures for Orthogonal Intersection Queries”, by Edelsbrunner (1980)

– “Speeding Up Isosurface Extraction Using Interval Trees”, by Cignoni et al. (1997)

Page 44: CSE554Contouring IISlide 1 CSE 554 Lecture 5: Contouring (faster) Fall 2015.

CSE554 Contouring II Slide 44

Further Readings

• Other acceleration techniques:

– “Fast Iso-contouring for Improved Interactivity”, by Bajaj et al. (1996)

• Growing connected component of active cells from pre-computed seed locations

– “View Dependent Isosurface Extraction”, by Livnat and Hansen (1998)

• Culling invisible mesh parts

– “Interactive View-Dependent Rendering Of Large Isosurfaces”, by Gregorski et al. (2002)

• Level-of-detail: decreasing mesh resolution based on distance from the viewer Gregorski et al.

Livnat and Hansen