CS2013 Mathematics for Computing Science Adam Wyner University of Aberdeen Computing Science Slides...

29
CS2013 Mathematics for Computing Science Adam Wyner University of Aberdeen Computing Science Slides adapted from Michael P. Frank's course based on the text Discrete Mathematics & Its Applications (5 th Edition) by Kenneth H. Rosen

Transcript of CS2013 Mathematics for Computing Science Adam Wyner University of Aberdeen Computing Science Slides...

CS2013Mathematics for Computing Science

Adam WynerUniversity of Aberdeen

Computing Science

Slides adapted fromMichael P. Frank's course based on the textDiscrete Mathematics & Its Applications

(5th Edition)by Kenneth H. Rosen

ProofReplacement & Quantifiers

2013 Frank / van Deemter / Wyner 3

Topics

• Equivalences that can be used to replace formulae in proofs

• Further examples of Propositional Logic proofs.• Proof rules with quantifiers.

2013 Frank / van Deemter / Wyner 4

Equivalences

Equivalence expressions can be substituted since they do not change truth.

2013 Frank / van Deemter / Wyner 5

Equivalences

2013 Frank / van Deemter / Wyner 6

A Direct Proof

1. ((A ∨ ¬ B) C)∨ (D (E F))

2. (A ∨ ¬ B) ((F G) H)

3. A ((E F) (F G))

4. A

5. Show: D H6. A ∨ ¬ B

7. (A ∨ ¬ B) ∨ C

8. (D (E F))

9. (E F) (F G)

10. D (F G)

11. (F G) H12. D H

2013 Frank / van Deemter / Wyner 7

A Direct Proof

1. ((A ∨ ¬ B) C)∨ (D (E F))

2. (A ∨ ¬ B) ((F G) H)

3. A ((E F) (F G))

4. A

5. Show: D H DD 12

6. A ∨ ¬ B DI 4

7. (A ∨ ¬ B) ∨ C DI 6

8. (D (E F)) IE 1,7

9. (E F) (F G) IE 3,4

10. D (F G) HS 8,9

11. (F G) H IE 2,6

12. D H HS 10,11

2013 Frank / van Deemter / Wyner 8

A Conditional Proof

1. (A B)∨ (C ∧ D)

2. (D E)∨ F3. Show: A F4. A

5. Show: F

6. A ∨ B

7. C ∧ D

8. D

9. (D E)∨10. F

2013 Frank / van Deemter / Wyner 9

A Conditional Proof

1. (A B)∨ (C ∧ D)

2. (D E)∨ F3. Show: A F CD 4, 5

4. A Assumption

5. Show: F DD 10

6. A ∨ B DI 4

7. C ∧ D IE 1,6

8. D CE 7

9. (D E)∨ DI 8

10. F IE 2,9

2013 Frank / van Deemter / Wyner 10

An Indirect Proof

1. A (B ∧ C)

2. (B D)∨ E3. (D A)∨4. Show: E ID 13

5. Assumption

6. IE 2,5

7. Second De Morgan 6

8. CE 7

9. DE 4,8

10. IE 1,9

11. CE 10

12. CE 7

13. ContraI 11,12

2013 Frank / van Deemter / Wyner 11

An Indirect Proof

1. A (B ∧ C)

2. (B D)∨ E3. (D A)∨3. Show: E

4. ¬ E

5. ¬ (B D)∨6. ¬ B ∧ ¬ D

7. ¬ D

8. A

9. B ∧ C

10. B

11. ¬ B

12. B ∧ ¬ B

2013 Frank / van Deemter / Wyner 12

An Indirect Proof

1. A (B ∧ C)

2. (B D)∨ E3. (D A)∨4. Show: E ID 13

5. ¬ E Assumption

6. ¬ (B D)∨ IE 2,5

7. ¬ B ∧ ¬ D Second De Morgan 6

8. ¬ D CE 7

9. A DE 4,8

10. B ∧ C IE 1,9

11. B CE 10

12. ¬ B CE 7

13. B ∧ ¬ B ContraI 11,12

2013 Frank / van Deemter / Wyner 13

A Logical Equivalence

Prove: ¬ (p (∨ ¬ p ∧ q)) is equivalent to ¬ p ∧ ¬ q

1. ¬ (p (∨ ¬ p ∧ q)) ....

2013 Frank / van Deemter / Wyner 14

A Logical Equivalence

Prove: ¬ (p (∨ ¬ p ∧ q)) is equivalent to ¬ p ∧ ¬ q

1. ¬ (p (∨ ¬ p ∧ q)) second De Morgan

2. first De Morgan

3. double negation

4. second distributive

5. negation

6. commutativity

7. identity law for F

2013 Frank / van Deemter / Wyner 15

A Logical Equivalence

Prove: ¬ (p (∨ ¬ p ∧ q)) is equivalent to ¬ p ∧ ¬ q

1. ¬ (p (∨ ¬ p ∧ q)) ¬ p ∧ ¬ (¬ p ∧ q)

2. ¬ p ∧ (¬ (¬ p) ∨ ¬ q)

3. ¬ p ∧ (p ∨ ¬ q)

4. (¬ p p) ∧ ∨ ( ¬ p ∧ ¬ q)

5. F ∨ ( ¬ p ∧ ¬ q)

6. ( ¬ p ∧ ¬ q) ∨ F

7. ( ¬ p ∧ ¬ q)

2013 Frank / van Deemter / Wyner 16

A Logical Equivalence

Prove: ¬ (p (∨ ¬ p ∧ q)) is equivalent to ¬ p ∧ ¬ q

1. ¬ (p (∨ ¬ p ∧ q)) ¬ p ∧ ¬ (¬ p ∧ q) second De Morgan

2. ¬ p ∧ (¬ (¬ p) ∨ ¬ q) first De Morgan

3. ¬ p ∧ (p ∨ ¬ q) double negation

4. (¬ p p) ∧ ∨ ( ¬ p ∧ ¬ q) second distributive

5. F ∨ ( ¬ p ∧ ¬ q) negation

6. ( ¬ p ∧ ¬ q) ∨ F commutativity

7. ( ¬ p ∧ ¬ q) identity law for F

2013 Frank / van Deemter / Wyner 17

Universal Instantiation

• x P(x)P(o) (substitute any constant o)

The same for any other variable than x.

2013 Frank / van Deemter / Wyner 18

Existential Generalization

• P(o) x P(x)

The same for any other variable than x.

2013 Frank / van Deemter / Wyner 19

Universal Generalisation

• P(g) x P(x)

• This is not a valid inference of course. But suppose you can prove P(g) without using any information about g ...

• ... then the inference to x P(x) is valid!• In other words ...

2013 Frank / van Deemter / Wyner 20

Universal Generalisation

• P(g) (for g an arbitrary or general constant)x P(x)

• Concretely, your strategy should be to choose a new constant g (i.e., that did not occur in your proof so far) and to prove P(g).

2013 Frank / van Deemter / Wyner 21

Existential Instantiation

• x P(x)P(c) (substitute a new constant c)

Once again, the inference is not generally valid, but we can regard it as valid if c is a new constant.

2013 Frank / van Deemter / Wyner 22

Simple Formal Proof in Predicate :ogic

• Argument:– “All TAs compose quizzes. Ramesh is a TA.

Therefore, Ramesh composes quizzes.”• First, separate the premises from conclusions:

– Premise #1: All TAs compose quizzes.– Premise #2: Ramesh is a TA.– Conclusion: Ramesh composes quizzes.

2013 Frank / van Deemter / Wyner 23

Rendering in Logic

Render the example in logic notation.• Premise #1: All TAs compose easy quizzes.

– Let U.D. = all people– Let T(x) :≡ “x is a TA”– Let E(x) :≡ “x composes quizzes”– Then Premise #1 says: x(T(x)→E(x))

2013 Frank / van Deemter / Wyner 24

Rendering cont…

• Premise #2: Ramesh is a TA.– Let r :≡ Ramesh– Then Premise #2 says: T(r)– And the Conclusion says: E(r)

• The argument is correct, because it can be reduced to a sequence of applications of valid inference rules, as follows:

2013 Frank / van Deemter / Wyner 25

Formal Proof UsingNatural Deduction

Statement How obtained

1. x(T(x) → E(x)) (Premise #1)

2. T(r) → E(r) (Universal instantiation)

3. T(r) (Premise #2)

4. E(r) (MP 2, 3)

2013 Frank / van Deemter / Wyner 26

A very similar proof

Can you prove:• x(T(x) → E(x)) and E(r)• T(r).

2013 Frank / van Deemter / Wyner 27

in Natural Deduction

A very simple example:

Theorem: From xF(x) it follows that yF(y)

1. xF(x) (Premiss)

2. F(a) (Arbitrary a, Exist. Inst.)

3. yF(y) (Exist. Generalisation)

2013 Frank / van Deemter / Wyner 28

Quantifier Rules

ß

2013 Frank / van Deemter / Wyner 29

Longer Quantifier Proof