Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O...

13
research communications Acta Cryst. (2015). E71, 1193–1195 doi:10.1107/S2056989015016941 1193 Received 25 August 2015 Accepted 10 September 2015 Edited by H. Ishida, Okayama University, Japan Keywords: crystal structure; ,-hybrid peptide; (S)-1-aminobicyclo[2.2.2]octane-2-carboxylic acid; (S)-ABOC; (S)-Ala; (S)-Phe; Boc; OBn; 11/9 helix; hydrogen bonding CCDC reference: 1423394 Supporting information: this article has supporting information at journals.iucr.org/e Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)- ABOC-(S)-Phe-OBn chloroform monosolvate Emmanuel Wenger, a,b Laure Moulat, c Baptiste Legrand, c Muriel Amblard, c Monique Calme `s c and Claude Didierjean a,b * a Universite ´ de Lorraine, UMR 7036 CRM2, Vandoeuvre-le `s-Nancy, France, b CNRS, UMR 7036 CRM2, Vandoeuvre-le `s- Nancy, France, and c IBMM, UMR 5247 CNRS-Universite ´ Montpellier–ENSCM, 15 avenue Charles Flahault, 34093 Montpellier Cedex 5, France In the title compound, phenyl (S)-2-[(S)-(1-{2-[(S)-(1-{[(tert-butoxy)carbon- yl]amino}bicyclo[2.2.2]octan-2-yl)formamido]propanamido}bicyclo[2.2.2]octan- 2-yl)formamido]-3-phenylpropanoate chloroform monosolvate, C 42 H 56 N 4 O 7 - CHCl 3 , the ,-hybrid peptide contains two non-proteinogenic amino acid residues of (S)-1-aminobicyclo[2.2.2]octane-2-carboxylic acid [(S)-ABOC], two amino acid residues of (S)-2-aminopropanoic acid [(S)-Ala] and (S)-2-amino-3- phenylpropanoic acid [(S)-Phe], and protecting groups of tert-butoxycarbonyl (Boc) and benzyl ester (OBn). The tetramer folds into a right-handed mixed 11/9 helix stabilized by intramolecular i,i + 3 and i,i 1C OH—N hydrogen bonds. In the crystal, the oligomers are linked by N—HO C hydrogen bonds into chains along the a-axis direction. The chloroform solvent molecules are intercalated between the folded chains via C—HO C interactions. 1. Chemical context The title compound is an ,-hybrid tetrapeptide with alter- nating proteogenic -amino acid and ABOC residues. (S)-1- aminobicyclo[2.2.2]octane-2-carboxylic acid [(S)-ABOC] is a 2,3,3 -trisubstituted bicyclic amino acid which exhibits a high propensity to induce both a reverse turn into short peptides and helices in oligoureas and in ,-hybrid peptides (Songis et al., 2007; Andre ´ et al. , 2012, 2013; Legrand et al., 2012, 2014). In our last study we showed that short oligomers adopted an 11/9 helix, whereas an 18/16 helix was favored for longer oligomers in solution. NMR studies suggested a rapid interconversion between the 11/9 helix and the 18/16 helix for oligomers of intermediate length. In the solid state, only the 11/9 helix has been observed whatever the length of the oligomers capped by an iPrCO and an OBn group (Legrand et al., 2014). 2. Structural commentary For the title compound (Fig. 1), the triclinic unit cell consists of one molecule of ,-hybrid tetramer and one molecule of chloroform. The oligomer exhibits a right-handed mixed 11/9 ISSN 2056-9890

Transcript of Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O...

Page 1: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

research communications

Acta Cryst. (2015). E71, 1193–1195 doi:10.1107/S2056989015016941 1193

Received 25 August 2015

Accepted 10 September 2015

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; �,�-hybrid peptide;

(S)-1-aminobicyclo[2.2.2]octane-2-carboxylic

acid; (S)-ABOC; (S)-Ala; (S)-Phe; Boc; OBn; 11/9

helix; hydrogen bonding

CCDC reference: 1423394

Supporting information: this article has

supporting information at journals.iucr.org/e

Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe-OBn chloroform monosolvate

Emmanuel Wenger,a,b Laure Moulat,c Baptiste Legrand,c Muriel Amblard,c

Monique Calmesc and Claude Didierjeana,b*

aUniversite de Lorraine, UMR 7036 CRM2, Vandoeuvre-les-Nancy, France, bCNRS, UMR 7036 CRM2, Vandoeuvre-les-

Nancy, France, and cIBMM, UMR 5247 CNRS-Universite Montpellier–ENSCM, 15 avenue Charles Flahault, 34093

Montpellier Cedex 5, France

In the title compound, phenyl (S)-2-[(S)-(1-{2-[(S)-(1-{[(tert-butoxy)carbon-

yl]amino}bicyclo[2.2.2]octan-2-yl)formamido]propanamido}bicyclo[2.2.2]octan-

2-yl)formamido]-3-phenylpropanoate chloroform monosolvate, C42H56N4O7�-

CHCl3, the �,�-hybrid peptide contains two non-proteinogenic amino acid

residues of (S)-1-aminobicyclo[2.2.2]octane-2-carboxylic acid [(S)-ABOC], two

amino acid residues of (S)-2-aminopropanoic acid [(S)-Ala] and (S)-2-amino-3-

phenylpropanoic acid [(S)-Phe], and protecting groups of tert-butoxycarbonyl

(Boc) and benzyl ester (OBn). The tetramer folds into a right-handed mixed

11/9 helix stabilized by intramolecular i,i + 3 and i,i� 1 C O� � �H—N hydrogen

bonds. In the crystal, the oligomers are linked by N—H� � �O C hydrogen

bonds into chains along the a-axis direction. The chloroform solvent molecules

are intercalated between the folded chains via C—H� � �O C interactions.

1. Chemical context

The title compound is an �,�-hybrid tetrapeptide with alter-

nating proteogenic �-amino acid and ABOC residues. (S)-1-

aminobicyclo[2.2.2]octane-2-carboxylic acid [(S)-ABOC] is a

�2,3,3-trisubstituted bicyclic amino acid which exhibits a high

propensity to induce both a reverse turn into short peptides

and helices in oligoureas and in �,�-hybrid peptides (Songis et

al., 2007; Andre et al., 2012, 2013; Legrand et al., 2012, 2014). In

our last study we showed that short oligomers adopted an 11/9

helix, whereas an 18/16 helix was favored for longer oligomers

in solution. NMR studies suggested a rapid interconversion

between the 11/9 helix and the 18/16 helix for oligomers of

intermediate length. In the solid state, only the 11/9 helix has

been observed whatever the length of the oligomers capped by

an iPrCO and an OBn group (Legrand et al., 2014).

2. Structural commentary

For the title compound (Fig. 1), the triclinic unit cell consists of

one molecule of �,�-hybrid tetramer and one molecule of

chloroform. The oligomer exhibits a right-handed mixed 11/9

ISSN 2056-9890

Page 2: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

helix stabilized by backbone C O� � �HN hydrogen bonds

(Table 1), forming one C11 pseudocycle between the CO of

the �-residue (i) and the NH of the �-residue (i + 3) and two

C9 pseudocycles between the CO of the �-residue (i) and the

NH of the �-residue (i � 1). The backbone torsion angles are

quite similar to those of the characteristic 11/9 helix reported

in the same �,�-hybrid oligomers (Legrand et al., 2014) and

other �/�-peptides (Lee et al., 2013).

3. Supramolecular features

The intermolecular interaction N2—H2� � �O5i (Table 1)

connects the title �,�-hybrid tetramer to form infinite chains

along the a-axis direction (Fig. 2). In the ac plane the

chloroform molecules link the chains via a C—Cl� � �N inter-

action [Cl� � �N = 3.281 (3) A] and a C—H� � �O hydrogen bond

[C� � �O = 3.071 (4) A].

4. Comparison with related structures

The crystals of the title compound and those of the same

tetramer with the N-terminal capping group iPrCO instead of

Boc are not isomorphous. This latter crystallized in the space

group P21 with two independent molecules in the asymmetric

unit. One independent molecule shows a single fully folded

11/9 helix as the title compound while the hydrogen-bond

network is incomplete in the other molecule. The last C9

hydrogen bond between the carbonyl of the Phe residue and

the �-residue amide proton was disrupted by the incorpora-

tion of a water molecule (Legrand et al., 2014). This inter-

calation of water molecules has already been observed in

oligoureas (Legrand et al., 2012) and highlighted in an enzyme

involved in the mitochondrial respiratory chain i.e. the mito-

chondrial bc1 complex. Its bovine crystal structure (Huang et

al., 2005) revealed that an intercalated water molecule in an

�-helix took part in the stabilization of the high potential

cytochrome b heme. Usually, �-helices interact laterally with

their side chains. Water molecules adsorption on an �-helice

groove is an alternative tool available to the helical system to

interact with partners.

For further related articles on hybrid peptides, see: Hayen et

al. (2004); Sharma et al. (2009); Vasudev et al. (2011); Berlicki

et al. (2012);

1194 Wenger et al. � C42H56N4O7�CHCl3 Acta Cryst. (2015). E71, 1193–1195

research communications

Figure 1The molecular structure of the title compound showing the atom-numbering scheme. All non-H atoms are represented by 25% probabilitydisplacement ellipsoids. H atoms are omitted for clarity.

Table 1Hydrogen-bond geometry (A, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

N1—H1� � �O4 0.88 2.16 2.994 (4) 157N2—H2� � �O5i 0.88 2.12 2.914 (3) 150N3—H3N� � �O6 0.88 2.51 3.159 (3) 131N4—H4� � �O3 0.88 2.20 3.009 (3) 153C10—H10� � �O2 1.00 2.09 3.071 (4) 167

Symmetry code: (i) xþ 1; y; z.

Figure 2Partial packing view of the title compound in the ac plane. Only selectedH atoms are shown for clarity. Intramolecular hydrogen bonds are shownas magenta dashed lines. Intermolecular strong hydrogen bonds areshown as black dashed lines. Intermolecular weak hydrogen bonds areshown as red dashed lines. Intermolecular C—Cl� � �N interactions areshown as orange dashed lines.

Page 3: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

5. Synthesis and crystallization

The synthesis of the title compound has recently been

reported by Legrand et al. (2014). Single crystals were

obtained by slow evaporation of a chloroform solution.

6. Refinement

Crystal data, data collection and structure refinement details

are summarized in Table 2. All H atoms were located in a

difference Fourier map. The C/N-bonded H atoms were placed

at calculated positions and refined using a riding model, with

C—H = 0.95–1.00 A and N—H = 0.88 A. The Uiso(H) para-

meters were fixed at 1.2Ueq(C, N) for methine, methylene,

aromatic groups and NH groups, and at 1.5Ueq(C) for methyl

groups.

Acknowledgements

The Plateforme de mesures de diffraction X of the Universite

de Lorraine is thanked for providing access to crystallographic

facilities.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M.(2004). J. Appl. Cryst. 37, 335–338.

Andre, C., Legrand, B., Deng, C., Didierjean, C., Pickaert, G.,Martinez, J., Averlant-Petit, M. C., Amblard, M. & Calmes, M.(2012). Org. Lett. 14, 960–963.

Andre, C., Legrand, B., Moulat, L., Wenger, E., Didierjean, C.,Aubert, E., Averlant-Petit, M. C., Martinez, J., Amblard, M. &Calmes, M. (2013). Chem. Eur. J. 19, 16963–16971.

Berlicki, L., Pilsl, L., Weber, E., Mandity, I. M., Cabrele, C., Martinek,T. A., Fulop, F. & Reiser, O. (2012). Angew. Chem. Int. Ed. 51,2208–2212.

Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc.,Madison, Wisconsin, USA.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R.(2007). J. Appl. Cryst. 40, 609–613.

DeLano, W. L. (2002). The pyMOL Molecular Graphics System.DeLano Scientific, San Carlos, CA, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.Hayen, A., Schmitt, M. A., Ngassa, F. N., Thomasson, K. A. &

Gellman, S. H. (2004). Angew. Chem. Int. Ed. 43, 505–510.Huang, L.-S., Cobessi, D., Tung, E. Y. & Berry, E. A. (2005). J. Mol.

Biol. 351, 573–597.Lee, M., Shim, J., Kang, P., Guzei, I. A. & Choi, S. H. (2013). Angew.

Chem. Int. Ed. 52, 12564–12567.Legrand, B., Andre, C., Moulat, L., Wenger, E., Didierjean, C.,

Aubert, E., Averlant-Petit, M. C., Martinez, J., Calmes, M. &Amblard, M. (2014). Angew. Chem. Int. Ed. 53, 13131–13135.

Legrand, B., Andre, C., Wenger, E., Didierjean, C., Averlant-Petit,M. C., Martinez, J., Calmes, M. & Amblard, M. (2012). Angew.Chem. Int. Ed. 51, 11267–11270.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe,P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. &Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Sharma, G. V. M., Chandramouli, N., Choudhary, M., Nagendar, P.,Ramakrishna, K. V. S., Kunwar, A. C., Schramm, P. & Hofmann,H.-J. (2009). J. Am. Chem. Soc. 131, 17335–17344.

Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.Songis, O., Didierjean, C., Laurent, C., Martinez, J. & Calmes, M.

(2007). Eur. J. Org. Chem. pp. 3166–3172.Vasudev, P. G., Chatterjee, S., Shamala, N. & Balaram, P. (2011).

Chem. Rev. 111, 657–687.

research communications

Acta Cryst. (2015). E71, 1193–1195 Wenger et al. � C42H56N4O7�CHCl3 1195

Table 2Experimental details.

Crystal dataChemical formula C42H56N4O7�CHCl3Mr 848.27Crystal system, space group Triclinic, P1Temperature (K) 100a, b, c (A) 9.2194 (6), 10.8908 (6), 11.8698 (7)�, �, � (�) 63.489 (2), 86.467 (2), 89.069 (2)V (A3) 1064.38 (11)Z 1Radiation type Mo K�� (mm�1) 0.27Crystal size (mm) 0.4 � 0.1 � 0.1

Data collectionDiffractometer D8 Venture BrukerAbsorption correction Multi-scan (SADABS; Bruker,

2014)Tmin, Tmax 0.908, 0.963No. of measured, independent and

observed [I > 2�(I)] reflections42849, 8712, 8015

Rint 0.037(sin �/�)max (A�1) 0.626

RefinementR[F 2 > 2�(F 2)], wR(F 2), S 0.038, 0.087, 1.08No. of reflections 8712No. of parameters 518No. of restraints 3H-atom treatment H-atom parameters constrained�max, �min (e A�3) 0.30, �0.32Absolute structure Flack x determined using 3702

quotients [(I+)�(I�)]/[(I+)+(I�)](Parsons et al., 2013)

Absolute structure parameter 0.006 (18)

Computer programs: APEX2 and SAINT (Bruker, 2014), SIR2008 (Burla et al., 2007),SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), pyMOL (DeLano, 2002),WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Page 4: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-1Acta Cryst. (2015). E71, 1193-1195

supporting information

Acta Cryst. (2015). E71, 1193-1195 [doi:10.1107/S2056989015016941]

Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe-OBn chloroform

monosolvate

Emmanuel Wenger, Laure Moulat, Baptiste Legrand, Muriel Amblard, Monique Calmès and

Claude Didierjean

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014);

program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL2014

(Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and pyMOL (DeLano, 2002); software used to

prepare material for publication: WinGX (Farrugia, 2012) and enCIFer (Allen et al., 2004).

Phenyl (S)-2-[(S)-(1-{2-[(S)-(1-{[(tert-butoxy)carbonyl]amino}bicyclo[2.2.2]octan-2-

yl)formamido]propanamido}bicyclo[2.2.2]octan-2-yl)formamido]-3-phenylpropanoate chloroform monosolvate

Crystal data

C42H56N4O7·CHCl3

Mr = 848.27Triclinic, P1Hall symbol: P 1a = 9.2194 (6) Åb = 10.8908 (6) Åc = 11.8698 (7) Åα = 63.489 (2)°β = 86.467 (2)°γ = 89.069 (2)°V = 1064.38 (11) Å3

Z = 1F(000) = 450Dx = 1.323 Mg m−3

Mo Kα radiation, λ = 0.71073 ÅCell parameters from 9972 reflectionsθ = 5.7–52.9°µ = 0.27 mm−1

T = 100 KNeedle, colourless0.4 × 0.1 × 0.1 mm

Data collection

D8 Venture Bruker diffractometer

φ and ω scansAbsorption correction: multi-scan

(SADABS; Bruker, 2014)Tmin = 0.908, Tmax = 0.96342849 measured reflections

8712 independent reflections8015 reflections with I > 2σ(I)Rint = 0.037θmax = 26.4°, θmin = 2.8°h = −11→11k = −13→13l = −14→14

Refinement

Refinement on F2

Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.038wR(F2) = 0.087S = 1.088712 reflections

518 parameters3 restraintsHydrogen site location: inferred from

neighbouring sitesH-atom parameters constrained

Page 5: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-2Acta Cryst. (2015). E71, 1193-1195

w = 1/[σ2(Fo2) + (0.0306P)2 + 0.6225P]

where P = (Fo2 + 2Fc

2)/3(Δ/σ)max < 0.001Δρmax = 0.30 e Å−3

Δρmin = −0.32 e Å−3

Absolute structure: Flack x determined using 3702 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)

Absolute structure parameter: 0.006 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 1.0678 (2) 0.1293 (2) 0.8411 (2) 0.0231 (5)O2 1.1876 (3) 0.3080 (2) 0.8461 (2) 0.0250 (5)O3 0.9584 (2) 0.4011 (2) 0.4043 (2) 0.0217 (5)O4 0.9878 (3) 0.1030 (2) 0.5964 (2) 0.0291 (6)O6 0.6629 (2) 0.2149 (2) 0.2316 (2) 0.0227 (5)O5 0.4408 (2) 0.2042 (2) 0.4540 (2) 0.0255 (5)O7 0.4784 (3) 0.3516 (2) 0.1340 (2) 0.0258 (5)N1 1.1424 (3) 0.3010 (3) 0.6606 (2) 0.0193 (5)H1 1.1204 0.2444 0.6294 0.023*N2 1.1419 (3) 0.2721 (3) 0.3845 (2) 0.0184 (5)H2 1.2365 0.2643 0.375 0.022*N3 0.8189 (3) 0.0590 (3) 0.4865 (2) 0.0182 (5)H3N 0.8047 0.0582 0.4143 0.022*N4 0.6448 (3) 0.3312 (3) 0.4007 (2) 0.0201 (6)H4 0.7247 0.354 0.4241 0.024*C2 1.0641 (4) 0.0413 (3) 0.9781 (3) 0.0247 (7)C3 0.9992 (4) 0.1148 (4) 1.0520 (3) 0.0320 (8)H3A 1.0722 0.1771 1.0557 0.048*H3B 0.9688 0.0472 1.1378 0.048*H3C 0.9148 0.1676 1.0101 0.048*C4 1.2169 (4) −0.0068 (4) 1.0145 (3) 0.0340 (8)H4A 1.2551 −0.0538 0.9655 0.051*H4B 1.2152 −0.0701 1.1046 0.051*H4C 1.2793 0.0726 0.9968 0.051*C5 0.9658 (5) −0.0760 (4) 0.9937 (3) 0.0337 (8)H5A 0.8681 −0.0413 0.9694 0.051*H5B 0.9609 −0.1455 1.082 0.051*H5C 1.0048 −0.1171 0.9398 0.051*C6 1.1374 (3) 0.2516 (3) 0.7879 (3) 0.0188 (6)C7 1.1821 (3) 0.4427 (3) 0.5718 (3) 0.0184 (6)C8 1.3291 (3) 0.4874 (3) 0.5974 (3) 0.0209 (6)H8A 1.4024 0.416 0.6087 0.025*H8B 1.3192 0.4987 0.6757 0.025*C9 1.3792 (4) 0.6251 (3) 0.4845 (3) 0.0228 (7)

Page 6: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-3Acta Cryst. (2015). E71, 1193-1195

H9A 1.4202 0.6865 0.5161 0.027*H9B 1.4557 0.6079 0.4312 0.027*C10 1.0661 (4) 0.5433 (3) 0.5752 (3) 0.0212 (7)H10A 1.0424 0.5261 0.6636 0.025*H10B 0.9763 0.5293 0.5405 0.025*C11 1.1215 (4) 0.6921 (3) 0.4972 (3) 0.0250 (7)H11A 1.1538 0.7293 0.554 0.03*H11B 1.0423 0.7503 0.4483 0.03*C12 1.2495 (4) 0.6932 (3) 0.4068 (3) 0.0229 (7)H12 1.2749 0.7893 0.3434 0.027*C13 1.2037 (4) 0.6084 (3) 0.3410 (3) 0.0209 (6)H13A 1.273 0.6244 0.2685 0.025*H13B 1.1059 0.6362 0.3088 0.025*C14 1.2014 (3) 0.4545 (3) 0.4365 (3) 0.0180 (6)H14 1.2989 0.4167 0.4283 0.022*C15 1.0890 (3) 0.3744 (3) 0.4071 (3) 0.0168 (6)C16 1.0454 (3) 0.1744 (3) 0.3755 (3) 0.0196 (6)H16 0.9842 0.2224 0.3018 0.024*C17 1.1352 (4) 0.0646 (3) 0.3577 (3) 0.0259 (7)H17A 1.0701 −0.002 0.3515 0.039*H17B 1.1951 0.0176 0.4301 0.039*H17C 1.1982 0.1078 0.2803 0.039*C18 0.9468 (3) 0.1090 (3) 0.4981 (3) 0.0197 (6)C19 0.7011 (3) 0.0056 (3) 0.5867 (3) 0.0201 (6)C20 0.7585 (4) −0.0962 (4) 0.7133 (3) 0.0283 (8)H20A 0.8161 −0.1678 0.7019 0.034*H20B 0.8229 −0.0474 0.7443 0.034*C21 0.6307 (4) −0.1633 (4) 0.8104 (3) 0.0329 (8)H21A 0.6228 −0.2616 0.8305 0.04*H21B 0.6476 −0.157 0.8892 0.04*C22 0.4899 (4) −0.0907 (4) 0.7570 (3) 0.0291 (8)H22 0.4081 −0.1283 0.8229 0.035*C23 0.5919 (3) −0.0714 (3) 0.5489 (3) 0.0215 (7)H23A 0.6379 −0.1539 0.5483 0.026*H23B 0.5616 −0.0117 0.4629 0.026*C24 0.4578 (4) −0.1144 (4) 0.6431 (3) 0.0251 (7)H24A 0.3729 −0.0596 0.6017 0.03*H24B 0.4344 −0.2125 0.6711 0.03*C25 0.5078 (4) 0.0630 (4) 0.7147 (3) 0.0293 (8)H25A 0.5363 0.0786 0.7864 0.035*H25B 0.4141 0.1091 0.6871 0.035*C26 0.6258 (4) 0.1254 (3) 0.6041 (3) 0.0208 (7)H26 0.6998 0.1757 0.6264 0.025*C27 0.5618 (3) 0.2238 (3) 0.4817 (3) 0.0199 (7)C28 0.5981 (3) 0.4082 (3) 0.2734 (3) 0.0184 (6)H28 0.4997 0.4461 0.2785 0.022*C29 0.7008 (3) 0.5276 (3) 0.1918 (3) 0.0201 (6)H29A 0.8023 0.4964 0.2074 0.024*

Page 7: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-4Acta Cryst. (2015). E71, 1193-1195

H29B 0.6859 0.5548 0.1019 0.024*C30 0.6795 (3) 0.6509 (3) 0.2164 (3) 0.0184 (6)C31 0.7622 (3) 0.6728 (3) 0.3003 (3) 0.0215 (7)H31 0.8332 0.6077 0.3449 0.026*C32 0.7416 (4) 0.7892 (3) 0.3191 (3) 0.0234 (7)H32 0.7984 0.8032 0.3766 0.028*C33 0.6387 (4) 0.8849 (3) 0.2545 (3) 0.0241 (7)H33 0.6258 0.9652 0.2663 0.029*C34 0.5550 (4) 0.8624 (3) 0.1729 (3) 0.0232 (7)H34 0.4832 0.927 0.1293 0.028*C35 0.5748 (4) 0.7466 (3) 0.1541 (3) 0.0215 (7)H35 0.5161 0.7323 0.0978 0.026*C36 0.5859 (3) 0.3116 (3) 0.2127 (3) 0.0210 (7)C37 0.4548 (4) 0.2729 (3) 0.0647 (3) 0.0239 (7)H37A 0.3512 0.2783 0.0456 0.029*H37B 0.4769 0.1753 0.1182 0.029*C38 0.5472 (4) 0.3240 (4) −0.0556 (3) 0.0245 (7)C39 0.5375 (4) 0.4594 (4) −0.1454 (4) 0.0319 (8)H39 0.4758 0.5207 −0.1284 0.038*C40 0.6175 (5) 0.5056 (5) −0.2598 (4) 0.0459 (11)H40 0.6111 0.5985 −0.3209 0.055*C41 0.7064 (4) 0.4168 (5) −0.2849 (4) 0.0455 (12)H41 0.7596 0.4482 −0.3641 0.055*C42 0.7187 (4) 0.2817 (5) −0.1953 (4) 0.0383 (9)H42 0.781 0.2209 −0.2123 0.046*C43 0.6393 (4) 0.2362 (4) −0.0806 (3) 0.0284 (8)H43 0.6482 0.144 −0.0186 0.034*C1′ 1.0834 (4) 0.5291 (4) 0.9249 (3) 0.0258 (7)H1′ 1.132 0.4645 0.8961 0.031*Cl1′ 0.89599 (9) 0.52131 (11) 0.91218 (9) 0.0383 (2)Cl2′ 1.12316 (10) 0.47771 (11) 1.08293 (9) 0.0413 (2)Cl3′ 1.15106 (13) 0.69484 (11) 0.82768 (10) 0.0495 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0315 (13) 0.0226 (12) 0.0123 (11) −0.0053 (10) −0.0028 (9) −0.0049 (9)O2 0.0315 (13) 0.0266 (12) 0.0178 (11) −0.0034 (10) −0.0019 (9) −0.0107 (10)O3 0.0192 (12) 0.0247 (12) 0.0221 (12) 0.0005 (9) −0.0045 (9) −0.0107 (10)O4 0.0364 (14) 0.0320 (13) 0.0152 (11) −0.0141 (11) −0.0039 (10) −0.0065 (10)O6 0.0273 (12) 0.0230 (12) 0.0203 (11) 0.0059 (10) −0.0049 (9) −0.0117 (9)O5 0.0175 (11) 0.0283 (12) 0.0307 (13) −0.0003 (9) −0.0002 (9) −0.0134 (10)O7 0.0270 (12) 0.0291 (13) 0.0284 (13) 0.0060 (10) −0.0111 (10) −0.0183 (11)N1 0.0228 (14) 0.0205 (13) 0.0144 (13) −0.0030 (11) −0.0014 (10) −0.0076 (11)N2 0.0145 (12) 0.0208 (13) 0.0193 (13) −0.0031 (10) 0.0017 (10) −0.0085 (11)N3 0.0204 (13) 0.0207 (13) 0.0124 (12) −0.0024 (11) −0.0011 (10) −0.0064 (11)N4 0.0206 (14) 0.0229 (14) 0.0185 (13) −0.0018 (11) −0.0017 (10) −0.0105 (11)C2 0.0307 (18) 0.0261 (18) 0.0108 (15) −0.0006 (14) −0.0026 (13) −0.0022 (13)

Page 8: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-5Acta Cryst. (2015). E71, 1193-1195

C3 0.033 (2) 0.043 (2) 0.0204 (17) −0.0050 (17) 0.0013 (15) −0.0156 (16)C4 0.036 (2) 0.034 (2) 0.0256 (19) 0.0067 (16) −0.0073 (15) −0.0063 (16)C5 0.045 (2) 0.0283 (19) 0.0205 (18) −0.0120 (16) 0.0028 (16) −0.0042 (15)C6 0.0206 (15) 0.0198 (15) 0.0149 (14) −0.0002 (12) −0.0006 (12) −0.0069 (12)C7 0.0208 (16) 0.0194 (15) 0.0153 (15) −0.0035 (12) 0.0003 (12) −0.0081 (12)C8 0.0216 (16) 0.0232 (17) 0.0173 (15) −0.0031 (13) −0.0017 (12) −0.0083 (13)C9 0.0219 (16) 0.0243 (17) 0.0225 (17) −0.0079 (13) 0.0009 (13) −0.0107 (14)C10 0.0216 (16) 0.0236 (17) 0.0188 (16) 0.0002 (13) 0.0024 (13) −0.0103 (14)C11 0.0296 (18) 0.0217 (17) 0.0235 (17) −0.0009 (14) 0.0018 (14) −0.0103 (14)C12 0.0258 (17) 0.0193 (16) 0.0216 (16) −0.0055 (13) 0.0003 (13) −0.0075 (13)C13 0.0227 (16) 0.0205 (16) 0.0159 (15) −0.0059 (13) 0.0009 (12) −0.0049 (13)C14 0.0161 (15) 0.0211 (15) 0.0161 (15) −0.0010 (12) 0.0002 (12) −0.0078 (13)C15 0.0185 (15) 0.0184 (15) 0.0096 (13) −0.0018 (12) −0.0005 (11) −0.0028 (12)C16 0.0183 (15) 0.0200 (16) 0.0213 (16) −0.0020 (12) −0.0027 (12) −0.0097 (13)C17 0.0273 (18) 0.0232 (17) 0.0287 (18) 0.0008 (14) 0.0001 (14) −0.0132 (15)C18 0.0242 (16) 0.0149 (15) 0.0183 (15) −0.0009 (12) −0.0027 (13) −0.0057 (12)C19 0.0224 (16) 0.0203 (16) 0.0153 (15) −0.0048 (12) 0.0004 (12) −0.0060 (13)C20 0.036 (2) 0.0286 (18) 0.0153 (16) −0.0058 (15) −0.0033 (14) −0.0054 (14)C21 0.044 (2) 0.033 (2) 0.0163 (17) −0.0165 (17) 0.0027 (15) −0.0052 (15)C22 0.0334 (19) 0.035 (2) 0.0195 (17) −0.0143 (16) 0.0082 (14) −0.0134 (15)C23 0.0250 (17) 0.0222 (16) 0.0181 (16) −0.0039 (13) −0.0003 (13) −0.0095 (13)C24 0.0272 (17) 0.0287 (18) 0.0207 (16) −0.0105 (14) 0.0048 (14) −0.0126 (14)C25 0.037 (2) 0.036 (2) 0.0196 (17) −0.0117 (16) 0.0106 (14) −0.0177 (15)C26 0.0248 (16) 0.0233 (16) 0.0167 (15) −0.0053 (13) 0.0028 (12) −0.0116 (13)C27 0.0179 (16) 0.0224 (16) 0.0244 (16) −0.0025 (13) 0.0035 (13) −0.0155 (14)C28 0.0189 (15) 0.0212 (16) 0.0179 (15) 0.0026 (12) −0.0040 (12) −0.0110 (13)C29 0.0196 (16) 0.0223 (16) 0.0186 (15) 0.0004 (13) 0.0003 (12) −0.0095 (13)C30 0.0200 (15) 0.0181 (15) 0.0150 (14) −0.0017 (12) 0.0050 (12) −0.0060 (12)C31 0.0211 (16) 0.0214 (16) 0.0193 (16) 0.0001 (13) 0.0015 (12) −0.0072 (13)C32 0.0238 (17) 0.0259 (17) 0.0237 (17) −0.0005 (13) −0.0011 (13) −0.0139 (14)C33 0.0279 (17) 0.0187 (16) 0.0265 (17) −0.0018 (13) 0.0046 (14) −0.0116 (14)C34 0.0229 (16) 0.0182 (16) 0.0238 (17) 0.0028 (13) 0.0011 (13) −0.0054 (13)C35 0.0221 (16) 0.0233 (16) 0.0168 (15) −0.0017 (13) 0.0016 (13) −0.0073 (13)C36 0.0208 (16) 0.0229 (17) 0.0197 (16) −0.0012 (13) −0.0019 (13) −0.0097 (13)C37 0.0280 (18) 0.0236 (17) 0.0233 (17) −0.0008 (14) −0.0059 (14) −0.0126 (14)C38 0.0238 (17) 0.0284 (17) 0.0238 (17) −0.0042 (14) −0.0102 (14) −0.0128 (15)C39 0.0273 (19) 0.0280 (19) 0.034 (2) −0.0013 (15) −0.0129 (15) −0.0069 (16)C40 0.036 (2) 0.045 (2) 0.035 (2) −0.0161 (19) −0.0136 (18) 0.0036 (19)C41 0.027 (2) 0.075 (3) 0.027 (2) −0.023 (2) −0.0011 (16) −0.015 (2)C42 0.028 (2) 0.061 (3) 0.037 (2) −0.0103 (18) −0.0017 (16) −0.031 (2)C43 0.0280 (18) 0.0317 (19) 0.0279 (18) −0.0047 (15) −0.0034 (14) −0.0150 (15)C1′ 0.0252 (17) 0.0344 (19) 0.0222 (16) −0.0014 (14) 0.0004 (13) −0.0165 (15)Cl1′ 0.0243 (4) 0.0616 (6) 0.0342 (5) −0.0032 (4) −0.0015 (4) −0.0259 (5)Cl2′ 0.0409 (5) 0.0598 (6) 0.0259 (5) 0.0046 (5) −0.0090 (4) −0.0208 (5)Cl3′ 0.0607 (7) 0.0457 (6) 0.0387 (6) −0.0254 (5) 0.0144 (5) −0.0172 (5)

Page 9: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-6Acta Cryst. (2015). E71, 1193-1195

Geometric parameters (Å, º)

O1—C6 1.346 (4) C17—H17B 0.98O1—C2 1.472 (4) C17—H17C 0.98O2—C6 1.222 (4) C19—C23 1.529 (4)O3—C15 1.233 (4) C19—C20 1.536 (4)O4—C18 1.221 (4) C19—C26 1.556 (4)O6—C36 1.203 (4) C20—C21 1.536 (5)O5—C27 1.231 (4) C20—H20A 0.99O7—C36 1.334 (4) C20—H20B 0.99O7—C37 1.454 (4) C21—C22 1.527 (6)N1—C6 1.357 (4) C21—H21A 0.99N1—C7 1.465 (4) C21—H21B 0.99N1—H1 0.88 C22—C25 1.527 (5)N2—C15 1.336 (4) C22—C24 1.531 (5)N2—C16 1.442 (4) C22—H22 1N2—H2 0.88 C23—C24 1.542 (4)N3—C18 1.346 (4) C23—H23A 0.99N3—C19 1.475 (4) C23—H23B 0.99N3—H3N 0.88 C24—H24A 0.99N4—C27 1.347 (4) C24—H24B 0.99N4—C28 1.452 (4) C25—C26 1.556 (4)N4—H4 0.88 C25—H25A 0.99C2—C5 1.514 (5) C25—H25B 0.99C2—C4 1.515 (5) C26—C27 1.517 (5)C2—C3 1.521 (5) C26—H26 1C3—H3A 0.98 C28—C29 1.526 (4)C3—H3B 0.98 C28—C36 1.527 (4)C3—H3C 0.98 C28—H28 1C4—H4A 0.98 C29—C30 1.503 (4)C4—H4B 0.98 C29—H29A 0.99C4—H4C 0.98 C29—H29B 0.99C5—H5A 0.98 C30—C35 1.391 (5)C5—H5B 0.98 C30—C31 1.393 (5)C5—H5C 0.98 C31—C32 1.391 (5)C7—C10 1.530 (4) C31—H31 0.95C7—C8 1.539 (4) C32—C33 1.385 (5)C7—C14 1.552 (4) C32—H32 0.95C8—C9 1.553 (4) C33—C34 1.380 (5)C8—H8A 0.99 C33—H33 0.95C8—H8B 0.99 C34—C35 1.383 (5)C9—C12 1.525 (5) C34—H34 0.95C9—H9A 0.99 C35—H35 0.95C9—H9B 0.99 C37—C38 1.494 (5)C10—C11 1.540 (4) C37—H37A 0.99C10—H10A 0.99 C37—H37B 0.99C10—H10B 0.99 C38—C43 1.385 (5)C11—C12 1.542 (5) C38—C39 1.387 (5)

Page 10: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-7Acta Cryst. (2015). E71, 1193-1195

C11—H11A 0.99 C39—C40 1.386 (6)C11—H11B 0.99 C39—H39 0.95C12—C13 1.529 (5) C40—C41 1.378 (7)C12—H12 1 C40—H40 0.95C13—C14 1.548 (4) C41—C42 1.386 (6)C13—H13A 0.99 C41—H41 0.95C13—H13B 0.99 C42—C43 1.385 (5)C14—C15 1.518 (4) C42—H42 0.95C14—H14 1 C43—H43 0.95C16—C17 1.526 (4) C1′—Cl3′ 1.751 (4)C16—C18 1.545 (4) C1′—Cl1′ 1.751 (3)C16—H16 1 C1′—Cl2′ 1.762 (3)C17—H17A 0.98 C1′—H1′ 1

C6—O1—C2 121.4 (2) C23—C19—C26 110.5 (3)C36—O7—C37 117.1 (3) C20—C19—C26 108.6 (3)C6—N1—C7 124.1 (3) C21—C20—C19 109.8 (3)C6—N1—H1 118 C21—C20—H20A 109.7C7—N1—H1 118 C19—C20—H20A 109.7C15—N2—C16 120.6 (3) C21—C20—H20B 109.7C15—N2—H2 119.7 C19—C20—H20B 109.7C16—N2—H2 119.7 H20A—C20—H20B 108.2C18—N3—C19 124.5 (3) C22—C21—C20 109.6 (3)C18—N3—H3N 117.8 C22—C21—H21A 109.7C19—N3—H3N 117.8 C20—C21—H21A 109.7C27—N4—C28 117.8 (3) C22—C21—H21B 109.7C27—N4—H4 121.1 C20—C21—H21B 109.7C28—N4—H4 121.1 H21A—C21—H21B 108.2O1—C2—C5 102.2 (3) C25—C22—C21 109.5 (3)O1—C2—C4 108.5 (3) C25—C22—C24 109.2 (3)C5—C2—C4 111.6 (3) C21—C22—C24 108.9 (3)O1—C2—C3 111.8 (3) C25—C22—H22 109.8C5—C2—C3 110.5 (3) C21—C22—H22 109.8C4—C2—C3 111.7 (3) C24—C22—H22 109.8C2—C3—H3A 109.5 C19—C23—C24 109.9 (3)C2—C3—H3B 109.5 C19—C23—H23A 109.7H3A—C3—H3B 109.5 C24—C23—H23A 109.7C2—C3—H3C 109.5 C19—C23—H23B 109.7H3A—C3—H3C 109.5 C24—C23—H23B 109.7H3B—C3—H3C 109.5 H23A—C23—H23B 108.2C2—C4—H4A 109.5 C22—C24—C23 109.3 (3)C2—C4—H4B 109.5 C22—C24—H24A 109.8H4A—C4—H4B 109.5 C23—C24—H24A 109.8C2—C4—H4C 109.5 C22—C24—H24B 109.8H4A—C4—H4C 109.5 C23—C24—H24B 109.8H4B—C4—H4C 109.5 H24A—C24—H24B 108.3C2—C5—H5A 109.5 C22—C25—C26 110.4 (3)C2—C5—H5B 109.5 C22—C25—H25A 109.6

Page 11: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-8Acta Cryst. (2015). E71, 1193-1195

H5A—C5—H5B 109.5 C26—C25—H25A 109.6C2—C5—H5C 109.5 C22—C25—H25B 109.6H5A—C5—H5C 109.5 C26—C25—H25B 109.6H5B—C5—H5C 109.5 H25A—C25—H25B 108.1O2—C6—O1 125.0 (3) C27—C26—C25 112.1 (3)O2—C6—N1 126.0 (3) C27—C26—C19 109.6 (2)O1—C6—N1 109.0 (3) C25—C26—C19 108.2 (3)N1—C7—C10 111.5 (2) C27—C26—H26 109N1—C7—C8 112.5 (2) C25—C26—H26 109C10—C7—C8 108.5 (3) C19—C26—H26 109N1—C7—C14 109.2 (2) O5—C27—N4 120.5 (3)C10—C7—C14 109.5 (2) O5—C27—C26 121.8 (3)C8—C7—C14 105.5 (2) N4—C27—C26 117.7 (3)C7—C8—C9 109.4 (3) N4—C28—C29 112.5 (2)C7—C8—H8A 109.8 N4—C28—C36 109.2 (2)C9—C8—H8A 109.8 C29—C28—C36 109.9 (3)C7—C8—H8B 109.8 N4—C28—H28 108.4C9—C8—H8B 109.8 C29—C28—H28 108.4H8A—C8—H8B 108.2 C36—C28—H28 108.4C12—C9—C8 109.3 (3) C30—C29—C28 113.4 (3)C12—C9—H9A 109.8 C30—C29—H29A 108.9C8—C9—H9A 109.8 C28—C29—H29A 108.9C12—C9—H9B 109.8 C30—C29—H29B 108.9C8—C9—H9B 109.8 C28—C29—H29B 108.9H9A—C9—H9B 108.3 H29A—C29—H29B 107.7C7—C10—C11 110.1 (3) C35—C30—C31 118.5 (3)C7—C10—H10A 109.6 C35—C30—C29 119.6 (3)C11—C10—H10A 109.6 C31—C30—C29 121.9 (3)C7—C10—H10B 109.6 C32—C31—C30 120.4 (3)C11—C10—H10B 109.6 C32—C31—H31 119.8H10A—C10—H10B 108.2 C30—C31—H31 119.8C10—C11—C12 108.8 (3) C33—C32—C31 120.4 (3)C10—C11—H11A 109.9 C33—C32—H32 119.8C12—C11—H11A 109.9 C31—C32—H32 119.8C10—C11—H11B 109.9 C34—C33—C32 119.4 (3)C12—C11—H11B 109.9 C34—C33—H33 120.3H11A—C11—H11B 108.3 C32—C33—H33 120.3C9—C12—C13 108.9 (3) C33—C34—C35 120.5 (3)C9—C12—C11 108.5 (3) C33—C34—H34 119.7C13—C12—C11 107.8 (3) C35—C34—H34 119.7C9—C12—H12 110.5 C34—C35—C30 120.8 (3)C13—C12—H12 110.5 C34—C35—H35 119.6C11—C12—H12 110.5 C30—C35—H35 119.6C12—C13—C14 109.0 (3) O6—C36—O7 125.0 (3)C12—C13—H13A 109.9 O6—C36—C28 125.1 (3)C14—C13—H13A 109.9 O7—C36—C28 109.9 (3)C12—C13—H13B 109.9 O7—C37—C38 112.1 (3)C14—C13—H13B 109.9 O7—C37—H37A 109.2

Page 12: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-9Acta Cryst. (2015). E71, 1193-1195

H13A—C13—H13B 108.3 C38—C37—H37A 109.2C15—C14—C13 111.6 (3) O7—C37—H37B 109.2C15—C14—C7 114.1 (2) C38—C37—H37B 109.2C13—C14—C7 108.5 (2) H37A—C37—H37B 107.9C15—C14—H14 107.4 C43—C38—C39 119.4 (3)C13—C14—H14 107.4 C43—C38—C37 120.7 (3)C7—C14—H14 107.4 C39—C38—C37 119.9 (3)O3—C15—N2 122.2 (3) C40—C39—C38 120.1 (4)O3—C15—C14 122.8 (3) C40—C39—H39 119.9N2—C15—C14 115.0 (3) C38—C39—H39 119.9N2—C16—C17 109.2 (3) C41—C40—C39 120.0 (4)N2—C16—C18 108.5 (2) C41—C40—H40 120C17—C16—C18 110.5 (3) C39—C40—H40 120N2—C16—H16 109.6 C40—C41—C42 120.3 (4)C17—C16—H16 109.6 C40—C41—H41 119.8C18—C16—H16 109.6 C42—C41—H41 119.8C16—C17—H17A 109.5 C43—C42—C41 119.4 (4)C16—C17—H17B 109.5 C43—C42—H42 120.3H17A—C17—H17B 109.5 C41—C42—H42 120.3C16—C17—H17C 109.5 C42—C43—C38 120.6 (4)H17A—C17—H17C 109.5 C42—C43—H43 119.7H17B—C17—H17C 109.5 C38—C43—H43 119.7O4—C18—N3 124.9 (3) Cl3′—C1′—Cl1′ 110.4 (2)O4—C18—C16 120.3 (3) Cl3′—C1′—Cl2′ 110.83 (19)N3—C18—C16 114.8 (3) Cl1′—C1′—Cl2′ 110.70 (19)N3—C19—C23 108.1 (2) Cl3′—C1′—H1′ 108.3N3—C19—C20 111.5 (3) Cl1′—C1′—H1′ 108.3C23—C19—C20 107.7 (3) Cl2′—C1′—H1′ 108.3N3—C19—C26 110.3 (2)

C2—O1—C6—N1 171.0 (3) N3—C19—C20—C21 −172.7 (3)C6—N1—C7—C14 170.3 (3) C23—C19—C20—C21 −54.2 (4)N1—C7—C14—C15 40.5 (3) C26—C19—C20—C21 65.5 (3)C7—C14—C15—N2 −115.8 (3) C19—C20—C21—C22 −9.3 (4)C14—C15—N2—C16 169.9 (3) C20—C21—C22—C25 −54.1 (4)C15—N2—C16—C18 −56.0 (4) C20—C21—C22—C24 65.1 (4)N2—C16—C18—N3 155.4 (3) N3—C19—C23—C24 −173.3 (3)C16—C18—N3—C19 −173.2 (3) C20—C19—C23—C24 66.0 (3)C18—N3—C19—C26 72.4 (4) C26—C19—C23—C24 −52.5 (3)N3—C19—C26—C27 60.2 (3) C25—C22—C24—C23 66.2 (4)C19—C26—C27—N4 −92.4 (3) C21—C22—C24—C23 −53.3 (4)C26—C27—N4—C28 167.0 (3) C19—C23—C24—C22 −10.8 (4)C27—N4—C28—C36 −58.1 (4) C21—C22—C25—C26 64.3 (4)N4—C28—C36—O7 147.0 (3) C24—C22—C25—C26 −54.8 (4)C6—O1—C2—C5 175.6 (3) C22—C25—C26—C27 113.0 (3)C6—O1—C2—C4 −66.3 (4) C22—C25—C26—C19 −7.9 (4)C6—O1—C2—C3 57.3 (4) C23—C19—C26—C27 −59.3 (3)C2—O1—C6—O2 −9.0 (5) C20—C19—C26—C27 −177.3 (3)

Page 13: Crystal structure of Boc-(S)-ABOC-(S)-Ala-(S)-ABOC-(S)-Phe ... · helix stabilized by backbone C O HN hydrogen bonds (Table 1), forming one C11 pseudocycle between the CO of the -residue

supporting information

sup-10Acta Cryst. (2015). E71, 1193-1195

C7—N1—C6—O2 −13.3 (5) N3—C19—C26—C25 −177.4 (3)C7—N1—C6—O1 166.7 (3) C23—C19—C26—C25 63.2 (3)C6—N1—C7—C10 −68.6 (4) C20—C19—C26—C25 −54.8 (3)C6—N1—C7—C8 53.5 (4) C28—N4—C27—O5 −10.1 (4)N1—C7—C8—C9 168.0 (2) C25—C26—C27—O5 −35.5 (4)C10—C7—C8—C9 −68.2 (3) C19—C26—C27—O5 84.6 (4)C14—C7—C8—C9 49.1 (3) C25—C26—C27—N4 147.5 (3)C7—C8—C9—C12 17.7 (4) C27—N4—C28—C29 179.6 (3)N1—C7—C10—C11 171.1 (3) N4—C28—C29—C30 −78.8 (3)C8—C7—C10—C11 46.7 (3) C36—C28—C29—C30 159.3 (3)C14—C7—C10—C11 −68.0 (3) C28—C29—C30—C35 −85.7 (4)C7—C10—C11—C12 18.9 (4) C28—C29—C30—C31 94.4 (3)C8—C9—C12—C13 −68.8 (3) C35—C30—C31—C32 −1.1 (5)C8—C9—C12—C11 48.2 (3) C29—C30—C31—C32 178.8 (3)C10—C11—C12—C9 −69.9 (3) C30—C31—C32—C33 −0.1 (5)C10—C11—C12—C13 47.9 (4) C31—C32—C33—C34 1.1 (5)C9—C12—C13—C14 44.8 (3) C32—C33—C34—C35 −0.9 (5)C11—C12—C13—C14 −72.7 (3) C33—C34—C35—C30 −0.3 (5)C12—C13—C14—C15 150.0 (3) C31—C30—C35—C34 1.3 (5)C12—C13—C14—C7 23.4 (3) C29—C30—C35—C34 −178.6 (3)C10—C7—C14—C15 −81.8 (3) C37—O7—C36—O6 −1.0 (5)C8—C7—C14—C15 161.6 (3) C37—O7—C36—C28 178.1 (3)N1—C7—C14—C13 165.6 (2) N4—C28—C36—O6 −33.9 (4)C10—C7—C14—C13 43.3 (3) C29—C28—C36—O6 90.0 (4)C8—C7—C14—C13 −73.3 (3) C29—C28—C36—O7 −89.1 (3)C16—N2—C15—O3 −10.0 (4) C36—O7—C37—C38 −87.1 (3)C13—C14—C15—O3 −59.4 (4) O7—C37—C38—C43 124.5 (3)C7—C14—C15—O3 64.1 (4) O7—C37—C38—C39 −57.7 (4)C13—C14—C15—N2 120.7 (3) C43—C38—C39—C40 1.1 (5)C15—N2—C16—C17 −176.4 (3) C37—C38—C39—C40 −176.7 (3)C19—N3—C18—O4 8.4 (5) C38—C39—C40—C41 0.3 (6)N2—C16—C18—O4 −26.1 (4) C39—C40—C41—C42 −1.3 (6)C17—C16—C18—O4 93.5 (4) C40—C41—C42—C43 0.8 (6)C17—C16—C18—N3 −85.0 (3) C41—C42—C43—C38 0.6 (5)C18—N3—C19—C23 −166.8 (3) C39—C38—C43—C42 −1.6 (5)C18—N3—C19—C20 −48.5 (4) C37—C38—C43—C42 176.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···O4 0.88 2.16 2.994 (4) 157N2—H2···O5i 0.88 2.12 2.914 (3) 150N3—H3N···O6 0.88 2.51 3.159 (3) 131N4—H4···O3 0.88 2.20 3.009 (3) 153C1′—H1′···O2 1.00 2.09 3.071 (4) 167

Symmetry code: (i) x+1, y, z.