Crash course in control theory for neuroscientists and biologists

41
Control-theoretic approach to the analysis and synthesis of sensorimotor loops A few main principles and connections to neuroscience Neurotheory and Engineering seminar - 05/28/2013 Matteo Mischiati 1

Transcript of Crash course in control theory for neuroscientists and biologists

Page 1: Crash course in control theory for neuroscientists and biologists

1

Control-theoretic approach to the analysis and synthesis of sensorimotor loops

A few main principles and connections to neuroscience

Neurotheory and Engineering seminar - 05/28/2013

Matteo Mischiati

Page 2: Crash course in control theory for neuroscientists and biologists

2

โ€ข Control theory framework - linear time-invariant (LTI) case

โ€ข Properties of feedback - internal model principle

โ€ข Common control schemes - forward and inverse models, Smith predictor - state feedback, observers, optimal control

โ€ข A model of human response in manual tracking tasks (Kleinman et al. 1970, Gawthrop et al. 2011)

Matteo Mischiati Control theory primer

Page 3: Crash course in control theory for neuroscientists and biologists

3

Control theory framework

Assume you have a system (PLANT) for which you can control certain variables (inputs) and sense others (outputs). There may be disturbances on your inputs and your sensed outputs may be noisy.

๐‘ข ๐‘ฆPLANT

๐‘ข๐‘++

๐‘›++

๐‘‘๐‘ฆ ๐‘›

Matteo Mischiati Control theory primer

Page 4: Crash course in control theory for neuroscientists and biologists

4

Control theory framework

SYNTHESIS problem: design a controller that applies the right inputs to the plant, based on the noisy outputs, to achieve a desired goal while satisfying one or more performance criteria

๐‘ข ๐‘ฆPLANT

๐‘ข๐‘++

๐‘›++

๐‘‘๐‘ฆ ๐‘›

~๐‘ฆCONTROLLER

Matteo Mischiati Control theory primer

Page 5: Crash course in control theory for neuroscientists and biologists

5

Control theory framework

SYNTHESIS problem: design a controller that applies the right inputs to the plant, based on the noisy outputs, to achieve a desired goal while satisfying one or more performance criteria

Possible Goals: โ€ข Output regulation (disturbance rejection, homeostasis) : keep constant despite disturbanceโ€ข Trajectory tracking : keep

Performance criteria:โ€ข Static performance (at steady state): e.g. โ€ข Dynamic performance: transient time, etcโ€ฆโ€ข Stability: not blowing up!โ€ข Robustness: amount of disturbance that can be toleratedโ€ข Limited control effort

๐‘ข ๐‘ฆPLANT

๐‘ข๐‘++

๐‘›++

๐‘‘๐‘ฆ ๐‘›

~๐‘ฆCONTROLLER

Matteo Mischiati Control theory primer

Page 6: Crash course in control theory for neuroscientists and biologists

6

Control theory framework

ANALYSIS problem: infer the functional structure of the controller, given the observed performance of the overall system in multiple tasks

Goals: โ€ข Output regulation (disturbance rejection, homeostasis) : keep constant despite disturbance โ€ข Trajectory tracking : keep

Performance criteria:โ€ข Static performance (at steady state): e.g. โ€ข Dynamic performance: transient time, etcโ€ฆโ€ข Stability: not blowing up!โ€ข Robustness: amount of disturbance that can be toleratedโ€ข Limited control effort

++๐‘ข

๐‘›๐‘ฆ

PLANT

++

๐‘‘๐‘ข๐‘ ๐‘ฆ ๐‘›

~๐‘ฆCONTROLLER

?

Matteo Mischiati Control theory primer

Page 7: Crash course in control theory for neuroscientists and biologists

7

Example of analysis problem: uncovering the dragonfly control system

๐’— ๐‘ซ๐‘ญ

๐’‰๐’†๐’‚๐’…

๐’“

โ€ข We want to precisely characterize the foraging behavior of the dragonfly (what it does) to gain insight on its neural circuitry (how it does it).

๐’— ๐‘ซ๐‘ญ

๐’‰๐’†๐’‚๐’…๐’‡๐’๐’š

?

, relative to dragonfly, in ref. frame

dragonfly accel.

head rotation

dragonfly head, body & wing dynamics

dragonfly visual system

๐‘๐„๐“๐ˆ๐๐€? ๐“๐’๐ƒ๐ s?๐–๐ˆ๐๐†๐Œ๐”๐’๐‚๐‹๐„๐’๐๐„๐‚๐Š๐Œ๐”๐’๐‚๐‹๐„๐’

๐’ƒ๐’๐’…๐’š

๐’ƒ๐’๐’…๐’š

Matteo Mischiati Control theory primer

Page 8: Crash course in control theory for neuroscientists and biologists

8

Linear time-invariant systems

,

โ€ข Stability (of a system) have negative real partโ€ข Performance (of a system): depends on location of poles and zeros โ€ข Related to transfer function in frequency domain:

++๐‘ข

๐‘›๐‘ฆ

PLANT

++

๐‘‘๐‘ข๐‘ ๐‘ฆ ๐‘›

~๐‘ฆCONTROLLER

๐‘ƒ (๐‘ ) ++๐‘ˆ (๐‘ )

๐‘ (๐‘ )๐‘Œ (๐‘ )

PLANT

++

๐ท(๐‘ )๐‘ˆ๐ถ (๐‘ ) ๐‘Œ ๐‘›(๐‘ )~๐‘Œ (๐‘  )๐ถ (๐‘ )

CONTROLLER

Laplace transform

Y (๐‘  )=๐‘ƒ ( ๐‘  ) โˆ™๐‘ˆ (๐‘ )

Matteo Mischiati Control theory primer

Page 9: Crash course in control theory for neuroscientists and biologists

9

Linear time-invariant systems

Laplace transform for signals:โ€ข Final value theorem : (if limit exists)โ€ข If then

Typical reference/disturbance signals:- Step

- Ramp

- Sinusoid

๐‘ƒ (๐‘ ) ++๐‘ˆ (๐‘ )

๐‘ (๐‘ )๐‘Œ (๐‘ )

PLANT

++

๐ท(๐‘ )๐‘ˆ๐ถ (๐‘ ) ๐‘Œ ๐‘›(๐‘ )~๐‘Œ (๐‘  )๐ถ (๐‘ )

CONTROLLER

Y (๐‘  )=๐‘ƒ ( ๐‘  ) โˆ™๐‘ˆ (๐‘ )

๐‘ก

~๐‘ฆ (๐‘ก) ๐‘Ž

๐‘ก

~๐‘ฆ (๐‘ก) ๐‘Ž๐‘ก

๐‘ก

~๐‘ฆ (๐‘ก) sin (๐œ” ๐‘ก )

Matteo Mischiati Control theory primer

Page 10: Crash course in control theory for neuroscientists and biologists

10

โ€ข Control theory framework - linear time-invariant (LTI) case

โ€ข Properties of feedback - internal model principle

โ€ข Common control schemes - forward and inverse models, Smith predictor - state feedback, observers, optimal control

โ€ข A model of human response in manual tracking tasks (Kleinman et al. 1970, Gawthrop et al. 2011)

Matteo Mischiati Control theory primer

Page 11: Crash course in control theory for neuroscientists and biologists

11

Feedforward (inverse model)

StabilityDepends on poles (and zeros!) of

Performance (static and dynamic)Arbitrarily good if and its inverse exists and is stable:

Robustness to disturbance (disturbance rejection)None :

๐‘ƒ (๐‘ )๐‘ˆ (๐‘ ) ๐‘Œ (๐‘ )PLANT

++

๐ท(๐‘ )๐‘ˆ๐ถ (๐‘ )~๐‘Œ (๐‘  ) ๏ฟฝฬ‚๏ฟฝโˆ’1(๐‘ )

CONTROLLER

Y (๐‘  )=๐‘ƒ ( ๐‘  ) โˆ™๐‘ˆ (๐‘ )U c (๐‘  )= ๏ฟฝฬ‚๏ฟฝโˆ’1 ( ๐‘  ) โˆ™~๐‘Œ (๐‘ )

Matteo Mischiati Control theory primer

Page 12: Crash course in control theory for neuroscientists and biologists

12

Properties of Feedback

StabilityDepends on . Can potentially stabilize unstable plants.

Disturbance rejectionDepends on . Can potentially attenuate/cancel effect of

๐‘ƒ (๐‘ )๐‘ˆ (๐‘ ) ๐‘Œ (๐‘ )PLANT

++

๐ท(๐‘ )๐‘ˆ๐ถ (๐‘ )๐ธ (๐‘ )๐ถ (๐‘ )

CONTROLLER~๐‘Œ (๐‘  )

Y (๐‘  )=๐‘ƒ ( ๐‘  ) โˆ™๐‘ˆ (๐‘ )U c (๐‘  )=๐ถ ( ๐‘  ) โˆ™๐ธ(๐‘ )+-

Matteo Mischiati Control theory primer

Page 13: Crash course in control theory for neuroscientists and biologists

13

Properties of Feedback

Static performance

Letโ€™s see how different controllers perform:

๐‘ƒ (๐‘ )๐‘ˆ (๐‘ ) ๐‘Œ (๐‘ )PLANT

++

๐ท(๐‘ )๐‘ˆ๐ถ (๐‘ )๐ธ (๐‘ )๐ถ (๐‘ )

CONTROLLER~๐‘Œ (๐‘  )

+-๐‘’ .๐‘” . 1

1+๐œ ๐‘ ๐‘˜

Matteo Mischiati Control theory primer

Page 14: Crash course in control theory for neuroscientists and biologists

14

Properties of Feedback

Static performance

Proportional controller: errors in tracking a step

(but small if is large)

cannot track a ramp at all

๐‘ƒ (๐‘ )๐‘ˆ (๐‘ ) ๐‘Œ (๐‘ )PLANT

++

๐ท(๐‘ )๐‘ˆ๐ถ (๐‘ )๐ธ (๐‘ )๐ถ (๐‘ )

CONTROLLER~๐‘Œ (๐‘  )

+-

๐‘Ž๐‘ 

๐‘Ž๐‘ 2

๐‘’ .๐‘” . 11+๐œ ๐‘ 

๐‘˜

Matteo Mischiati Control theory primer

Page 15: Crash course in control theory for neuroscientists and biologists

15

Properties of Feedback

Static performance

Proportional+Integral (PI) controller: perfect in tracking a step

๐‘ƒ (๐‘ )๐‘ˆ (๐‘ ) ๐‘Œ (๐‘ )PLANT

++

๐ท(๐‘ )๐‘ˆ๐ถ (๐‘ )๐ธ (๐‘ )๐ถ (๐‘ )

CONTROLLER~๐‘Œ (๐‘  )

+-

๐‘Ž๐‘ 

๐‘Ž๐‘ 2

11+๐œ ๐‘ ๐‘˜๐‘+

๐‘˜๐‘–

๐‘ 

Matteo Mischiati Control theory primer

( but   small   if  ๐‘˜๐‘–   is   large )

Page 16: Crash course in control theory for neuroscientists and biologists

16

Properties of FeedbackStatic performance

To perfectly track: We need: Step

Ramp

How about sinusoid? We need:

๐‘Ž๐‘ 

๐‘Ž๐‘ 2

๐œ”๐‘ 2+๐œ”2

๐‘ƒ (๐‘ )๐ถ ( ๐‘  )=1๐‘  โ‹…(๐‘ƒ ( ๐‘ ) ๐ถ (๐‘  )) โ€ฒ

๐‘ƒ (๐‘ )๐ถ ( ๐‘  )= 1๐‘ 2

โ‹…(๐‘ƒ ( ๐‘  ) ๐ถ (๐‘  )) โ€ฒ

๐บ ( ๐‘ )

Matteo Mischiati Control theory primer

Page 17: Crash course in control theory for neuroscientists and biologists

17

Internal model principleTo perfectly track: We need: Step

Ramp

Sinusoid

Internal model principle: To achieve asymptotical tracking of a reference signal (rejection of a disturbance signal) via feedback, the controller (or the plant) must contain an โ€œinternal modelโ€ of the signal.

It is a necessary condition, not a sufficient condition (need also stability)

๐‘Ž๐‘ 

๐‘Ž๐‘ 2

๐œ”๐‘ 2+๐œ”2

๐‘ƒ (๐‘ )๐ถ ( ๐‘  )=1๐‘  โ‹…(๐‘ƒ ( ๐‘ ) ๐ถ (๐‘  )) โ€ฒ

๐‘ƒ (๐‘ )๐ถ ( ๐‘  )= 1๐‘ 2

โ‹…(๐‘ƒ ( ๐‘  ) ๐ถ (๐‘  )) โ€ฒ

๐‘ƒ (๐‘ )๐ถ ( ๐‘  )= 1๐‘ 2+๐œ”2 โ‹…(๐‘ƒ ( ๐‘  ) ๐ถ (๐‘  )) โ€ฒ

Matteo Mischiati Control theory primer

Page 18: Crash course in control theory for neuroscientists and biologists

18

Feedback vs. Feedforward

Feedbackโ€ข is needed if plant is unstable or for disturbance rejectionโ€ข does not require full knowledge of the plantโ€ข incorporating the knowledge of possible reference and disturbance

signals is very useful (internal model principle)

Feedforwardโ€ข if plant is known, and no disturbance, its performance canโ€™t be beatโ€ข no sensory delays

๐‘Œ (๐‘  )= ๐‘ƒ ( ๐‘ ) ๐ถ (๐‘  )1+๐‘ƒ (๐‘  )๐ถ (๐‘† )

~๐‘Œ ( ๐‘  )+ ๐‘ƒ ( ๐‘  )1+๐‘ƒ (๐‘  ) ๐ถ ( ๐‘† )

๐ท (๐‘  )๐‘Œ (๐‘  )=๐‘ƒ (๐‘  ) โˆ™ (๏ฟฝฬ‚๏ฟฝ ยฟยฟโˆ’1 ( ๐‘ ) โ‹…~๐‘Œ ( ๐‘ )+๐ท (๐‘ ))โ‰ˆ~๐‘Œ (๐‘ )+๐‘ƒ (๐‘ )โ‹… ๐ท(๐‘ )ยฟ

Matteo Mischiati Control theory primer

Page 19: Crash course in control theory for neuroscientists and biologists

19

โ€ข Control theory framework - linear time-invariant (LTI) case

โ€ข Properties of feedback - internal model principle

โ€ข Common control schemes - forward and inverse models, Smith predictor - state feedback, observers, optimal control

โ€ข A model of human response in manual tracking tasks (Kleinman et al. 1970, Gawthrop et al. 2011)

Matteo Mischiati Control theory primer

Page 20: Crash course in control theory for neuroscientists and biologists

20

Feedback + Feedforward

The feedback controller kicks in only if inverse model is incorrect.

๐‘ƒ (๐‘ )๐‘ˆ (๐‘ ) ๐‘Œ (๐‘ )PLANT

++

๐‘ˆ ๐น๐ต(๐‘ )

๐ธ (๐‘ )๐ถ (๐‘ )~๐‘Œ (๐‘  )

+-

๏ฟฝฬ‚๏ฟฝโˆ’1(๐‘ )INVERSE MODEL

FEEDBACK

๐‘ˆ ๐น๐น(๐‘ )

Matteo Mischiati Control theory primer

Page 21: Crash course in control theory for neuroscientists and biologists

21

Feedback + Feedforward

The feedback controller kicks in only if inverse model is incorrect.

The corrective command from the feedback path can be also used as a learning/adaptation signal by the inverse model.

๐‘ƒ (๐‘ )๐‘ˆ (๐‘ ) ๐‘Œ (๐‘ )PLANT

++

๐‘ˆ ๐น๐ต(๐‘ )

๐ธ (๐‘ )๐ถ (๐‘ )~๐‘Œ (๐‘  )

+-

๏ฟฝฬ‚๏ฟฝโˆ’1(๐‘ )INVERSE MODEL

FEEDBACK

๐‘ˆ ๐น๐น(๐‘ )

Matteo Mischiati Control theory primer

Page 22: Crash course in control theory for neuroscientists and biologists

22

Feedback + Feedforward

The feedback controller kicks in only if inverse model is incorrect.

The corrective command from the feedback path can be also used as a learning/adaptation signal by the inverse model.

Significant sensory delays are still a problem.

๐‘ƒ (๐‘ )๐‘ˆ (๐‘ ) ๐‘Œ (๐‘ )PLANT

++

๐‘ˆ ๐น๐ต(๐‘ )

๐ธ (๐‘ )๐ถ (๐‘ )~๐‘Œ (๐‘  )

+-

๏ฟฝฬ‚๏ฟฝโˆ’1(๐‘ )INVERSE MODEL

FEEDBACK

๐‘ˆ ๐น๐น(๐‘ )

๐‘’โˆ’ ๐‘ ๐œ

Matteo Mischiati Control theory primer

Page 23: Crash course in control theory for neuroscientists and biologists

23

Forward model

The control signal is sent through a model of the plant (โ€œforward modelโ€) to predict the sensory output.

๐‘ƒ (๐‘ )๐‘Œ (๐‘ )PLANT

๐‘ˆ๐ถ (๐‘ )๐ธ (๐‘ )๐ถ (๐‘ )~๐‘Œ (๐‘  )

+-

๏ฟฝฬ‚๏ฟฝ (๐‘ )FORWARD MODEL

CONTROLLER

predicted sensory output

Matteo Mischiati Control theory primer

Page 24: Crash course in control theory for neuroscientists and biologists

24

Forward model

The control signal is sent through a model of the plant (โ€œforward modelโ€) to predict the sensory output.

The (delayed) sensory output can be used as a learning/adaptation signal for the forward model.

Direct use of the delayed sensory output in the control is problematic because of time mismatch.

๐‘ƒ (๐‘ )๐‘Œ (๐‘ )PLANT

๐‘ˆ๐ถ (๐‘ )๐ธ (๐‘ )๐ถ (๐‘ )~๐‘Œ (๐‘  )

+-

๏ฟฝฬ‚๏ฟฝ (๐‘ )FORWARD MODEL

๐‘’โˆ’ ๐‘ ๐œ

CONTROLLER

predicted sensory output

Matteo Mischiati Control theory primer

Page 25: Crash course in control theory for neuroscientists and biologists

25

Smith predictor

Assuming and :

Delay has been moved outside the control loop.

PLANT

๐‘ƒ (๐‘ )๐‘Œ (๐‘ )๐‘ˆ๐ถ (๐‘ )๐ธ (๐‘ )๐ถ (๐‘ )~๐‘Œ (๐‘  )

+- -

๏ฟฝฬ‚๏ฟฝ (๐‘ )๐‘’โˆ’ ๐‘ ๐œ

๐‘’โˆ’ ๐‘ ๏ฟฝฬ‚๏ฟฝ

+ -

delay model

plant model

predicted sensory output

error in sensory output prediction

CONTROLLER

Matteo Mischiati Control theory primer

Page 26: Crash course in control theory for neuroscientists and biologists

26

Models of the cerebellum

1. Cerebellum as an inverse model in a feedback+feedforward motor control scheme

Wolpert, Miall & Kawato, 1998 โ€œInternal models in the cerebellumโ€ Not in the sense of my presentation !

Matteo Mischiati Control theory primer

Page 27: Crash course in control theory for neuroscientists and biologists

27

Models of the cerebellum

2. Cerebellum as aforward model in a Smith predictor control scheme

Wolpert, Miall & Kawato, 1998 โ€œInternal models in the cerebellumโ€

Matteo Mischiati Control theory primer

Page 28: Crash course in control theory for neuroscientists and biologists

28

State feedback

๐‘ฆPLANT

๐‘ข~๐‘ฆCONTROLLER

๐’™

๐‘ฆPLANT

๐‘ข~๐‘ฆCONTROLLER

๐’™

Linear time-invariant case:

Matteo Mischiati Control theory primer

Page 29: Crash course in control theory for neuroscientists and biologists

29

State feedback

If the plant is reachable, it is possible to achieve any arbitrary choice of closed-loop poles with an appropriate linear and memoryless controller:

๐‘ฆPLANT

๐‘ข~๐‘ฆCONTROLLER

๐’™

๐‘ฆPLANT

๐‘ข~๐‘ฆCONTROLLER

๐’™

Linear time-invariant case:

๐พ

๐พ ๐‘Ÿ +-

Matteo Mischiati Control theory primer

Page 30: Crash course in control theory for neuroscientists and biologists

30

Observers

Observer: dynamical system designed to estimate the full state (when not fully available)

If the plant is observable, it is possible to achieve (with right )

๐‘ฆPLANT

๐‘ข

๐’™  )

OBSERVER

Matteo Mischiati Control theory primer

Page 31: Crash course in control theory for neuroscientists and biologists

31

Observers

Observer: dynamical system designed to estimate the full state (when not fully available)

If the plant is observable, it is possible to achieve (with right )

Separation principle: if the plant is reachable & observable, can replace with and design independently of (use observed state just as real one)

๐‘ฆPLANT

๐‘ข

๐’™  )

~๐‘ฆ

๐พ

๐พ ๐‘Ÿ +-

OBSERVER

Matteo Mischiati Control theory primer

Page 32: Crash course in control theory for neuroscientists and biologists

32

Optimal control

Linear Quadratic Gaussian (LQG) optimal output regulation: linear plant, additive Gaussian white noise on state (with covariance ) and output (); minimize quadratic cost :

Solution is linear observer (Kalman filter) with linear memoryless controller:

๐‘ฆPLANT

๐‘ข

๐’™  )

~๐‘ฆ=0

๐พ

+-

OBSERVER (KALMAN FILTER)

๐’…++

๐‘›๐‘ฆ ๐‘›

Matteo Mischiati Control theory primer

Page 33: Crash course in control theory for neuroscientists and biologists

33

Internal model principle

Internal model principle (state space): to achieve asymptotical tracking of a reference signal (rejection of a disturbance signal) produced by an exosystem, the controller must contain an โ€œinternal modelโ€ of the exosystem.(Francis & Wonham, Automatica, 1970)

It is a necessary condition, not a sufficient condition (need also stability).

General principle with extensions to nonlinear systems.

๐‘ฆPLANT

๐’–~๐‘ฆ ๏ฟฝฬ‡๏ฟฝ=๐‘†๐œผ+๐บ๐‘’+-๐‘’

CONTROLLER

๐œผINT.MODELEXOSYSTEM

Matteo Mischiati Control theory primer

Page 34: Crash course in control theory for neuroscientists and biologists

34

โ€ข Control theory framework - linear time-invariant (LTI) case

โ€ข Properties of feedback - internal model principle

โ€ข Common control schemes - forward and inverse models, Smith predictor - state feedback, observers, optimal control

โ€ข A model of human response in manual tracking tasks (Kleinman et al. 1970, Gawthrop et al. 2011)

Matteo Mischiati Control theory primer

Page 35: Crash course in control theory for neuroscientists and biologists

35

Human response modelD. L. Kleinman, S. Baron and W. H. Levison, โ€œAn Optimal Control Model of Human Response. Part I: Theory and Validationโ€, Automatica, 1970 (revisited, more recently, by Gawthrop et al. 2011)

Task: by controlling a joystick (position, velocity or acceleration control), subject is asked to keep a cursor on the screen as close as possible to a target location, while unknown disturbances are applied by the computer.

Plant:๐‘š๐‘œ๐‘›๐‘–๐‘ก๐‘œ๐‘Ÿ ๐‘Œ (๐‘ )

++

(computer)

๐‘ˆ (๐‘ ) ๐‘—๐‘œ๐‘ฆ๐‘ ๐‘ก๐‘–๐‘๐‘˜ ๐‘ƒ ๐ฝ๐‘€ ( ๐‘  ) โˆˆ{๐‘˜ , ๐‘˜๐‘  , ๐‘˜๐‘ 2 }

โ€œHuman controllerโ€:

dynamics

๐‘ˆ (๐‘ )++

๐‘š๐‘œ๐‘ก๐‘œ๐‘Ÿ ๐‘›๐‘œ๐‘–๐‘ ๐‘’

computation

๐‘ƒ ๐‘ (๐‘  )๐ถ (๐‘  )๐‘’โˆ’ ๐‘ ๐œ

Matteo Mischiati Control theory primer

Page 36: Crash course in control theory for neuroscientists and biologists

36

Human response modelTask: Output regulation/disturbance rejection with linear time-invariant plant and significant delay on any potential feedback line

๐‘’โˆ’ ๐‘ ๐œ

๐‘ƒ (๐‘ ) ++๐‘ˆ (๐‘ )

๐‘ (๐‘ )๐‘Œ (๐‘ )

++

๐ท(๐‘ )๐‘ˆ๐ถ (๐‘ ) ๐‘Œ ๐‘›(๐‘ )๐ถ (๐‘ )

CONTROLLER

๐‘ƒ ๐ฝ๐‘€ ( ๐‘ ) โˆ™๐‘ƒ๐‘ (๐‘  )

ANALYSIS problem: infer a model of the neural controller from the observed performance of the subjects tested.

Matteo Mischiati Control theory primer

Page 37: Crash course in control theory for neuroscientists and biologists

37

Human response modelTask: Output regulation/disturbance rejection with linear time-invariant plant and significant delay on any potential feedback line

๐‘’โˆ’ ๐‘ ๐œ

๐‘ƒ (๐‘ ) ++๐‘ˆ (๐‘ )

๐‘ (๐‘ )๐‘Œ (๐‘ )

++

๐ท(๐‘ )๐‘ˆ๐ถ (๐‘ ) ๐‘Œ ๐‘›(๐‘ )๐ถ (๐‘ )

CONTROLLER

๐‘ƒ ๐ฝ๐‘€ ( ๐‘ ) โˆ™๐‘ƒ๐‘ (๐‘  )

ANALYSIS problem: infer a model of the neural controller from the observed performance of the subjects tested.

So what are the performances?โ€ข Very good and robust to disturbances up to 2Hz (sum of sinusoids), for all

three types of joystick dynamicsโ€ข Apparently delay-free

Must be some kind of FEEDBACK + FORWARD model !

Matteo Mischiati Control theory primer

Page 38: Crash course in control theory for neuroscientists and biologists

38

Human response modelHypothesis: optimal control to minimize average error & control effort

Theoretical solution * (with assumptions similar to LQG problem): - Optimal observer (Kalman filter) to estimate delayed state (as in LQG)- Optimal least mean-squared predictor to predict current state- Optimal linear memoryless controller (as in LQG)

๐‘ฆPLANT

๐‘ข

๏ฟฝฬ‚๏ฟฝ (๐‘กโˆ’๐œ )KALMAN FILTER

~๐‘ฆ=0

๐พ

+-

๐’…++

๐‘›๐‘ฆ ๐‘›

* D. Kleinman, โ€œOptimal control of linear systems with time-delay and observation noiseโ€, IEEE Trans. Autom. Control, 1969

๐‘’โˆ’ ๐‘ ๐œPREDICTOR

๏ฟฝฬ‚๏ฟฝ (๐‘ก) ๐‘ฆ ๐‘›(๐‘กโˆ’๐œ )

Matteo Mischiati Control theory primer

Page 39: Crash course in control theory for neuroscientists and biologists

39

Controller freq. response with plant Controller freq. response with plant

Matteo Mischiati Control theory primer

Page 40: Crash course in control theory for neuroscientists and biologists

40

Human response modelGawthrop et al. * (2011): - Introduced, in both estimator and predictor, a copy of the exosystem

generating sinusoidal disturbances (internal model principle!)- Show that intermittent control is also compatible with results

* P. Gawthrop et al., โ€œIntermittent control: a computational theory of human controlโ€, Biol. Cybern., 2011

Actual response to sinusoid Response without int.model

Matteo Mischiati Control theory primer

Page 41: Crash course in control theory for neuroscientists and biologists

41

โ€ข Crash course in control theory (for LTI systems) - many concepts can be extended to more general settings

โ€ข An example of control-theoretic approach to modeling sensorimotor loops

- need to iterate between modeling/experiments to discern among alternatives and improve understanding of the system

Conclusions

THANK YOU FOR YOUR ATTENTION !

Matteo Mischiati Control theory primer