Crane Fluid Flow Problems

345
Art Montemayor August 21, 2006 Rev: 0 Page 1 of 345 FileName: document.xls WorkSheet: Introduction I received my first copy of Crane's Technical Paper No. 410, titled " Flow of Flui fittings, and pipe", in October 1962. It was given to me free of charge by the Cr the business account at Liquid Carbonic Division of General Dynamics in Chicago, w I had just completed my first year practicing engineering at Liquid Carbonic's aff Jamaica Oxygen and Acetylene Ltd. and Jamaica Carbonics. I had spent a year in Ja Manager, replacing Alf Newton who had gone to Barbados and Trinidad to erect a sma Barbados and an industrial gas facility (Oxygen and Acetylene) at Biljah Road in T My original copy was the 1957 copyrighted version, sixth printing. It had a stat This was my first experience in dealing with fluid flow problems using the Darcy e corresponding Moody Chart. At Texas A&M we were taught the Fanning equation and i friction factor (the Darcy friction factor = 4 x the Fanning friction factor). We had never been exposed to such practical and detailed fluid flow problems at Te was not only interesting, but it also taught the young engineer how to cope with a plant fluid problems. I went through all 27 example problems which were given in Later, during my tenure at Quaker Oats Chemical Division in Chicago (1968 - 1973), of the 1965 Crane version (9th printing). The example problems were basically the the same manner as in the 1957 version. The 1965 version had a stated price of $ When I worked for Allstates Engineering on DuPont projects (1989 -1994) I obtained printing) and it had a stated price of $8.00. This is the version that this Work I still retain the original 1957 version copy, although the original hard, orange have cracked and disintegrated from the stainless steel spiral hinge. I have transcribed the Example problems given in the 1979 (18th printing) Edition added those problems that were given in the 1957 Edition but were not included in I have included in each of the 1979 Example problem solutions those solutions that and that were resolved in a different manner. This enables the reader to see the solving these problems and how the methods have increased the accuracy of the answ My reason for transcribing these Example problems into the Spreadsheet format is t method by which an engineer can quickly detect the methodology and follow the math Emphasis is put on the logic and reasoning employed rather than worrying about the The spreadsheet allows the reader to insert a variety of different input values an in absorbing the manner in which the ultimate answer is affected. Art Montemayor

description

Crane Fluid Flow Problems

Transcript of Crane Fluid Flow Problems

Page 1: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 1 of 287 FileName: document.xlsWorkSheet: Introduction

I received my first copy of Crane's Technical Paper No. 410, titled " Flow of Fluids through Valves, fittings, and pipe", in October 1962. It was given to me free of charge by the Crane salesman that took care of the business account at Liquid Carbonic Division of General Dynamics in Chicago, where I worked.

I had just completed my first year practicing engineering at Liquid Carbonic's affiliated companies in Jamaica,Jamaica Oxygen and Acetylene Ltd. and Jamaica Carbonics. I had spent a year in Jamaica as ProductionManager, replacing Alf Newton who had gone to Barbados and Trinidad to erect a small CO2 plant in Barbados and an industrial gas facility (Oxygen and Acetylene) at Biljah Road in Trinidad.

My original copy was the 1957 copyrighted version, sixth printing. It had a stated price of $10.00.

This was my first experience in dealing with fluid flow problems using the Darcy equation together with the corresponding Moody Chart. At Texas A&M we were taught the Fanning equation and its corresponding friction factor (the Darcy friction factor = 4 x the Fanning friction factor). We had never been exposed to such practical and detailed fluid flow problems at Texas A&M. This booklet was not only interesting, but it also taught the young engineer how to cope with and resolve practicalplant fluid problems. I went through all 27 example problems which were given in Section 4 of the booklet.

Later, during my tenure at Quaker Oats Chemical Division in Chicago (1968 - 1973), I would receive a copy of the 1965 Crane version (9th printing). The example problems were basically the same and resolved in the same manner as in the 1957 version. The 1965 version had a stated price of $2.00.

When I worked for Allstates Engineering on DuPont projects (1989 -1994) I obtained the 1979 version (18th printing) and it had a stated price of $8.00. This is the version that this Workbook's examples are based on.

I still retain the original 1957 version copy, although the original hard, orange carboard front and back coverhave cracked and disintegrated from the stainless steel spiral hinge.

I have transcribed the Example problems given in the 1979 (18th printing) Edition into this workbook and alsoadded those problems that were given in the 1957 Edition but were not included in the 1979 Edition. Additionally,I have included in each of the 1979 Example problem solutions those solutions that were given in the 1957 Editionand that were resolved in a different manner. This enables the reader to see the difference in the technology of solving these problems and how the methods have increased the accuracy of the answer.

My reason for transcribing these Example problems into the Spreadsheet format is to achieve a rapid and efficient method by which an engineer can quickly detect the methodology and follow the mathematical computations. Emphasis is put on the logic and reasoning employed rather than worrying about the mathematical mechanics.The spreadsheet allows the reader to insert a variety of different input values and thereby facilitates the engineerin absorbing the manner in which the ultimate answer is affected.

Art Montemayor

Page 2: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 2 of 287 FileName: document.xlsWorkSheet: Example 4-1

Example 4-1 (18th printing)

Given:of 50 gallons per minute.

Find: The Reynolds Number and the friction factor.

Solution: The Reynolds Number is defined as:

Where,Q = 50 gallons/min

62.22d = 2.067 inches

m = 0.85733 cP

Re = 88,830f = 0.0182 (from the Moody Chart, for smooth flow)

Water at 80 oF is flowing through 70 feet of 2-inch standard wall plastic pipe (smooth wall) at a rate

r = lb/ft3

Re=50. 6 Q ρ

d μ

Page 3: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 3 of 287 FileName: document.xlsWorkSheet: Example 4-2

Example 4-2 (18th printing)

Given: A 6-inch Class 125 iron Y-pattern globe valve has a flow coefficient, Cv , of 600.

Find: Resistance coefficent, K, the the equivalent lengths L/D and L for flow in the zone of complete turbulence.

olution: K, L/D, and L should be given in terms of 6-inch Schedule 40 pipe; When the resistance coefficient K is used in flow equations, the velocity and internal diameter dimensions used in the equation must be based on the dimensions of the basis Schedule numbers regardless of the pipe with which the valve may be installed.

The values in the "K" Factor Table are associated with the internal diameter of the following pipe schedule numbers for the various ANSI Classes of valves and fittings.

Class 300 and lower Schedule 40Class 400 and 600 Schedule 80Class 900 Schedule 120Class 1500 Schedule 160Class 2500 (sizes 1/2 to 6") XXSClass 2500 (sizes 8" & up) Schedule 160

where,d = 6.065 inches = 0.5054 ft

K = 3.36 (based on 6", Schedule 40 pipe)

f = 0.015 (from Moody Chart; for 6.065" ID pipe in fully turbulent flow range)

L / D = 224

L = (L / D) (D) = 113 feet

In the 1957 6th printing edition, an alternate solution is offered:

L = 113 feet

K=894 . 01 d4

(CV )2

LD=

Kf

L=74 .3 d5

f CV2

Page 4: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 4 of 287 FileName: document.xlsWorkSheet: Example 4-3

Example 4-3 (18th printing)

Given: A 4-inch Class 600 steel conventional angle valve with full area seat.

Find: Resistance coefficient K, flow coefficient CV, and equivalent lengths L / D and L for flow in the zone of complete turbulence.

Solution: K, L / D, and L should be given in terms of 4-inch Schedule 80 pipe; When the resistance coefficient K is used in flow equations, the velocity and internal diameter dimensions used in the equation must be based on the dimensions of the basis Schedule numbers regardless of the pipe with which the valve may be installed.

The values in the "K" Factor Table are associated with the internal diameter of the following pipe schedule numbers for the various ANSI Classes of valves and fittings.

Class 300 and lower Schedule 40Class 400 and 600 Schedule 80Class 900 Schedule 120Class 1500 Schedule 160Class 2500 (sizes 1/2 to 6") XXSClass 2500 (sizes 8" & up) Schedule 160

From the "K" Factor tables,

d = 3.826 inches

0.017 (from table on page A-26)

K = 2.55

274

L / D = 150

L = 47.8 feet

fT =

CV =

K=150 f T

CV=29 .9 d2

√K

K=fLD

; orLD=

Kf T

Page 5: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 5 of 287 FileName: document.xlsWorkSheet: Example 4-3

In the 1957 6th Printing edition, the problem is worded and resolved differently:

Given: A 4-inch 600-pound conventional angle valve with no obstruction in flat seat.

Find: The resistance coefficient K, flow coefficient Cv, and the equivalent lengths L / D and L for fully turbulent flow.

Solution: K, L / D, and L should be given in terms of 4-inch Schedule 80 pipe;

L/D = 145 (from L/D tables for valves)

d = 3.826 inches

L = 46

K = 2.4 (from Nomograph for equivalent lengths and K)

Cv = 283

Page 6: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 6 of 287 FileName: document.xlsWorkSheet: Example 4-4

Example 4-4 (18th printing)

Given: A 6 x 4-inch Class 600 steel gate valve with inlet and outlet ports conically tapered from back of body rings to valve ends. Face-to-face dimensions is 22" and back of seat ring to back of seat ring is about 6".

Find:

Solution: K, L/D, and L should be given in terms of 6-inch Schedule 80 pipe; When the resistance coefficient K is used in flow equations, the velocity and internal diameter dimensions used in the equation must be based on the dimensions of the basis Schedule numbers regardless of the pipe with which the valve may be installed.

The values in the "K" Factor Table are associated with the internal diameter of the following pipe schedule numbers for the various ANSI Classes of valves and fittings.

Class 300 and lower Schedule 40Class 400 and 600 Schedule 80Class 900 Schedule 120Class 1500 Schedule 160Class 2500 (sizes 1/2 to 6") XXSClass 2500 (sizes 8" & up) Schedule 160

(from K Factor Table)

3.826 inches

5.761 inches

0.015

0.66

0.1209

1.40

L / D = 93 diameters of 6" Schedule 80 pipe

L = 45 feet of 6" Schedule 80 pipe

K2 for any flow condition, and L / D and L for flow in the zone of complete turbulence.

K1 = 8 fT

d1 =

d2 =

fT =

b =

tan (q / 2) = = sin (q / 2) --approximately

K2 =

22"

5.761"

6"

3.826"

K2=K1+sin

θ2

[0 . 8 (1−β2)+2 . 6 (1−β2)2 ]β4

K=fLD

; orLD=

Kf T

β=d1

d2

Page 7: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 7 of 287 FileName: document.xlsWorkSheet: Example 4-4

In the 1957 6th Printing edition, the problem is worded differently:

Given: A 6 x 4-inch 600-pound steel gate valve.

Find: The valve resistance coefficient K, and the equivalent lengths L / D and L, for fully turbulent flow of Reynolds numbers indicated on the Moody Friction Factor diagram.

Solution: K, L / D, and L should be given in terms of 6-inch Schedule 80 pipe;

For venturi port gate valves:

For 6-inch Schedule 80 pipe:d = 5.761 inchesD = 0.4801 feet

1,101.5

For 4-inch Schedule 80 pipe:d = 3.826 inches

214.28

L/D = 13 This value is for a 4" constant diameter port gate valve

66.8 This value is for 6" Schedule 80 pipe

0.0151 This is the fully turbulent friction factor for 6" Schedule 80 pipeas seen in the Moody chart

This is the definition of the resistance coefficient, K

K = 1.01 This is based on the 6" Schedule 80 pipe

L = (L/D) D = 32.1 feet This equivalent pipe length is based on the 6" Schedule 80 pipe

d4 = in4

d4 = in4

(L/D)a =

fT =

( LD )

a=( L

D )b (

d a

db)

4

=( LD )

b

(da )4

(db )4

K=f ( LD )

Page 8: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 8 of 287 FileName: document.xlsWorkSheet: Example 4-5

Example 4-5 (18th printing)

Given:

Find: The proper size check valve and the pressure drop. The valve should be sized so that the disc is fully lifted at the specified flow.

Solution: For all practical purposes, it can be assumed that the pressure drop or head loss due to the flow of

The minimum velocity required to lift a check valve's disc to the full-open and stable position has been determined by tests for numerous types of check and foot valves, and is given in the "K" Factor Table. It is expressed in terms of a constant times the square root of the specific volume of the fluid being handled, making it applicable for use with any fluid.

(from K factor table)

(the "continuity" equation)

(From K Factor Table)

(From K Factor Table)

(Definition of the "Beta" ratio)

2.469 inches (for 2-1/2" Schedule 40 pipe)

3.068 inches (for 3" Schedule 40 pipe)

0.01605

62.305

0.018 (for fully turbulent flow in 2-1/2" or 3" pipe)Q = 80 gpm

5.1 ft/sec

v = 3.5 ft/sec (for the 3" check valve)

Note that the mean flow velocity of the 3" check valve is less than the recommended.Try a smaller, 2-1/2" check valve instead.

v = 5.4 ft/sec (for the 2-1/2" check valve)

Based on the above, a 2-1/2" check valve is recommended to be installed in the 3" pipeusing concentric reducers.

A globe type, lift check valve with a wing-guided disc is required in a 3-inch Schedule 40 horizontal

pipe carrying 70 oF water at the rate of 80 gallons per minute.

fluids in the turbulent range through valves and fittings varies as the square of the velocity (DP = k v2 ).

d1 =

d2 =

ft3/lb (the specific volume of water at 70 oF)

r = lb/ft3 (the density of water at 70 oF)

fT =

vmin =

vmin=40 √V̄

v=0. 408 Q

d2

ΔP=17 . 99 x 10−6 K ρ Q2

d4

K1=600 f T

K2=K1+β [0. 5 (1−β2)+(1−β2)2]

β 4

β=d1

d2

V̄ =

Page 9: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 9 of 287 FileName: document.xlsWorkSheet: Example 4-5

0.80 (this is the Beta ratio between the check valve and the pipe)

26

2.0 psi (pressure drop of 80 gpm through the 2-1/2" check valve)

In the 1957 6th Printing edition, the problem is worded differently:

Given:

Find: The proper size check valve and the pressure drop. The valve should be sized so that the disc is fully lifted under normal flow conditions; see page 2-7 for discussion and page A-30 for minimum flow.

Solution:

Calculate the Reynolds Number to determine the friction factor based on flow in the 3-inch pipe.

Q = 100 gpm2.0 psi This is the minimum pressure drop required across the globe lift check valve in

order to provide sufficient flow to lift the disc fully. This is given in page A-30.L/D = 450 This is the same as for a globe valve; also given in page A-30.

62.305d = 3.068 inches This is the ID of the 3-inch Schedule 40 pipe.

0.975 cP

Re = 105,396 This places the flow in the Transition Zone within the Moody Chart.

f = 0.021 The friction factor taken from the Moody Chart

53.0

88.597 while thatfor a 2-1/2 inch size similar check valve is 37.161It is evident that for this flow condition the pressure drop through a wide-open valve is more than 2.0 psi for the

b =

K2 is the value of the resistance coefficient in terms of the larger pipe size and is determined by

basically dividing K1 by b4.

K2 =

DP =

A globe type, lift check valve with a wing-guided disc is required in a 3-inch Schedule 40 horizontal

pipe carrying 70 oF water at the rate of 100 gallons per minute.

Solve the Darcy equation for the value of d4 :

DP =

r = lb/ft3 This is the density of water at 70 oF.

m = This is the viscosity of the 70 oF water.

d4 =

From the pipe tables, it is seen that the value of the d4 parameter for the 3-inch pipe is

ΔP=0 . 00001799 f (L D) ρ Q2

d 4

d 4=0. 00001799 f (L D) ρ Q2

ΔP

Re=50. 6 Q ρ

d μ

Page 10: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 10 of 287 FileName: document.xlsWorkSheet: Example 4-5

2-1/2 inch size and less than 2.0 psi for the 3-inch size. Therefore, the 3-inch valve would not be fully lifted and

450

88.597

37.161

1,073

2.85 psi

a 2-1/2 inch size check valve should be used in this flow application.

(L/D)b =

(da)4 =

(db)4 =

(L/D)a =

DP =

( LD )

a

=( LD )

b ( (da)4

(db)4 )

Page 11: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 11 of 287 FileName: document.xlsWorkSheet: Example 4-6

Example 4-6 (18th printing)

Given:

Quantity Item200 feet 3" Schedule 40 pipe

6

1

entrance is flush with the inside of the tank

Find: The water velocity in the pipe and the rate of discharge in gallons per minute.

Solution:

K = 0.5 (for pipe entrance at the tank)

K = 1.0 (for pipe exit at the end)

0.018 (for fully turbulent flow in 3" pipe)

2.375 inches (bore of the reduced port ball valve)

3.068 inches (inside diameter of the 3" pipe)

For the K of a ball valve, the normal formula must be expanded in order to compensate for the different inlet and outlet angles:

0.77 (Beta ratio of the valve's bore to the pipe ID)

sin(16/2)= 0.14 (this sine value is for the valve's inlet half angle)

sin(30/2)= 0.26 (this sine value is for the valve's outlet half angle)

0.054

0.58 (This is the K for the ball valve)

K = 0.54 (This is the K for one screwed elbow)K = 3.24 (This is the K for the 6 elbows)

K = f (L./ D) = 14.08 (This is the K for the 200 feet of 3" straight pipe)

Water at 60 oF is discharged from a tank with 22-feet of average head to the atmosphere through:

3" standard 90o threaded elbows

3" flanged ball valve having a 2-3/8" diameter seat, 16o

conical inlet, and 30o conical outlet end. Sharp-edged

fT =

d1 =

d2 =

b =

Sin q/2 =

Sin q/2 =

K1 = 3 fT =

K2 =

30 fT =

22'

hL=Kv2

2 gor , v=√ 2 g hL

K

v=0 .408Q

d2or , Q=2. 451 v d2

K2=K1+0 . 8 sin

θ2

(1−β2 )+2 . 6 sinθ2

(1−β2 )2

β4

Page 12: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 12 of 287 FileName: document.xlsWorkSheet: Example 4-6

The K for the system is composed of the Ks for the entrance, pipe, elbows, ball valve, and exit.

K (total) = 19.4

v = 8.5 ft/sec (This is the mean velocity of the water in the 3" pipe)

Q = 197 gpm (This is the water flowrate exiting the system)

In order to verify that the assumption that the flow is in the fully turbulent zone,

Reynolds Number = 180,742 (Reynolds number in the 3" pipe)

From the Moody Chart, the corresponding f = 0.0195 and this is not in the fully turbulent zone.Although this flow is in the transition zone, the difference is small enough to forego any correctionof K for the pipe.

The solution is valid from a practical point.

123.9 d v r / m =

Page 13: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 13 of 287 FileName: document.xlsWorkSheet: Example 4-7

Example 4-7 (18th printing)

Given:head.

Find: The oil velocity in the pipe and the rate of flow in gallons per minute.

Solution:

(Friction factor for laminar flow)

K = 0.5 (for pipe entrance at the tank)

K = 1.0 (for pipe exit at the end)

0.58 (This is the K for the ball valve as developed in Example 4-6)

K = 3.24 (This is the K for the 6 elbows as developed in Example 4-6)

54.64 lb/ft3

100 cP

22 ft of oil (static pressure head developed by oil)

Note that the resistance coefficient K is considered as being independent of the Friction Factor or the ReynoldsNumber, and is treated as a constant for any valve or fitting under all condtions of flow (including laminar flow) regardless of the fluid handled.It is left to calculate the K for the 200 feet of 3" pipe and a velocity must be assumed in order to generate the pipe K. The velocity can be checked through trial-and-error methods until convergence is reached.

Assume v = 5.26 ft/sec

Re = 1,093 (Flow is laminar)

f = 0.059 (Friction factor for the 3" pipe)

K = 45.8 (K for 3" pipe)

K (total) = 51.1 (K for the entire system)

v = 5.26 ft/sec (Oil mean velocity in 3" pipe -- this should equal the assumed value)

Q = 121 gpm (Oil flowrate in the 3" pipe)

S.A.E. 10 Lube Oil at 60 oF flows through the system described in Example 4-6 at the same differential

K2 =

r = (oil density @ 60 oF)

m = (oil absolute viscosity @ 60 oF)

hL =

22'

hL=Kv2

2 gor , v=√ 2 g hL

K

v=0 .408Q

d2or , Q=2 . 451 v d2

Re=123. 9d v ρ

μ

f=64Re

Page 14: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 14 of 287 FileName: document.xlsWorkSheet: Example 4-8

Example 4-8 (18th printing)

Given:Schedule 40 pipe in which an 9-inch conventional globe valve with full bore is installed.

Find: The pressure drop due to flow through the pipe and valve.

Solution:

S = 0.916

S = 0.900

B = 600 barrels/hr

d = 7.981 inches (8" Schedule 40 pipe inside diameter)

470 cP

0.014 (Friction factor for fully turbulent flow in 8" pipe)

56.13 lb/ft3

Re = 318 (Oil flow is very Laminar)

f = 0.20 (Friction factor for the laminar flow in the 8" pipe)

4.76 (K factor for the full-bore 8" globe valve)

60.55 (K factor for the 200 feet of 8" pipe)

K (Total) = 65.31 (Total K for the system)

2.87 psi

S.A.E. 70 Lube Oil at 100 oF is flowing at the rate of 600 barrels per hour through 200 feet of 8-inch

at 60 oF (Specific Gravity of the oil relative to water at 60 oF)

at 100 oF (Specific Gravity of the oil relative to water at 60 oF)

m = (Oil viscosity at 100 oF)

fT =

r = (Oil density at 100 oF)

K1 =

K =

DP =

ΔP=8 . 82 x 10−6 K ρ B2

d4

Re=35. 4 ρ B

d μ

K1=340 f T

K=fLD

f=64Re

Page 15: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 15 of 287 FileName: document.xlsWorkSheet: Example 4-9

Example 4-9 (18th printing)

Given:minute, as shown in the following sketch.

Find:

Solution:

(This is the pressure loss in the system due to flow)

(This is the pressure loss in the system due to elevation change)

d = 5.047 inches

S = 0.916

S = 0.900

470 cP

56.1 lb/ft3

0.016 (Friction factor for oil in fully turbulent flow)

Q = 600 gpm (Oil flow rate)

First, establish if the flow is laminar or turbulent.

Re = 723 (This flow is Laminar)

f = 64/Re = 0.089 (This is the fricition factor for the oil in laminar flow)

S.A.E. 20 Lube Oil at 100 oF is flowing through 5-inch Schedule 40 pipe at a rate of 600 gallons per

The velocity in feet per second and the pressure difference between gauges P1 and P2.

(Oil Specific Gravity @ 60 oF referenced to water @ 60 oF)

(Oil Specific Gravity @ 100 oF referenced to water @ 60 oF)

m = (Oil absolute viscosity @ 100 oF)

r = (Oil density @ 100 oF)

fT =

P2

P1

Flow

75' 50'

175'

5" Class 150 steel gate valve with full area seat - wide open.

5" Class 150, steel angle valve with full area seat - wide open

5" R

5" weld elbow

v=0. 408 Q

d2

Re=50. 6 Q ρ

d μ

ΔP=18 x 10−6 K ρ Q2

d4

ΔP=hL ρ

144

Page 16: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 16 of 287 FileName: document.xlsWorkSheet: Example 4-9

This K is for the 5" gate valve and = 0.13

This K is for the 5" angle valve and = 2.40

This K is for the 5" elbow and is = 0.32

This K is for the 5" pipe and is = 63.17

The K for the entire system is the sum of the Ks = 66.01

v = 9.6 This is the oil mean velocity in the pipe.

37.0 psi (This is Pressure drop due to flow)

19.5 psi (This is Pressure drop due to elevation increase)

56.5 psi This is the total pressure drop between the gauges

DP =

DP =

DP (Total) =

K1=8 f T

K1=150 f T

K=20 f T

K=fLD

Page 17: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 17 of 287 FileName: document.xlsWorkSheet: Example 4-10

Example 4-10 (18th printing)

Given: 600 psig steam at 850 oF flows through 400 feet of horizontal 6-inch Schedule 80 pipe at a rate of 90,000 lb/hr.

Class 600 venturi gate valve as described in example 4-4, and one 6-inch Class 600 y-pattern globe .valve. The latter has a seat diameter equal to 0.9 of the inside diameter of Schedule 80 pipe, disc fully lifted

Find: The pressure drop through the system.

Solution:

0.90 (This is the given Beta ratio for the 6" globe valve)

(This is the K for each 6" welded elbow)

(This is the K for the 6" pipe)

W = 90,000 lb/hrd = 5.761 inches (This is the 6" Schedule 80 pipe ID)

1.22 ft3/lb (This is the Specific Volume of the superheated steam)0.026727 cP (This is the viscosity of the superheated steam)

0.015 (This the friction factor for the 6" pipe in fully turbulent flow)

0.825 (for Globe valve)

1.41 (for Globe valve)

1.40 (for Gate valve, as calculated in example 4-4)

Re = 3,688,279

f = 0.015 (The pipe friction factor as found in the Moody Chart)

K = 12.5 (for the 6" Schedule 80 pipe)

K = 0.63 (for the 3 - 6" welded elbows)

K (Total) = 15.94 (The total K for globe & gate valves, pipe, and elbows)

39.9 psi This is the pressure drop for the system

The system contains three 90o weld elbows having a relative radius of 1.5, one fully-open 6x4-inch

(This is the K2 for the 6" globe valve)

(This is the K1 for the 6" globe valve)

b =

m =

fT =

K1 =

K2 =

K2 =

DP =

ΔP=28 x 10−8 K W 2 V̄d4

K2=K1+β [0. 5 (1−β2)+(1−β2)2]

β 4

K1=55 f T

K=14 f T

K=fLD

Re=6 .13W

d μ

V̄ =

Page 18: Crane Fluid Flow Problems

This exercise compares the results and answers found in Crane Tech Paper #410 with those generated at:

http://www.engineeringpage.com/cgi-bin/dp/dpf.pl

Crane Tech Paper #410; example 4-10

CALCULATION INPUT

FLUID DATA PIPE DATA

Medium 600 psia Steam (@ 850 oF) ANSI B36.10

Flowrate 109,440 ft3/h Size

Density 0.8223 lb/ft3 Schedule

Dynamic Viscosity 0.027 mPa.s [ = cP] Pipe length

FITTINGS AND VALVES

Number of fittings were manually put in

Elbows 90 Number R/D = Type Connection

3 R/D = 1.5 Long Radius All Types

Valves Number Type Special

1 Gate, Ball, Plug Full line size ß = 1

1 Globe Angle or Y-type

CALCULATION RESULTSExternal Diameter 168.28 mm 6.6252 inch

Wall Thickness 10.97 mm 0.4319 inch

Internal Diameter 146.34 mm 5.7614 inch

Flowrate 0.8608 m3/s 13,644.46 gpm (U.S.)

3098.9957 m3/h 109,440 ft3/h

Density 13.172 kg/m3 0.8223 lb/ft3

Fluid velocity 51.1803 m/s 167.9143 ft/s

Reynolds Number 3,653,869 [ - ] turbulent flow

Wall Roughness 0.05 mm 0.002 inch

Relative roughness factor 0.0003 [ - ]

Moody Friction Factor 0.0156 [ - ]

Pressure Drop straight line 737,060 Pa 7.3706 bar 106.90 psi

Pressure Drop fittings 54,681 Pa 0.5468 bar 7.93 psi

Total Pressure Drop 791,741 Pa 7.9174 bar 114.83 psi

Page 19: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 19 of 287 FileName: document.xlsWorkSheet: Example 4-11

Example 4-11 (18th printing)

Given:

Find: The pressure drop from Point A to Point B.

Solution:

(This is the radius of the pipe bends

60.569

0.34 cPd = 1.049 inches (1" Schedule 40 pipe ID)

0.023 (Friction factor for 1" pipe in fully turbulent flow)Q = 15 gpm (Hot water flow rate)

Re = 127,131 This reveals that the water is in the transition zonef = 0.024 This is the pipe friction factor at the flowing conditions

K = 4.94 This is the K for the 18 feet of straight 1" pipe

K = 0.64

3.89K(Total) = 9.47 This is the total K for the entire system

1.92 psi This is the total system pressure drop

Art's Note:For practical purposes, it is very important to know the orientation, although the pressure drop will

This air will create a 2-phase flow region at these sites and the pressure drop will increase. It is

initially vented to the atmosphere and all air be expelled from there in order to ensure that the system is started up with 100% water-filled condtions. It is in this manner that the system can "recover" the energy spent in going vertically up 2 feet four times in the coil run. If the system is not 100% water-filled, then total recovery of this energy cannot be done because of the air's

Water at 180 oF is flowing through a flat heating coil, shown in the sketch below, at a rate of 15 gpm.

(This is the K for each of the two 90o bends

(K for each 180o bend)

r = lb/ft3 (Water density at 180 oF)

m = (Water viscosity at 180 oF)

fT =

This is the K for the 2 -90o bends

KB = This is the K for the 7-180o bends

DP =

This example problem doesn't mention whether the flat coil is in a horizontal or a vertical orientation.

be the same --- as long as the entire 1" pipe is 100% water filled.

If the coil is vertically oriented, then air will initially be trapped at the top of the 4 - 180o returns.

very important in an actual, industrial application that the top of each of the 4 top 180o returns be

A B

1" Schedule 40 pipe

1' 1'

2'

4" Radius

4" Radius

4" Radius

ΔP=18 x 10−6 K ρ Q2

d4

Re=50. 6 Q ρ

d μ

K=fLD

rd=4

K90=14 f T

KB= (n−1 ) (0.25 π f Trd+0 .5 K90)+K90

Page 20: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 20 of 287 FileName: document.xlsWorkSheet: Example 4-11

compressibility.

Page 21: Crane Fluid Flow Problems

This exercise compares the results and answers found in Crane Tech Paper #410 with those generated at:

http://www.engineeringpage.com/cgi-bin/dp/dpf.pl

Crane Tech Paper #410; example 4-11

CALCULATION INPUTFLUID DATA PIPE DATA

Medium Water at 180 oF ANSI B36.10

Flowrate 15 GPM Size 1 inch

Density 60.57 lb/ft3 Schedule Sch 40

Dynamic Viscosity 0.34 mPa.s [= cP] Pipe length 18 ft

FITTINGS AND VALVES

Number of fittings were manually put in

Elbows 90 Number R/D = ... Type Connection

2 R/D = 5 Pipe Bend

Return 180 Number R/D = ... Type Connection

7 R/D = 1.5 Long Radius All Types

CALCULATION RESULTSExternal Diameter 33.4 mm 1.315 inch

Wall Thickness 3.38 mm 0.1331 inch

Internal Diameter 26.64 mm 1.0488 inch

Flowrate 0.0009 m3/s 15 gpm (U.S.)

3.4069 m3/h 120.3125 ft3/h

Density 970.2383 kg/m3 60.57 lb/ft3

Fluid velocity 1.6978 m/s 5.5703 ft/s

Reynolds Number 129,071 turbulent flow

Wall Roughness 0.05 mm 0.002 inch

Relative roughness factor 0.0019

Moody Friction Factor 0.0247

Pressure Drop straight line 23,318 Pa 0.2332 bar 3.382 psi

Pressure Drop fittings 6,923 Pa 0.0692 bar 1.004 psi

Total Pressure Drop 30,241 Pa 0.3024 bar 4.386 psi

Page 22: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 22 of 287 FileName: document.xlsWorkSheet: Example 4-12

Example 4-12 (18th printing)

Given: A 12-inch Schedule 40 steel pipe 60 feet long, containing a standard gate valve 10 feet from the

the reservoir and its center line is 12 feet below the water level in the reservoir.

Find: The diameter of a thin-plate orifice that must be centrally installed in the pipe to restrict the velocity of flow to 10 feet per second when the gate valve is wide open.

Solution:

K = 0.78 (K for pipe entrance)

K = 1.00 (K for pipe exit)

(K for the 12" gate valve)

(K for the 12" pipe)

v = 10 ft/sec

d = 11.938 inches

62.371

1.12 cP

0.013 (This the friction factor for the 12" pipe in fully turbulent flow)

12.0 ft (This is the system head; assume the reservoir's level to remain constant)

Re = 822,889 flow is in the transition zone

f = 0.014 The pipe's friction factor, using the Moody Chart

K = 7.73 This is the system's K required for the desired velocity of 10 ft/sec.

0.104 This is gate valve's K

K = 0.84 This is the 12" pipe's K

K(Total) = 2.728 + the orifice's K

K(orifice)= 5.00 (This is the K of the orifice that satisfies the system's needs)

From the graph on page A-20 showing C versus Reynolds Number at varying Beta values, an assumed Betayields a C with which the K(orifice) can be calculated. Trial-and-Error method is used as follows:

At the Reynolds Number of 822,889, different values of Beta ratio are assumed.

entrance, discharges 60 oF water to atmosphere from a reservoir. The entrance projects inward into

K1 = 8 fT

(this is the relationship between an orifice K and its b ratio)

r = lb/ft3

m =

fT =

hL =

K1 =

RO

12' 60'

30'10'

hL=Kv2

2 gor , System K=

2 g hL

v2

Re=123. 9 d v ρ

μ

K=fLD

KOrifice≃1−β2

C2 β 4

Page 23: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 23 of 287 FileName: document.xlsWorkSheet: Example 4-12

C value K0.70 0.70 4.330.65 0.67 7.210.67 0.682 5.88

8.12 inches (This is the bore diameter of the required orifice)

Assumed b valueThe assumed b is too large; use a smaller oneThe assumed b is too small; use an intermediateThis is close enough; use b = 0.68

d1 =

Page 24: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 24 of 287 FileName: document.xlsWorkSheet: Example 4-13

Example 4-13 (18th printing)

Given: Fuel oil with a density of 0.815 grams per cubic centimeter and a kinematic viscosity of 2.7 centistokes is flowing through 50 millimeter I.D. steel pipe, 30 meters long at a rate of 7.0 liters per second.

Find:

Solution: Define the symbols in SI units as follows:

A = 0.001963D = Pipe internal diameter, in meters = 0.0500

g = Acceleration of gravity = 9.80665

head loss, in meters of fluidL = Pipe length, in meters = 30

q = 0.007v = mean fluid velocity = 3.565 meter/sec (mean velocity by the continuity equation)

0.815

fluid pressure drop, in barsfluid pressure drop, in megapascals

1.0 meter = 3.28 feet = 39.37 inches

1.0 0.98067 bar = 14.22334 psi

1.0 0.098067 Mpascal = 14.22334 psi

A column of fluid one square centimeter in cross-sectional area and one meter high is equal to a pressure of

Re = where, d = 1.9685 inches

Re = 65,986 v = 11.6934 ft/sec2.7 centistokes (Kinematic viscosity)

f = 0.023 (This is the friction factor from the Moody Chart)

= 8.94 meters (This is the head loss through the 50 mm pipe)

0.729

0.715 bar

0.071 MegaPascal

Head loss in meters of fluid and pressure drop in kg/cm2, bar, and megapascal (MPa)

Pipe cross-sectional flow area, in meters2 =

meters/sec2

hL =

flow rate, in meters3/sec =

r = fluid density, in grams/centimeter3 =

DP(kpc) = fluid pressure drop, in kilograms/centimeter2

DP(bar) =DP(MPa)=

kg/cm2 =

kg/cm3 =

0.1 r kg/cm2; therefore:

7740 d v/ n

n =

DP(kpc) = kg/cm2

DP(bar) =

DP(MPa) =

hL=fLD

v2

2 g

Page 25: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 25 of 287 FileName: document.xlsWorkSheet: Example 4-14

Example 4-14 (18th printing)

Given:

Find: The velocity in both the 4 and 5-inch pipe sizes and the pressure differential between the pressure

Solution:

Use Daniel Bernoulli's theorem, which states:

(This is the K for the 4" pipe, in terms of the 5" pipe)

This is the K for the 4" x 5" expanding elbow & is the sum of a straight-sized elbow + a sudden enlargement

62.371

1.121 cP

4.026 inches

Water at 60 oF is flowing through the piping system, shown in the sketch below, at a rate of 400 gpm.

gauges P1 and P2.

Assume that the hydraulic head of 75 feet has negligible effect on the water's density; therefore, r1 = r2 :

(This is the K for the 5" 90o elbow

r = lb/ft3

m =

d1 =

P1

P2

Flow

110'

150'75'

4" Schedule 40 pipe

5" Schedule 40 pipe

5" Schedule 40 pipe

5"x4" Reducing weld elbowwith 7-1/2" radius

5" weld elbow with 7-1/2" radius

Z1+144 P1

ρ1

+v1

2

2 g=Z2+

144 P2

ρ2

+v2

2

2 g+hL

(P1−P2)=( ρ144 ) [(Z2−Z1)+

(v22−v1

2 )2 g

+hL]hL=

0 . 00259 K Q2

d4

Re=50. 6 Q ρ

K=fLD

K=f L

D β4

K=14 f T

K=14 f T+(1−β2)

β4

2

Page 26: Crane Fluid Flow Problems

Art Montemayor August 21, 2006Rev: 0

Page 26 of 287 FileName: document.xlsWorkSheet: Example 4-14

5.047 inches

Q = 400 gpm

0.016

0.80

75 feet

10.08 ft/sec (This is the mean velocity in the 4" pipe by the continuity equation)

6.41 ft/sec (This is the mean velocity in the 5" pipe by the continuity equation)

-0.94 feet

Re = 279,689 (This is the Reynolds Number for the 4" pipe; it falls within the Transition Zone)

Re = 223,108 (This is the Reynolds Number for the 5" pipe; it falls within the Transition Zone)

f = 0.018 (This is the friction factor for both 4" and 5" pipe)

K = 9.6 (This is the K for the 225 feet of 5" pipe)

K = 5.9 (This is the K for the 110 feet of 4" pipe)

14.6 (This is the K for the 4" pipe in terms of the 5" pipe)

K = 0.22 (This is the K for the 5" common elbow)

K = 0.55 (This is the K for the 4" x 5" expander elbow)

K (Total) = 24.98 This is the total K for the entire system of pipe & elbows

16.0 feet of fluid

39.0 psi

d2 =

fT =

b =

(Z1 - Z2) =

v1 =

v2 =

(v22 - v2

1)/2g =

K2 =

hL =

DP = (P1 - P2) =

Page 27: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 27 of 287 FileName: document.xlsWorkSheet: Example 4-15

Example 4-15 (18th printing)

Given:

Find: The total discharge head (H) at flowing conditions and the brake horsepower (bhp) required for a pump

Solution:

Use Daniel Bernoulli's theorem, which states:

The head loss through the 3" discharge pipe system due to flow

The Reynolds Number through the 3" pipe system

The mean water velocity through the 3" pipe system

The Brake Horsepower required to pump the water throughthe 3" pipe system and up to the 400 feet of elevation.

K =

K1 = The K for the gate valve

K = f (L/D) The K for the 3" pipe

Water at 70 oF is pumped through the piping system shown in the sketch at the rate of 100 gpm.

having an efficiency (eP) of 70 per cent.

Assume that the hydraulic head of 400 feet has negligible effect on the water's density; therefore, r1 = r2.

Since the mean velocity at the pump discharge is the same as at the outlet (v1 = v2), the equation is:

30 fT The K for 90o elbows

8 fT

30'

70'100'

3" Std. Gate Valve3" Schedule 40 pipe

Four 3" Std. 90o threadedelbows

300'

2-1/2" Globe lift check valve with wing-guided disc & concentric reducers for 3" pipe.

Z1+144 P1

ρ1

+v1

2

2 g=Z2+

144 P2

ρ2

+v2

2

2 g+hL

144ρ

(P1−P2 )=(Z2−Z1)+hL

hL=0 . 00259 K Q2

d4

Re=123. 9d v ρ

μ

v=0. 408 Q

d2

bhp=Q H ρ

247 , 000 e P

Page 28: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 28 of 287 FileName: document.xlsWorkSheet: Example 4-15

K = 1.00 This is the K for the 3" pipe fluid exit lossd = 3.068 inches This is the ID of the 3" Schedule 40 pipe

62.305

0.97 cP

0.018 This is the friction factor for water in fully turbulent flow in the 3" pipeQ = 100 gpm

v = 4.33 ft/sec

Re = 105,294 This Reynolds Number identifies the flow as in the Transition zone.

f = 0.021 This is the 3" pipe's friction factor from the Moody Chart

K = 2.16

0.14 This is the K for the gate valve

K = 26.33 This is the K for the Check Valve with reducers as per Example 4-5

K = 41.07 This is the K for the 500 feet of 3" Schedule 40 pipe

K (Total) = 70.70 This is the Total K for the system, including the exit K

21 ft of water This is the head loss for the 3" pipe system due to flow

H = 421 ft of water

bhp = 15.2 This is the Pump's Brake Horsepower, assuming 70% efficiency.

r = lb/ft3 This is the density of the 70 oF water

m = This is the absolute viscosity of 70 oF water

fT =

This is the K for the four 90o elbows

K1 =

hL =

This is the head loss for the 3" pipe system including static head

Page 29: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 29 of 287 FileName: document.xlsWorkSheet: Example 4-16

Example 4-16 (18th printing)

Given:standard cubic feet per minute (scfm).

Find: The pressure drop in psi and the velocity in ft/min at both upstream and downstream gauges.

Solution:Refer to the Table for the Flow of Air through Schedule 40 steel pipe.

2.21 psiof 1", Schedule 40 pipe.

2.61 psi

100 scfm The air flow measured at Std. conditions

20.2 acfm

20.9 acfm

V = 3,369 ft/min Mean air velocity at upstream conditions

V = 3,483 ft/min Mean air velocity at downstream conditions

Art's Note:1.) Standard Conditions were not defined for this problem. This should be mandatory.2.) The 65 psig pressure is not defined as to location; it was assumed that this is the initial pressure.3.) Note that it is not mentioned that it is assumed that the temperature stays constant (Isothermal).4.) Since the pressure drop is less than 10% of the initial pressure, the conventional Darcy equation

could have been used to calculate the pressure drop:

where,f = the friction factor for flow in the 1" pipe

L = the 100 feet of 1" pipe

V = the mean air velocity at the initial conditionsd = the internal diameter of the 1" pipe.

Note that the Reynolds Number would also have to be calculated to obtain f; this means that the viscosity of the air at the initial conditions would also have to be known.

The density of air at standard conditions would have to be known in order to find the mass of air flowing. This mass air flow is constant, so the volumetric flow can be calculated using the densityvalues at the initial as well as at the final points.

The air tables have already taken the air density into consideration and this is the reason they are useful for calculating this type of problem.

Air at 65 psig and 110 oF is flowing through 75 feet of 1-inch Schedule 40 pipe at a rate of 100

(Standard Conditions are defined here as: 60 oF and 14.7 psia)

DP = for 100 psi, 60 oF air at a flow rate of 100 scfm through 100 ft

DP = This is the DP corrected for length, pressure, & temperature.

q'm =

qm(1) = The air flow measured at 65 psig & 110 oF (Upstream)

qm(2) = The air flow measured at (65 - 2.61) psig & 110 oF (Downstream)

r = the density of the air, lb/ft3, at the initial conditions

ΔP=(0 . 000000359 ) f L ρ V 2

dpsi

Page 30: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 30 of 287 FileName: document.xlsWorkSheet: Example 4-17

Example 4-17 (18th printing)

Given:pumped through a 12-inch Schedule 30 steel pipe at a rate of 1,900 barrels per hour. The pipe line is 50 miles long with discharge at an elevation of 2,000 feet above the pump inlet. Assume the pump has an efficiency of 67%.

Find: The brake horsepower of the pump.

Solution:

t = 15.6 60.1 Temperature of the crude oil; it remains constantL = 50 miles = 264,050 ft

54.65 lb/ft3 This is the degrees API converted to density0.8762 This is the density converted to Specific Gravity

B = 1,900 bbls/hr = 1,330 gpmd = 12.090 inches

14.2 cP This is the kinematic viscosity converted to absolute viscosityh = 2,000 feet This is the height that the crude is elevated by the pump

Re = 21,442 This Reynolds Number identifies the flow as in the Transition Zone.

f = 0.025 This is the friction factor as read from the Moody Chart

533 psi This is the oil's pressure drop over 50 miles of pipeline

1,406 ft This is the pressure drop converted to head loss

H = 3,406 ft This is the total head developed by the pump to pump the oil for 50 miles and raise it to an elevation of 2,000 feet.

The pump's Brake Horsepower = 1,496

Crude oil with 30 degrees API at 15.6 oC with a viscosity of 75 Universal Saybolt seconds is being

oC = oF

r =S =

m =

DP =

hL =

ΔP=(0 . 0001058 ) f L ρ B2

d5

Re=35. 4B ρd μ

hL=144 Δ P

ρ

brake horsepower=Q H ρ

247 , 000 e P

Page 31: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 31 of 287 FileName: document.xlsWorkSheet: Example 4-18

Example 4-18 (18th printing)

Given: A 14-inch, Schedule 20, natural gas pipe line is 100 miles long. The inlet pressure is 1,300 psia, the

Find: The flowrate in millions of standard cubic feet per day (MMscfd).

Solution: (Art's Note: First and foremost, note that the basis of the gas composition is totally lacking; this is a

Three solutions to this example are presented for the purpose of illustrating the variations in results obtained by use of:

1. the Simplified Compressible Flow forumula;2. the Weymouth formula; and,3. the Panhandle formula.

Simplified Compressible Flow forumula

d = 13.376 inches (the pipeline internal diameter)0.011 cP (absolute viscosity estimated from gas graphs)

f = 0.0128 (assumed friction factor for fully turbulent flow; from the Moody Chart)

T = 500 (the absolute gas temperature)

1,300 psia (initial pipeline pressure)

300 psia (final pipeline pressure)

100 miles (pipeline length)

Component mole %

16 75 12.00

30 21 6.30

44 4 1.76Mixture Molecular Weight = 20.06

The Specific Gravity of gases is defined as the ratio of the molecular weight of the gas to that of air.

MW(air) = 28.964

0.693

4,489,682 scfh = 107.8 MMscfd

outlet pressure is 300 psia, and the average temperature is 40 oF. The gas analysis is 75% CH4,

21% C2H6, and 4% C3H8.

gross error on the part of any engineer. Without a basis, this problem can't be solved. A mole % basis is therefore assumed. This is the same as a volumetric basis.)

m =

oR

P'1 =

P'2 =

Lm =

molecular weight

MW x mole frac.

CH4

C2H6

C3H8

Sg =

q'h =

qh' =114. 2 √[ (P1

' )2−(P2' )2

f Lm T Sg] d5

Re=0 .482 qh

' Sg

d μ

Page 32: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 32 of 287 FileName: document.xlsWorkSheet: Example 4-18

Re = 10,186,290 This Reynolds Number identifies the flow as fully turbulent

f = 0.0128 This friction factor is equal to that of the assumed

Since the assumed friction factor is correct, the correct flow rate is that calculated. Note that if the assumedfriction factor were found to be incorrect, it would have necessary to repeat the exercise with a new assumptionuntil the assumed friction factor was in reasonable agreement with that based upon ithe calculated ReynoldsNumber.

Weymouth formula

4,379,360 scfh = 105.1 MMscfd

Panhandle formula

E = 0.92 Assume a flow efficiency for average operation conditions

5,575,520 scfh = 133.8 MMscfd

q'h =

q'h =

qh' =28 . 0 d2. 667 √[ (P1

' )2−( P2' )2

Sg Lm] (520

T )

qh' =36 . 8 E d2 .6182 [ ( P1

' )2−(P2' )2

Lm]0. 5394

Page 33: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 33 of 287 FileName: document.xlsWorkSheet: Example 4-19

Example 4-19 (18th printing)

Given:constant head of 11.5 feet.

Find: The flow rate in gallons per minute.

Solution:

K = 0.5 K for entrance loss

K = K for the Mitre elbow

K for the gate valveK = f (L/D) K for straight pipe runs

This is the K for the sudden contraction between the 3" and 2" pipes

This is K for the 2" pipe in terms of the 3" pipe

K = This is the K for the exit from the 2" pipe in terms of the 3" pipe

11.5 ft of water the head above the water outlet

3.068 inches the large pipe inside diameter

2.067 inches the smaller pipe inside diameter

1.1211 cP62.371 lb/ft3 the density of water at 60 oF

0.018 the friction factor for fully turbulent flow in the 3" pipe

0.019 the friction factor for fully turbulent flow in the 2" pipe0.67 this is the Beta ratio between the two pipes

K = 0.50 This K is for the water entering from the tank into the outletK = 1.08 This K is for the 3" mitered elbow

0.14 This K is for the 3" gate valveK = 0.70 This K is for the 10' of 3" pipeK = 10.71 This K is for the 20' of 2" pipe in terms of the 3" pipeK = 4.85 This K is for the 2" exit in terms of the 3" pipe

1.33 This K is for the sudden contraction from 3" to 2"K (Total) = 19.31 This is the Total K for the system

Q = 143 gpm This solution has assumed the pipe flow is in the fully turbulent zone

Water at 60 oF is flowing from a reservoir through the piping system below. The reservoir has a

60 fT

K1 = 8 fT

1/b4

hL =

d1 =

d2 =

m = the absolute viscosity of water at 60 oFr =

fT =

fT =b =

K1 =

K2 =

and has used the corresponding fT to calculate the individual pipe Ks.

10'd1 20'

11.5'

Water @ 60o F 3" Sch 40 Pipe

3" Std. gate valve; wide open

2" Sch 40 Pipe

Q=19.65 d2 √ hL

K

Re=50. 6 Q ρ

d μ

K2=0 .5 (1−β2)

β4

K=f L

D β4

Page 34: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 34 of 287 FileName: document.xlsWorkSheet: Example 4-19

In order to verify that the pipe flow is verily in the fully turbulent zone, the Reynolds Numbers must be calculated

Re = 130,953 This is the Reynolds Number for the 3" pipef = 0.020 This is the friction factor for flow in the 3" pipe

Re = 194,371 This is the Reynolds Number for the 2" pipef = 0.021 This is the friction factor for flow in the 2" pipe

The friction factors used for the straight pipe are not in agreement with the fully turbulent flow values used inobtaining the approximate flow rate. Therefore, the K factors for the two pipes should be corrected accordingly:

K = 0.78 This corrected K is for the 10' of 3" pipe

K = 11.83 This corrected K is for the 20' of 2" pipe in terms of the 3" pipe

K (Total) = 20.52 This is the corrected Total K for the system

Q = 138 gpm This the correct solution.

and the corresponding friction factors found and compared with the fT used.

Page 35: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 35 of 287 FileName: document.xlsWorkSheet: Example 4-20

Example 4-20 (18th printing)

Given: A header with 170 psia saturated steam is feeding a pulp stock digester through 30 feet of 2-inchSchedule 40 pipe which includes one standard 90 degree elbow and a fully-open conventional plug type disc globe valve. The initial pressure in the digester is atmospheric.

Find: The initial flow rate in pounds per hour, using both the modified Darcy formula and the sonic velocity and continuity equations.

Solution:Using the Modified Darcy Formula

K = 0.5 K for Entrance from header

K =

K for 2" globe valveK = 1.0 K for exit from 2" pipe into digester

k = Cp/Cv = 1.297 Ratio of specific heats for saturated steam vapor; from tabular datad = 2.067 inches Internal diameter of 2" pipeL = 30 ft Straight length of 2" pipe

2.6748 Specific volume of saturated steam at 170 psia

0.019 The friction factor for fully turbulent flow in the 2" pipeg = 32.20 ft/sec2 The acceleration of gravity

K = 0.50 This is the K for the header steam entering the 2" pipeK = 0.57 This is the K for the 2", 90o elbow

6.46 This is the K for the 2" globe valve, fully openedK = 1.00 This is the K for the steam exiting the 2" pipe and entering the digesterK = 3.31 This is the K for the 2" pipe (assumed @ fully turbulent flow)

K (Total) = 11.84 This is the total K for the system (assuming fully turbulent flow)

0.914 This is the ratio of the overall pressure drop to the initial pressure

133.5 psi This is the pressure drop that is fixed by the steam sonic flow

Y = 0.710 Y net expansion factor for adiabatic flow (isenthalpic expansion)and used to compensate for the changes in fluid properties due tofluid expansion.

W = 11,776 lb/hr This is the steam flow rate occurring at sonic conditions and is

30 fT K for 2", 90o Elbow

K1 = 340 fT

ft3/lb

fT =

K1 =

DP/P1 =

From tabular data, it is seen that the maximum DP/P1 for sonic flow to exist is 0.785 when the system K = 11.84.

This means that, since this value is less than the calculated DP/P1, sonic ("choked") flow is taking placeat the end of the 2" pipe as it enters the digester. Therefore, the pressure drop for these flow conditions is:

DP =

20'

Spherical Digester @ 14.7 psia

10'

W=1891 Y d2 √ ΔPK V̄

K=fLD

V̄ =

Page 36: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 36 of 287 FileName: document.xlsWorkSheet: Example 4-20

conditions.the maximum mass flow rate that can occur under these pressure

Page 37: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 37 of 287 FileName: document.xlsWorkSheet: Example 4-20

Using Sonic Velocity and Continuity Equations

This is the sonic velocity for an expanded gas

This is the Continuity equation

170 psia The initial saturated steam pressure133.5 psi The pressure drop @ sonic conditions as developed above

1,197.2 btu/lb The enthalpy of the saturated steam entering the 2" pipe

36.5 psia This is the final (maximum) pressure that will yield sonic flow;constant, sonic flow will continue even though the final pressure is dropped to a lower value - such as 14.7 psia.

The steam expansion that takes place across the globe valve is assumed to be adiabatic and, therefore, the

1,197.2 btu/lb The enthalpy of the saturated steam exiting the 2" pipe;

The enthalpy of the saturated steam exiting the 2" pipe;

12.425 This is the steam's specific volume at 36.6 psia and H= 1,197.2 but/lb

1,653 ft/sec

W = 11,164 lb/hr

Art's Note: is the downstream pressure when the initial downstream pressure will be, by definition, 14.7 psia.

P'1 =DP =

hg =

P'2 =

enthalpy conditions are equal on both sides of the valve - DH = 0.0. Therefore,

hg =This is the same as the steam entering the pipe (DH = 0)

ft3/lb

The resulting temperature = 317 oF and superheated.

vS = This is the steam's sonic velocity 36.6 psia and 317 oF

The problem asks for "the initial flow rate"; the DP has been calculated assuming that 36.6 psia

vS=√144 g k P2' V̄

W= v d2

0 .0509 V̄

V̄ =

Page 38: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 38 of 287 FileName: document.xlsWorkSheet: Example 4-21

Example 4-21 (18th printing)

Given: Coke oven gas with a specific gravity of 0.42, a header pressure of 125 psig, and a temperature

Assume that the gas's ratio of specific heats, k = 1.4.

Find: The flow rate in standard cubic feet per hour (scfh).

Solution:

139.7 psia header absolute pressure

0.0175 The Reynolds Number is not necessary to identify f since the discharged gasto the atmosphere will have a very large Re, and flow will always be in the fully turbulent range, in which the friction factor is a horizontal line on the Moody Chart - and constant.

d = 3.068 inches the discharge pipe ID

0.42 the specific gravity of the gas

600 the initial, absolute temperature of the gas in the header.L = 20 feet length of 3" discharge pipe

K = 0.5 This is the entrance loss K K = 1.369 This is the 3" pipe KK = 1.0 This is the K for the exit loss out of the 3" pipe

K (Total) = 2.87 This is the K for the Total System

0.895 This is the ratio of the overall pressure drop to the initial pressure

91.8 psi

Y = 0.637 Interpolated from the tabulated data for Y

1,027,686 scfh

of 140 oF is flowing through 20 feet of 3-inch Schedule 40 pipe before discharging to atmosphere.

P'1 =

f = fT =

Sg =

T1 = oR

DP/P'1 =

From tabular data, it is seen that the maximum DP/P1 for sonic flow to exist is 0.657 when the system K = 2.87.

Since the indicated DP/P'1 is less than that calculated above, sonic velocity occurs at the end of the 3" pipeand the DP for the corresponding flow equation is:

DP =

q'h = gas flow rate measured at 60 oF & 14.7 psia

125 psigqh

' =40 , 700 Y d2 √ ΔP P1'

K T1 Sg

K=fLD

Page 39: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 39 of 287 FileName: document.xlsWorkSheet: Example 4-21

Source: http://www.cheresources.com/indexzz.shtml

Taran Baker

Dec 1 2004 TP-410 includes an exit loss when calculating the equivalent length of pipe. However, I struggle to comprehend why this is required. If we are including an exit loss, aren't we saying that the flow is choked not at the end of the pipe, but some distance from the pipe discharge? The reason I am asking is that I am trying to calculate the reaction force from a pipeline vent. As such, I require the choked pressure at the end of the vent pipe. My gut feeling tells me that I shouldn't include an exit loss. Any assistance with this would be most appreciated.

rxnarang In adibatic flow of gas through a conduit of constant cross section, the sonic velocity is always reached at the end of the pipe. You are correct.

However, there is always energy loss involved due to friction, including entrance and exit losses, which are a form of energy loss. All these energy losses influence the energy profile of the fluid. Given that sonic velocity occurs at the end of the line, higher the losses, lesser the amount of fluid flow. Hence, taking the exit losses into account is important, as it will influence the amount of fluid which can flow in the pipe.

Crane Example 4-21 is correct in computing all the losses which occur.

Hope this helps.Regards

Sonic Flow, Crane TP-410 example 4-21

My question concerns sonic gas flow from a pipe. Example 4-21 (pg 4-14) of Crane

Page 40: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 40 of 287 FileName: document.xlsWorkSheet: Example 4-21

gut feeling tells me that I shouldn't include an exit loss. Any assistance with this would be

Page 41: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 41 of 287 FileName: document.xlsWorkSheet: Example 4-22

Example 4-22 (18th printing)

Given:the outlet of a 1/2-inch Schedule 80 pipe discharging to atmosphere.

Find: The air flow rate in standard cubic feet per minute (scfm).

Solution:

The modified Darcy flow equation for compensating for the changeof fluid properties due to free, adiabatic expansion of the fluid.

34.0 psia The initial, absolute pressure in the 1/2" pipe19.3 psi The pressure difference between the pipe initial pressure and atm.

d = 0.546 inches The internal diameter of the 1/2" pipe

0.0275 The friction factor under fully turbulent flowL = 10 ft The straight length of the 1/2" pipe

560 The initial, absolute temperature of the air in the pipe

K = 6.04 This is the K for the 10 feet of 1/2" pipeK = 1.00 This is the K for the pipe exit into the atmosphere

K (Total) = 7.04 This is the Total K for the system

0.568 This is the ratio of the overall pressure drop to the initial pressure

Y = 0.76 Y net expansion factor for adiabatic flow (isenthalpic expansion)and used to compensate for the changes in fluid properties due to fluid expansion.

q'm = 62.7 scfm

Art's Note: Note that fully turbulent flow is assumed to be occurring while the 1/2" pipe is venting to atmosphere.While this is more than probable, it hasn't been verified.Sub-sonic air flow is also assumed in this problem. This is another item that hasn't been verified.

Air at a pressure of 19.3 psig and a temperature of 100 oF is measured at a point 10 feet from

P'1 =DP =

fT =

T1 = oR

DP/P'1 =

qm' =678 Y d2 √ ΔP P1

'

K T 1 S g

K=fLD

Page 42: Crane Fluid Flow Problems

Art Montemayor September 30, 2006Rev: 0

Page 42 of 287 FileName: document.xlsWorkSheet: Example 4-23

Example 4-23 (18th printing)

Given: A square-edged orifice with 2.0-inch diameter is installed in a 4-inch Schedule 40 pipe having amercury manometer connected between taps located 1 diameter upstream and 0.5 diameter downstream.

Find: a) the flow range where the orifice flow coefficient C is constant.

b)

Solution:

The flow equation for an orifice

The Reynolds number

The differential pressure across the orifice taps

the differential head in inches of Mercury (Hg)

The weight density of mercury under water =

62.371

13.568

1.000

783.88 Density of Mercury underwater

0.454 the differential pressure across the orifice taps

2.000 inches the orifice diameter

4.026 inches the pipe's I.D.0.497 The ratio of the orifice diameter to the I.D. of the pipe

C = 0.625

Q = 50.32 This is the calibration constant and solution "a)".

Q = 106 gpm

1.1211 cPRe = 73,800

flow rate 106 gpm through the 4" pipe is verified as correct. (this is solution "b)" )

Should the C factor prove to be incorrect for the Reynolds number based on the calculated flow, it must be adjusted by trial-and-error methodology until reasonable agreement is reached.

The theoretical calibration constant for the meter when used on 60 oF water and for

The flow rate of 60 oF water when the mercury manometer difference is 4.4 inches.

Dhm =

rW (SHg - SW)

rW = lb/ft3 Density of water at 60 oF

SHg = Specific Gravity of Mercury at 60 oF, referred to Water at 60 oF

SW = Specific Gravity of Water at 60 oF, referred to Water at 60 oF

rHg = lb/ft3

DP = Dhm

d1 =

d2 =b =

(Dhm)^0.5

m = this is the viscosity of the 60 oF water

The calculated value of C = 0.625 corresponds to the calculated Reynolds Number of 73,800; therefore, the

Flow

Q=236 d12 C √ ΔP

ρ

Re=50.6 Q ρ

d μ

ΔP=Δhm ρ

(12 ) (144 )

Page 43: Crane Fluid Flow Problems

Example 4-24 (18th printing)

Given:pressure differential between the pipe taps of a 2.15-inch I.D. square-edged orifice.

Find: The oil flow rate in gallons per minute (gpm).

Solution:

SAE 10 Lube Oil at 90 oF is flowing through a 3-inch Schedule 40 pipe and produces 0.4 psi

Page 44: Crane Fluid Flow Problems

Example 4-25 (18th printing)

Given: A rectangular concrete overflow aqueduct, 25 feet high and 16.5 feet wide, has an absolute

Find: The discharge rate in cubic feet per second when the liquid in the reservoir has reached the

Solution:

roughness (e) of 0.01 foot. Refer to the sketch below.

maximum height indicated in the sketch below. Assume the average water temperature is 60 oF.

Page 45: Crane Fluid Flow Problems

Example 4-26 (18th printing)

Given: A cast iron pipe is two-thirds full of steady, uniform flowing water at 60 oF. The pipe has an insidediameter of 24 inches and a slope of 3/4-inch per foot. Note the sketch below.

Find: The water flow rate in gallons per minute (gpm).

Solution:

Page 46: Crane Fluid Flow Problems

Example 4-27 (18th printing)

Given: A steam boiler operating at 300 psia has a maximum capacity of 100,000 pounds per hour of saturated steam.

Find: The boiler capacity in both kilo Btu per hour and in boiler horsepower.

Solution:

Page 47: Crane Fluid Flow Problems

Example 4-6 in the 1957 (6th printing) version

Given: A 600-pound steel in-line ball check valve is required in a 2-inch pipe line carrying 48 degree APIcrude oil at 150 oF and a rate of 37 gallons per minute.

Find: The proper size check valve and the pressure drop with the valve installed in both vertical and horizontal positions. The valve should be sized so that the disc is fully lifted under normal flowconditions.

Solution:

Page 48: Crane Fluid Flow Problems

Example 4-7 in the 1957 (6th printing) version

Given:rate of 400 gallons per minute; the face-to-face dimension of the valve is 10 inches.

Find: The pressure drop through the valve.

Solution:

Bunker C fuel oil at 90 oF is flowing through a wide open 5-inch, 150-pound steel gate valve at a

Page 49: Crane Fluid Flow Problems

Example 4-12 in the 1957 (6th printing) version

Given: Saturated steam at 150 psig is flowing through a cylindrical pipe coil, as shown in the sketchbelow, at a rate of 2,000 pounds per hour. The coil is made of 2-inch Schedule 40 steel pipe.

Find: The pressure drop from Point A to Point B.

Solution:

3'

30"

A

B

Page 50: Crane Fluid Flow Problems
Page 51: Crane Fluid Flow Problems
Page 52: Crane Fluid Flow Problems
Page 53: Crane Fluid Flow Problems
Page 54: Crane Fluid Flow Problems
Page 55: Crane Fluid Flow Problems
Page 56: Crane Fluid Flow Problems

Art Montemayor U.S.A. Pipe Dimensions September 30, 2003Rev: 0

Page 56 of 287 FileName: document.xlsWorkSheet: Pipe Tables

Inside Diameter Functions

(in Inches)

Inches Inches Inches Feet

Commercial Wrought Steel Pipe Data Although pipe classification is common knowledge that is taken for granted among a lot of us old engineers, I have Schedule Wall Thickness - Per ASA B36.10 - 1950 found that young engineers are lacking this information because both academic professors and we experienced

engineers are both guilty of not passing on the information which used to be common and available when piping and

Sch

edul

e 10

14 14 0.250 13.500 1.1250 182.25 2,460.4 33,215.1 448,403.3 143.14 0.994 fitting catalogs like Vogt, Tube Turns, Walworth, etc. used to be freely available to us. Now, these valuable free 16 16 0.250 15.500 1.2917 240.25 3,723.9 57,720.1 894,661.0 188.69 1.310 catalogs have become a thing of the past…18 18 0.250 17.500 1.4583 306.25 5,359.4 93,789.1 1,641,308.6 240.53 1.670

20 20 0.250 19.500 1.6250 380.25 7,414.9 144,590.1 2,819,506.2 298.65 2.074 Because I regard this subject as very basic and important for all engineers to dominate, some years back I prepared 24 24 0.250 23.500 1.9583 552.25 12,977.9 304,980.1 7,167,031.5 433.74 3.012 the following explanation for young engineers working under me and with me in plant projects. I would like to share

30 30 0.312 29.376 2.4480 862.95 25,350.0 744,681.6 21,875,767.4 677.76 4.707 it with any one else who hasn't had the opportunity to find out this logical explanation of how pipe is classified.

Sch

edul

e 20

8 8.625 0.250 8.125 0.6771 66.02 536.4 4,358.1 35,409.3 51.85 0.360 Industrial pipe thicknesses follow a set formula, expressed as the “schedule number” as established by the 10 10.750 0.250 10.250 0.8542 105.06 1,076.9 11,038.1 113,140.8 82.52 0.573 American Standards Association (ASA) now re-organized as ANSI - the American National Standards Institute. 12 12.750 0.250 12.250 1.0208 150.06 1,838.3 22,518.8 275,854.7 117.86 0.818 Eleven schedule numbers are available for use: 5, 10, 20, 30, 40, 60, 80, 100, 120, 140, & 160. The most popular 14 14 0.312 13.376 1.1147 178.92 2,393.2 32,011.4 428,184.9 140.52 0.976 schedule, by far, is 40. Sch 5, 60, 100, 120, & 140 have rarely, if ever been employed by myself in over 40 years 16 16 0.312 15.376 1.2813 236.42 3,635.2 55,895.1 859,442.6 185.68 1.289 as a practicing engineer. The schedule number is defined as the approximate value of the expression:18 18 0.312 17.376 1.4480 301.93 5,246.3 91,158.9 1,583,977.6 237.13 1.647

20 20 0.375 19.250 1.6042 370.56 7,133.3 137,316.6 2,643,343.9 291.04 2.021

24 24 0.375 23.250 1.9375 540.56 12,568.1 292,207.8 6,793,831.7 424.56 2.948 Where,

30 30 0.500 29.000 2.4167 841.00 24,389.0 707,281.0 20,511,149.0 660.52 4.587

Sch

edul

e 30

8 8.625 0.277 8.071 0.6726 65.14 525.8 4,243.4 34,248.1 51.16 0.355

10 10.750 0.307 10.136 0.8447 102.74 1,041.4 10,555.2 106,987.5 80.69 0.560 For example, the schedule number of ordinary steel pipe having an allowable stress of 10,000 psi for use at a 12 12.750 0.330 12.090 1.0075 146.17 1,767.2 21,365.1 258,304.2 114.80 0.797 working pressure of 350 psig would be:14 14 0.375 13.250 1.1042 175.56 2,326.2 30,822.2 408,394.0 137.89 0.958

16 16 0.375 15.250 1.2708 232.56 3,546.6 54,085.3 824,801.1 182.65 1.26818 18 0.438 17.124 1.4270 293.23 5,021.3 85,984.6 1,472,401.0 230.30 1.599

20 20 0.500 19.000 1.5833 361.00 6,859.0 130,321.0 2,476,099.0 283.53 1.969 This would be the proper schedule for welded joints and steel fittings but not for threaded connections and cast-iron 24 24 0.562 22.876 1.9063 523.31 11,971.3 273,854.8 6,264,702.3 411.01 2.854 or malleable-iron fittings. In practice, schedule 40 would be used for welded construction and Sch 80 (about 2x the

30 30 0.625 28.750 2.3958 826.56 23,763.7 683,205.6 19,642,160.0 649.18 4.508 computed value) for iron fittings. The higher schedule is required because of weaknesses in the iron fittings and the metal lost in cutting the threads.

Sch

edul

e 40

1/8 0.405 0.068 0.269 0.0224 0.07 0.0 0.0 0.0 0.06 0.000

1/4 0.540 0.088 0.364 0.0303 0.13 0.0 0.0 0.0 0.10 0.001 For all pipe sizes below 10", Sch 40 pipe is identical with what was once called “standard” pipe, and Sch 80 is 3/8 0.675 0.091 0.493 0.0411 0.24 0.1 0.1 0.0 0.19 0.001 identical with the former “extra-strong” pipe. There is no equivalent schedule number for “double-extra-strong” 1/2 0.840 0.109 0.622 0.0518 0.39 0.2 0.1 0.1 0.30 0.002 pipe, and Sch 160 is the only other weight in which pipe smaller than 4" is available. 3/4 1.050 0.113 0.824 0.0687 0.68 0.6 0.5 0.4 0.53 0.004

1 1.315 0.133 1.049 0.0874 1.10 1.2 1.2 1.3 0.86 0.006 Temperature has no direct bearing on the schedule, except as it either weakens (or strengthens) the material's 1 1/4 1.660 0.140 1.380 0.1150 1.90 2.6 3.6 5.0 1.50 0.010 allowable stress. Stainless steels (304ELC & 316ELC), for example, yield a stronger allowable stress at the low

1 1/2 1.900 0.145 1.610 0.1342 2.59 4.2 6.7 10.8 2.04 0.014

2 2.375 0.154 2.067 0.1723 4.27 8.8 18.3 37.7 3.36 0.023 I've used the rule of thumb that the softer the metal, the stronger it is at the lower temperatures.2 1/2 2.875 0.203 2.469 0.2058 6.10 15.1 37.2 91.7 4.79 0.033

3 3.500 0.216 3.068 0.2557 9.41 28.9 88.6 271.8 7.39 0.051 I hope this has helped you in explaining how pipe is classified.3 1/2 4.000 0.226 3.548 0.2957 12.59 44.7 158.5 562.2 9.89 0.069

4 4.500 0.237 4.026 0.3355 16.21 65.3 262.7 1,057.7 12.73 0.088 Art Montemayor5 5.563 0.258 5.047 0.4206 25.47 128.6 648.8 3,274.7 20.01 0.1396 6.625 0.280 6.065 0.5054 36.78 223.1 1,353.1 8,206.4 28.89 0.2018 8.625 0.322 7.981 0.6651 63.70 508.4 4,057.2 32,380.7 50.03 0.34710 10.750 0.365 10.020 0.8350 100.40 1,006.0 10,080.2 101,004.0 78.85 0.54812 12.750 0.406 11.938 0.9948 142.52 1,701.4 20,310.8 242,469.9 111.93 0.77714 14 0.438 13.124 1.0937 172.24 2,260.5 29,666.4 389,341.9 135.28 0.93916 16 0.500 15.000 1.2500 225.00 3,375.0 50,625.0 759,375.0 176.71 1.22718 18 0.562 16.876 1.4063 284.80 4,806.3 81,110.7 1,368,823.9 223.68 1.55320 20 0.593 18.814 1.5678 353.97 6,659.5 125,292.4 2,357,250.3 278.00 1.93124 24 0.687 22.626 1.8855 511.94 11,583.1 262,078.3 5,929,784.5 402.07 2.792

Nominal Pipe Size

Inches

Outside Diameter

Wall Thickness

Pipe Inside Diameter

Transverse Internal ("Flow") Area

d2 d3 d4 d5 in2 ft2

temperatures near the cryogenic zone (-50 to -150 oF). Copper and Brass also exhibit the same behavior.

Page 57: Crane Fluid Flow Problems

Art Montemayor U.S.A. Pipe Dimensions September 30, 2003Rev: 0

Page 57 of 287 FileName: document.xlsWorkSheet: Pipe Tables

Sch

edul

e 60

8 8.625 0.406 7.813 0.6511 61.04 476.9 3,726.2 29,113.1 47.94 0.333

10 10.750 0.500 9.750 0.8125 95.06 926.9 9,036.9 88,109.6 74.66 0.518

12 12.750 0.562 11.626 0.9688 135.16 1,571.4 18,269.3 212,398.6 106.16 0.737

14 14 0.593 12.814 1.0678 164.20 2,104.0 26,961.2 345,480.5 128.96 0.89616 16 0.656 14.688 1.2240 215.74 3,168.8 46,542.6 683,617.7 169.44 1.177

18 18 0.750 16.500 1.3750 272.25 4,492.1 74,120.1 1,222,981.0 213.82 1.48520 20 0.812 18.376 1.5313 337.68 6,205.2 114,026.0 2,095,342.0 265.21 1.842

24 24 0.968 22.064 1.8387 486.82 10,741.2 236,993.8 5,229,031.3 382.35 2.655

Sch

edul

e 80

1/8 0.405 0.095 0.215 0.0179 0.0462 0.0099 0.0021 0.0005 0.036 0.0003 1/4 0.540 0.119 0.302 0.0252 0.0912 0.0275 0.0083 0.0025 0.072 0.0005

3/8 0.675 0.126 0.423 0.0353 0.1789 0.0757 0.0320 0.0135 0.141 0.0010 1/2 0.840 0.147 0.546 0.0455 0.2981 0.1628 0.0889 0.0485 0.234 0.0016

3/4 1.050 0.154 0.742 0.0618 0.5506 0.4085 0.3031 0.2249 0.432 0.00301 1.315 0.179 0.957 0.0798 0.9158 0.8765 0.8388 0.8027 0.719 0.0050

1 1/4 1.660 0.191 1.278 0.1065 1.6333 2.0873 2.6676 3.4092 1.283 0.00891 1/2 1.900 0.200 1.500 0.1250 2.2500 3.3750 5.0625 7.5938 1.767 0.0123

2 2.375 0.218 1.939 0.1616 3.7597 7.2901 14.1355 27.4087 2.953 0.02052 1/2 2.875 0.276 2.323 0.1936 5.3963 12.5357 29.1204 67.6466 4.238 0.0294

3 3.500 0.300 2.900 0.2417 8.4100 24.3890 70.7281 205.1115 6.605 0.04593 1/2 4.000 0.318 3.364 0.2803 11.32 38.069 128.1 430.8 8.888 0.0617

4 4.500 0.337 3.826 0.3188 14.64 56.0 214.3 819.8 11.497 0.07985 5.563 0.375 4.813 0.4011 23.16 111.5 536.6 2,582.7 18.194 0.12636 6.625 0.432 5.761 0.4801 33.19 191.2 1,101.5 6,345.8 26.07 0.18108 8.625 0.500 7.625 0.6354 58.14 443.3 3,380.3 25,775.0 45.66 0.317110 10.750 0.593 9.564 0.7970 91.47 874.8 8,366.8 80,019.9 71.84 0.498912 12.750 0.687 11.376 0.9480 129.41 1,472.2 16,747.8 190,523.2 101.64 0.705814 14 0.750 12.500 1.0417 156.25 1,953.1 24,414.1 305,175.8 122.72 0.852216 16 0.843 14.314 1.1928 204.89 2,932.8 41,980.2 600,904.0 160.92 1.11818 18 0.937 16.126 1.3438 260.05 4,193.5 67,624.9 1,090,519.1 204.24 1.41820 20 1.031 17.938 1.4948 321.77 5,771.9 103,537.1 1,857,248.9 252.72 1.75524 24 1.218 21.564 1.7970 465.01 10,027.4 216,230.7 4,662,798.2 365.21 2.536

Sch

edul

e 10

0

8 8.625 0.593 7.439 0.6199 55.34 411.7 3,062.4 22,781.0 43.46 0.30210 10.750 0.718 9.314 0.77617 86.750596 807.99505 7525.66591 70094.05225 68.133759 0.473151112 12.750 0.843 11.064 0.922 122.4121 1354.3674 14984.7212 165790.9559 96.142235 0.667654414 14 0.937 12.126 1.0105 147.03988 1783.0055 21620.7251 262172.913 115.48485 0.801978116 16 1.031 13.938 1.1615 194.26784 2707.7052 37739.9952 526020.0533 152.57761 1.059566718 18 1.156 15.688 1.30733 246.11334 3861.0261 60571.7781 950250.0548 193.29697 1.342340120 20 1.281 17.438 1.45317 304.08384 5302.6141 92466.9842 1612439.27 238.82689 1.658520124 24 1.531 20.938 1.74483 438.39984 9179.2159 192194.423 4024166.833 344.31843 2.3911002

Sch

edul

e 12

0

4 4.500 0.438 3.624 0.3020 13.13 47.6 172.5 625.1 10.31 0.0725 5.563 0.500 4.563 0.3803 20.82 95.0 433.5 1,978.1 16.35 0.1146 6.625 0.562 5.501 0.4584 30.26 166.5 915.7 5,037.4 23.77 0.1658 8.625 0.718 7.189 0.5991 51.68 371.5 2,671.0 19,201.8 40.59 0.28210 10.750 0.843 9.064 0.7553 82.16 744.7 6,749.6 61,178.6 64.53 0.44812 12.750 1.000 10.750 0.8958 115.56 1,242.3 13,354.7 143,562.9 90.76 0.63014 14 1.093 11.814 0.9845 139.57 1,648.9 19,480.0 230,136.1 109.62 0.76116 16 1.218 13.564 1.1303 183.98 2,495.5 33,849.4 459,133.4 144.50 1.00318 18 1.375 15.250 1.2708 232.56 3,546.6 54,085.3 824,801.1 182.65 1.26820 20 1.500 17.000 1.4167 289.00 4,913.0 83,521.0 1,419,857.0 226.98 1.57624 24 1.812 20.376 1.6980 415.18 8,459.7 172,375.6 3,512,324.7 326.08 2.264

Page 58: Crane Fluid Flow Problems

Art Montemayor U.S.A. Pipe Dimensions September 30, 2003Rev: 0

Page 58 of 287 FileName: document.xlsWorkSheet: Pipe Tables

Sch

edul

e 14

0

8 8.625 0.812 7.001 0.5834 49.01 343.1 2,402.4 16,819.0 38.50 0.26710 10.750 1.000 8.750 0.7292 76.56 669.9 5,861.8 51,290.9 60.13 0.41812 12.750 1.125 10.500 0.8750 110.25 1,157.6 12,155.1 127,628.2 86.59 0.60114 14 1.250 11.500 0.9583 132.25 1,520.9 17,490.1 201,135.7 103.87 0.72116 16 1.438 13.124 1.0937 172.24 2,260.5 29,666.4 389,341.9 135.28 0.93918 18 1.562 14.876 1.2397 221.30 3,292.0 48,971.6 728,502.2 173.80 1.20720 20 1.750 16.500 1.3750 272.25 4,492.1 74,120.1 1,222,981.0 213.82 1.48524 24 2.062 19.876 1.6563 395.06 7,852.1 156,068.8 3,102,022.5 310.28 2.155

Sch

edul

e 16

0

1/2 0.840 0.187 0.466 0.0388 0.22 0.1 0.0 0.0 0.17 0.001 3/4 1.050 0.218 0.614 0.0512 0.38 0.2 0.1 0.1 0.30 0.0021 1.315 0.250 0.815 0.0679 0.66 0.5 0.4 0.4 0.52 0.004

1 1/4 1.660 0.250 1.160 0.0967 1.35 1.6 1.8 2.1 1.06 0.0071 1/2 1.900 0.281 1.338 0.1115 1.79 2.4 3.2 4.3 1.41 0.010

2 2.375 0.343 1.689 0.1408 2.85 4.8 8.1 13.7 2.24 0.0162 1/2 2.875 0.375 2.125 0.1771 4.52 9.6 20.4 43.3 3.55 0.025

3 3.500 0.438 2.624 0.2187 6.89 18.1 47.4 124.4 5.41 0.0384 4.500 0.531 3.438 0.2865 11.82 40.6 139.7 480.3 9.28 0.0645 5.563 0.625 4.313 0.3594 18.60 80.2 346.0 1,492.4 14.61 0.1016 6.625 0.718 5.189 0.4324 26.93 139.7 725.0 3,762.0 21.15 0.1478 8.625 0.906 6.813 0.5678 46.42 316.2 2,154.5 14,678.8 36.46 0.25310 10.750 1.125 8.500 0.7083 72.25 614.1 5,220.1 44,370.5 56.75 0.39412 12.750 1.312 10.126 0.8438 102.54 1,038.3 10,513.6 106,460.8 80.53 0.55914 14 1.406 11.188 0.9323 125.17 1,400.4 15,667.9 175,292.1 98.31 0.68316 16 1.593 12.814 1.0678 164.20 2,104.0 26,961.2 345,480.5 128.96 0.89618 18 1.781 14.438 1.2032 208.46 3,009.7 43,453.8 627,386.5 163.72 1.13720 20 1.968 16.064 1.3387 258.05 4,145.3 66,590.9 1,069,716.0 202.67 1.40724 24 2.343 19.314 1.6095 373.03 7,204.7 139,151.8 2,687,578.4 292.98 2.035

Standard Wall Pipe (Similar to Schedule 40)

1/8 0.405 0.068 0.269 0.0224 0.0724 0.0195 0.0052 0.0014 0.0568 0.0004 1/4 0.540 0.088 0.364 0.0303 0.1325 0.0482 0.0176 0.0064 0.1041 0.0007 3/8 0.675 0.091 0.493 0.0411 0.2430 0.1198 0.0591 0.0291 0.1909 0.0013 1/2 0.840 0.109 0.622 0.0518 0.3869 0.2406 0.1497 0.0931 0.3039 0.0021 3/4 1.050 0.113 0.824 0.0687 0.6790 0.5595 0.4610 0.3799 0.5333 0.00371 1.315 0.133 1.049 0.0874 1.100 1.154 1.211 1.270 0.864 0.0060

1 1/4 1.660 0.140 1.380 0.1150 1.904 2.628 3.627 5.005 1.496 0.01041 1/2 1.900 0.145 1.610 0.1342 2.592 4.173 6.719 10.818 2.036 0.0141

2 2.375 0.154 2.067 0.1723 4.272 8.831 18.254 37.731 3.356 0.02332 1/2 2.875 0.203 2.469 0.2058 6.096 15.051 37.161 91.750 4.788 0.0332

3 3.500 0.216 3.068 0.2557 9.41 28.9 88.6 271.8 7.393 0.05133 1/2 4.000 0.226 3.548 0.2957 12.59 44.7 158.5 562.2 9.887 0.0687

4 4.500 0.237 4.026 0.3355 16.21 65.3 262.7 1,057.7 12.730 0.08845 5.563 0.258 5.047 0.4206 25.47 128.6 648.8 3,274.7 20.006 0.13896 6.625 0.280 6.065 0.5054 36.78 223.1 1,353.1 8,206.4 28.890 0.2006

88.625 0.277 8.071 0.6726 65.14 525.8 4,243.4 34,248.1 51.162 0.3553

8.625S 0.322 7.981 0.6651 63.70 508.4 4,057.2 32,380.7 50.027 0.3474

10

10.75 0.279 10.192 0.8493 103.88 1,058.7 10,790.4 109,975.8 81.585 0.566610.75 0.307 10.136 0.8447 102.74 1,041.4 10,555.2 106,987.5 80.691 0.5604

10.75S 0.365 10.020 0.8350 100.40 1,006.0 10,080.2 101,004.0 78.854 0.5476

1212.75 0.330 12.090 1.0075 146.17 1,767.2 21,365.1 258,304.2 114.80 0.7972

12.75S 0.375 12.000 1.0000 144.00 1,728.0 20,736.0 248,832.0 113.10 0.7854

Page 59: Crane Fluid Flow Problems

Art Montemayor U.S.A. Pipe Dimensions September 30, 2003Rev: 0

Page 59 of 287 FileName: document.xlsWorkSheet: Pipe Tables

Extra Strong Wall Pipe (Similar to Schedule 80)

1/8 0.405 0.095 0.215 0.0179 0.0462 0.0099 0.0021 0.0005 0.0363 0.0003 1/4 0.540 0.119 0.302 0.0252 0.0912 0.0275 0.0083 0.0025 0.0716 0.0005 3/8 0.675 0.126 0.423 0.0353 0.1789 0.0757 0.0320 0.0135 0.1405 0.0010 1/2 0.840 0.147 0.546 0.0455 0.2981 0.1628 0.0889 0.0485 0.2341 0.0016 3/4 1.050 0.154 0.742 0.0618 0.5506 0.4085 0.3031 0.2249 0.4324 0.00301 1.315 0.179 0.957 0.0798 0.916 0.876 0.839 0.803 0.719 0.0050

1 1/4 1.660 0.191 1.278 0.1065 1.633 2.087 2.668 3.409 1.283 0.00891 1/2 1.900 0.200 1.500 0.1250 2.250 3.375 5.063 7.594 1.767 0.0123

2 2.375 0.218 1.939 0.1616 3.760 7.290 14.136 27.409 2.953 0.02052 1/2 2.875 0.276 2.323 0.1936 5.396 12.536 29.120 67.647 4.238 0.0294

3 3.500 0.300 2.900 0.2417 8.41 24.4 70.7 205.1 6.605 0.04593 1/2 4.000 0.318 3.364 0.2803 11.32 38.1 128.1 430.8 8.888 0.0617

4 4.500 0.337 3.826 0.3188 14.64 56.0 214.3 819.8 11.497 0.07985 5.563 0.375 4.813 0.4011 23.16 111.5 536.6 2,582.7 18.194 0.12636 6.625 0.432 5.761 0.4801 33.19 191.2 1,101.5 6,345.8 26.067 0.1810

8 8.625 0.500 7.625 0.6354 58.14 443.3 3,380.3 25,775.0 45.664 0.3171

10 10.75 0.500 9.750 0.8125 95.06 926.9 9,036.9 88,109.6 74.662 0.5185

12 12.75 0.500 11.750 0.9792 138.06 1,622.2 19,061.3 223,969.7 108.43 0.7530

Double Extra Strong Wall Pipe (Similar to Schedules > 80)

1/2 0.840 0.294 0.252 0.0210 0.0635 0.0160 0.0040 0.0010 0.0499 0.0003 3/4 1.050 0.308 0.434 0.0362 0.1884 0.0817 0.0355 0.0154 0.1479 0.00101 1.315 0.358 0.599 0.0499 0.359 0.215 0.129 0.077 0.282 0.0020

1 1/4 1.660 0.382 0.896 0.0747 0.803 0.719 0.645 0.577 0.631 0.00441 1/2 1.900 0.400 1.100 0.0917 1.210 1.331 1.464 1.611 0.950 0.0066

2 2.375 0.436 1.503 0.1253 2.259 3.395 5.103 7.670 1.774 0.01232 1/2 2.875 0.552 1.771 0.1476 3.136 5.555 9.837 17.422 2.463 0.0171

3 3.500 0.600 2.300 0.1917 5.29 12.2 28.0 64.4 4.155 0.02893 1/2 4.000 0.636 2.728 0.2273 7.44 20.3 55.4 151.1 5.845 0.0406

4 4.500 0.674 3.152 0.2627 9.94 31.3 98.7 311.1 7.803 0.05425 5.563 0.750 4.063 0.3386 16.51 67.1 272.5 1,107.2 12.965 0.09006 6.625 0.864 4.897 0.4081 23.98 117.4 575.1 2,816.1 18.834 0.1308

8 8.625 0.875 6.875 0.5729 47.27 325.0 2,234.0 15,359.0 37.122 0.2578

Stainless Steel Pipe (Schedule 5S)

1/2 0.840 0.065 0.710 0.0592 0.5041 0.3579 0.2541 0.1804 0.3959 0.0027 3/4 1.050 0.065 0.920 0.0767 0.8464 0.7787 0.7164 0.6591 0.6648 0.00461 1.315 0.065 1.185 0.0988 1.404 1.664 1.972 2.337 1.103 0.0077

1 1/4 1.660 0.065 1.530 0.1275 2.341 3.582 5.480 8.384 1.839 0.01281 1/2 1.900 0.065 1.770 0.1475 3.133 5.545 9.815 17.373 2.461 0.0171

2 2.375 0.065 2.245 0.1871 5.040 11.315 25.402 57.027 3.958 0.02752 1/2 2.875 0.083 2.709 0.2258 7.339 19.880 53.856 145.897 5.764 0.0400

3 3.500 0.083 3.334 0.2778 11.12 37.1 123.6 411.9 8.730 0.06063 1/2 4.000 0.083 3.834 0.3195 14.70 56.4 216.1 828.4 11.545 0.0802

4 4.500 0.083 4.334 0.3612 18.78 81.4 352.8 1,529.1 14.753 0.10245 5.563 0.109 5.345 0.4454 28.57 152.7 816.2 4,362.5 22.438 0.15586 6.625 0.109 6.407 0.5339 41.05 263.0 1,685.1 10,796.3 32.240 0.2239

8 8.625 0.109 8.407 0.7006 70.68 594.2 4,995.3 41,995.7 55.510 0.3855

10 10.75 0.134 10.482 0.8735 109.87 1,151.7 12,071.9 126,537.9 86.294 0.5993

12 12.75 0.156 12.438 1.0365 154.70 1,924.2 23,933.3 297,682.1 121.50 0.8438

Page 60: Crane Fluid Flow Problems

Art Montemayor U.S.A. Pipe Dimensions September 30, 2003Rev: 0

Page 60 of 287 FileName: document.xlsWorkSheet: Pipe Tables

Stainless Steel Pipe (Schedule 10S)

1/8 0.405 0.049 0.307 0.0256 0.0942 0.0289 0.0089 0.0027 0.0740 0.0005 1/4 0.540 0.065 0.410 0.0342 0.1681 0.0689 0.0283 0.0116 0.1320 0.0009 3/8 0.675 0.065 0.545 0.0454 0.2970 0.1619 0.0882 0.0481 0.2333 0.0016 1/2 0.840 0.083 0.674 0.0562 0.4543 0.3062 0.2064 0.1391 0.3568 0.0025 3/4 1.050 0.083 0.884 0.0737 0.7815 0.6908 0.6107 0.5398 0.6138 0.00431 1.315 0.109 1.097 0.0914 1.203 1.320 1.448 1.589 0.945 0.0066

1 1/4 1.660 0.109 1.442 0.1202 2.079 2.998 4.324 6.235 1.633 0.01131 1/2 1.900 0.109 1.682 0.1402 2.829 4.759 8.004 13.463 2.222 0.0154

2 2.375 0.109 2.157 0.1798 4.653 10.036 21.647 46.693 3.654 0.02542 1/2 2.875 0.120 2.635 0.2196 6.943 18.295 48.208 127.029 5.453 0.0379

3 3.500 0.120 3.260 0.2717 10.63 34.6 112.9 368.2 8.347 0.05803 1/2 4.000 0.120 3.760 0.3133 14.14 53.2 199.9 751.5 11.104 0.0771

4 4.500 0.120 4.260 0.3550 18.15 77.3 329.3 1,403.0 14.253 0.09905 5.563 0.134 5.295 0.4413 28.04 148.5 786.1 4,162.3 22.020 0.15296 6.625 0.134 6.357 0.5298 40.41 256.9 1,633.1 10,381.5 31.739 0.2204

8 8.625 0.148 8.329 0.6941 69.37 577.8 4,812.5 40,083.4 54.485 0.3784

10 10.75 0.165 10.420 0.8683 108.58 1,131.4 11,788.8 122,839.7 85.276 0.5922

12 12.75 0.180 12.390 1.0325 153.51 1,902.0 23,566.0 291,982.3 120.57 0.8373

Note:Stainless Steel Pipe Schedule 40S values are the same, size for size, as those shown above on the Standard Wall Pipe Table (heaviest weight on 8, 10, and 12-inch sizes).

Stainless Steel Pipe Schedule 80S values are the same, size for size, as those shown above on the Extra Strong Pipe Table.

Page 61: Crane Fluid Flow Problems

Art Montemayor U.S.A. Pipe Dimensions September 30, 2003Rev: 0

Page 61 of 287 FileName: document.xlsWorkSheet: Pipe Tables

May 8, 2003

Although pipe classification is common knowledge that is taken for granted among a lot of us old engineers, I have found that young engineers are lacking this information because both academic professors and we experienced engineers are both guilty of not passing on the information which used to be common and available when piping and fitting catalogs like Vogt, Tube Turns, Walworth, etc. used to be freely available to us. Now, these valuable free catalogs have become a thing of the past…

Because I regard this subject as very basic and important for all engineers to dominate, some years back I prepared the following explanation for young engineers working under me and with me in plant projects. I would like to share it with any one else who hasn't had the opportunity to find out this logical explanation of how pipe is classified.

Industrial pipe thicknesses follow a set formula, expressed as the “schedule number” as established by the American Standards Association (ASA) now re-organized as ANSI - the American National Standards Institute. Eleven schedule numbers are available for use: 5, 10, 20, 30, 40, 60, 80, 100, 120, 140, & 160. The most popular schedule, by far, is 40. Sch 5, 60, 100, 120, & 140 have rarely, if ever been employed by myself in over 40 years as a practicing engineer. The schedule number is defined as the approximate value of the expression:

Schedule Number = (1,000)(P/S)

P = the internal working pressure, psigS = the allowable stress (psi) for the material of construction at the conditions of use.

For example, the schedule number of ordinary steel pipe having an allowable stress of 10,000 psi for use at a working pressure of 350 psig would be:

This would be the proper schedule for welded joints and steel fittings but not for threaded connections and cast-iron or malleable-iron fittings. In practice, schedule 40 would be used for welded construction and Sch 80 (about 2x the computed value) for iron fittings. The higher schedule is required because of weaknesses in the iron fittings and the metal lost in cutting the threads.

For all pipe sizes below 10", Sch 40 pipe is identical with what was once called “standard” pipe, and Sch 80 is identical with the former “extra-strong” pipe. There is no equivalent schedule number for “double-extra-strong” pipe, and Sch 160 is the only other weight in which pipe smaller than 4" is available.

Temperature has no direct bearing on the schedule, except as it either weakens (or strengthens) the material's allowable stress. Stainless steels (304ELC & 316ELC), for example, yield a stronger allowable stress at the low

I've used the rule of thumb that the softer the metal, the stronger it is at the lower temperatures.

I hope this has helped you in explaining how pipe is classified.

Art Montemayor

Schedule Number = (1,000)(350/10,000) = 35 (approx. 40)

temperatures near the cryogenic zone (-50 to -150 oF). Copper and Brass also exhibit the same behavior.

Page 62: Crane Fluid Flow Problems

Nominal Pipe Size: 1/8 Inch 1/4 InchSchedule 40 Steel Pipe Schedule 40 Steel Pipe

I. D. = 0.2690 inches I. D. = 0.3640 inches0.006690 0.004950

Water FlowrateV ft/sec V ft/sec

CFS GPM0.0000446 0.02 0.113 0.00020 0.272 0.062 0.000060.0000891 0.04 0.226 0.00079 0.543 0.123 0.000240.0001114 0.05 0.282 0.00124 0.154 0.00037 0.2030.0001337 0.06 0.339 0.00178 0.815 0.185 0.000530.0001782 0.08 0.452 0.00317 1.087 0.247 0.000950.0002228 0.10 0.565 0.00495 1.359 0.308 0.00148 0.405

0.0002674 0.12 0.677 0.00713 1.630 0.370 0.002130.0003119 0.14 0.790 0.00971 1.902 0.432 0.002900.0003565 0.16 0.903 0.01268 2.174 0.493 0.003780.0004010 0.18 1.016 0.01605 2.445 0.555 0.004790.0004456 0.20 1.129 0.01981 2.717 0.617 0.00591 0.810

Transition To Turbulent Flow0.000557 0.25 1.411 0.03096 0.771 0.00923 1.0130.000668 0.3 1.694 0.04458 9.7 Transition To Turbulent Flow0.000891 0.4 2.258 0.07925 16.2 1.233 0.02364 3.7

0.00111 0.5 2.823 0.12383 24.2 1.542 0.036930.00134 0.6 3.387 0.17832 33.8 1.850 0.05319 7.60.00156 0.7 3.952 0.24271 44.8 2.158 0.07239

0.00178 0.8 4.516 0.31701 57.4 2.466 0.09455 12.70.00201 0.9 5.081 0.40121 71.6 2.775 0.119670.00223 1.0 5.645 0.49533 87.0 3.083 0.14774 19.10.00267 1.2 6.774 0.71327 122 3.700 0.21274 26.70.00312 1.4 7.903 0.97084 164 4.316 0.28957 35.3

0.00356 1.6 9.032 1.26804 212 4.933 0.37821 45.20.00401 1.8 10.162 1.60486 265 5.550 0.47867 56.40.00446 2.0 11.291 1.98130 324 6.166 0.59096 69.00.00557 2.5 7.708 0.92337 1050.00668 3.0 9.249 1.32965 148

0.0078 3.5 10.791 1.80980 2000.0089 4.0 12.332 2.36382 2590.0100 4.5 13.874 2.99171 3260.0111 5.0 15.416 3.69347 3980.0123 5.5

0.0134 6.00.0145 6.50.0156 7.00.0167 7.50.0178 8.0

(e/D) = (e/D) =

V2/2g ft

hf, ft per 100' pipe

V2/2g ft

hf, ft per 100' pipe

Page 63: Crane Fluid Flow Problems

0.0189 8.50.0201 9.00.0212 9.50.0223 100.0245 11

0.0267 120.0290 130.0312 140.0334 150.0356 16

0.0379 170.0401 180.0423 190.0446 200.0490 22

0.0535 240.0579 260.0624 280.0668 300.0713 32

0.0758 340.0802 360.0847 380.0891 400.0936 42

0.0980 440.1025 460.1069 480.1114 50

0.123 55

0.134 600.145 650.156 700.167 750.178 80

0.189 850.201 900.212 950.223 1000.245 110

0.267 1200.290 1300.312 140

Page 64: Crane Fluid Flow Problems

0.334 1500.356 160

0.379 1700.401 1800.423 1900.446 2000.490 220

0.535 2400.579 2600.624 2800.668 3000.780 350

0.891 4001.003 4501.114 500

1.23 5501.34 600

1.45 6501.56 7001.67 7501.78 8001.89 850

2.01 9002.12 9502.23 1,0002.45 1,1002.67 1,200

2.90 1,3003.12 1,4003.34 1,5003.56 1,6003.79 1,700

4.01 1,8004.23 1,9004.46 2,0004.68 2,1004.90 2,200

5.12 2,3005.35 2,4005.57 2,5005.79 2,6006.02 2,700

6.24 2,800

Page 65: Crane Fluid Flow Problems

6.46 2,9006.68 3,0006.91 3,1007.13 3,200

7.35 3,3007.58 3,4007.80 3,5008.02 3,6008.24 3,700

8.47 3,8008.69 3,9008.91 4,0009.13 4,1009.36 4,200

9.58 4,3009.80 4,400

10.03 4,50010.25 4,60010.47 4,700

10.69 4,80010.92 4,90011.14 5,000

12.3 5,50013.4 6,000

14.5 6,50015.6 7,00016.7 7,50017.8 8,00018.9 8,500

20.1 9,00021.2 9,50022.3 10,00024.5 11,00026.7 12,000

29.0 13,00031.2 14,00033.4 15,00035.6 16,00037.9 17,000

40.1 18,00042.3 19,00044.6 20,00049.0 22,00053.5 24,000

Page 66: Crane Fluid Flow Problems

57.9 26,00062.4 28,00066.8 30,00071.3 32,00075.8 34,000

80.2 36,00084.7 38,00089.1 40,00093.6 42,00098.0 44,000

102.5 46,000106.9 48,000111.4 50,000

123 55,000134 60,000

145 65,000156 70,000167 75,000178 80,000189 85,000

201 90,000212 95,000223 100,000245 110,000267 120,000

290 130,000312 140,000334 150,000356 160,000379 170,000

401 180,000423 190,000446 200,000468 210,000490 220,000

512 230,000535 240,000557 250,000668 300,000780 350,000

891 400,0001,003 450,0001,114 500,000

Page 67: Crane Fluid Flow Problems

1,225 550,0001,337 600,000

1,448 650,0001,560 700,0001,671 750,0001,782 800,0001,894 850,000

2,005 900,0002,117 950,0002,228 1,000,000

Basic Data: Re = 10,468 Re = 7,736

f = 0.04 f = 0.04

Density, lb/ft3 62.371 88.4 ft water 19.5 ft water

Viscosity, cP 1.12110.00015 For Laminar Flow: For Laminar Flow:

Pipe is clean & new V = 1.079 ft/sec V = 0.797 ft/sec(or Less) (or Less)

Pipe length,ft= 100For Critical Zone Flow: For Critical Zone Flow:

V = 2.157 ft/sec V = 1.594 ft/sec(or Less) (or Less)

Water is at 60 oF

hL = hL =

e, feet =

Re=123. 9d v ρμ

where ,d=pipe ID , inchesv=velocity , ft /secρ=density , lb / ft 3

μ=vis cos ity , cP

Page 68: Crane Fluid Flow Problems

3/8 Inch 1/2 Inch 3/4 InchSchedule 40 Steel Pipe Schedule 40 Steel Pipe Schedule 40 Steel Pipe

I. D. = 0.4930 inches I. D. = 0.6220 inches I. D. = 0.8240 inches0.003650 0.002890 0.002180

V ft/sec

0.034 0.000020.067 0.000070.084 0.000110.101 0.000160.134 0.000280.168 0.00044

0.202 0.000630.235 0.000860.269 0.001120.303 0.001420.336 0.00176

0.420 0.002740.504 0.003950.672 0.007020.840 0.01098

1.01 0.01581 1.741.18 0.02151 0.739 0.0085 0.74

1.34 0.02810 2.89 0.845 0.01111.51 0.03556 0.950 0.01401.68 0.04390 4.30 1.06 0.0173 1.86 0.602 0.00563 0.2602.02 0.06322 1.27 0.0250 0.722 0.008102.35 0.08605 1.48 0.0340 0.842 0.01103

2.69 0.11240 1.69 0.0444 0.963 0.01443.03 0.14225 1.90 0.0561 1.083 0.01823.36 0.17562 15.0 2.11 0.0693 4.78 1.20 0.0225 1.214.20 0.27441 22.6 2.64 0.1083 7.16 1.50 0.0352 1.805.04 0.39514 31.8 3.17 0.156 10.0 1.80 0.0506 2.50

5.88 0.53783 42.6 3.70 0.212 13.3 2.11 0.0689 3.306.72 0.70248 54.9 4.22 0.277 17.1 2.41 0.0900 4.217.56 0.88907 68.4 4.75 0.351 21.3 2.71 0.114 5.218.40 1.09762 83.5 5.28 0.433 25.8 3.01 0.141 6.329.24 1.32812 100 5.81 0.524 30.9 3.31 0.170

10.08 1.58058 118 6.34 0.624 36.5 3.61 0.203 8.8710.92 1.85498 137 6.86 0.732 42.4 3.91 0.23811.77 2.15134 158 7.39 0.849 48.7 4.21 0.276 11.812.61 2.46965 181 7.92 0.975 55.5 4.51 0.31613.45 2.80991 205 8.45 1.109 62.7 4.81 0.360 15.0

(e/D) = (e/D) = (e/D) =

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

Page 69: Crane Fluid Flow Problems

14.29 3.17213 231 8.97 1.25 70.3 5.11 0.40615.13 3.55629 258 9.50 1.40 78.3 5.41 0.456 18.815.97 3.96241 286 10.03 1.56 86.9 5.72 0.50816.81 4.39049 316 10.56 1.73 95.9 6.02 0.563 23.0

11.6 2.10 115 6.62 0.681 27.6

12.7 2.50 136 7.22 0.810 32.613.7 2.93 159 7.82 0.951 37.814.8 3.40 183 8.42 1.103 43.515.8 3.90 209 9.02 1.27 49.7

9.63 1.44 56.3

10.23 1.63 63.110.8 1.82 70.311.4 2.03 78.012.0 2.25 86.113.2 2.72 104

14.4 3.24 12215.6 3.80 14316.8 4.41 16418.0 5.06 187

Page 70: Crane Fluid Flow Problems
Page 71: Crane Fluid Flow Problems
Page 72: Crane Fluid Flow Problems
Page 73: Crane Fluid Flow Problems

Re = 5,712 Re = 4,527 Re = 3,417

f = 0.04 f = 0.04 f = 0.04

4.3 ft water 1.3 ft water 0.3 ft water

For Laminar Flow: For Laminar Flow: For Laminar Flow:V = 0.589 ft/sec V = 0.466 ft/sec V = 0.352 ft/sec

(or Less) (or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow: For Critical Zone Flow:V = 1.177 ft/sec V = 0.933 ft/sec V = 0.704 ft/sec

(or Less) (or Less) (or Less)

hL = hL = hL =

Page 74: Crane Fluid Flow Problems

1 Inch 1-1/4 Inch 1-1/2 InchSchedule 40 Steel Pipe Schedule 40 Steel Pipe Schedule 40 Steel Pipe

I. D. = 1.0490 inches I. D. = 1.3800 inches I. D. = 1.61000.001720 0.001300 0.001120

0.371 0.00214 0.1140.445 0.003080.520 0.00420 0.300 0.00140 0.221 0.00076

Transition To Turbulent Flow Transition To Turbulent Flow Transition To Turbulent Flow0.594 0.00548 0.343 0.00183 0.252 0.000990.668 0.00694 0.386 0.00232 0.284 0.001250.742 0.00857 0.379 0.429 0.00286 0.102 0.315 0.001540.928 0.01339 0.536 0.00447 0.394 0.002411.114 0.01928 0.772 0.644 0.00644 0.207 0.473 0.00347

1.299 0.0262 0.751 0.00876 0.552 0.004731.48 0.0343 1.295 0.858 0.01144 0.342 0.630 0.006181.67 0.0434 0.965 0.01448 0.709 0.007821.86 0.0535 1.93 1.073 0.01788 0.508 0.788 0.009652.04 0.0648 1.180 0.02163 0.867 0.01168

2.23 0.0771 2.68 1.287 0.0257 0.704 0.946 0.01392.41 0.0905 1.394 0.0302 1.024 0.01632.60 0.1050 3.56 1.502 0.0350 0.930 1.103 0.01892.78 0.120 1.609 0.0402 1.182 0.02172.97 0.137 4.54 1.716 0.0458 1.18 1.26 0.0247

(e/D) = (e/D) = (e/D) =

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 75: Crane Fluid Flow Problems

3.16 0.155 1.823 0.0517 1.34 0.02793.34 0.173 5.65 1.931 0.0579 1.46 1.42 0.03133.53 0.193 2.038 0.0645 1.50 0.03483.71 0.214 6.86 2.145 0.0715 1.77 1.58 0.03864.08 0.259 2.360 0.0865 1.73 0.0467

4.45 0.308 9.62 2.574 0.103 2.48 1.89 0.05564.83 0.362 2.789 0.121 2.05 0.06525.20 0.420 12.8 3.003 0.140 3.28 2.21 0.07575.57 0.482 3.218 0.161 2.36 0.08695.94 0.548 16.5 3.432 0.183 4.20 2.52 0.0988

6.31 0.619 3.647 0.207 2.68 0.1126.68 0.694 20.6 3.861 0.232 5.22 2.84 0.1257.05 0.773 4.076 0.258 2.99 0.1397.42 0.857 25.1 4.290 0.286 6.34 3.15 0.1548.17 1.037 30.2 4.719 0.346 7.58 3.47 0.187

8.91 1.23 35.6 5.148 0.412 8.92 3.78 0.2229.65 1.45 41.6 5.577 0.483 10.37 4.10 0.261

10.39 1.68 47.9 6.006 0.561 13.6 4.41 0.30311.1 1.93 54.6 6.435 0.644 13.6 4.73 0.34711.9 2.19 61.8 6.864 0.732 15.3 5.04 0.395

12.6 2.48 69.4 7.293 0.827 17.2 5.36 0.44613.4 2.78 77.4 7.722 0.927 19.2 5.67 0.50014.1 3.09 86.0 8.151 1.033 21.3 5.99 0.55714.8 3.43 95.0 8.580 1.14 23.5 6.30 0.61815.6 3.78 104.5 9.009 1.26 25.8 6.62 0.681

16.3 4.15 114 9.438 1.38 28.2 6.93 0.74717.1 4.53 124 9.867 1.51 30.7 7.25 0.81717.8 4.93 135 10.296 1.65 33.3 7.56 0.88918.6 5.35 146 10.725 1.79 36.0 7.88 0.96520.4 6.48 176 11.798 2.16 43.2 8.67 1.17

22.3 7.71 209 12.870 2.57 51.0 9.46 1.3924.1 9.05 245 13.943 3.02 59.6 10.24 1.6326.0 10.50 283 15.015 3.50 68.8 11.03 1.8927.8 12.0 324 16.088 4.02 78.7 11.8 2.1729.7 13.7 367 17.160 4.58 89.2 12.6 2.47

31.6 15.5 413 18.233 5.17 100.2 13.4 2.7933.4 17.3 462 19.305 5.79 112 14.2 3.1335.3 19.3 513 20.378 6.45 124 15.0 3.4837.1 21.4 567 21.450 7.15 138 15.8 3.86

23.595 8.65 166 17.3 4.67

25.740 10.3 197 18.9 5.5627.885 12.1 230 20.5 6.5230.030 14.0 267 22.1 7.57

Page 76: Crane Fluid Flow Problems

32.175 16.1 306 23.6 8.6925.2 9.88

26.8 11.1628.4 12.5129.9 13.931.5 15.4

Page 77: Crane Fluid Flow Problems
Page 78: Crane Fluid Flow Problems
Page 79: Crane Fluid Flow Problems

Re = 2,684 Re = 0

f = 0.04 f = 0.04

0.1 ft water 0.0 ft water

For Laminar Flow: For Laminar Flow: For Laminar Flow:V = 0.277 ft/sec V = 0.210 ft/sec V = 0.180

(or Less) (or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow: For Critical Zone Flow:V = 0.553 ft/sec V = 0.421 ft/sec V = 0.360

(or Less) (or Less) (or Less)

hL = hL =

Page 80: Crane Fluid Flow Problems

1-1/2 Inch 2 Inch 3 InchSchedule 40 Steel Pipe Schedule 40 Steel Pipe Schedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe

inches I. D. = 2.0670 inches I. D. = 3.0680 inches I. D. = 3.00000.000870 0.000587 0.001600

Transition To Turbulent Flow

0.0492 0.191 0.00057 0.01510.239 0.00089

0.0988 0.287 0.00128 0.0302Transition To Turbulent Flow

0.335 0.001740.164 0.382 0.00227 0.0497

0.430 0.00288 0.06000.242 0.478 0.00355 0.0731 0.217 0.00073 0.0112 0.227 0.00080

0.526 0.00430 0.0900 0.239 0.00089 0.250 0.00097

0.333 0.574 0.00511 0.1004 0.260 0.00105 0.272 0.001150.621 0.00600 0.120 0.282 0.00124 0.295 0.00135

0.439 0.669 0.00696 0.131 0.304 0.00143 0.318 0.001570.717 0.00799 0.150 0.325 0.00165 0.340 0.00180

0.558 0.765 0.00909 0.166 0.347 0.00187 0.363 0.00205

(e/D) = (e/D) = (e/D) =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 81: Crane Fluid Flow Problems

0.813 0.01027 0.190 0.369 0.00212 0.386 0.002310.689 0.861 0.0115 0.205 0.391 0.00237 0.408 0.00259

0.908 0.0128 0.230 0.412 0.00264 0.431 0.002890.829 0.956 0.0142 0.248 0.434 0.00293 0.0372 0.454 0.00320

1.052 0.0172 0.290 0.477 0.00354 0.499 0.00387

1.16 1.15 0.0205 0.343 0.521 0.00422 0.545 0.004611.24 0.0240 0.400 0.564 0.00495 0.590 0.00541

1.53 1.34 0.0278 0.453 0.608 0.00574 0.635 0.006281.43 0.0320 0.510 0.651 0.00659 0.0762 0.681 0.00720

1.96 1.53 0.0364 0.578 0.694 0.0075 0.726 0.0082

1.63 0.0411 0.640 0.738 0.0085 0.772 0.00932.42 1.72 0.0460 0.717 0.781 0.0095 0.817 0.0104

1.82 0.0513 0.790 0.825 0.0106 0.862 0.01162.94 1.91 0.0568 0.868 0.868 0.0117 0.126 0.908 0.01283.52 2.10 0.0688 1.03 0.955 0.0142 0.999 0.0155

4.14 2.29 0.0818 1.20 1.042 0.0169 1.089 0.01844.81 2.49 0.0960 1.39 1.13 0.0198 1.18 0.02165.51 2.68 0.111 1.60 1.22 0.0230 1.27 0.02516.26 2.87 0.128 1.82 1.30 0.0263 0.262 1.36 0.02887.07 3.06 0.145 2.05 1.39 0.0300 1.45 0.0328

7.92 3.25 0.164 2.29 1.48 0.0338 1.54 0.03708.82 3.44 0.184 2.54 1.56 0.0379 1.63 0.04159.78 3.63 0.205 2.81 1.65 0.0423 1.72 0.0462

10.79 3.82 0.227 3.10 1.74 0.0468 0.443 1.82 0.051211.8 4.02 0.251 3.39 1.82 0.0516 1.91 0.0565

12.9 4.21 0.275 3.70 1.91 0.0567 2.00 0.062014.0 4.40 0.301 4.02 2.00 0.0619 2.09 0.067815.2 4.59 0.327 4.35 2.08 0.0674 2.18 0.073816.4 4.78 0.355 4.67 2.17 0.0732 0.662 2.27 0.080019.7 5.26 0.430 5.59 2.39 0.0886 0.789 2.50 0.0969

23.2 5.74 0.511 6.59 2.60 0.105 0.924 2.72 0.11527.1 6.21 0.600 7.69 2.82 0.124 1.07 2.95 0.13531.3 6.69 0.696 8.86 3.04 0.143 1.22 3.18 0.15735.8 7.17 0.799 10.1 3.25 0.165 1.39 3.40 0.18040.5 7.65 0.909 11.4 3.47 0.187 1.57 3.63 0.205

45.6 8.13 1.03 12.8 3.69 0.212 1.76 3.86 0.23151.0 8.61 1.15 14.2 3.91 0.237 1.96 4.08 0.25956.5 9.08 1.28 15.8 4.12 0.264 2.17 4.31 0.28962.2 9.56 1.42 17.4 4.34 0.293 2.39 4.54 0.32074.5 10.52 1.72 20.9 4.77 0.354 2.86 4.99 0.387

88.3 11.5 2.05 24.7 5.21 0.422 3.37 5.45 0.461103 12.4 2.40 28.8 5.64 0.495 3.92 5.90 0.541119 13.4 2.78 33.2 6.08 0.574 4.51 6.35 0.628

Page 82: Crane Fluid Flow Problems

137 14.3 3.20 38.0 6.51 0.659 5.14 6.81 0.720156 15.3 3.64 43.0 6.94 0.749 5.81 7.26 0.820

175 16.3 4.11 48.4 7.38 0.846 6.53 7.72 0.925196 17.2 4.60 54.1 7.81 0.948 7.28 8.17 1.037218 18.2 5.13 60.1 8.25 1.06 8.07 8.62 1.16241 19.1 5.68 66.3 8.68 1.17 8.90 9.08 1.28

21.0 6.88 80.0 9.55 1.42 10.7 9.99 1.55

22.9 8.18 95.0 10.4 1.69 12.6 10.9 1.8424.9 9.60 111 11.3 1.98 14.7 11.8 2.1626.8 11.14 128 12.2 2.30 16.9 12.7 2.5128.7 12.8 146 13.0 2.63 19.2 13.6 2.8833.5 17.4 199 15.2 3.59 15.9 3.92

38.2 22.7 258 17.4 4.68 33.9 18.2 5.1219.5 5.93 20.4 6.4821.7 7.32 52.5 22.7 8.0023.9 8.86 63.2 25.0 9.6926.0 10.5 74.8 27.2 11.5

28.2 12.4 87.5 29.5 13.530.4 14.3 101 31.8 15.732.5 16.5 116 34.0 18.034.7 18.7 131 36.3 20.536.9 21.2 148 38.6 23.1

39.1 23.7 165 40.8 25.941.2 26.4 184 43.1 28.943.4 29.3 204 45.4 32.0

Page 83: Crane Fluid Flow Problems
Page 84: Crane Fluid Flow Problems
Page 85: Crane Fluid Flow Problems

For Laminar Flow: For Laminar Flow:ft/sec V = 0.140 ft/sec V = 0.095 ft/sec

(or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow: For Critical Zone Flow:ft/sec V = 0.281 ft/sec V = 0.189 ft/sec

(or Less) (or Less)

Page 86: Crane Fluid Flow Problems

3 Inch 4 Inch 6 InchAsphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe

inches I. D. = 4.0260 inches I. D. = 4.0000 inches I. D. = 6.06500.000447 0.001200 0.000293

0.0128 0.126 0.00025 0.00310 0.128 0.000253 0.003250.139 0.00030 0.140 0.00031

0.151 0.00036 0.153 0.000360.164 0.00042 0.166 0.000430.176 0.00048 0.179 0.000500.189 0.00056 0.191 0.000570.202 0.00063 0.204 0.00065

(e/D) = (e/D) = (e/D) =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 87: Crane Fluid Flow Problems

0.214 0.00071 0.217 0.000730.227 0.00080 0.230 0.000820.239 0.00089 0.243 0.00091

0.0435 0.252 0.00099 0.01017 0.255 0.00101 0.01080 0.111 0.0001920.277 0.00119 0.281 0.00123 0.122 0.00023

0.302 0.00142 0.306 0.00146 0.133 0.000280.328 0.00167 0.332 0.00171 0.144 0.000320.353 0.00193 0.357 0.00199 0.155 0.00038

0.0900 0.378 0.00222 0.383 0.00228 0.167 0.000430.403 0.00253 0.408 0.00259 0.178 0.00049

0.428 0.00285 0.434 0.00293 0.189 0.000550.454 0.00320 0.460 0.00328 0.200 0.000620.479 0.00356 0.485 0.00366 0.211 0.00069

0.1510 0.504 0.00395 0.0344 0.511 0.00405 0.03700 0.222 0.000770.554 0.00478 0.562 0.00490 0.244 0.00093

0.605 0.00569 0.613 0.00584 0.267 0.001100.655 0.00667 0.664 0.00685 0.289 0.001300.706 0.00774 0.715 0.00794 0.311 0.00150

0.320 0.756 0.00888 0.0702 0.766 0.00912 0.0770 0.333 0.001730.806 0.01011 0.817 0.01037 0.355 0.00196

0.857 0.01141 0.868 0.01171 0.378 0.002220.907 0.01279 0.919 0.01313 0.400 0.002480.958 0.01426 0.970 0.01463 0.422 0.00277

0.549 1.008 0.01580 0.118 1.021 0.01621 0.131 0.444 0.003071.059 0.01741 1.072 0.01787 0.466 0.00338

1.109 0.01911 1.123 0.01961 0.489 0.003711.159 0.02089 1.174 0.02144 0.511 0.004061.210 0.02275 1.225 0.02334 0.533 0.00442

0.830 1.260 0.02468 0.176 1.277 0.02533 0.199 0.555 0.004790.993 1.386 0.02986 1.404 0.03065 0.611 0.00580

1.170 1.512 0.03554 0.245 1.532 0.03647 0.278 0.666 0.006901.36 1.638 0.04171 1.660 0.04280 0.722 0.008101.56 1.764 0.04837 0.325 1.787 0.04964 0.370 0.777 0.009391.78 1.890 0.05553 1.915 0.05699 0.833 0.010782.02 2.016 0.06318 0.415 2.042 0.06484 0.476 0.888 0.01227

2.28 2.142 0.07133 2.170 0.07320 0.944 0.01382.55 2.268 0.07996 0.515 2.298 0.08206 0.594 0.999 0.01552.82 2.394 0.08909 2.425 0.09143 1.055 0.01733.10 2.520 0.09872 0.624 2.553 0.10131 0.725 1.111 0.01923.73 2.772 0.11945 0.744 2.808 0.12259 0.869 1.222 0.0232

4.40 3.024 0.14216 0.877 3.064 0.14589 1.03 1.333 0.02765.13 3.276 0.16684 1.017 3.319 0.17122 1.19 1.444 0.03245.93 3.528 0.19349 1.165 3.574 0.19857 1.38 1.555 0.0376

Page 88: Crane Fluid Flow Problems

6.80 3.780 0.22212 1.32 3.830 0.22795 1.58 1.666 0.04317.71 4.032 0.25272 1.49 4.085 0.25936 1.78 1.777 0.0491

8.70 4.284 0.28530 1.67 4.340 0.29279 2.00 1.888 0.05549.73 4.536 0.31985 1.86 4.596 0.32825 2.24 1.999 0.0621

10.80 4.788 0.35638 2.06 4.851 0.36574 2.49 2.110 0.069211.9 5.040 0.39488 2.27 5.106 0.40525 2.74 2.221 0.076714.3 5.545 0.47780 2.72 5.617 0.49035 3.28 2.443 0.0928

17.0 6.049 0.56863 3.21 6.127 0.58356 3.88 2.665 0.11019.8 6.553 0.66735 3.74 6.638 0.68487 4.54 2.887 0.13022.8 7.057 0.77397 4.30 7.149 0.79429 5.25 3.109 0.15026.1 7.561 0.88848 4.89 7.659 0.91181 6.03 3.332 0.17326.2 8.821 1.20932 5.51 8.936 1.24107 6.87 3.887 0.235

46.8 10.081 1.57952 8.47 10.212 1.62099 10.7 4.442 0.30711.341 1.99908 11.489 2.05157 4.997 0.388

72.3 12.601 2.46800 13.0 12.766 2.53280 16.6 5.553 0.47987 13.861 2.98628 15.7 14.042 3.06468 19.9 6.108 0.580

102 15.121 3.55392 18.6 15.319 3.64723 23.6 6.663 0.690

121 16.382 4.17092 21.7 16.595 4.28043 27.7 7.218 0.810142 17.642 4.83728 25.0 17.872 4.96428 32.1 7.774 0.939162 18.902 5.55300 28.6 19.148 5.69879 36.7 8.329 1.08184 20.162 6.31808 32.4 20.425 6.48396 41.6 8.884 1.23207 21.422 7.13252 36.5 21.701 7.31978 46.8 9.439 1.38

232 22.682 7.99632 40.8 22.978 8.20626 52.3 9.995 1.55258 23.942 8.90948 45.3 24.255 9.14340 58.1 10.550 1.73285 25.202 9.87200 50.2 25.531 10.13119 64.2 11.105 1.92

27.723 11.94512 60.5 28.084 12.25874 78.2 12.216 2.3230.243 14.21569 72.0 30.637 14.58891 92.8 13.326 2.76

32.763 16.68369 84.3 33.191 17.12171 108.2 14.437 3.2435.283 19.34913 97.6 35.744 19.85713 126 15.547 3.7637.804 22.21201 112 38.297 22.79518 144 16.658 4.3140.324 25.27233 127 40.850 25.93585 164 17.768 4.9142.844 28.53009 143 43.403 29.27914 185 18.879 5.54

45.364 31.98529 160 45.956 32.82505 207 19.989 6.2147.885 35.63793 178 48.509 36.57359 230 21.100 6.9250.405 39.48802 196 51.062 40.52476 255 22.211 7.67

23.321 8.4524.432 9.28

25.542 10.126.653 11.027.763 12.028.874 13.029.984 14.0

31.095 15.0

Page 89: Crane Fluid Flow Problems

32.205 16.133.316 17.334.426 18.435.537 19.6

36.647 20.937.758 22.238.868 23.539.979 24.841.089 26.2

42.200 27.743.311 29.244.421 30.7

Page 90: Crane Fluid Flow Problems
Page 91: Crane Fluid Flow Problems

For Laminar Flow: For Laminar Flow:V = 0.072 ft/sec V = 0.048

(or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow:V = 0.144 ft/sec V = 0.096

(or Less) (or Less)

Page 92: Crane Fluid Flow Problems

6 Inch 8 InchSchedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe

inches I. D. = 6.0000 inches I. D. = 7.9810 inches I. D. = 8.00000.000800 0.000226 0.000600(e/D) = (e/D) = (e/D) =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 93: Crane Fluid Flow Problems

0.00146 0.113 0.000200 0.00157 0.0641 0.000064 0.000401 0.0638 0.0000630.125 0.000242 0.0705 0.000077 0.0702 0.000077

0.136 0.000288 0.0770 0.000092 0.0766 0.0000910.148 0.000338 0.0834 0.000108 0.0830 0.0001070.159 0.000392 0.0898 0.000125 0.0894 0.0001240.170 0.000450 0.0962 0.000144 0.0957 0.0001420.182 0.000512 0.1026 0.000164 0.1021 0.000162

0.193 0.000578 0.1090 0.000185 0.1085 0.0001830.204 0.000648 0.1154 0.000207 0.1149 0.0002050.216 0.000722 0.1219 0.000231 0.1213 0.000229

0.00487 0.227 0.000800 0.00523 0.1283 0.000256 0.001320 0.1277 0.0002530.250 0.000969 0.1411 0.000309 0.1404 0.000306

0.272 0.001153 0.1539 0.000368 0.1532 0.0003650.295 0.001353 0.1667 0.000432 0.1660 0.0004280.318 0.001569 0.1796 0.000501 0.1787 0.000496

0.00988 0.340 0.001801 0.01070 0.1924 0.000575 0.00266 0.1915 0.0005700.363 0.002049 0.2052 0.000655 0.2042 0.000648

0.386 0.002313 0.2180 0.000739 0.2170 0.0007320.408 0.002594 0.2309 0.000828 0.2298 0.0008210.431 0.002890 0.2437 0.000923 0.2425 0.000914

0.0164 0.454 0.003202 0.0179 0.2565 0.001023 0.00442 0.2553 0.0010130.477 0.003530 0.2694 0.001128 0.2681 0.001117

0.499 0.003874 0.2822 0.001238 0.2808 0.0012260.522 0.004235 0.2950 0.001353 0.2936 0.0013400.545 0.004611 0.3078 0.001473 0.3064 0.001459

0.0244 0.567 0.005003 0.0268 0.3207 0.001598 0.00652 0.3191 0.0015830.624 0.006054 0.3527 0.001934 0.3511 0.001915

0.0337 0.681 0.007204 0.0374 0.3848 0.002301 0.00904 0.3830 0.0022800.738 0.008455 0.4169 0.002701 0.4149 0.002675

0.0445 0.794 0.009806 0.0496 0.4489 0.003132 0.01190 0.4468 0.0031030.851 0.011257 0.4810 0.003596 0.4787 0.003562

0.0564 0.908 0.012808 0.0635 0.5131 0.004091 0.0151 0.5106 0.004052

0.965 0.014459 0.5451 0.004619 0.5425 0.0045750.0698 1.021 0.016210 0.0789 0.5772 0.005178 0.0186 0.5745 0.005129

1.078 0.018061 0.6093 0.005769 0.6064 0.0057150.0843 1.135 0.020012 0.0958 0.6413 0.006393 0.0224 0.6383 0.006332

1.248 0.024215 0.7055 0.007735 0.7021 0.007662

0.118 1.362 0.028818 0.130 0.7696 0.009205 0.0311 0.7659 0.0091181.475 0.033821 0.8337 0.010803 0.8298 0.010701

0.155 1.589 0.039224 0.178 0.8979 0.012529 0.0410 0.8936 0.012411

Page 94: Crane Fluid Flow Problems

1.702 0.045028 0.9620 0.014383 0.9574 0.0142470.198 1.816 0.051231 0.229 1.0261 0.016365 0.0521 1.0212 0.016210

1.929 0.058 1.0902 0.018474 1.0851 0.0182990.246 2.042 0.065 0.282 1.1544 0.020712 0.0644 1.1489 0.020516

2.156 0.072 1.2185 0.023077 1.2127 0.0228580.299 2.269 0.080 0.346 1.2826 0.025570 0.0780 1.2766 0.0253280.357 2.496 0.097 0.415 1.4109 0.030940 0.0928 1.4042 0.030647

0.419 2.723 0.115 0.490 1.5392 0.036821 0.1088 1.5319 0.0364720.487 2.950 0.135 0.570 1.6674 0.043213 0.1260 1.6595 0.0428040.560 3.177 0.157 0.655 1.7957 0.050117 0.144 1.7872 0.0496430.637 3.404 0.180 0.745 1.9240 0.057533 0.163 1.9148 0.056988

3.972 0.245 2.2446 0.078308 2.2340 0.077567

1.09 4.539 0.32 1.30 2.5653 0.102280 0.279 2.5531 0.1013125.106 0.41 2.8859 0.129448 0.348 2.8723 0.128223

1.66 5.674 0.50 2.02 3.2066 0.159813 0.424 3.1914 0.1583001.99 6.241 0.61 2.42 3.5273 0.193373 0.507 3.5105 0.1915432.34 6.808 0.72 2.84 3.8479 0.230130 0.597 3.8297 0.227952

2.73 7.376 0.85 3.33 4.1686 0.270083 0.694 4.1488 0.2675273.13 7.943 0.98 3.87 4.4893 0.313233 0.797 4.4680 0.3102683.57 8.510 1.13 4.45 4.8099 0.359578 0.907 4.7871 0.3561754.03 9.078 1.28 5.06 5.1306 0.409120 1.02 5.1062 0.4052484.53 9.645 1.45 5.69 5.4512 0.461859 1.15 5.4254 0.457487

5.05 10.212 1.62 6.34 5.7719 0.517793 1.27 5.7445 0.5128915.60 10.780 1.81 7.02 6.0926 0.576924 1.41 6.0637 0.5714626.17 11.347 2.00 7.73 6.4132 0.639251 1.56 6.3828 0.6331997.41 12.482 2.42 9.80 7.0545 0.773493 1.87 7.0211 0.7661718.76 13.617 2.88 11.2 7.6959 0.920521 2.20 7.6594 0.911807

10.2 14.751 3.4 13.0 8.3372 1.080334 2.56 8.2976 1.07010711.8 15.886 3.9 15.1 8.9785 1.252931 2.95 8.9359 1.24107113.5 17.021 4.5 17.4 9.6198 1.438314 3.37 9.5742 1.42469915.4 18.156 5.1 19.8 10.3 1.636482 3.82 10.2 1.62099017.3 19.290 5.8 22.3 10.9 1.847434 4.29 10.9 1.829946

19.4 20.425 6.5 24.8 11.5 2.071172 4.79 11.5 2.05156621.6 21.560 7.2 27.6 12.2 2.307695 5.31 12.1 2.28585023.8 22.694 8.0 30.5 12.8 2.557003 5.86 12.8 2.53279726.2 23.829 8.8 33.6 13.5 2.819095 13.4 2.79240928.8 24.964 9.7 36.8 14.1 3.093973 7.02 14.0 3.064685

31.4 26.099 10.6 40.1 14.8 3.381636 14.7 3.34962534.2 27.233 11.5 43.5 15.4 3.682084 8.31 15.3 3.64722837.0 28.368 12.5 47.1 16.0 3.995316 16.0 3.95749639.9 29.503 13.5 51.0 16.7 4.321334 9.70 16.6 4.28042842.9 30.637 14.6 55.2 17.3 4.660137 17.2 4.616023

46.1 31.772 15.7 59.6 18.0 5.011725 11.20 17.9 4.964283

Page 95: Crane Fluid Flow Problems

49.4 32.907 16.8 64.1 18.6 5.376098 18.5 5.32520752.8 34.042 18.0 68.8 19.2 5.753256 12.8 19.1 5.698794

35.176 19.2 19.9 6.143199 19.8 6.08504659.9 36.311 20.5 78.0 20.5 6.545926 14.5 20.4 6.483961

0.000 0.037.446 21.8 21.2 6.961439 21.1 6.895541

67.4 38.580 23.1 88.0 21.8 7.389737 16.4 21.7 7.31978539.715 24.5 22.4 7.830820 22.3 7.756692

75.5 40.850 25.9 98.7 23.1 8.284688 18.4 23.0 8.20626441.985 27.4 23.7 8.751341 23.6 8.668499

84.1 43.119 28.9 110 24.4 9.230779 20.5 24.3 9.14339944.254 30 25.0 9.723002 24.9 9.630962

93.1 45.389 32 122 25.7 10.2 22.6 25.5 10.126.3 10.7 26.2 10.626.9 11.3 26.8 11.2

27.6 11.8 27.4 11.728.2 12.4 28.1 12.328.9 12.9 28.5 28.7 12.829.5 13.5 29.4 13.430.1 14.1 30.0 14.0

30.8 14.7 30.6 14.631.4 15.3 31.3 15.232.1 16.0 35.1 31.9 15.835.3 19.3 42.5 35.1 19.238.5 23.0 50.5 38.3 22.8

41.7 27.0 59.1 41.5 26.844.9 31.3 68.3 44.7 31.048.1 36.0 78.1 47.9 35.651.3 40.9 88.6 51.1 40.5

Page 96: Crane Fluid Flow Problems
Page 97: Crane Fluid Flow Problems

For Laminar Flow:ft/sec V = 0.036 ft/sec

(or Less)

For Critical Zone Flow: For Critical Zone Flow:ft/sec V = 0.073 ft/sec

(or Less)

Page 98: Crane Fluid Flow Problems

8 Inch 10 Inch 12 InchAsphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe

inches I. D. = 10.0200 inches I. D. = 10.0000 inches I. D. = 11.93800.000180 0.000480 0.000151(e/D) = (e/D) = (e/D) =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 99: Crane Fluid Flow Problems

0.000399 0.0407 0.000026 0.000138 0.0408 0.000026 0.0001400.0448 0.000031 0.0449 0.000031

0.0488 0.000037 0.0490 0.0000370.0529 0.000043 0.0531 0.0000440.0570 0.000050 0.0572 0.0000510.0610 0.000058 0.0613 0.0000580.0651 0.000066 0.0654 0.000066

0.0692 0.000074 0.0694 0.0000750.0732 0.000083 0.0735 0.0000840.0773 0.000093 0.0776 0.000094

0.001320 0.0814 0.000103 0.000451 0.0817 0.000104 0.0004600.0895 0.000125 0.0899 0.000126

0.0976 0.000148 0.0980 0.0001490.1058 0.000174 0.1062 0.0001750.1139 0.000202 0.1144 0.000203

0.00269 0.1221 0.000232 0.1225 0.0002330.1302 0.000263 0.1307 0.000266

0.1383 0.000297 0.1389 0.0003000.1465 0.000333 0.1471 0.0003360.1546 0.000372 0.1552 0.000375

0.00447 0.1627 0.000412 0.00149 0.1634 0.000415 0.001540.1709 0.000454 0.1716 0.000458

0.1790 0.000498 0.1797 0.0005020.1872 0.000544 0.1879 0.0005490.1953 0.000593 0.1961 0.000598

0.00664 0.2034 0.000643 0.2042 0.0006480.2238 0.000778 0.2247 0.000785

0.00920 0.2441 0.000926 0.00304 0.2451 0.000934 0.003150.2645 0.001087 0.2655 0.001096

0.01210 0.2848 0.001261 0.2859 0.0012710.3052 0.001447 0.3064 0.001459

0.0154 0.3255 0.00165 0.00505 0.3268 0.001660 0.00525

0.3458 0.00186 0.3472 0.0018740.0191 0.3662 0.00208 0.3676 0.002101

0.3865 0.00232 0.3881 0.0023410.0232 0.4069 0.00257 0.00747 0.4085 0.002594 0.00783 0.287 0.00128

0.4476 0.00311 0.4493 0.003138 0.315 0.00155

0.0323 0.4882 0.00371 0.0103 0.4902 0.003735 0.01058 0.344 0.001840.5289 0.00435 0.5310 0.004383 0.373 0.00216

0.0428 0.5696 0.00504 0.0136 0.5719 0.005083 0.0144 0.401 0.00250

Page 100: Crane Fluid Flow Problems

0.6103 0.00579 0.6127 0.005836 0.430 0.002870.0548 0.6510 0.00659 0.0174 0.6536 0.006640 0.0183 0.459 0.00327

0.6917 0.00744 0.6944 0.007495 0.487 0.003690.0681 0.7324 0.00834 0.0215 0.7353 0.008403 0.0227 0.516 0.00414

0.7731 0.00929 0.7761 0.009363 0.545 0.004610.0828 0.8137 0.0103 0.0260 0.8170 0.010374 0.0276 0.573 0.005110.0989 0.8951 0.0125 0.0309 0.8987 0.012553 0.0329 0.631 0.00618

0.1163 0.9765 0.0148 0.0362 0.9804 0.014939 0.0387 0.688 0.007360.135 1.0579 0.0174 0.0417 1.0621 0.017533 0.0449 0.745 0.008630.155 1.1392 0.0202 0.0478 1.1438 0.020334 0.0514 0.803 0.010010.176 1.2206 0.0232 0.0542 1.2255 0.023342 0.0583 0.860 0.01149

1.4240 0.0315 0.0719 1.4297 0.031771 0.0778 1.003 0.01564

0.304 1.6275 0.0412 0.0917 1.6340 0.041497 0.0990 1.147 0.020430.380 1.8309 0.0521 0.114 1.8382 0.052520 0.1235 1.290 0.025860.464 2.0343 0.0643 0.138 2.0425 0.064840 0.151 1.433 0.031920.557 2.2378 0.0778 0.164 2.2467 0.078456 0.181 1.576 0.038630.658 2.4412 0.0926 0.192 2.4510 0.093369 0.214 1.720 0.04597

0.767 2.6447 0.109 0.224 2.6552 0.109579 0.250 1.863 0.053950.884 2.8481 0.126 0.256 2.8595 0.127086 0.288 2.006 0.06257

1.01 3.0515 0.145 0.291 3.0637 0.145889 0.328 2.150 0.071831.14 3.2550 0.165 0.328 3.2680 0.165989 0.370 2.293 0.081721.29 3.4584 0.186 0.368 3.4722 0.187386 0.415 2.436 0.09226

1.44 3.6618 0.208 0.410 3.6765 0.210080 0.462 2.580 0.103431.60 3.8653 0.232 0.455 3.8807 0.234071 0.512 2.723 0.115241.76 4.0687 0.257 0.500 4.0850 0.259358 0.565 2.866 0.127702.14 4.4756 0.311 0.600 4.4935 0.313824 0.680 3.153 0.154512.53 4.8824 0.371 0.703 4.9020 0.373476 0.805 3.440 0.18388

2.94 5.2893 0.435 0.818 5.3105 0.438316 0.945 3.726 0.215803.40 5.6962 0.504 0.940 5.7190 0.508343 1.09 4.013 0.250283.91 6.1030 0.579 1.07 6.1275 0.583557 1.25 4.300 0.287314.45 6.5099 0.659 1.21 6.5360 0.663958 1.42 4.586 0.326905.00 6.9168 0.744 1.36 6.9445 0.749546 1.60 4.873 0.36904

5.58 7.3237 0.834 1.52 7.3530 0.840321 1.78 5.159 0.413736.19 7.7305 0.929 1.68 7.7615 0.936284 1.97 5.446 0.460986.84 8.1374 1.03 1.86 8.1700 1.037434 2.17 5.733 0.51078

8.5443 1.13 8.5785 1.143771 6.019 0.563148.26 8.9511 1.25 2.23 8.9870 1.255295 2.64 6.306 0.61804

9.3580 1.36 9.3955 1.372006 6.593 0.675519.80 9.7649 1.48 2.64 9.8040 1.493905 3.12 6.879 0.73552

10.1717 1.61 10.2125 1.620990 7.166 0.7980911.47 10.5786 1.74 3.08 10.6210 1.753263 3.63 7.452 0.86322

10.9855 1.88 11.0295 1.890723 7.739 0.93090

13.3 11.3924 2.02 3.56 11.4380 2.033370 4.18 8.026 1.00

Page 101: Crane Fluid Flow Problems

11.7992 2.16 11.8465 2.181205 8.312 1.0715.2 12.2061 2.32 4.06 12.2550 2.334226 4.79 8.599 1.15

12.6130 2.47 12.6635 2.492435 8.886 1.2317.3 13.0198 2.63 4.59 13.0720 2.655831 5.47 9.172 1.31

13.4267 2.80 13.4805 2.824414 9.459 1.3919.5 13.8336 2.97 5.16 13.8890 2.998184 6.18 9.746 1.48

14.2404 3.15 14.2975 3.177141 10.032 1.5621.9 14.6473 3.33 5.76 14.7060 3.361286 6.91 10.3 1.65

15.0542 3.52 15.1145 3.550617 10.6 1.75

24.4 15.4610 3.72 6.40 15.5230 3.745136 7.68 10.9 1.8415.8679 3.91 15.9315 3.944842 11.2 1.94

27.0 16.2748 4.12 7.07 16.3400 4.149735 8.50 11.5 2.0416.6817 4.33 16.7484 4.359816 11.8 2.1517.0885 4.54 17.1569 4.575083 12.0 2.25

17.4954 4.76 17.5654 4.795538 12.3 2.3617.9023 4.98 17.9739 5.021180 12.6 2.47

34.0 18.3091 5.21 8.88 18.3824 5.252009 10.7 12.9 2.5918.7160 5.44 18.7909 5.488025 13.2 2.7019.1229 5.68 19.1994 5.729228 13.5 2.82

19.5297 5.93 19.6079 5.975619 13.8 2.9419.9366 6.18 20.0164 6.227196 14.0 3.07

42.0 20.3435 6.43 10.9 20.4249 6.483961 13.2 14.3 3.1951.0 22.3778 7.78 13.2 22.4674 7.845593 15.9 15.8 3.8660.5 24.4122 9.26 15.6 24.5099 9.336904 18.9 17.2 4.60

71.0 26.4 10.9 18.3 26.6 11.0 22.2 18.6 5.4082.0 28.5 12.6 21.1 28.6 12.7 25.8 20.1 6.2694.0 30.5 14.5 24.3 30.6 14.6 29.6 21.5 7.18107 32.5 16.5 27.5 32.7 16.6 33.6 22.9 8.17

34.6 18.6 30.9 34.7 18.7 37.8 24.4 9.23

36.6 20.8 34.6 36.8 21.0 42.2 25.8 10.338.7 23.2 38.5 38.8 23.4 46.9 27.2 11.540.7 25.7 42.6 40.8 25.9 51.8 28.7 12.8

31.5 15.534.4 18.4

37.3 21.640.1 25.043.0 28.745.9 32.748.7 36.9

51.6 41.454.5 46.157.3 51.1

Page 102: Crane Fluid Flow Problems
Page 103: Crane Fluid Flow Problems

For Laminar Flow: For Laminar Flow:V = 0.029 ft/sec V = 0.024

(or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow:V = 0.058 ft/sec V = 0.049

(or Less) (or Less)

Page 104: Crane Fluid Flow Problems

12 Inch 14 InchSchedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe

inches I. D. = 12.0000 inches I. D. = 13.1240 inches I. D. = 14.00000.000400 0.000137 0.000343(e/D) = (e/D) = (e/D) =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 105: Crane Fluid Flow Problems

0.00325 0.284 0.00125 0.003200.312 0.00151

0.00448 0.340 0.00180 0.004450.369 0.00211

0.00590 0.397 0.00245 0.00589

Page 106: Crane Fluid Flow Problems

0.426 0.002810.00747 0.454 0.00320 0.00752

0.482 0.003610.00920 0.511 0.00405 0.00932

0.539 0.004520.0111 0.567 0.00500 0.01129 0.474 0.00350 0.00704 0.417 0.002700.0132 0.624 0.00605 0.0135 0.522 0.00423 0.459 0.00327

0.0155 0.681 0.00720 0.0158 0.569 0.00504 0.500 0.003890.0180 0.738 0.00846 0.0182 0.617 0.00591 0.542 0.004560.0206 0.794 0.00981 0.0208 0.664 0.00685 0.584 0.005290.0233 0.851 0.01126 0.0236 0.712 0.00787 0.0147 0.625 0.006080.0306 0.993 0.01532 0.0316 0.830 0.01071 0.0194 0.729 0.00827

0.0391 1.135 0.02001 0.0404 0.949 0.01399 0.0247 0.834 0.010800.0485 1.277 0.02533 0.0500 1.067 0.01770 0.938 0.013670.0587 1.418 0.03127 0.0604 1.186 0.02186 0.0370 1.042 0.016880.0698 1.560 0.03784 0.0718 1.304 0.02645 1.146 0.020420.0820 1.702 0.04503 0.0845 1.423 0.03147 0.0517 1.251 0.02430

0.0950 1.844 0.05284 0.0990 1.542 0.03694 1.355 0.028520.109 1.986 0.06129 0.115 1.660 0.04284 0.0683 1.459 0.033080.124 2.128 0.07036 0.131 1.779 0.04918 1.563 0.037980.140 2.269 0.08005 0.148 1.897 0.05595 0.0872 1.667 0.043210.156 2.411 0.09037 0.166 2.016 0.06316 1.772 0.04878

0.173 2.553 0.10131 0.184 2.135 0.07081 0.108 1.876 0.054690.191 2.695 0.11288 0.203 2.253 0.07890 1.980 0.060930.210 2.837 0.12508 0.224 2.372 0.08742 0.131 2.084 0.067510.251 3.120 0.15134 0.272 2.609 0.10578 0.157 2.293 0.081690.296 3.404 0.18011 0.321 2.846 0.12589 0.185 2.501 0.09722

0.344 3.688 0.21138 0.372 3.083 0.14775 0.215 2.709 0.114100.395 3.972 0.24515 0.428 3.320 0.17135 0.247 2.918 0.132330.450 4.255 0.28142 0.488 3.558 0.19671 0.281 3.126 0.151900.509 4.539 0.32020 0.552 3.795 0.22381 0.317 3.335 0.172830.572 4.823 0.36147 0.621 4.032 0.25266 0.355 3.543 0.19511

0.636 5.106 0.40525 0.695 4.269 0.28326 0.395 3.752 0.218740.704 5.390 0.45153 0.774 4.506 0.31560 0.438 3.960 0.243720.776 5.674 0.50031 0.858 4.743 0.34970 0.483 4.168 0.27005

5.957 0.55159 4.981 0.38554 4.377 0.297730.930 6.241 0.60537 1.03 5.218 0.42314 4.585 0.32676

6.525 0.66165 5.455 0.46248 4.794 0.357141.093 6.808 0.72044 1.22 5.692 0.50357 5.002 0.38888

7.092 0.78173 5.929 0.54641 0.738 5.210 0.421961.28 7.376 0.84552 1.43 6.166 0.59099 5.419 0.45639

7.659 0.91181 6.404 0.63733 5.627 0.49217

1.47 7.943 0.98060 1.65 6.641 0.68541 5.836 0.52930

Page 107: Crane Fluid Flow Problems

8.227 1.05189 6.878 0.73524 6.044 0.567791.68 8.510 1.12569 1.88 7.115 0.78682 1.04 6.253 0.60762

8.794 1.20198 7.352 0.84015 6.461 0.648801.90 9.078 1.28078 2.13 7.589 0.89523 6.669 0.69133

9.361 1.36208 7.827 0.95206 6.878 0.735222.13 9.645 1.44588 2.41 8.064 1.01063 7.086 0.78045

9.929 1.53219 8.301 1.07 1.40 7.295 0.827042.37 10.212 1.62099 2.70 8.538 1.13 7.503 0.87497

10.496 1.71230 8.775 1.20 7.711 0.92425

2.63 10.780 1.80610 3.00 9.012 1.26 7.920 0.9748911.064 1.90241 9.250 1.33 8.128 1.02687

2.92 11.347 2.00122 3.31 9.487 1.40 1.81 8.337 1.0802111.631 2.10253 9.724 1.47 8.545 1.1349011.915 2.20635 9.961 1.54 8.754 1.19093

12.198 2.31266 10.198 1.62 8.962 1.2483212.482 2.42148 10.435 1.69 9.170 1.30705

3.65 12.766 2.53280 4.18 10.7 1.77 2.27 9.379 1.3671413.049 2.64662 10.9 1.85 9.587 1.4285813.333 2.76294 11.1 1.93 9.796 1.49137

13.617 2.88176 11.4 2.01 10.004 1.5555013.900 3.00308 11.6 2.10 10.212 1.62099

4.47 14.184 3.12691 5.13 11.9 2.19 2.78 10.421 1.687835.38 15.602 3.78356 6.17 13.0 2.64 11.463 2.042276.39 17.021 4.50275 7.30 14.2 3.15 3.95 12.505 2.43047

7.47 18.439 5.28448 8.55 15.4 3.69 13.547 2.852438.63 19.858 6.12874 9.92 16.6 4.28 5.32 14.589 3.308149.88 21.276 7.03555 11.4 17.8 4.92 15.631 3.79761

11.20 22.694 8.00489 13.0 19.0 5.60 6.90 16.673 4.3208412.6 24.113 9.03677 14.7 20.2 6.32 17.716 4.87782

14.1 25.531 10.13119 16.4 21.3 7.08 8.7 18.758 5.4685615.7 26.950 11.28815 18.2 22.5 7.89 19.800 6.0930617.4 28.368 12.50764 20.2 23.7 8.74 10.7 20.842 6.7513121.0 31.205 15.13425 24.2 26.1 10.6 12.9 22.926 8.1690924.8 34.042 18.01100 28.8 28.5 12.6 15.2 25.010 9.72189

28.9 36.878 21.13791 34.0 30.8 14.8 17.8 27.094 11.4097233.5 39.715 24.51498 39.7 33.2 17.1 20.7 29.178 13.2325738.4 42.552 28.14219 45.7 35.6 19.7 23.7 31.263 15.1904643.7 45.389 32.01956 51.8 37.9 22.4 26.8 33.347 17.2833649.2 48.226 36.14708 58.2 40.3 25.3 30.2 35.431 19.51130

55.2 51.062 40.52476 65.0 42.7 28.3 33.9 37.515 21.8742661.5 53.899 45.15259 72.1 45.1 31.6 37.8 39.599 24.3722468.1 56.736 50.03057 79.8 47.4 35.0 41.9 41.684 27.00525

52.2 42.3 50.6 45.852 32.6763656.9 50.4 60.0 50.020 38.88757

Page 108: Crane Fluid Flow Problems

61.7 59.1 70.3 54.189 45.6388866.4 68.5 81.4 58.357 52.9303071.2 78.7 93.4 62.525 60.76182

Page 109: Crane Fluid Flow Problems

For Laminar Flow:ft/sec V = 0.022 ft/sec

(or Less)

For Critical Zone Flow: For Critical Zone Flow:ft/sec V = 0.044 ft/sec

(or Less)

Page 110: Crane Fluid Flow Problems

14 Inch 16 Inch 18 InchAsphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe

inches I. D. = 15.0000 inches I. D. = 16.0000 inches I. D. = 16.87600.000120 0.000300 0.000107(e/D) = (e/D) = (e/D) =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 111: Crane Fluid Flow Problems
Page 112: Crane Fluid Flow Problems

0.00533

0.0112 0.545 0.00461 0.00769 0.479 0.00356 0.00581 0.430 0.002880.0148 0.635 0.00628 0.558 0.00485 0.502 0.00392

0.0190 0.726 0.00820 0.0129 0.638 0.00633 0.00980 0.574 0.005120.817 0.01037 0.718 0.00801 0.645 0.00648

0.0284 0.908 0.01281 0.0193 0.798 0.00989 0.0148 0.717 0.007990.999 0.01550 0.878 0.01197 0.789 0.00967

0.0400 1.089 0.01844 0.0269 0.957 0.01425 0.0207 0.861 0.01151

1.180 0.02165 1.037 0.01672 0.932 0.013510.0533 1.271 0.02510 0.0356 1.117 0.01939 0.0276 1.004 0.01567

1.362 0.02882 1.197 0.02226 1.076 0.017990.0686 1.452 0.03279 0.0454 1.277 0.02533 0.0354 1.147 0.02046

1.543 0.03701 1.356 0.02859 1.219 0.02310

0.0859 1.634 0.04150 0.0563 1.436 0.03206 0.0441 1.291 0.025901.725 0.04624 1.516 0.03572 1.363 0.02886

0.1050 1.816 0.05123 0.0683 1.596 0.03957 0.0537 1.434 0.031980.1256 1.997 0.06199 1.755 0.04789 1.578 0.03869

0.148 2.179 0.07377 0.0953 1.915 0.05699 0.0760 1.721 0.04605

0.172 2.360 0.08658 2.074 0.06688 1.865 0.054040.198 2.542 0.10041 0.127 2.234 0.07757 0.101 2.008 0.062670.225 2.723 0.11527 2.394 0.08904 2.152 0.071950.254 2.905 0.13115 0.163 2.553 0.10131 0.130 2.295 0.081860.285 3.086 0.14806 2.713 0.11437 2.438 0.09241

0.318 3.268 0.16599 0.203 2.872 0.12822 0.163 2.582 0.103600.353 3.450 0.18494 3.032 0.14287 2.725 0.115430.390 3.631 0.20493 0.248 3.191 0.15830 0.200 2.869 0.12790

3.813 0.22593 3.351 0.17453 3.012 0.141013.994 0.24796 3.511 0.19154 3.156 0.15476

4.176 0.27101 3.670 0.20935 3.299 0.169154.357 0.29509 3.830 0.22795 3.442 0.18418

0.600 4.539 0.32020 0.377 3.989 0.24734 0.307 3.586 0.199854.720 0.34632 4.149 0.26753 3.729 0.216164.902 0.37348 4.308 0.28850 3.873 0.23310

5.084 0.40165 4.468 0.31027 4.016 0.25069

Page 113: Crane Fluid Flow Problems

5.265 0.43086 4.628 0.33283 4.160 0.268920.855 5.447 0.46108 0.535 4.787 0.35617 0.435 4.303 0.28778

5.628 0.49233 4.947 0.38032 4.446 0.307295.810 0.52461 5.106 0.40525 4.590 0.32743

5.991 0.55791 5.266 0.43097 4.733 0.348226.173 0.59223 5.425 0.45749 4.877 0.36964

1.16 6.354 0.62758 0.718 5.585 0.48479 0.584 5.020 0.391706.536 0.66396 5.745 0.51289 5.164 0.414416.718 0.70136 5.904 0.54178 5.307 0.43775

6.899 0.73978 6.064 0.57146 5.450 0.461737.081 0.77923 6.223 0.60194 5.594 0.48635

1.50 7.262 0.81970 0.921 6.383 0.63320 0.754 5.737 0.511617.444 0.86120 6.542 0.66526 5.881 0.537517.625 0.90372 6.702 0.69810 6.024 0.56405

7.807 0.94727 6.862 0.73174 6.168 0.591237.988 0.99184 7.021 0.76617 6.311 0.61905

1.88 8.170 1.03743 1.15 7.181 0.80139 0.948 6.455 0.647518.352 1.08405 7.340 0.83741 6.598 0.676618.533 1.13170 7.500 0.87421 6.741 0.70635

8.715 1.18037 7.659 0.91181 6.885 0.736728.896 1.23006 7.819 0.95019 7.028 0.76774

2.30 9.078 1.28078 1.41 7.978 0.98937 1.17 7.172 0.799409.986 1.54975 8.776 1.19714 7.889 0.96727

3.31 10.9 1.84433 2.01 9.6 1.42470 1.66 8.606 1.15113

11.8 2.16452 10.4 1.67204 9.323 1.350984.50 12.7 2.51033 2.69 11.2 1.93917 2.26 10.040 1.56682

13.6 2.88176 12.0 2.22609 10.758 1.798645.87 14.5 3.27880 3.49 12.8 2.53280 2.96 11.475 2.04646

15.4 3.70146 13.6 2.85929 12.192 2.31026

7.42 16.3 4.14974 4.38 14.4 3.20557 3.73 12.909 2.5900517.2 4.62362 15.2 3.57164 13.626 2.88582

9.15 18.2 5.12313 5.38 16.0 3.95750 4.57 14.343 3.1975911.05 20.0 6.19899 6.49 17.6 4.78857 5.50 15.778 3.86908

13.0 21.8 7.37731 7.69 19.1 5.69879 6.52 17.212 4.60452

15.2 23.6 8.65809 8.99 20.7 6.68817 7.63 18.646 5.4039217.6 25.4 10.04133 10.4 22.3 7.75669 8.81 20.081 6.2672720.2 27.2 11.5 11.9 23.9 8.9 10.1 21.515 7.1945723.0 29.0 13.1 13.5 25.5 10.1 11.5 22.949 8.1858226.0 30.9 14.8 15.3 27.1 11.4 13.0 24.384 9.24103

29.2 32.7 16.6 17.2 28.7 12.8 14.6 25.818 10.3601832.6 34.5 18.5 19.2 30.3 14.3 16.3 27.252 11.5432936.2 36.3 20.5 21.2 31.9 15.8 18.1 28.687 12.7903543.5 39.9 24.8 25.5 35.1 19.2 21.8 31.555 15.4763251.9 43.6 29.5 30.2 38.3 22.8 25.9 34.424 18.41810

Page 114: Crane Fluid Flow Problems

61.2 47.2 34.6 35.4 41.5 26.8 30.4 37.293 21.6156971.2 50.8 40.2 41.0 44.7 31.0 35.5 40.161 25.0690881.6 54.5 46.1 47.0 47.9 35.6 40.5 43.030 28.77828

58.1 52.5 53.5 51.1 40.5 46.0 45.899 32.7432961.7 59.2 60.2 54.3 45.7 51.9 48.768 36.96410

65.4 66.4 67.2 57.4 51.3 58.1 51.636 41.4407269.0 74.0 75.0 60.6 57.1 64.7 54.505 46.1731572.6 82.0 83.0 63.8 63.3 71.7 57.374 51.1613976.3 90.4 91.5 67.0 69.8 79.1 60.242 56.4054379.9 99.2 101 70.2 76.6 86.9 63.111 61.90528

83.5 108.4 110 73.4 83.7 95.0 65.980 67.6609487.1 118 118 76.6 91.2 103 68.848 73.6724090.8 128 128 79.8 98.9 112 71.717 79.93967

78.889 96.7270086.060 115

93.232 135100.404 157

Page 115: Crane Fluid Flow Problems

For Laminar Flow: For Laminar Flow:V = 0.019 ft/sec V = 0.017

(or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow:V = 0.039 ft/sec V = 0.034

(or Less) (or Less)

Page 116: Crane Fluid Flow Problems

18 Inch 20 InchSchedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe

inches I. D. = 18.0000 inches I. D. = 18.8120 inches I. D. = 20.00000.000267 0.000096 0.000240(e/D) = (e/D) = (e/D) =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 117: Crane Fluid Flow Problems
Page 118: Crane Fluid Flow Problems

0.00437 0.378 0.00222 0.00328 0.346 0.00186 0.00258 0.306 0.001460.441 0.00303 0.404 0.00254 0.357 0.00199

0.00730 0.504 0.00395 0.00554 0.462 0.00331 0.00432 0.408 0.002590.567 0.00500 0.519 0.00419 0.460 0.00328

0.0109 0.630 0.00618 0.00832 0.577 0.00518 0.00645 0.511 0.004050.693 0.00747 0.635 0.00626 0.562 0.00490

0.0152 0.756 0.00889 0.01162 0.693 0.00746 0.00897 0.613 0.00584

0.820 0.01044 0.750 0.00875 0.664 0.006850.0201 0.883 0.01211 0.0154 0.808 0.01015 0.01186 0.715 0.00794

0.946 0.01390 0.866 0.01165 0.766 0.009120.0256 1.009 0.01581 0.0197 0.923 0.01325 0.0152 0.817 0.0104

1.072 0.01785 0.981 0.01496 0.868 0.0117

0.0318 1.135 0.02001 0.0245 1.039 0.01677 0.0188 0.919 0.01311.198 0.02230 1.097 0.01869 0.970 0.0146

0.0386 1.261 0.02471 0.0298 1.154 0.02071 0.0227 1.021 0.01621.387 0.02989 1.270 0.02506 1.123 0.0196

0.0541 1.513 0.03558 0.0420 1.385 0.02982 0.0318 1.225 0.0233

1.639 0.04175 1.501 0.03500 1.328 0.02740.0719 1.765 0.04842 0.0560 1.616 0.04059 0.0422 1.430 0.0318

1.891 0.05559 1.731 0.04660 1.532 0.03650.092 2.017 0.06325 0.0728 1.847 0.05302 0.0538 1.634 0.0415

2.143 0.07140 1.962 0.05985 1.736 0.0468

0.114 2.269 0.08005 0.0910 2.078 0.06710 0.0669 1.838 0.05252.396 0.08919 2.193 0.07476 1.940 0.0585

0.139 2.522 0.09883 0.110 2.309 0.08284 0.0812 2.042 0.06482.648 0.10896 2.424 0.09133 2.145 0.07152.774 0.11958 2.539 0.10023 2.247 0.0785

2.900 0.13070 2.655 0.10955 2.349 0.08583.026 0.14231 2.770 0.11928 2.451 0.0934

0.211 3.152 0.15442 0.170 2.886 0.12943 0.123 2.553 0.10133.278 0.16702 3.001 0.13999 2.655 0.10963.404 0.18011 3.117 0.15097 2.757 0.1182

3.530 0.19370 3.232 0.16236 2.859 0.1271

Page 119: Crane Fluid Flow Problems

3.656 0.20778 3.347 0.17416 2.962 0.13630.297 3.782 0.22236 0.240 3.463 0.18638 0.174 3.064 0.146

3.908 0.23743 3.578 0.19901 3.166 0.1564.035 0.25299 3.694 0.21206 3.268 0.166

4.161 0.26905 3.809 0.22552 3.370 0.1774.287 0.28561 3.925 0.23940 3.472 0.187

0.397 4.413 0.30265 0.320 4.040 0.25369 0.232 3.574 0.1994.539 0.32020 4.156 0.26839 3.676 0.2104.665 0.33823 4.271 0.28351 3.779 0.222

4.791 0.35676 4.386 0.29904 3.881 0.2344.917 0.37579 4.502 0.31498 3.983 0.247

0.511 5.043 0.39530 0.415 4.617 0.33135 0.298 4.085 0.2595.169 0.41532 4.733 0.34812 4.187 0.2725.295 0.43582 4.848 0.36531 4.289 0.286

5.421 0.45682 4.964 0.38291 4.391 0.3005.548 0.47832 5.079 0.40093 4.493 0.314

0.639 5.674 0.50031 0.525 5.194 0.41936 0.372 4.596 0.3285.800 0.52279 5.310 0.43820 4.698 0.3435.926 0.54577 5.425 0.45746 4.800 0.358

6.052 0.56924 5.541 0.47714 4.902 0.3736.178 0.59320 5.656 0.49722 5.004 0.389

0.781 6.304 0.61766 0.645 5.772 0.51773 0.455 5.106 0.4056.934 0.74737 6.349 0.62645 5.617 0.490

1.11 7.565 0.88943 0.920 6.926 0.74553 0.645 6.127 0.584

8.195 1.04385 7.503 0.87496 6.638 0.6851.49 8.826 1.21062 1.24 8.080 1.01474 0.862 7.149 0.794

9.456 1.38974 8.657 1.16489 7.659 0.911.93 10.086 1.58121 1.61 9.234 1.32538 1.11 8.170 1.04

10.717 1.78504 9.812 1.49623 8.681 1.17

2.42 11.347 2.00122 2.02 10.389 1.67743 1.39 9.191 1.3111.978 2.22976 10.966 1.86899 9.702 1.46

2.97 12.608 2.47065 2.48 11.543 2.07091 1.70 10.212 1.6213.869 2.98948 12.697 2.50580 11.234 1.96

4.21 15.130 3.55773 3.56 13.852 2.98211 2.44 12.255 2.33

16.390 4.17539 15.006 3.49983 13.276 2.745.69 17.651 4.84246 4.85 16.160 4.05898 3.29 14.297 3.18

18.912 5.55895 17.315 4.65954 15.319 3.657.41 20.173 6.32485 6.34 18.469 5.30152 4.26 16.340 4.15

21.434 7.14016 19.623 5.98492 17.361 4.68

9.33 22.694 8.00489 8.02 20.778 6.70974 5.35 18.382 5.2523.955 8.91903 21.932 7.47597 19.404 5.85

11.5 25.216 9.88258 9.88 23.086 8.28363 6.56 20.425 6.4813.9 27.738 11.95792 11.90 25.395 10.02319 7.91 22.467 7.8516.5 30.259 14.23092 14.10 27.703 11.92842 9.39 24.510 9.34

Page 120: Crane Fluid Flow Problems

19.2 32.781 16.70156 16.50 30.012 14.0 11.0 26.552 10.9622.2 35.302 19.36986 19.1 32.321 16.2 12.7 28.595 12.725.5 37.824 22.23581 21.9 34.629 18.6 14.6 30.637 14.629.0 40.346 25.29941 24.9 36.938 21.2 16.6 32.680 16.632.8 42.867 28.56066 28.1 39.246 23.9 18.7 34.722 18.7

36.8 45.389 32.01956 31.5 41.555 26.8 20.9 36.765 21.040.8 47.910 35.67612 35.1 43.864 29.9 23.2 38.807 23.445.0 50.432 39.53032 38.9 46.172 33.1 25.7 40.850 25.949.7 52.954 43.58218 42.9 48.481 36.5 28.4 42.892 28.654.5 55.475 47.83169 47.0 50.789 40.1 31.3 44.935 31.4

59.5 57.997 52.27885 51.3 53.098 43.8 34.2 46.977 34.364.8 60.518 56.92367 55.8 55.407 47.7 37.1 49.020 37.370.2 63.040 61.76613 60.5 57.715 51.8 40.0 51.062 40.584.8 69.344 74.73702 73.0 63.487 62.6 48.3 56.169 49.0101 75.648 88.94323 86.7 69.258 74.6 57.4 61.275 58.4

118 81.952 104 101.8 75.030 87.5 67.2 66.381 68.5136 88.256 121 118 80.801 101.5 77.8 71.487 79.4

86.573 116.5 89.3 76.594 91.292.344 132.5 102 81.700 103.798.116 150 115 86.806 117

103.888 168 129 91.912 131109.659 187 143 97.018 146115.431 207 158 102.125 162

Page 121: Crane Fluid Flow Problems

For Laminar Flow:ft/sec V = 0.015 ft/sec

(or Less)

For Critical Zone Flow: For Critical Zone Flow:ft/sec V = 0.031 ft/sec

(or Less)

Page 122: Crane Fluid Flow Problems

20 Inch 24 Inch 30 InchAsphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe Schedule 40 Steel Pipe

inches I. D. = 22.6240 inches I. D. = 24.0000 inches I. D. = 29.00000.000080 0.000200 0.000621(e/D) = (e/D) = (e/D) =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 123: Crane Fluid Flow Problems
Page 124: Crane Fluid Flow Problems

0.00197 0.239 0.00089 0.00107 0.213 0.00070 0.0008210.279 0.00121 0.248 0.00096

0.00332 0.319 0.00158 0.00178 0.284 0.00125 0.00137 0.194 0.0005870.359 0.00200 0.319 0.00158 0.219 0.000743

0.00496 0.399 0.00247 0.00267 0.355 0.00195 0.00205 0.243 0.0009170.439 0.00299 0.390 0.00236 0.267 0.001109

0.00691 0.479 0.00356 0.00371 0.426 0.00281 0.00284 0.291 0.001320

0.519 0.00418 0.461 0.00330 0.316 0.0015490.00918 0.559 0.00485 0.0049 0.496 0.00383 0.00376 0.340 0.001797

0.599 0.00557 0.532 0.00440 0.364 0.0020630.0117 0.638 0.00634 0.00621 0.567 0.00500 0.00480 0.389 0.002347

0.678 0.00715 0.603 0.00565 0.413 0.002649

0.0146 0.718 0.00802 0.00767 0.638 0.00633 0.00597 0.437 0.0029700.758 0.00893 0.674 0.00706 0.461 0.003309

0.0177 0.798 0.00990 0.00928 0.709 0.00782 0.00724 0.486 0.0036670.878 0.01198 0.780 0.00946 0.534 0.004437

0.0249 0.958 0.01426 0.0129 0.851 0.01126 0.0102 0.583 0.005280

1.038 0.01673 0.922 0.01321 0.631 0.0061970.0332 1.117 0.01940 0.0171 0.993 0.01532 0.0135 0.680 0.007187

1.197 0.02227 1.064 0.01759 0.729 0.0082510.0427 1.277 0.02534 0.0219 1.135 0.02001 0.0173 0.777 0.009387

1.357 0.02861 1.206 0.02259 0.826 0.010598

0.0533 1.437 0.03208 0.0272 1.277 0.02533 0.0216 0.874 0.0118811.516 0.03574 1.347 0.02822 0.923 0.013238

0.0650 1.596 0.03960 0.0330 1.418 0.03127 0.0262 0.971 0.0146681.676 0.04366 1.489 0.03447 1.020 0.0161711.756 0.04791 1.560 0.03784 1.069 0.017748

1.836 0.05237 1.631 0.04135 1.117 0.0193981.915 0.05702 1.702 0.04503 1.166 0.021122

0.0998 1.995 0.06187 0.0499 1.773 0.04886 0.0398 1.214 0.0229192.075 0.06692 1.844 0.05284 1.263 0.0247892.155 0.07217 1.915 0.05699 1.311 0.026732

2.235 0.07761 1.986 0.06129 1.360 0.028749

Page 125: Crane Fluid Flow Problems

2.314 0.08326 2.057 0.06574 1.409 0.0308390.140 2.394 0.08910 0.0700 2.128 0.07036 0.0563 1.457 0.033003

2.474 0.09514 2.199 0.07512 1.506 0.0352402.554 0.10137 2.269 0.08005 1.554 0.037550

2.634 0.10781 2.340 0.08513 1.603 0.0399332.714 0.11444 2.411 0.09037 1.651 0.042390

0.188 2.793 0.12127 0.0934 2.482 0.09576 0.0759 1.700 0.0449202.873 0.12830 2.553 0.10131 1.749 0.0475242.953 0.13553 2.624 0.10702 1.797 0.050201

3.033 0.14295 2.695 0.11288 1.846 0.0529513.113 0.15057 2.766 0.11890 1.894 0.055775

0.243 3.192 0.15840 0.120 2.837 0.12508 0.098 1.943 0.0586723.272 0.16641 2.908 0.13141 1.991 0.0616423.352 0.17463 2.979 0.13790 2.040 0.064686

3.432 0.18305 3.050 0.14454 2.089 0.0678023.512 0.19166 3.120 0.15134 2.137 0.070993

0.306 3.591 0.20047 0.149 3.191 0.15830 0.122 2.186 0.0742563.671 0.20948 3.262 0.16541 2.234 0.0775933.751 0.21868 3.333 0.17268 2.283 0.081004

3.831 0.22809 3.404 0.18011 2.332 0.0844873.911 0.23769 3.475 0.18769 2.380 0.088044

0.376 3.990 0.24749 0.181 3.546 0.19543 0.149 2.429 0.0916744.389 0.29947 3.901 0.23647 2.672 0.110926

0.533 4.789 0.35639 0.257 4.255 0.28142 0.211 2.914 0.132011

5.188 0.41826 4.610 0.33028 3.157 0.1549300.721 5.587 0.48509 0.343 4.964 0.38305 0.284 3.400 0.179682

5.986 0.55686 5.319 0.43972 3.643 0.2062680.935 6.385 0.63358 0.441 5.674 0.50031 0.368 3.886 0.234687

6.784 0.71525 6.028 0.56480 4.129 0.264939

1.18 7.183 0.80188 0.551 6.383 0.63320 0.464 4.372 0.2970257.582 0.89345 6.737 0.70551 4.614 0.330945

1.45 7.981 0.98997 0.671 7.092 0.78173 0.571 4.857 0.3666988.779 1.19787 7.801 0.94589 5.343 0.443704

2.07 9.577 1.42556 0.959 8.510 1.12569 0.816 5.829 0.528045

10.375 1.67305 9.220 1.32112 6.314 0.6197192.80 11.173 1.94034 1.29 9.929 1.53219 1.11 6.800 0.718728

11.971 2.22744 10.638 1.75889 7.286 0.8250703.66 12.769 2.53433 1.67 11.347 2.00122 1.43 7.772 0.938747

13.568 2.86102 12.056 2.25919 8.257 1.059757

4.62 14.366 3.20751 2.10 12.766 2.53280 1.80 8.743 1.18810115.164 3.57380 13.475 2.82204 9.229 1.323779

5.67 15.962 3.95989 2.58 14.184 3.12691 2.21 9.715 1.4667926.85 17.558 4.79146 3.10 15.602 3.78356 2.67 10.686 1.7748188.13 19.154 5.70224 3.67 17.021 4.50275 3.16 11.658 2.112180

Page 126: Crane Fluid Flow Problems

9.54 20.750 6.69221 4.29 18.439 5.28448 3.71 12.629 2.47887811.1 22.347 7.76138 4.96 19.858 6.12874 4.32 13.600 2.87491212.7 23.943 8.90975 5.68 21.276 7.03555 4.97 14.572 3.30028114.4 25.539 10.13731 6.42 22.694 8.00489 5.65 15.543 3.75498616.3 27.135 11.4 7.22 24.113 9.03677 6.35 16.515 4.239028

18.2 28.731 12.8 8.08 25.531 10.13119 7.10 17.486 4.75240520.2 30.327 14.3 9.00 26.950 11.3 7.90 18.458 5.29511822.4 31.924 15.8 9.98 28.368 12.5 8.75 19.429 5.86716624.7 33.520 17.5 11.0 29.786 13.8 9.63 20.401 6.46855127.1 35.116 19.2 12.1 31.205 15.1 10.5 21.372 7.099271

29.7 36.712 20.9 13.2 32.623 16.5 11.5 22.344 7.75932732.4 38.308 22.8 14.3 34.042 18.0 12.5 23.315 8.44872035.2 39.905 24.7 15.5 35.460 19.5 13.6 24.286 9.16744742.4 43.895 29.9 18.7 39.006 23.6 16.4 26.715 11.092650.4 47.885 35.6 22.3 42.552 28.1 19.5 29.144 13.2011

59.0 51.876 41.8 26.2 46.098 33.0 22.9 31.572 15.493068.4 55.866 48.5 30.4 49.644 38.3 26.5 34.001 17.968278.6 59.857 55.7 34.8 53.190 44.0 30.5 36.430 20.626889.5 63.847 63.4 39.4 56.736 50.0 34.7 38.858 23.4687101 67.838 71.5 44.4 60.282 56.5 39.2 41.287 26.4939

113 71.828 80.2 49.7 63.828 63.3 43.9 43.716 29.7025126 75.819 89.3 55.5 67.374 70.6 48.9 46.144 33.0945139 79.809 99.0 61.5 70.920 78.2 54.2 48.573 36.6698

87.790 120 74.0 78.012 94.6 65.5 53.430 44.370495.771 143 88.0 85.104 113 78.0 58.288 52.8045

103.752 167 103 92.196 132 91.5 63.145 62112 194 119 99 153 106 68.002 72120 223 137 106 176 121 72.859 83

77.717 9482.574 106

87.431 11992.289 13297.146 147

102 162107 177

112 194117 211121 229

Page 127: Crane Fluid Flow Problems

For Laminar Flow: For Laminar Flow:V = 0.013 ft/sec V = 0.010

(or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow:V = 0.026 ft/sec V = 0.020

(or Less) (or Less)

Page 128: Crane Fluid Flow Problems

30 Inch 36 InchSchedule 40 Steel Pipe Asphalt-Dipped Cast Iron Pipe I. D. = 36.0000 inches

inches I. D. = 30.0000 inches Steel Pipe Cast Iron Pipe0.000160 0.000050 0.000133(e/D) = e/d =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

hf, ft per 100' pipe

Page 129: Crane Fluid Flow Problems
Page 130: Crane Fluid Flow Problems

0.000540 0.182 0.000512 0.0013700.204 0.0006480.227 0.0008000.250 0.0009690.272 0.001153

0.295 0.0013530.00147 0.318 0.001569 0.00128

0.340 0.0018010.00187 0.363 0.002049 0.00163

0.386 0.002313

0.00231 0.408 0.002594 0.002020.431 0.002890

0.00280 0.454 0.003202 0.00244 0.315 0.00154 0.000988 0.001010.499 0.003874 0.347 0.00187

0.00390 0.545 0.004611 0.00343 0.378 0.00222 0.00137 0.00140

0.590 0.005411 0.410 0.002610.00514 0.635 0.006276 0.00452 0.441 0.00303 0.00181 0.00186

0.681 0.007204 0.473 0.003470.00652 0.726 0.008197 0.00577 0.504 0.00395 0.00231 0.00237

0.772 0.009254 0.536 0.00446

0.00814 0.817 0.010374 0.00720 0.567 0.00500 0.00285 0.002950.862 0.011559 0.599 0.00557

0.00986 0.908 0.012808 0.00876 0.630 0.00618 0.00344 0.003570.953 0.014121 0.662 0.006810.999 0.015497 0.693 0.00747

1.044 0.016938 0.725 0.008171.089 0.018443 0.756 0.00889

0.0148 1.135 0.020012 0.0132 0.788 0.00965 0.00517 0.005381.180 0.021645 0.820 0.010441.225 0.023342 0.851 0.01126

1.271 0.025103 0.883 0.01211

Page 131: Crane Fluid Flow Problems

1.316 0.026928 0.914 0.012990.0206 1.362 0.028818 0.0186 0.946 0.01390 0.00721 0.00751

1.407 0.030771 0.977 0.014841.452 0.032788 1.009 0.01581

1.498 0.034869 1.040 0.016821.543 0.037015 1.072 0.01785

0.0276 1.589 0.039224 0.0248 1.103 0.01892 0.00957 0.01011.634 0.041497 1.135 0.020011.679 0.043835 1.166 0.02114

1.725 0.046236 1.198 0.022301.770 0.048702 1.229 0.02349

0.0354 1.816 0.051231 0.0320 1.261 0.02471 0.0122 0.01291.861 0.053825 1.292 0.025961.906 0.056483 1.324 0.02724

1.952 0.059204 1.355 0.028551.997 0.061990 1.387 0.02989

0.0440 2.042 0.064840 0.0400 1.418 0.03127 0.0152 0.01612.088 0.067753 1.450 0.032672.133 0.070731 1.481 0.03411

2.179 0.073773 1.513 0.035582.224 0.076879 1.544 0.03708

0.0535 2.269 0.080049 0.0488 1.576 0.03860 0.0185 0.01962.496 0.096859 1.734 0.04671

0.0750 2.723 0.115270 0.0690 1.891 0.05559 0.0260 0.0276

2.950 0.135283 2.049 0.065240.100 3.177 0.156896 0.0923 2.206 0.07566 0.0345 0.0369

3.404 0.180110 2.364 0.086860.129 3.631 0.204925 0.119 2.522 0.09883 0.0442 0.0475

3.858 0.231341 2.679 0.11157

0.161 4.085 0.259358 0.149 2.837 0.12508 0.0551 0.05934.312 0.288977 2.994 0.13936

0.196 4.539 0.320196 0.183 3.152 0.15442 0.0670 0.07244.993 0.387437 3.467 0.18684

0.277 5.447 0.461082 0.260 3.782 0.22236 0.0942 0.103

5.901 0.541131 4.098 0.260960.371 6.354 0.627583 0.351 4.413 0.30265 0.126 0.139

6.808 0.720440 4.728 0.347430.478 7.262 0.819701 0.455 5.043 0.39530 0.162 0.180

7.716 0.925365 5.358 0.44626

0.598 8.170 1.037434 0.572 5.674 0.50031 0.203 0.2278.624 1.155906 5.989 0.55744

0.732 9.078 1.280782 0.703 6.304 0.61766 0.248 0.2799.986 1.549747 6.934 0.74737

10.893 1.844327 7.565 0.88943

Page 132: Crane Fluid Flow Problems

11.801 2.164522 8.195 1.0438512.709 2.510334 8.826 1.21062

1.61 13.617 2.881761 1.57 9.456 1.38974 0.540 0.61714.524 3.278803 10.086 1.5812115.432 3.701461 10.717 1.78504

16.340 4.149735 11.347 2.0012217.248 4.623625 11.978 2.22976

2.83 18.156 5.123130 2.77 12.608 2.47065 0.941 1.0819.063 5.648251 13.238 2.7238919.971 6.198987 13.869 2.98948

20.879 6.775339 14.499 3.2674321.787 7.377307 15.130 3.55773

4.38 22.694 8.004891 4.30 15.760 3.86038 1.45 1.6824.964 9.685918 17.336 4.67106

6.23 27.233 11.5 6.19 18.912 5.55895 2.07 2.40

29.503 13.5 20.488 6.524058.43 31.772 15.7 8.39 22.064 7.56635 2.81 3.25

34.042 18.0 23.640 8.6858611.0 36.311 20.5 10.9 25.216 9.88258 3.66 4.23

38.580 23.1 26.792 11.15651

13.8 40.850 25.9 13.8 28.368 12.50764 4.59 5.3443.119 28.9 29.944 13.93598

17.0 45.389 32.0 17.0 31.520 15.44153 5.64 6.5820.6 49.928 38.7 20.5 34.672 18.6842524.5 54.467 46.1 24.4 37.824 22.23581 8.05 9.50

28.7 59.005 54.1 28.6 40.976 26.0961933.3 63.544 62.8 33.1 44.128 30.26540 10.9 12.938.2 68.083 72.0 38.0 47.280 34.7434543.3 72.622 82.0 43.2 50.432 39.53032 14.2 16.848.8 77.161 92.5 48.7 53.584 44.62603

54.7 81.700 104 54.7 56.736 50.03057 17.9 21.360.8 86.239 116 61.0 59.888 55.7439367.1 90.778 128 67.6 63.040 61.76613 22.1 26.373.8 95 141 74.5 66.192 68.0971681.0 100 155 81.7 69.344 74.73702

88.6 104 169 89.2 72.496 81.6857196.7 109 184 97.0 75.648 88.94323106 113 200 105 78.800 96.50958 34.3 41.0

94.560 139 49.4 58.8110 189 67.0 80.0

126 247 87.3 105

Page 133: Crane Fluid Flow Problems

For Laminar Flow:ft/sec V = #DIV/0! ft/sec

(or Less)

For Critical Zone Flow: For Critical Zone Flow:ft/sec V = #DIV/0! ft/sec

(or Less)

Page 134: Crane Fluid Flow Problems

42 Inch 48 InchI. D. = 42.0000 inches I. D. = 48.0000 inches

Steel Pipe Cast Iron Pipe Steel Pipe Cast Iron Pipe0.000043 0.000114 0.000038 0.000100e/d = e/d =

V ft/sec

V2/2g ft

hf, ft per 100' pipe

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

hf, ft per 100' pipe

Page 135: Crane Fluid Flow Problems
Page 136: Crane Fluid Flow Problems

0.232 0.000833 0.000471 0.004810.255 0.0010090.278 0.001200

0.301 0.0014090.324 0.0016340.347 0.001875 0.000977 0.00098 0.266 0.00110 0.000508 0.0005210.371 0.002134 0.284 0.001250.394 0.002409 0.301 0.00141

0.417 0.002701 0.319 0.001580.440 0.003009 0.337 0.001760.463 0.003334 0.00164 0.00168 0.355 0.00195 0.000855 0.0008830.486 0.003676 0.372 0.002150.509 0.004034 0.390 0.00236

0.533 0.004409 0.408 0.002580.556 0.004801 0.426 0.002810.579 0.005209 0.00246 0.00252 0.443 0.00305 0.00129 0.001330.602 0.005634 0.461 0.003300.625 0.006076 0.479 0.00356

0.648 0.006535 0.496 0.00383

Page 137: Crane Fluid Flow Problems

0.672 0.007010 0.514 0.004110.695 0.007501 0.00343 0.00353 0.532 0.00440 0.00180 0.001850.718 0.008010 0.550 0.004700.741 0.008535 0.567 0.00500

0.764 0.009077 0.585 0.005320.787 0.009635 0.603 0.005650.811 0.010210 0.00454 0.00470 0.621 0.00599 0.00238 0.002450.834 0.010802 0.638 0.006330.857 0.011411 0.656 0.00669

0.880 0.012036 0.674 0.007060.903 0.012677 0.691 0.007430.926 0.013336 0.00580 0.00602 0.709 0.00782 0.00304 0.003140.949 0.014011 0.727 0.008210.973 0.014703 0.745 0.00862

0.996 0.015411 0.762 0.009031.019 0.016136 0.780 0.009461.042 0.016878 0.00720 0.00750 0.798 0.00989 0.00378 0.003911.065 0.017637 0.816 0.010341.088 0.018412 0.833 0.01079

1.112 0.019204 0.851 0.011261.135 0.020012 0.869 0.011731.158 0.020837 0.00874 0.00915 0.886 0.01221 0.00458 0.004741.274 0.025213 0.975 0.014781.389 0.030006 0.0122 0.0128 1.064 0.01759 0.00636 0.00667

1.505 0.035215 1.152 0.020641.621 0.040841 0.0162 0.0172 1.241 0.02394 0.00844 0.008901.737 0.046884 1.330 0.027481.853 0.053344 0.0208 0.0222 1.418 0.03127 0.0108 0.01141.968 0.060220 1.507 0.03530

2.084 0.067513 0.0258 0.0276 1.596 0.03957 0.0134 0.01422.200 0.075223 1.684 0.044092.316 0.083350 0.0314 0.0337 1.773 0.04886 0.0163 0.01732.547 0.100853 1.950 0.059122.779 0.120023 0.0441 0.0477 2.128 0.07036 0.0229 0.0224

3.010 0.140861 2.305 0.082573.242 0.163365 0.0591 0.0641 2.482 0.09576 0.0305 0.03273.474 0.187536 2.659 0.109933.705 0.213375 0.0758 0.0829 2.837 0.12508 0.0391 0.04223.937 0.240880 3.014 0.14120

4.168 0.270053 0.0944 0.104 3.191 0.15830 0.0488 0.05294.400 0.300892 3.369 0.176384.632 0.333398 0.115 0.127 3.546 0.19543 0.0598 0.06485.095 0.403412 3.901 0.236475.558 0.480093 4.255 0.28142

Page 138: Crane Fluid Flow Problems

6.021 0.563443 4.610 0.330286.484 0.653460 4.964 0.383056.947 0.750146 0.250 0.279 5.319 0.43972 0.128 0.1427.410 0.853499 5.674 0.500317.874 0.963521 6.028 0.56480

8.337 1.08 6.383 0.633208.800 1.20 6.737 0.705519.263 1.33 0.433 0.490 7.092 0.78173 0.222 0.2489.726 1.47 7.447 0.86185

10.189 1.61 7.801 0.94589

10.652 1.76 8.156 1.0338311.116 1.92 8.510 1.12569

11.6 2.08 0.668 0.760 8.865 1.22145 0.341 0.38412.7 2.52 9.751 1.4779513.9 3.00 0.946 1.09 10.638 1.75889 0.484 0.548

15.1 3.52 11.524 2.0642516.2 4.08 1.27 1.48 12.4 2.39404 0.652 0.74217.4 4.69 13.3 2.7482618.5 5.33 1.66 1.92 14.2 3.12691 0.849 0.96819.7 6.02 15.1 3.52999

20.8 6.75 2.08 2.42 16.0 3.95750 1.06 1.2222.0 7.52 16.8 4.4094323.2 8.33 2.57 2.98 17.7 4.88580 1.30 1.5025.5 10.09 19.5 5.9118127.8 12.0 3.67 4.30 21.3 7.03555 1.87 2.15

30.1 14.1 23.0 8.2570032.4 16.3 4.98 5.82 24.8 9.57616 2.51 2.9234.7 18.8 26.6 10.9930437.1 21.3 6.46 7.58 28.4 12.5 3.26 3.8139.4 24.1 30.1 14.1

41.7 27.0 8.12 9.58 31.9 15.8 4.11 4.8344.0 30.1 33.7 17.646.3 33.3 10.00 11.8 35.5 19.5 5.05 5.9748.6 36.8 37.2 21.550.9 40.3 39.0 23.6

53.3 44.1 40.8 25.855.6 48.0 42.6 28.157.9 52.1 15.6 18.4 44.3 30.5 7.88 9.2869.5 75.0 22.3 26.5 53.2 44.0 11.3 13.481.1 102 30.4 36.1 62.1 59.9 15.3 18.2

92.6 133 39.6 47.2 70.9 78.2 20.0 23.7104.2 169 50.1 59.7 79.8 98.9 25.2 29.9115.8 208 67.7 73.6 88.6 122.1 31.1 36.8

Page 139: Crane Fluid Flow Problems

97.5 148 37.6 44.5106.4 176 44.7 53.0

For Laminar Flow: For Laminar Flow:V = #DIV/0! ft/sec V = #DIV/0! ft/sec

(or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow:V = #DIV/0! ft/sec V = #DIV/0! ft/sec

(or Less) (or Less)

Page 140: Crane Fluid Flow Problems

54 Inch 60 InchI. D. = 54.0000 inches I. D. = 60.0000

Steel Pipe Cast Iron Pipe Steel Pipe 0.000033 0.000089 0.000030e/d = e/d =

V ft/sec

V2/2g ft

hf, ft per 100' pipe

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

Page 141: Crane Fluid Flow Problems
Page 142: Crane Fluid Flow Problems

0.280 0.00122 0.000488 0.000498 0.227 0.000800 0.0002930.294 0.00135 0.238 0.0008830.308 0.00148 0.250 0.000969

0.322 0.00161 0.261 0.0010590.336 0.00176 0.272 0.0011530.350 0.00191 0.000733 0.000748 0.284 0.001251 0.0004400.364 0.00206 0.295 0.0013530.378 0.00222 0.306 0.001459

0.392 0.00239 0.318 0.001569

Page 143: Crane Fluid Flow Problems

0.406 0.00257 0.329 0.0016830.420 0.00275 0.00102 0.00104 0.340 0.001801 0.0006120.434 0.00293 0.352 0.0019230.448 0.00312 0.363 0.002049

0.462 0.00332 0.374 0.0021790.476 0.00353 0.386 0.0023130.490 0.00374 0.00134 0.00138 0.397 0.002451 0.0008100.504 0.00395 0.408 0.0025940.518 0.00418 0.420 0.002740

0.532 0.00440 0.431 0.0028900.546 0.00464 0.443 0.0030440.560 0.00488 0.00172 0.00177 0.454 0.003202 0.001030.574 0.00513 0.465 0.0033640.588 0.00538 0.477 0.003530

0.602 0.00564 0.488 0.0037000.616 0.00591 0.499 0.0038740.630 0.00618 0.00213 0.00220 0.511 0.004052 0.001280.644 0.00645 0.522 0.0042350.658 0.00674 0.533 0.004421

0.672 0.00703 0.545 0.0046110.686 0.00732 0.556 0.0048050.700 0.00763 0.00257 0.00266 0.567 0.005003 0.001550.770 0.00923 0.624 0.0060540.841 0.01098 0.00358 0.00373 0.681 0.007204 0.00216

0.911 0.01289 0.738 0.0084550.981 0.01495 0.00476 0.00499 0.794 0.009806 0.002851.051 0.01716 0.851 0.0112571.121 0.01952 0.00610 0.00642 0.908 0.012808 0.003651.191 0.02204 0.965 0.014459

1.261 0.02471 0.00760 0.00800 1.021 0.016210 0.004541.331 0.02753 1.078 0.0180611.401 0.03050 0.00920 0.00970 1.13 0.020012 0.005501.541 0.03691 1.25 0.0242151.681 0.04392 0.0129 0.0137 1.36 0.028818 0.00766

1.821 0.05155 1.48 0.0338211.961 0.05978 0.0171 0.0182 1.59 0.039224 0.01022.101 0.06863 1.70 0.0450282.241 0.07808 0.0219 0.0234 1.82 0.051231 0.01312.382 0.08815 1.93 0.057835

2.522 0.09883 0.0273 0.0294 2.04 0.064840 0.01632.662 0.11011 2.16 0.0722442.802 0.12201 0.0333 0.0360 2.27 0.080049 0.01983.082 0.14763 2.50 0.0968593.362 0.17569 2.72 0.115270

Page 144: Crane Fluid Flow Problems

3.642 0.20619 2.95 0.1353.922 0.23913 3.18 0.1574.203 0.27452 0.0713 0.0782 3.40 0.180 0.04244.483 0.31234 3.63 0.2054.763 0.35260 3.86 0.231

5.043 0.39530 4.08 0.2595.323 0.44045 4.31 0.2895.604 0.48803 0.124 0.137 4.54 0.320 0.07305.884 0.53805 4.77 0.3536.164 0.59051 4.99 0.387

6.444 0.64542 5.22 0.4236.724 0.70276 5.45 0.4617.004 0.76254 0.189 0.211 5.67 0.500 0.1127.705 0.92268 6.24 0.6058.405 1.09806 0.267 0.301 6.81 0.720 0.158

9.106 1.28870 7.38 0.8469.806 1.49459 0.358 0.408 7.94 0.981 0.213

10.507 1.71573 8.51 1.12611.207 1.95211 0.465 0.530 9.08 1.28 0.27511.908 2.20375 9.65 1.45

12.6 2.47065 0.586 0.668 10.21 1.62 0.34413.3 2.75279 10.78 1.8114.0 3.05018 0.715 0.820 11.3 2.00 0.42015.4 3.69072 12.5 2.4216.8 4.39226 1.02 1.18 13.6 2.88 0.600

18.2 5.15480 14.8 3.3819.6 5.97835 1.38 1.59 15.9 3.92 0.80621.0 6.86290 17.0 4.5022.4 7.80846 1.80 2.07 18.2 5.12 1.0423.8 8.81502 19.3 5.78

25.2 9.88258 2.26 2.62 20.4 6.48 1.3226.6 11.01115 21.6 7.2228.0 12.2 2.77 3.22 22.7 8.00 1.6229.4 13.5 23.8 8.8330.8 14.8 25.0 9.69

32.2 16.1 26.1 10.5933.6 17.6 27.2 11.5335.0 19.1 4.32 5.01 28.4 12.5 2.5242.0 27.5 6.19 7.23 34.0 18.0 3.6049.0 37.4 8.40 9.82 39.7 24.5 4.88

56.0 48.8 11.00 12.8 45.4 32.0 6.3463.0 61.8 13.9 16.2 51.1 40.5 8.0170.0 76.3 17.0 20.0 56.7 50.0 9.87

Page 145: Crane Fluid Flow Problems

77.0 92.3 20.6 24.2 62.4 60.5 11.984.1 109.8 24.5 28.8 68.1 72.0 14.1

91.1 129 28.7 33.7 73.8 84.6 16.698.1 149 33.2 39.0 79.4 98.1 19.2

85.1 112.6 22.090.8 128 25.0

For Laminar Flow: For Laminar Flow:V = #DIV/0! ft/sec V = #DIV/0! ft/sec

(or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow:V = #DIV/0! ft/sec V = #DIV/0! ft/sec

(or Less) (or Less)

Page 146: Crane Fluid Flow Problems

60 Inch 72 Inch 84 Inchinches I. D. = 72.0000 inches I. D. =Cast Iron Pipe Steel Pipe Cast Iron Pipe

0.000080 0.000025 0.000066e/d = e/d =

hf, ft per 100' pipe

V ft/sec

V2/2g ft

hf, ft per 100' pipe

hf, ft per 100' pipe

V ft/sec

V2/2g ft

Page 147: Crane Fluid Flow Problems
Page 148: Crane Fluid Flow Problems

0.000298 0.158 0.000386 0.000123 0.0001250.165 0.0004260.173 0.000467

0.181 0.0005110.189 0.000556

0.000446 0.197 0.0006030.205 0.0006520.213 0.000704

0.221 0.000757

Page 149: Crane Fluid Flow Problems

0.229 0.0008120.000621 0.236 0.000869 0.000254 0.000258 0.174 0.000469

0.244 0.000927 0.179 0.0005010.252 0.000988 0.185 0.000533

0.260 0.001051 0.191 0.0005670.268 0.001116 0.197 0.000602

0.008240 0.276 0.001182 0.000336 0.000342 0.203 0.0006380.284 0.001251 0.208 0.0006750.292 0.001321 0.214 0.000713

0.299 0.001394 0.220 0.0007520.307 0.001468 0.226 0.000792

0.00105 0.315 0.001544 0.000427 0.000435 0.232 0.0008330.323 0.001622 0.237 0.000880.331 0.001702 0.243 0.00092

0.339 0.001784 0.249 0.000960.347 0.001868 0.255 0.00101

0.00131 0.355 0.001954 0.000530 0.000540 0.261 0.001050.362 0.002042 0.266 0.001100.370 0.002132 0.272 0.00115

0.378 0.002224 0.278 0.001200.386 0.002317 0.284 0.00125

0.00159 0.394 0.002413 0.000640 0.000656 0.289 0.001300.433 0.002919 0.318 0.00158

0.00223 0.473 0.003474 0.000890 0.000913 0.347 0.00188

0.512 0.004078 0.376 0.002200.00297 0.552 0.004729 0.00118 0.00121 0.405 0.00255

0.591 0.005429 0.434 0.002930.00382 0.630 0.006177 0.00150 0.00155 0.463 0.00333

0.670 0.006973 0.492 0.00376

0.00476 0.709 0.007817 0.00186 0.00193 0.521 0.004220.749 0.008710 0.550 0.00470

0.00579 0.788 0.009651 0.00227 0.00235 0.579 0.005210.867 0.011678 0.637 0.00630

0.00815 0.946 0.013897 0.00313 0.00329 0.695 0.00750

1.024 0.016310 0.753 0.008800.0108 1.103 0.018916 0.00418 0.00438 0.811 0.01021

1.182 0.021715 0.868 0.011720.0140 1.261 0.024706 0.00538 0.00563 0.926 0.0133

1.340 0.027891 0.984 0.0151

0.0174 1.418 0.031269 0.00673 0.00703 1.042 0.01691.497 0.034840 1.100 0.0188

0.0212 1.576 0.038604 0.00822 0.00859 1.16 0.02081.734 0.046711 1.27 0.02521.891 0.055590 1.39 0.0300

Page 150: Crane Fluid Flow Problems

2.049 0.065240 1.51 0.03522.206 0.075664 1.62 0.0408

0.0460 2.364 0.086859 0.0173 0.0184 1.74 0.04692.522 0.098826 1.85 0.05332.679 0.111565 1.97 0.0602

2.837 0.125076 2.08 0.06752.994 0.139360 2.20 0.0752

0.0800 3.152 0.154415 0.0297 0.0320 2.32 0.08333.310 0.170243 2.43 0.09193.467 0.186843 2.55 0.1009

3.625 0.204214 2.66 0.1103.782 0.222358 2.78 0.120

0.124 3.940 0.241274 0.0450 0.0493 2.89 0.1304.334 0.291941 3.18 0.158

0.176 4.728 0.347434 0.0637 0.0700 3.47 0.188

5.122 0.407753 3.76 0.2200.237 5.516 0.472897 0.0850 0.0940 4.05 0.255

5.910 0.542866 4.34 0.2930.307 6.304 0.617661 0.110 0.122 4.63 0.333

6.698 0.697282 4.92 0.376

0.387 7.092 0.781728 0.138 0.154 5.21 0.4227.486 0.870999 5.50 0.470

0.478 7.880 0.965096 0.168 0.189 5.79 0.5218.668 1.167766 6.37 0.630

0.688 9.456 1.39 0.237 0.271 6.95 0.750

10.244 1.63 7.53 0.8800.930 11.032 1.89 0.321 0.365 8.11 1.021

11.820 2.17 8.68 1.1721.20 12.6 2.47 0.414 0.475 9.26 1.33

13.4 2.79 9.84 1.51

1.52 14.2 3.13 0.522 0.600 10.42 1.6915.0 3.48 11.00 1.88

1.87 15.8 3.86 0.642 0.736 11.6 2.0816.5 4.26 12.2 2.3017.3 4.67 12.7 2.52

18.1 5.11 13.3 2.7618.9 5.56 13.9 3.00

2.92 19.7 6.03 1.00 1.14 14.5 3.264.20 23.6 8.69 1.42 1.64 17.4 4.695.71 27.6 11.8 1.92 2.23 20.3 6.38

7.42 31.5 15.4 2.50 2.90 23.2 8.339.40 35.5 19.5 3.16 3.66 26.1 10.511.6 39.4 24.1 3.88 4.52 28.9 13.0

Page 151: Crane Fluid Flow Problems

14.0 43.3 29.2 4.69 5.47 31.8 15.816.7 47.3 34.7 5.56 6.50 34.7 18.8

19.6 51.2 40.8 6.52 7.61 37.6 22.022.7 55.2 47.3 7.56 8.81 40.5 25.526.0 59.1 54.3 8.67 10.1 43.4 29.329.6 63.0 61.8 9.83 11.5 46.3 33.3

67.0 69.7 11.1 13.0 49.2 37.6

70.9 78.2 12.4 14.6 52.1 42.255.0 47.057.9 52.1

For Laminar Flow: For Laminar Flow:V = #DIV/0! ft/sec V = #DIV/0!

(or Less) (or Less)

For Critical Zone Flow: For Critical Zone Flow:V = #DIV/0! ft/sec V = #DIV/0!

(or Less) (or Less)

Page 152: Crane Fluid Flow Problems

84 Inch84.0000 inches

Steel Pipe Cast Iron Pipe0.000021 0.000057

hf, ft per 100' pipe

hf, ft per 100' pipe

Page 153: Crane Fluid Flow Problems
Page 154: Crane Fluid Flow Problems
Page 155: Crane Fluid Flow Problems

0.000121 0.000122

0.000203 0.000206

0.000308 0.000309

0.000425 0.000432

0.000562 0.000573

0.000717 0.000731

0.000891 0.000910

0.00108 0.00110

0.00150 0.00154

0.00199 0.00205

0.00255 0.00262

0.00316 0.00327

0.00384 0.00400

Page 156: Crane Fluid Flow Problems

0.00810 0.00858

0.0139 0.0148

0.0212 0.0226

0.0298 0.0321

0.0398 0.0431

0.0513 0.0558

0.0640 0.0700

0.0781 0.0660

0.111 0.122

0.149 0.166

0.193 0.216

0.242 0.272

0.297 0.334

0.458 0.5160.649 0.7400.880 1.00

1.14 1.301.44 1.651.78 2.04

Page 157: Crane Fluid Flow Problems

2.14 2.472.54 2.94

2.97 3.453.43 4.003.93 4.584.47 5.205.04 5.87

5.64 6.586.29 7.326.95 8.10

ft/sec

For Critical Zone Flow:ft/sec

Page 158: Crane Fluid Flow Problems

From: Crane Tech Paper #410

Physical Properties of Water

lb/ gallon

32 0.08859 0.016022 62.214 8.3168 1.79140 0.12163 0.016019 62.426 8.3451 1.54550 0.17796 0.016023 62.410 8.3430 1.30660 0.25611 0.016033 62.371 8.3378 1.12170 0.36292 0.016050 62.305 8.3290 0.97580 0.50683 0.016072 62.220 8.3176 0.85790 0.69813 0.016099 62.116 8.3037 0.761

100 0.94924 0.016130 61.996 8.2877 0.681110 1.2750 0.016165 61.862 8.2697 0.614120 1.6927 0.016204 61.713 8.2499 0.557130 2.2230 0.016247 61.550 8.2280 0.508140 2.8892 0.016293 61.376 8.2048 0.466150 3.7184 0.016343 61.188 8.1796 0.430160 4.7414 0.016395 60.994 8.1537 0.398170 5.9926 0.016451 60.787 8.1260 0.370180 7.5110 0.016510 60.569 8.0969 0.345190 9.340 0.016572 60.343 8.0667 0.323200 11.526 0.016637 60.107 8.0351 0.303210 14.123 0.016705 59.862 8.0024 0.285212 14.696 0.016719 59.812 7.9957 0.300220 17.186 0.016775 59.613 7.9691 0.269240 24.968 0.016926 59.081 7.8980 0.242260 35.427 0.017089 58.517 7.8226 0.219280 49.200 0.017264 57.924 7.7433 0.200300 67.005 0.01745 57.307 7.6608 0.184350 134.604 0.01799 55.586 7.4308 0.153400 247.259 0.01864 53.648 7.1717 0.131450 422.55 0.01943 51.467 6.8801 0.115500 680.86 0.02043 48.948 6.5434 0.102550 1,045.43 0.02176 45.956 6.1434 0.091600 1,543.2 0.02364 42.301 5.6548 0.080650 2,208.4 0.02674 37.397 4.9993 0.069700 3,094.3 0.03662 27.307 3.6504 0.051

Temperature oF

Saturation Pressure

psia

Specific Volume ft3/lb

Density lb/ft3

Absolute Viscosity Centipoise

(m)

Note: Viscosity data taken from the NIST Internet database.

60 oF is the conventional reference temperature of water for the Specific Gravity of liquids

Page 159: Crane Fluid Flow Problems

60 oF is the conventional reference temperature of water for the Specific Gravity of liquids

Page 160: Crane Fluid Flow Problems

Water Phase DataData on Saturation Curve

7.57 5.57 6.14 7.71 6.43 6.29 7.29 7.43 7.43 6.71 7.71

212.99 15 59.803 0.016722 181.28 181.33 0.31391 0.89993 1.0077 5,061.3 -0.00221216.27 16 59.721 0.016745 184.59 184.64 0.31882 0.89767 1.0082 5,055.7 -0.00219219.39 17 59.641 0.016767 187.73 187.79 0.32346 0.89553 1.0087 5,050.2 -0.00218222.36 18 59.565 0.016788 190.73 190.79 0.32787 0.89350 1.0092 5,044.7 -0.00217225.20 19 59.492 0.016809 193.59 193.65 0.33206 0.89156 1.0097 5,039.1 -0.00216227.92 20 59.421 0.016829 196.34 196.40 0.33605 0.88971 1.0102 5,033.6 -0.00214230.53 21 59.352 0.016849 198.97 199.04 0.33988 0.88794 1.0107 5,028.1 -0.00213233.03 22 59.285 0.016868 201.51 201.57 0.34354 0.88625 1.0112 5,022.7 -0.00212235.45 23 59.220 0.016886 203.95 204.02 0.34706 0.88462 1.0116 5,017.3 -0.00211237.78 24 59.158 0.016904 206.31 206.38 0.35045 0.88305 1.0121 5,011.9 -0.00210240.03 25 59.096 0.016922 208.58 208.66 0.35371 0.88155 1.0125 5,006.5 -0.00209242.21 26 59.037 0.016939 210.79 210.87 0.35686 0.88009 1.0130 5,001.2 -0.00208244.32 27 58.978 0.016955 212.93 213.01 0.35990 0.87868 1.0134 4,996.0 -0.00207246.37 28 58.922 0.016972 215.01 215.09 0.36285 0.87732 1.0139 4,990.7 -0.00206248.36 29 58.866 0.016988 217.02 217.11 0.36570 0.87600 1.0143 4,985.6 -0.00205250.30 30 58.812 0.017003 218.99 219.08 0.36847 0.87472 1.0147 4,980.4 -0.00204252.18 31 58.759 0.017019 220.90 220.99 0.37115 0.87348 1.0152 4,975.4 -0.00204254.02 32 58.707 0.017034 222.76 222.86 0.37376 0.87228 1.0156 4,970.3 -0.00203255.80 33 58.656 0.017049 224.57 224.68 0.37630 0.87111 1.0160 4,965.3 -0.00202257.55 34 58.606 0.017063 226.34 226.45 0.37878 0.86997 1.0164 4,960.4 -0.00201259.25 35 58.557 0.017078 228.07 228.18 0.38119 0.86886 1.0168 4,955.5 -0.00200260.91 36 58.508 0.017092 229.76 229.88 0.38354 0.86778 1.0172 4,950.6 -0.00199262.54 37 58.461 0.017105 231.42 231.54 0.38583 0.86672 1.0176 4,945.8 -0.00199264.13 38 58.415 0.017119 233.04 233.16 0.38807 0.86570 1.0180 4,941.0 -0.00198265.69 39 58.369 0.017132 234.62 234.75 0.39026 0.86469 1.0184 4,936.2 -0.00197267.22 40 58.324 0.017146 236.17 236.30 0.39240 0.86371 1.0188 4,931.5 -0.00196268.71 41 58.280 0.017159 237.70 237.83 0.39449 0.86275 1.0192 4,926.9 -0.00196270.18 42 58.236 0.017171 239.19 239.32 0.39654 0.86182 1.0196 4,922.2 -0.00195271.62 43 58.193 0.017184 240.65 240.79 0.39854 0.86090 1.0200 4,917.7 -0.00194273.03 44 58.151 0.017197 242.09 242.23 0.40051 0.86000 1.0204 4,913.1 -0.00193274.41 45 58.109 0.017209 243.51 243.65 0.40243 0.85912 1.0208 4,908.6 -0.00193275.77 46 58.068 0.017221 244.89 245.04 0.40432 0.85826 1.0212 4,904.1 -0.00192277.11 47 58.028 0.017233 246.26 246.41 0.40617 0.85742 1.0215 4,899.6 -0.00191278.42 48 57.988 0.017245 247.60 247.75 0.40799 0.85659 1.0219 4,895.2 -0.00191279.72 49 57.948 0.017257 248.92 249.07 0.40978 0.85577 1.0223 4,890.9 -0.00190280.99 50 57.909 0.017268 250.22 250.38 0.41153 0.85498 1.0227 4,886.5 -0.00189282.24 51 57.871 0.017280 251.49 251.66 0.41326 0.85420 1.0230 4,882.2 -0.00189283.47 52 57.833 0.017291 252.75 252.92 0.41495 0.85343 1.0234 4,877.9 -0.00188284.68 53 57.796 0.017302 253.99 254.16 0.41662 0.85267 1.0238 4,873.7 -0.00187285.87 54 57.759 0.017313 255.21 255.39 0.41826 0.85193 1.0241 4,869.4 -0.00187287.05 55 57.722 0.017324 256.42 256.59 0.41987 0.85120 1.0245 4,865.2 -0.00186288.21 56 57.686 0.017335 257.60 257.78 0.42146 0.85048 1.0249 4,861.1 -0.00185289.35 57 57.650 0.017346 258.77 258.95 0.42302 0.84978 1.0252 4,857.0 -0.00185

Temperature (F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 161: Crane Fluid Flow Problems

290.48 58 57.615 0.017357 259.93 260.11 0.42456 0.84908 1.0256 4,852.8 -0.00184291.59 59 57.580 0.017367 261.06 261.25 0.42608 0.84840 1.0259 4,848.8 -0.00184292.68 60 57.545 0.017378 262.19 262.38 0.42757 0.84773 1.0263 4,844.7 -0.00183293.77 61 57.511 0.017388 263.29 263.49 0.42904 0.84707 1.0266 4,840.7 -0.00182294.83 62 57.477 0.017398 264.39 264.59 0.43049 0.84642 1.0270 4,836.7 -0.00182295.89 63 57.443 0.017408 265.47 265.67 0.43193 0.84577 1.0273 4,832.7 -0.00181296.93 64 57.410 0.017419 266.54 266.74 0.43334 0.84514 1.0277 4,828.8 -0.00181297.95 65 57.377 0.017428 267.59 267.80 0.43473 0.84452 1.0280 4,824.9 -0.00180298.97 66 57.345 0.017438 268.63 268.85 0.43610 0.84390 1.0284 4,821.0 -0.00179299.97 67 57.313 0.017448 269.66 269.88 0.43746 0.84330 1.0287 4,817.1 -0.00179300.96 68 57.281 0.017458 270.68 270.90 0.43880 0.84270 1.0291 4,813.3 -0.00178301.94 69 57.249 0.017468 271.69 271.91 0.44012 0.84211 1.0294 4,809.4 -0.00178302.91 70 57.218 0.017477 272.68 272.91 0.44143 0.84153 1.0297 4,805.6 -0.00177303.86 71 57.186 0.017487 273.66 273.89 0.44271 0.84096 1.0301 4,801.9 -0.00177304.81 72 57.156 0.017496 274.64 274.87 0.44399 0.84039 1.0304 4,798.1 -0.00176305.74 73 57.125 0.017505 275.60 275.84 0.44525 0.83983 1.0307 4,794.4 -0.00176306.67 74 57.095 0.017515 276.55 276.79 0.44649 0.83928 1.0311 4,790.7 -0.00175307.58 75 57.065 0.017524 277.49 277.74 0.44772 0.83873 1.0314 4,787.0 -0.00174308.49 76 57.035 0.017533 278.43 278.67 0.44893 0.83820 1.0317 4,783.3 -0.00174309.39 77 57.005 0.017542 279.35 279.60 0.45013 0.83767 1.0321 4,779.6 -0.00173310.27 78 56.976 0.017551 280.26 280.52 0.45132 0.83714 1.0324 4,776.0 -0.00173311.15 79 56.947 0.017560 281.17 281.42 0.45250 0.83662 1.0327 4,772.4 -0.00172312.02 80 56.918 0.017569 282.06 282.32 0.45366 0.83611 1.0331 4,768.8 -0.00172312.88 81 56.890 0.017578 282.95 283.21 0.45481 0.83560 1.0334 4,765.2 -0.00171313.73 82 56.861 0.017587 283.83 284.09 0.45594 0.83510 1.0337 4,761.7 -0.00171314.57 83 56.833 0.017595 284.70 284.97 0.45707 0.83461 1.0340 4,758.2 -0.00170315.41 84 56.805 0.017604 285.56 285.83 0.45818 0.83412 1.0344 4,754.6 -0.00170316.24 85 56.777 0.017613 286.41 286.69 0.45928 0.83364 1.0347 4,751.1 -0.00169317.06 86 56.750 0.017621 287.26 287.54 0.46037 0.83316 1.0350 4,747.7 -0.00169317.87 87 56.722 0.017630 288.10 288.38 0.46145 0.83268 1.0353 4,744.2 -0.00168318.67 88 56.695 0.017638 288.93 289.22 0.46252 0.83222 1.0356 4,740.8 -0.00168319.47 89 56.668 0.017647 289.76 290.05 0.46358 0.83175 1.0360 4,737.3 -0.00167320.26 90 56.641 0.017655 290.57 290.87 0.46463 0.83129 1.0363 4,733.9 -0.00167321.05 91 56.615 0.017663 291.38 291.68 0.46567 0.83084 1.0366 4,730.5 -0.00166321.82 92 56.588 0.017671 292.19 292.49 0.46670 0.83039 1.0369 4,727.2 -0.00166322.59 93 56.562 0.017680 292.98 293.29 0.46772 0.82995 1.0372 4,723.8 -0.00165323.36 94 56.536 0.017688 293.78 294.08 0.46873 0.82951 1.0375 4,720.5 -0.00165324.11 95 56.510 0.017696 294.56 294.87 0.46973 0.82908 1.0379 4,717.1 -0.00164324.86 96 56.484 0.017704 295.34 295.65 0.47072 0.82864 1.0382 4,713.8 -0.00164325.61 97 56.459 0.017712 296.11 296.43 0.47170 0.82822 1.0385 4,710.5 -0.00163326.35 98 56.433 0.017720 296.87 297.19 0.47268 0.82780 1.0388 4,707.2 -0.00163327.08 99 56.408 0.017728 297.63 297.96 0.47364 0.82738 1.0391 4,704.0 -0.00162327.81 100 56.383 0.017736 298.39 298.71 0.47460 0.82696 1.0394 4,700.7 -0.00162328.53 101 56.358 0.017744 299.13 299.46 0.47555 0.82655 1.0397 4,697.5 -0.00161329.24 102 56.333 0.017752 299.87 300.21 0.47649 0.82615 1.0400 4,694.3 -0.00161329.95 103 56.309 0.017759 300.61 300.95 0.47742 0.82574 1.0403 4,691.1 -0.00160330.65 104 56.284 0.017767 301.34 301.68 0.47835 0.82535 1.0406 4,687.9 -0.00160331.35 105 56.260 0.017775 302.07 302.41 0.47927 0.82495 1.0409 4,684.7 -0.00159332.05 106 56.236 0.017782 302.79 303.14 0.48018 0.82456 1.0412 4,681.5 -0.00159

Page 162: Crane Fluid Flow Problems

332.74 107 56.211 0.017790 303.50 303.86 0.48108 0.82417 1.0416 4,678.4 -0.00159333.42 108 56.188 0.017798 304.21 304.57 0.48198 0.82379 1.0419 4,675.2 -0.00158334.10 109 56.164 0.017805 304.92 305.28 0.48286 0.82340 1.0422 4,672.1 -0.00158334.77 110 56.140 0.017813 305.62 305.98 0.48375 0.82303 1.0425 4,669.0 -0.00157335.44 111 56.117 0.017820 306.31 306.68 0.48462 0.82265 1.0428 4,665.9 -0.00157336.10 112 56.093 0.017827 307.00 307.37 0.48549 0.82228 1.0431 4,662.8 -0.00156336.76 113 56.070 0.017835 307.69 308.06 0.48635 0.82191 1.0434 4,659.7 -0.00156337.42 114 56.047 0.017842 308.37 308.75 0.48721 0.82155 1.0437 4,656.7 -0.00155338.07 115 56.024 0.017850 309.05 309.43 0.48805 0.82119 1.0440 4,653.6 -0.00155338.71 116 56.001 0.017857 309.72 310.10 0.48890 0.82083 1.0443 4,650.6 -0.00154339.35 117 55.978 0.017864 310.39 310.77 0.48973 0.82047 1.0446 4,647.5 -0.00154339.99 118 55.955 0.017871 311.05 311.44 0.49056 0.82012 1.0449 4,644.5 -0.00154340.62 119 55.933 0.017879 311.71 312.10 0.49139 0.81977 1.0452 4,641.5 -0.00153341.25 120 55.910 0.017886 312.36 312.76 0.49221 0.81942 1.0455 4,638.5 -0.00153341.88 121 55.888 0.017893 313.02 313.42 0.49302 0.81907 1.0457 4,635.6 -0.00152342.50 122 55.866 0.017900 313.66 314.07 0.49383 0.81873 1.0460 4,632.6 -0.00152343.11 123 55.844 0.017907 314.31 314.71 0.49463 0.81839 1.0463 4,629.6 -0.00151343.72 124 55.822 0.017914 314.94 315.36 0.49542 0.81806 1.0466 4,626.7 -0.00151344.33 125 55.800 0.017921 315.58 315.99 0.49621 0.81772 1.0469 4,623.7 -0.00150344.94 126 55.778 0.017928 316.21 316.63 0.49700 0.81739 1.0472 4,620.8 -0.00150345.54 127 55.756 0.017935 316.84 317.26 0.49778 0.81706 1.0475 4,617.9 -0.00150346.13 128 55.735 0.017942 317.46 317.89 0.49855 0.81674 1.0478 4,615.0 -0.00149346.73 129 55.713 0.017949 318.08 318.51 0.49932 0.81641 1.0481 4,612.1 -0.00149347.32 130 55.692 0.017956 318.70 319.13 0.50008 0.81609 1.0484 4,609.2 -0.00148347.90 131 55.671 0.017963 319.31 319.75 0.50084 0.81577 1.0487 4,606.4 -0.00148348.49 132 55.649 0.017970 319.92 320.36 0.50160 0.81545 1.0490 4,603.5 -0.00147349.07 133 55.628 0.017976 320.52 320.97 0.50235 0.81514 1.0493 4,600.6 -0.00147349.64 134 55.607 0.017983 321.13 321.57 0.50309 0.81483 1.0495 4,597.8 -0.00147350.21 135 55.586 0.017990 321.73 322.17 0.50383 0.81452 1.0498 4,595.0 -0.00146350.78 136 55.566 0.017997 322.32 322.77 0.50457 0.81421 1.0501 4,592.2 -0.00146351.35 137 55.545 0.018003 322.91 323.37 0.50530 0.81390 1.0504 4,589.3 -0.00145351.91 138 55.524 0.018010 323.50 323.96 0.50602 0.81360 1.0507 4,586.5 -0.00145352.47 139 55.504 0.018017 324.09 324.55 0.50674 0.81330 1.0510 4,583.7 -0.00144353.03 140 55.483 0.018023 324.67 325.14 0.50746 0.81300 1.0513 4,581.0 -0.00144353.58 141 55.463 0.018030 325.25 325.72 0.50817 0.81270 1.0515 4,578.2 -0.00144354.13 142 55.443 0.018037 325.83 326.30 0.50888 0.81241 1.0518 4,575.4 -0.00143354.68 143 55.423 0.018043 326.40 326.88 0.50959 0.81211 1.0521 4,572.7 -0.00143355.22 144 55.402 0.018050 326.97 327.45 0.51029 0.81182 1.0524 4,569.9 -0.00142355.76 145 55.382 0.018056 327.54 328.02 0.51098 0.81153 1.0527 4,567.2 -0.00142356.30 146 55.363 0.018063 328.10 328.59 0.51168 0.81125 1.0530 4,564.5 -0.00142356.83 147 55.343 0.018069 328.66 329.15 0.51236 0.81096 1.0533 4,561.7 -0.00141357.37 148 55.323 0.018076 329.22 329.72 0.51305 0.81068 1.0535 4,559.0 -0.00141357.89 149 55.303 0.018082 329.78 330.28 0.51373 0.81040 1.0538 4,556.3 -0.00140358.42 150 55.284 0.018089 330.33 330.83 0.51440 0.81012 1.0541 4,553.6 -0.00140358.94 151 55.264 0.018095 330.88 331.39 0.51508 0.80984 1.0544 4,550.9 -0.00139359.47 152 55.245 0.018101 331.43 331.94 0.51575 0.80956 1.0547 4,548.3 -0.00139359.98 153 55.225 0.018108 331.97 332.48 0.51641 0.80929 1.0549 4,545.6 -0.00139360.50 154 55.206 0.018114 332.51 333.03 0.51707 0.80902 1.0552 4,542.9 -0.00138361.01 155 55.187 0.018120 333.05 333.57 0.51773 0.80875 1.0555 4,540.3 -0.00138

Page 163: Crane Fluid Flow Problems

361.52 156 55.167 0.018127 333.59 334.11 0.51838 0.80848 1.0558 4,537.6 -0.00137362.03 157 55.148 0.018133 334.12 334.65 0.51903 0.80821 1.0561 4,535.0 -0.00137362.54 158 55.129 0.018139 334.66 335.19 0.51968 0.80794 1.0563 4,532.4 -0.00137363.04 159 55.110 0.018145 335.19 335.72 0.52033 0.80768 1.0566 4,529.8 -0.00136363.54 160 55.092 0.018152 335.71 336.25 0.52097 0.80742 1.0569 4,527.1 -0.00136364.04 161 55.073 0.018158 336.24 336.78 0.52160 0.80716 1.0572 4,524.5 -0.00135364.53 162 55.054 0.018164 336.76 337.30 0.52224 0.80690 1.0575 4,521.9 -0.00135365.03 163 55.035 0.018170 337.28 337.83 0.52287 0.80664 1.0577 4,519.3 -0.00135365.52 164 55.017 0.018176 337.79 338.35 0.52349 0.80638 1.0580 4,516.8 -0.00134366.01 165 54.998 0.018182 338.31 338.86 0.52412 0.80613 1.0583 4,514.2 -0.00134366.49 166 54.980 0.018189 338.82 339.38 0.52474 0.80587 1.0586 4,511.6 -0.00133366.98 167 54.961 0.018195 339.33 339.89 0.52535 0.80562 1.0588 4,509.1 -0.00133367.46 168 54.943 0.018201 339.84 340.41 0.52597 0.80537 1.0591 4,506.5 -0.00133367.94 169 54.925 0.018207 340.34 340.91 0.52658 0.80512 1.0594 4,504.0 -0.00132368.41 170 54.906 0.018213 340.85 341.42 0.52719 0.80488 1.0597 4,501.4 -0.00132368.89 171 54.888 0.018219 341.35 341.93 0.52779 0.80463 1.0599 4,498.9 -0.00131369.36 172 54.870 0.018225 341.85 342.43 0.52840 0.80438 1.0602 4,496.4 -0.00131369.83 173 54.852 0.018231 342.35 342.93 0.52900 0.80414 1.0605 4,493.9 -0.00131370.30 174 54.834 0.018237 342.84 343.43 0.52959 0.80390 1.0608 4,491.3 -0.00130370.77 175 54.816 0.018243 343.33 343.92 0.53019 0.80366 1.0610 4,488.8 -0.00130371.23 176 54.798 0.018249 343.82 344.42 0.53078 0.80342 1.0613 4,486.3 -0.00130371.69 177 54.781 0.018255 344.31 344.91 0.53136 0.80318 1.0616 4,483.9 -0.00129372.15 178 54.763 0.018261 344.80 345.40 0.53195 0.80295 1.0619 4,481.4 -0.00129372.61 179 54.745 0.018266 345.28 345.89 0.53253 0.80271 1.0621 4,478.9 -0.00128373.07 180 54.728 0.018272 345.76 346.37 0.53311 0.80248 1.0624 4,476.4 -0.00128373.52 181 54.710 0.018278 346.24 346.86 0.53369 0.80224 1.0627 4,474.0 -0.00128373.97 182 54.693 0.018284 346.72 347.34 0.53426 0.80201 1.0629 4,471.5 -0.00127374.42 183 54.675 0.018290 347.20 347.82 0.53483 0.80178 1.0632 4,469.1 -0.00127374.87 184 54.658 0.018296 347.67 348.30 0.53540 0.80155 1.0635 4,466.6 -0.00126375.32 185 54.640 0.018301 348.15 348.77 0.53597 0.80133 1.0638 4,464.2 -0.00126375.76 186 54.623 0.018307 348.62 349.25 0.53653 0.80110 1.0640 4,461.7 -0.00126376.21 187 54.606 0.018313 349.09 349.72 0.53709 0.80088 1.0643 4,459.3 -0.00125376.65 188 54.589 0.018319 349.55 350.19 0.53765 0.80065 1.0646 4,456.9 -0.00125377.09 189 54.572 0.018325 350.02 350.66 0.53821 0.80043 1.0648 4,454.5 -0.00125377.52 190 54.555 0.018330 350.48 351.13 0.53876 0.80021 1.0651 4,452.1 -0.00124377.96 191 54.538 0.018336 350.94 351.59 0.53931 0.79999 1.0654 4,449.7 -0.00124378.39 192 54.521 0.018342 351.40 352.05 0.53986 0.79977 1.0656 4,447.3 -0.00123378.82 193 54.504 0.018347 351.86 352.52 0.54041 0.79955 1.0659 4,444.9 -0.00123379.25 194 54.487 0.018353 352.32 352.98 0.54095 0.79933 1.0662 4,442.5 -0.00123379.68 195 54.470 0.018359 352.77 353.43 0.54150 0.79912 1.0664 4,440.1 -0.00122380.11 196 54.453 0.018364 353.22 353.89 0.54203 0.79890 1.0667 4,437.8 -0.00122380.53 197 54.437 0.018370 353.67 354.34 0.54257 0.79869 1.0670 4,435.4 -0.00122380.96 198 54.420 0.018376 354.12 354.80 0.54311 0.79847 1.0672 4,433.1 -0.00121381.38 199 54.403 0.018381 354.57 355.25 0.54364 0.79826 1.0675 4,430.7 -0.00121381.80 200 54.387 0.018387 355.02 355.70 0.54417 0.79805 1.0678 4,428.4 -0.00120

Steam Phase DataData on Saturation Curve

Page 164: Crane Fluid Flow Problems

212.99 15 0.0380 26.2940 1,078.4 1,151.4 1.7561 0.37220 0.49768 1,550.1 0.82222216.27 16 0.0404 24.7530 1,079.3 1,152.7 1.7509 0.37337 0.49949 1,553.1 0.80388219.39 17 0.0428 23.3890 1,080.2 1,153.8 1.7461 0.37452 0.50127 1,556.0 0.78710222.36 18 0.0451 22.1710 1,081.0 1,154.9 1.7415 0.37564 0.50301 1,558.7 0.77164225.20 19 0.0474 21.0780 1,081.8 1,156.0 1.7372 0.37674 0.50473 1,561.2 0.75734227.92 20 0.0498 20.0910 1,082.6 1,157.0 1.7331 0.37782 0.50641 1,563.6 0.74405230.53 21 0.0521 19.1940 1,083.3 1,157.9 1.7292 0.37888 0.50807 1,565.9 0.73165233.03 22 0.0544 18.3770 1,084.0 1,158.8 1.7254 0.37993 0.50971 1,568.0 0.72004235.45 23 0.0567 17.6280 1,084.6 1,159.7 1.7219 0.38095 0.51132 1,570.1 0.70913237.78 24 0.0590 16.9400 1,085.2 1,160.5 1.7185 0.38196 0.51291 1,572.1 0.69886240.03 25 0.0613 16.3050 1,085.8 1,161.3 1.7152 0.38296 0.51448 1,574.0 0.68915242.21 26 0.0636 15.7180 1,086.4 1,162.1 1.7121 0.38394 0.51603 1,575.8 0.67996244.32 27 0.0659 15.1720 1,087.0 1,162.8 1.7091 0.38491 0.51757 1,577.5 0.67124246.37 28 0.0682 14.6650 1,087.5 1,163.6 1.7062 0.38586 0.51908 1,579.2 0.66294248.36 29 0.0705 14.1910 1,088.0 1,164.2 1.7034 0.38680 0.52058 1,580.8 0.65503250.30 30 0.0727 13.7470 1,088.5 1,164.9 1.7007 0.38774 0.52207 1,582.3 0.64748252.18 31 0.0750 13.3320 1,089.0 1,165.6 1.6981 0.38866 0.52354 1,583.8 0.64026254.02 32 0.0773 12.9410 1,089.5 1,166.2 1.6955 0.38957 0.52499 1,585.3 0.63334255.80 33 0.0795 12.5740 1,090.0 1,166.8 1.6931 0.39047 0.52643 1,586.7 0.62671257.55 34 0.0818 12.2270 1,090.4 1,167.4 1.6907 0.39136 0.52786 1,588.0 0.62033259.25 35 0.0840 11.8990 1,090.8 1,168.0 1.6884 0.39224 0.52928 1,589.3 0.61420260.91 36 0.0863 11.5900 1,091.3 1,168.5 1.6861 0.39311 0.53068 1,590.6 0.60830262.54 37 0.0885 11.2960 1,091.7 1,169.1 1.6840 0.39397 0.53207 1,591.8 0.60261264.13 38 0.0908 11.0170 1,092.1 1,169.6 1.6818 0.39483 0.53346 1,593.0 0.59711265.69 39 0.0930 10.7520 1,092.5 1,170.1 1.6798 0.39568 0.53483 1,594.2 0.59180267.22 40 0.0952 10.5000 1,092.8 1,170.6 1.6777 0.39651 0.53619 1,595.3 0.58667268.71 41 0.0975 10.2600 1,093.2 1,171.1 1.6758 0.39734 0.53754 1,596.4 0.58170270.18 42 0.0997 10.0300 1,093.6 1,171.6 1.6739 0.39817 0.53887 1,597.4 0.57688271.62 43 0.1019 9.8115 1,093.9 1,172.0 1.6720 0.39898 0.54020 1,598.5 0.57222273.03 44 0.1041 9.6022 1,094.3 1,172.5 1.6701 0.39979 0.54153 1,599.5 0.56769274.41 45 0.1064 9.4019 1,094.6 1,172.9 1.6684 0.40060 0.54284 1,600.4 0.56329275.77 46 0.1086 9.2101 1,094.9 1,173.4 1.6666 0.40139 0.54414 1,601.4 0.55901277.11 47 0.1108 9.0261 1,095.2 1,173.8 1.6649 0.40218 0.54543 1,602.3 0.55485278.42 48 0.1130 8.8495 1,095.6 1,174.2 1.6632 0.40296 0.54672 1,603.2 0.55081279.72 49 0.1152 8.6799 1,095.9 1,174.6 1.6616 0.40374 0.54800 1,604.1 0.54687280.99 50 0.1174 8.5168 1,096.2 1,175.0 1.6599 0.40451 0.54927 1,605.0 0.54303282.24 51 0.1196 8.3599 1,096.5 1,175.4 1.6584 0.40527 0.55053 1,605.8 0.53929283.47 52 0.1218 8.2089 1,096.7 1,175.8 1.6568 0.40603 0.55178 1,606.7 0.53564284.68 53 0.1240 8.0633 1,097.0 1,176.2 1.6553 0.40679 0.55303 1,607.5 0.53207285.87 54 0.1262 7.9230 1,097.3 1,176.5 1.6538 0.40753 0.55427 1,608.3 0.52860287.05 55 0.1284 7.7876 1,097.6 1,176.9 1.6523 0.40828 0.55550 1,609.0 0.52520288.21 56 0.1306 7.6569 1,097.8 1,177.2 1.6509 0.40901 0.55673 1,609.8 0.52188289.35 57 0.1328 7.5306 1,098.1 1,177.6 1.6495 0.40974 0.55794 1,610.5 0.51863290.48 58 0.1350 7.4085 1,098.4 1,177.9 1.6481 0.41047 0.55916 1,611.2 0.51546291.59 59 0.1372 7.2904 1,098.6 1,178.3 1.6467 0.41119 0.56036 1,611.9 0.51235292.68 60 0.1394 7.1761 1,098.9 1,178.6 1.6454 0.41191 0.56156 1,612.6 0.50931293.77 61 0.1415 7.0654 1,099.1 1,178.9 1.6440 0.41262 0.56275 1,613.3 0.50633

Temperature (F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 165: Crane Fluid Flow Problems

294.83 62 0.1437 6.9582 1,099.4 1,179.2 1.6427 0.41333 0.56394 1,614.0 0.50342295.89 63 0.1459 6.8542 1,099.6 1,179.5 1.6415 0.41403 0.56512 1,614.6 0.50056296.93 64 0.1481 6.7534 1,099.8 1,179.9 1.6402 0.41473 0.56630 1,615.3 0.49775297.95 65 0.1503 6.6556 1,100.0 1,180.2 1.6390 0.41542 0.56746 1,615.9 0.49501298.97 66 0.1524 6.5607 1,100.3 1,180.5 1.6377 0.41611 0.56863 1,616.5 0.49231299.97 67 0.1546 6.4685 1,100.5 1,180.7 1.6365 0.41679 0.56979 1,617.1 0.48966300.96 68 0.1568 6.3789 1,100.7 1,181.0 1.6353 0.41747 0.57094 1,617.7 0.48707301.94 69 0.1589 6.2918 1,100.9 1,181.3 1.6342 0.41815 0.57208 1,618.3 0.48452302.91 70 0.1611 6.2071 1,101.1 1,181.6 1.6330 0.41882 0.57323 1,618.9 0.48201303.86 71 0.1633 6.1247 1,101.3 1,181.9 1.6319 0.41949 0.57436 1,619.4 0.47955304.81 72 0.1654 6.0446 1,101.5 1,182.1 1.6308 0.42015 0.57549 1,620.0 0.47714305.74 73 0.1676 5.9665 1,101.7 1,182.4 1.6296 0.42081 0.57662 1,620.5 0.47476306.67 74 0.1698 5.8905 1,101.9 1,182.7 1.6286 0.42147 0.57774 1,621.0 0.47242307.58 75 0.1719 5.8165 1,102.1 1,182.9 1.6275 0.42212 0.57886 1,621.6 0.47013308.49 76 0.1741 5.7443 1,102.3 1,183.2 1.6264 0.42277 0.57997 1,622.1 0.46787309.39 77 0.1762 5.6739 1,102.5 1,183.4 1.6254 0.42341 0.58107 1,622.6 0.46565310.27 78 0.1784 5.6053 1,102.7 1,183.7 1.6243 0.42405 0.58218 1,623.1 0.46346311.15 79 0.1806 5.5384 1,102.9 1,183.9 1.6233 0.42469 0.58327 1,623.6 0.46130312.02 80 0.1827 5.4730 1,103.1 1,184.1 1.6223 0.42532 0.58437 1,624.0 0.45919312.88 81 0.1849 5.4093 1,103.2 1,184.4 1.6213 0.42595 0.58545 1,624.5 0.45710313.73 82 0.1870 5.3470 1,103.4 1,184.6 1.6203 0.42658 0.58654 1,625.0 0.45504314.57 83 0.1892 5.2862 1,103.6 1,184.8 1.6193 0.42720 0.58762 1,625.4 0.45302315.41 84 0.1913 5.2267 1,103.8 1,185.1 1.6184 0.42782 0.58869 1,625.9 0.45102316.24 85 0.1935 5.1687 1,103.9 1,185.3 1.6174 0.42844 0.58976 1,626.3 0.44906317.06 86 0.1956 5.1119 1,104.1 1,185.5 1.6165 0.42905 0.59083 1,626.7 0.44712317.87 87 0.1978 5.0564 1,104.3 1,185.7 1.6155 0.42966 0.59189 1,627.2 0.44521318.67 88 0.1999 5.0021 1,104.4 1,185.9 1.6146 0.43027 0.59295 1,627.6 0.44333319.47 89 0.2021 4.9490 1,104.6 1,186.1 1.6137 0.43087 0.59401 1,628.0 0.44147320.26 90 0.2042 4.8970 1,104.7 1,186.4 1.6128 0.43147 0.59506 1,628.4 0.43964321.05 91 0.2064 4.8461 1,104.9 1,186.6 1.6119 0.43207 0.59610 1,628.8 0.43784321.82 92 0.2085 4.7963 1,105.0 1,186.8 1.6110 0.43266 0.59715 1,629.2 0.43606322.59 93 0.2106 4.7476 1,105.2 1,187.0 1.6101 0.43326 0.59819 1,629.6 0.43430323.36 94 0.2128 4.6998 1,105.4 1,187.2 1.6093 0.43384 0.59922 1,630.0 0.43256324.11 95 0.2149 4.6530 1,105.5 1,187.4 1.6084 0.43443 0.60025 1,630.3 0.43085324.86 96 0.2171 4.6071 1,105.6 1,187.5 1.6076 0.43501 0.60128 1,630.7 0.42916325.61 97 0.2192 4.5622 1,105.8 1,187.7 1.6067 0.43559 0.60231 1,631.1 0.42749326.35 98 0.2213 4.5181 1,105.9 1,187.9 1.6059 0.43617 0.60333 1,631.4 0.42585327.08 99 0.2235 4.4749 1,106.1 1,188.1 1.6051 0.43674 0.60435 1,631.8 0.42422327.81 100 0.2256 4.4326 1,106.2 1,188.3 1.6043 0.43731 0.60536 1,632.1 0.42261328.53 101 0.2277 4.3910 1,106.3 1,188.5 1.6034 0.43788 0.60637 1,632.5 0.42103329.24 102 0.2299 4.3502 1,106.5 1,188.7 1.6026 0.43845 0.60738 1,632.8 0.41946329.95 103 0.2320 4.3102 1,106.6 1,188.8 1.6019 0.43901 0.60838 1,633.2 0.41791330.65 104 0.2341 4.2709 1,106.8 1,189.0 1.6011 0.43957 0.60938 1,633.5 0.41638331.35 105 0.2363 4.2324 1,106.9 1,189.2 1.6003 0.44013 0.61038 1,633.8 0.41487332.05 106 0.2384 4.1946 1,107.0 1,189.3 1.5995 0.44068 0.61137 1,634.1 0.41337332.74 107 0.2405 4.1574 1,107.1 1,189.5 1.5988 0.44124 0.61237 1,634.4 0.41190333.42 108 0.2427 4.1209 1,107.3 1,189.7 1.5980 0.44179 0.61335 1,634.8 0.41044334.10 109 0.2448 4.0851 1,107.4 1,189.8 1.5973 0.44233 0.61434 1,635.1 0.40899334.77 110 0.2469 4.0498 1,107.5 1,190.0 1.5965 0.44288 0.61532 1,635.4 0.40756

Page 166: Crane Fluid Flow Problems

335.44 111 0.2491 4.0152 1,107.6 1,190.2 1.5958 0.44342 0.61630 1,635.7 0.40615336.10 112 0.2512 3.9812 1,107.8 1,190.3 1.5950 0.44396 0.61728 1,636.0 0.40476336.76 113 0.2533 3.9478 1,107.9 1,190.5 1.5943 0.44450 0.61825 1,636.2 0.40338337.42 114 0.2554 3.9149 1,108.0 1,190.6 1.5936 0.44504 0.61922 1,636.5 0.40201338.07 115 0.2576 3.8826 1,108.1 1,190.8 1.5929 0.44557 0.62019 1,636.8 0.40066338.71 116 0.2597 3.8508 1,108.2 1,191.0 1.5922 0.44610 0.62115 1,637.1 0.39932339.35 117 0.2618 3.8196 1,108.3 1,191.1 1.5915 0.44663 0.62211 1,637.4 0.39800339.99 118 0.2639 3.7888 1,108.5 1,191.3 1.5908 0.44715 0.62307 1,637.6 0.39669340.62 119 0.2661 3.7586 1,108.6 1,191.4 1.5901 0.44768 0.62403 1,637.9 0.39540341.25 120 0.2682 3.7288 1,108.7 1,191.5 1.5894 0.44820 0.62498 1,638.2 0.39412341.88 121 0.2703 3.6996 1,108.8 1,191.7 1.5887 0.44872 0.62593 1,638.4 0.39285342.50 122 0.2724 3.6707 1,108.9 1,191.8 1.5881 0.44924 0.62688 1,638.7 0.39159343.11 123 0.2746 3.6424 1,109.0 1,192.0 1.5874 0.44975 0.62782 1,638.9 0.39035343.72 124 0.2767 3.6144 1,109.1 1,192.1 1.5867 0.45027 0.62877 1,639.2 0.38912344.33 125 0.2788 3.5870 1,109.2 1,192.3 1.5861 0.45078 0.62971 1,639.4 0.38790344.94 126 0.2809 3.5599 1,109.3 1,192.4 1.5854 0.45129 0.63064 1,639.7 0.38670345.54 127 0.2830 3.5332 1,109.4 1,192.5 1.5848 0.45179 0.63158 1,639.9 0.38550346.13 128 0.2852 3.5070 1,109.5 1,192.7 1.5841 0.45230 0.63251 1,640.2 0.38432346.73 129 0.2873 3.4811 1,109.6 1,192.8 1.5835 0.45280 0.63344 1,640.4 0.38315347.32 130 0.2894 3.4556 1,109.7 1,192.9 1.5829 0.45330 0.63437 1,640.6 0.38199347.90 131 0.2915 3.4305 1,109.8 1,193.1 1.5822 0.45380 0.63529 1,640.8 0.38084348.49 132 0.2936 3.4058 1,109.9 1,193.2 1.5816 0.45429 0.63621 1,641.1 0.37970349.07 133 0.2957 3.3814 1,110.0 1,193.3 1.5810 0.45479 0.63713 1,641.3 0.37858349.64 134 0.2979 3.3573 1,110.1 1,193.4 1.5804 0.45528 0.63805 1,641.5 0.37746350.21 135 0.3000 3.3337 1,110.2 1,193.6 1.5798 0.45577 0.63897 1,641.7 0.37635350.78 136 0.3021 3.3103 1,110.3 1,193.7 1.5792 0.45626 0.63988 1,641.9 0.37526351.35 137 0.3042 3.2873 1,110.4 1,193.8 1.5786 0.45675 0.64079 1,642.2 0.37417351.91 138 0.3063 3.2646 1,110.5 1,193.9 1.5780 0.45723 0.64170 1,642.4 0.37309352.47 139 0.3084 3.2422 1,110.6 1,194.0 1.5774 0.45772 0.64261 1,642.6 0.37203353.03 140 0.3106 3.2201 1,110.7 1,194.2 1.5768 0.45820 0.64351 1,642.8 0.37097353.58 141 0.3127 3.1984 1,110.8 1,194.3 1.5762 0.45868 0.64441 1,643.0 0.36992354.13 142 0.3148 3.1769 1,110.9 1,194.4 1.5756 0.45916 0.64531 1,643.2 0.36888354.68 143 0.3169 3.1557 1,110.9 1,194.5 1.5750 0.45963 0.64621 1,643.4 0.36785355.22 144 0.3190 3.1348 1,111.0 1,194.6 1.5744 0.46011 0.64711 1,643.6 0.36683355.76 145 0.3211 3.1142 1,111.1 1,194.7 1.5739 0.46058 0.64800 1,643.7 0.36582356.30 146 0.3232 3.0938 1,111.2 1,194.9 1.5733 0.46105 0.64889 1,643.9 0.36482356.83 147 0.3253 3.0737 1,111.3 1,195.0 1.5727 0.46152 0.64978 1,644.1 0.36382357.37 148 0.3275 3.0539 1,111.4 1,195.1 1.5722 0.46198 0.65067 1,644.3 0.36284357.89 149 0.3296 3.0343 1,111.5 1,195.2 1.5716 0.46245 0.65155 1,644.5 0.36186358.42 150 0.3317 3.0150 1,111.5 1,195.3 1.5711 0.46291 0.65244 1,644.7 0.36089358.94 151 0.3338 2.9959 1,111.6 1,195.4 1.5705 0.46337 0.65332 1,644.8 0.35993359.47 152 0.3359 2.9771 1,111.7 1,195.5 1.5700 0.46384 0.65420 1,645.0 0.35897359.98 153 0.3380 2.9585 1,111.8 1,195.6 1.5694 0.46429 0.65508 1,645.2 0.35803360.50 154 0.3401 2.9402 1,111.9 1,195.7 1.5689 0.46475 0.65595 1,645.4 0.35709361.01 155 0.3422 2.9220 1,111.9 1,195.8 1.5684 0.46521 0.65682 1,645.5 0.35616361.52 156 0.3443 2.9041 1,112.0 1,195.9 1.5678 0.46566 0.65770 1,645.7 0.35523362.03 157 0.3465 2.8864 1,112.1 1,196.0 1.5673 0.46611 0.65857 1,645.9 0.35432362.54 158 0.3486 2.8690 1,112.2 1,196.1 1.5668 0.46656 0.65943 1,646.0 0.35341363.04 159 0.3507 2.8517 1,112.3 1,196.2 1.5662 0.46701 0.66030 1,646.2 0.35251

Page 167: Crane Fluid Flow Problems

363.54 160 0.3528 2.8347 1,112.3 1,196.3 1.5657 0.46746 0.66116 1,646.3 0.35161364.04 161 0.3549 2.8178 1,112.4 1,196.4 1.5652 0.46791 0.66203 1,646.5 0.35073364.53 162 0.3570 2.8012 1,112.5 1,196.5 1.5647 0.46835 0.66289 1,646.6 0.34985365.03 163 0.3591 2.7847 1,112.5 1,196.6 1.5642 0.46879 0.66375 1,646.8 0.34897365.52 164 0.3612 2.7685 1,112.6 1,196.7 1.5637 0.46924 0.66460 1,646.9 0.34811366.01 165 0.3633 2.7524 1,112.7 1,196.8 1.5632 0.46968 0.66546 1,647.1 0.34724366.49 166 0.3654 2.7365 1,112.8 1,196.9 1.5627 0.47011 0.66631 1,647.2 0.34639366.98 167 0.3675 2.7208 1,112.8 1,197.0 1.5622 0.47055 0.66716 1,647.4 0.34554367.46 168 0.3696 2.7053 1,112.9 1,197.1 1.5617 0.47099 0.66801 1,647.5 0.34470367.94 169 0.3718 2.6900 1,113.0 1,197.2 1.5612 0.47142 0.66886 1,647.7 0.34387368.41 170 0.3739 2.6748 1,113.0 1,197.2 1.5607 0.47185 0.66971 1,647.8 0.34304368.89 171 0.3760 2.6598 1,113.1 1,197.3 1.5602 0.47228 0.67055 1,647.9 0.34222369.36 172 0.3781 2.6450 1,113.2 1,197.4 1.5597 0.47271 0.67140 1,648.1 0.34140369.83 173 0.3802 2.6303 1,113.2 1,197.5 1.5592 0.47314 0.67224 1,648.2 0.34059370.30 174 0.3823 2.6159 1,113.3 1,197.6 1.5587 0.47357 0.67308 1,648.3 0.33979370.77 175 0.3844 2.6015 1,113.4 1,197.7 1.5583 0.47400 0.67392 1,648.5 0.33899371.23 176 0.3865 2.5873 1,113.4 1,197.8 1.5578 0.47442 0.67476 1,648.6 0.33819371.69 177 0.3886 2.5733 1,113.5 1,197.8 1.5573 0.47484 0.67559 1,648.7 0.33741372.15 178 0.3907 2.5594 1,113.6 1,197.9 1.5568 0.47526 0.67643 1,648.9 0.33663372.61 179 0.3928 2.5457 1,113.6 1,198.0 1.5564 0.47568 0.67726 1,649.0 0.33585373.07 180 0.3949 2.5321 1,113.7 1,198.1 1.5559 0.47610 0.67809 1,649.1 0.33508373.52 181 0.3970 2.5187 1,113.8 1,198.2 1.5554 0.47652 0.67892 1,649.2 0.33431373.97 182 0.3991 2.5054 1,113.8 1,198.3 1.5550 0.47694 0.67975 1,649.4 0.33355374.42 183 0.4012 2.4923 1,113.9 1,198.3 1.5545 0.47735 0.68057 1,649.5 0.33280374.87 184 0.4034 2.4793 1,113.9 1,198.4 1.5541 0.47777 0.68140 1,649.6 0.33205375.32 185 0.4055 2.4664 1,114.0 1,198.5 1.5536 0.47818 0.68222 1,649.7 0.33131375.76 186 0.4076 2.4537 1,114.1 1,198.6 1.5532 0.47859 0.68305 1,649.8 0.33057376.21 187 0.4097 2.4410 1,114.1 1,198.6 1.5527 0.47900 0.68387 1,649.9 0.32983376.65 188 0.4118 2.4286 1,114.2 1,198.7 1.5523 0.47941 0.68469 1,650.0 0.32910377.09 189 0.4139 2.4162 1,114.2 1,198.8 1.5518 0.47982 0.68550 1,650.1 0.32838377.52 190 0.4160 2.4040 1,114.3 1,198.9 1.5514 0.48022 0.68632 1,650.3 0.32766377.96 191 0.4181 2.3919 1,114.4 1,198.9 1.5509 0.48063 0.68714 1,650.4 0.32694378.39 192 0.4202 2.3799 1,114.4 1,199.0 1.5505 0.48103 0.68795 1,650.5 0.32623378.82 193 0.4223 2.3680 1,114.5 1,199.1 1.5500 0.48143 0.68876 1,650.6 0.32553379.25 194 0.4244 2.3563 1,114.5 1,199.2 1.5496 0.48184 0.68957 1,650.7 0.32483379.68 195 0.4265 2.3447 1,114.6 1,199.2 1.5492 0.48224 0.69038 1,650.8 0.32413380.11 196 0.4286 2.3331 1,114.6 1,199.3 1.5487 0.48263 0.69119 1,650.9 0.32344380.53 197 0.4307 2.3217 1,114.7 1,199.4 1.5483 0.48303 0.69200 1,651.0 0.32275380.96 198 0.4328 2.3104 1,114.7 1,199.4 1.5479 0.48343 0.69281 1,651.1 0.32207381.38 199 0.4349 2.2993 1,114.8 1,199.5 1.5475 0.48382 0.69361 1,651.2 0.32139381.80 200 0.4370 2.2882 1,114.8 1,199.6 1.5470 0.48422 0.69441 1,651.3 0.32072

Auxiliary Data( All data downloaded from NIST website: http://webbook.nist.gov/chemistry/fluid/ )

Reference States

Internal energy U = 0.0Entropy S = 0.0

at 273.16 K for saturated liquid.at 273.16 K for saturated liquid.

Page 168: Crane Fluid Flow Problems

Additional fluid data

705.10

3200.1 psia

20.102

Acentric factor 0.3443

Normal boiling point 211.95

Dipole moment 1.855 Debye

Critical temperature (Tc) oF

Critical pressure (Pc)

Critical density (Dc) lbm/ft3

oF

Page 169: Crane Fluid Flow Problems

7.14 7 6.29 4.57

Phase

0.28012 0.67927 0.0003 liquid0.27487 0.67982 0.0003 liquid0.27004 0.68030 0.0003 liquid0.26557 0.68073 0.0003 liquid0.26144 0.68111 0.0003 liquid0.25758 0.68145 0.0003 liquid0.25398 0.68175 0.0003 liquid0.25060 0.68202 0.0003 liquid0.24743 0.68225 0.0003 liquid0.24443 0.68246 0.0003 liquid0.24160 0.68265 0.0003 liquid0.23892 0.68282 0.0003 liquid0.23637 0.68297 0.0003 liquid0.23394 0.68309 0.0003 liquid0.23163 0.68321 0.0003 liquid0.22943 0.68331 0.0003 liquid0.22732 0.68339 0.0003 liquid0.22530 0.68346 0.0003 liquid0.22336 0.68353 0.0003 liquid0.22150 0.68358 0.0003 liquid0.21972 0.68362 0.0003 liquid0.21800 0.68365 0.0003 liquid0.21634 0.68367 0.0003 liquid0.21474 0.68369 0.0003 liquid0.21320 0.68370 0.0003 liquid0.21171 0.68370 0.0003 liquid0.21027 0.68370 0.0003 liquid0.20887 0.68369 0.0003 liquid0.20752 0.68367 0.0003 liquid0.20621 0.68365 0.0003 liquid0.20494 0.68362 0.0003 liquid0.20371 0.68359 0.0003 liquid0.20251 0.68356 0.0003 liquid0.20134 0.68352 0.0003 liquid0.20021 0.68347 0.0003 liquid0.19911 0.68343 0.0003 liquid0.19804 0.68338 0.0003 liquid0.19699 0.68332 0.0003 liquid0.19597 0.68327 0.0003 liquid0.19498 0.68321 0.0003 liquid0.19401 0.68315 0.0003 liquid0.19306 0.68308 0.0003 liquid0.19214 0.68301 0.0003 liquid

Viscosity (cP)

Therm. Cond.

(W/m*K)

Surf. Tension (lb/in)

Page 170: Crane Fluid Flow Problems

0.19124 0.68294 0.0003 liquid0.19035 0.68287 0.0003 liquid0.18949 0.68280 0.0003 liquid0.18865 0.68272 0.0003 liquid0.18782 0.68264 0.0003 liquid0.18702 0.68256 0.0003 liquid0.18622 0.68248 0.0003 liquid0.18545 0.68240 0.0003 liquid0.18469 0.68231 0.0003 liquid0.18395 0.68223 0.0003 liquid0.18322 0.68214 0.0003 liquid0.18250 0.68205 0.0003 liquid0.18180 0.68196 0.0003 liquid0.18112 0.68186 0.0003 liquid0.18044 0.68177 0.0003 liquid0.17978 0.68168 0.0003 liquid0.17913 0.68158 0.0003 liquid0.17849 0.68148 0.0003 liquid0.17786 0.68138 0.0003 liquid0.17724 0.68129 0.0003 liquid0.17663 0.68119 0.0003 liquid0.17604 0.68108 0.0003 liquid0.17545 0.68098 0.0003 liquid0.17487 0.68088 0.0003 liquid0.17431 0.68078 0.0003 liquid0.17375 0.68067 0.0003 liquid0.17320 0.68057 0.0003 liquid0.17266 0.68046 0.0003 liquid0.17212 0.68035 0.0003 liquid0.17160 0.68025 0.0003 liquid0.17108 0.68014 0.0003 liquid0.17057 0.68003 0.0003 liquid0.17007 0.67992 0.0003 liquid0.16958 0.67981 0.0003 liquid0.16909 0.67970 0.0003 liquid0.16861 0.67959 0.0003 liquid0.16814 0.67948 0.0003 liquid0.16767 0.67936 0.0003 liquid0.16721 0.67925 0.0003 liquid0.16676 0.67914 0.0003 liquid0.16631 0.67902 0.0003 liquid0.16587 0.67891 0.0003 liquid0.16543 0.67880 0.0003 liquid0.16500 0.67868 0.0003 liquid0.16458 0.67857 0.0003 liquid0.16416 0.67845 0.0003 liquid0.16375 0.67833 0.0003 liquid0.16334 0.67822 0.0003 liquid0.16293 0.67810 0.0003 liquid

Page 171: Crane Fluid Flow Problems

0.16253 0.67798 0.0003 liquid0.16214 0.67787 0.0003 liquid0.16175 0.67775 0.0003 liquid0.16137 0.67763 0.0003 liquid0.16099 0.67751 0.0003 liquid0.16061 0.67739 0.0003 liquid0.16024 0.67728 0.0003 liquid0.15988 0.67716 0.0003 liquid0.15951 0.67704 0.0003 liquid0.15916 0.67692 0.0003 liquid0.15880 0.67680 0.0003 liquid0.15845 0.67668 0.0003 liquid0.15811 0.67656 0.0003 liquid0.15776 0.67644 0.0003 liquid0.15742 0.67632 0.0003 liquid0.15709 0.67620 0.0003 liquid0.15676 0.67608 0.0002 liquid0.15643 0.67595 0.0002 liquid0.15611 0.67583 0.0002 liquid0.15578 0.67571 0.0002 liquid0.15547 0.67559 0.0002 liquid0.15515 0.67547 0.0002 liquid0.15484 0.67535 0.0002 liquid0.15453 0.67522 0.0002 liquid0.15423 0.67510 0.0002 liquid0.15393 0.67498 0.0002 liquid0.15363 0.67486 0.0002 liquid0.15333 0.67473 0.0002 liquid0.15304 0.67461 0.0002 liquid0.15275 0.67449 0.0002 liquid0.15246 0.67436 0.0002 liquid0.15217 0.67424 0.0002 liquid0.15189 0.67412 0.0002 liquid0.15161 0.67399 0.0002 liquid0.15134 0.67387 0.0002 liquid0.15106 0.67375 0.0002 liquid0.15079 0.67362 0.0002 liquid0.15052 0.67350 0.0002 liquid0.15025 0.67338 0.0002 liquid0.14999 0.67325 0.0002 liquid0.14973 0.67313 0.0002 liquid0.14947 0.67300 0.0002 liquid0.14921 0.67288 0.0002 liquid0.14895 0.67276 0.0002 liquid0.14870 0.67263 0.0002 liquid0.14845 0.67251 0.0002 liquid0.14820 0.67238 0.0002 liquid0.14795 0.67226 0.0002 liquid0.14771 0.67213 0.0002 liquid

Page 172: Crane Fluid Flow Problems

0.14747 0.67201 0.0002 liquid0.14723 0.67189 0.0002 liquid0.14699 0.67176 0.0002 liquid0.14675 0.67164 0.0002 liquid0.14652 0.67151 0.0002 liquid0.14628 0.67139 0.0002 liquid0.14605 0.67126 0.0002 liquid0.14582 0.67114 0.0002 liquid0.14560 0.67101 0.0002 liquid0.14537 0.67089 0.0002 liquid0.14515 0.67076 0.0002 liquid0.14493 0.67064 0.0002 liquid0.14471 0.67051 0.0002 liquid0.14449 0.67039 0.0002 liquid0.14427 0.67026 0.0002 liquid0.14406 0.67014 0.0002 liquid0.14384 0.67001 0.0002 liquid0.14363 0.66989 0.0002 liquid0.14342 0.66976 0.0002 liquid0.14321 0.66964 0.0002 liquid0.14300 0.66951 0.0002 liquid0.14280 0.66939 0.0002 liquid0.14259 0.66926 0.0002 liquid0.14239 0.66914 0.0002 liquid0.14219 0.66901 0.0002 liquid0.14199 0.66889 0.0002 liquid0.14179 0.66876 0.0002 liquid0.14160 0.66863 0.0002 liquid0.14140 0.66851 0.0002 liquid0.14121 0.66838 0.0002 liquid0.14101 0.66826 0.0002 liquid0.14082 0.66813 0.0002 liquid0.14063 0.66801 0.0002 liquid0.14044 0.66788 0.0002 liquid0.14026 0.66776 0.0002 liquid0.14007 0.66763 0.0002 liquid0.13988 0.66751 0.0002 liquid0.13970 0.66738 0.0002 liquid0.13952 0.66726 0.0002 liquid0.13934 0.66713 0.0002 liquid0.13916 0.66701 0.0002 liquid0.13898 0.66688 0.0002 liquid0.13880 0.66676 0.0002 liquid0.13862 0.66663 0.0002 liquid0.13845 0.66651 0.0002 liquid

Page 173: Crane Fluid Flow Problems

Phase

0.01229 0.02516 vapor0.01235 0.02536 vapor0.01241 0.02556 vapor0.01247 0.02575 vapor0.01252 0.02593 vapor0.01257 0.02611 vapor0.01262 0.02628 vapor0.01267 0.02645 vapor0.01272 0.02661 vapor0.01276 0.02676 vapor0.01280 0.02692 vapor0.01285 0.02707 vapor0.01289 0.02721 vapor0.01293 0.02735 vapor0.01296 0.02749 vapor0.01300 0.02763 vapor0.01304 0.02776 vapor0.01307 0.02789 vapor0.01311 0.02802 vapor0.01314 0.02815 vapor0.01317 0.02827 vapor0.01320 0.02839 vapor0.01324 0.02851 vapor0.01327 0.02863 vapor0.01330 0.02874 vapor0.01333 0.02886 vapor0.01335 0.02897 vapor0.01338 0.02908 vapor0.01341 0.02919 vapor0.01344 0.02929 vapor0.01346 0.02940 vapor0.01349 0.02950 vapor0.01351 0.02960 vapor0.01354 0.02971 vapor0.01356 0.02981 vapor0.01359 0.02991 vapor0.01361 0.03000 vapor0.01364 0.03010 vapor0.01366 0.03019 vapor0.01368 0.03029 vapor0.01371 0.03038 vapor0.01373 0.03047 vapor0.01375 0.03057 vapor0.01377 0.03066 vapor0.01379 0.03074 vapor0.01381 0.03083 vapor0.01383 0.03092 vapor

Viscosity (cP)

Therm. Cond.

(W/m*K)

Page 174: Crane Fluid Flow Problems

0.01385 0.03101 vapor0.01388 0.03109 vapor0.01390 0.03118 vapor0.01391 0.03126 vapor0.01393 0.03135 vapor0.01395 0.03143 vapor0.01397 0.03151 vapor0.01399 0.03159 vapor0.01401 0.03167 vapor0.01403 0.03175 vapor0.01405 0.03183 vapor0.01406 0.03191 vapor0.01408 0.03199 vapor0.01410 0.03206 vapor0.01412 0.03214 vapor0.01413 0.03222 vapor0.01415 0.03229 vapor0.01417 0.03237 vapor0.01418 0.03244 vapor0.01420 0.03251 vapor0.01422 0.03259 vapor0.01423 0.03266 vapor0.01425 0.03273 vapor0.01427 0.03280 vapor0.01428 0.03287 vapor0.01430 0.03295 vapor0.01431 0.03302 vapor0.01433 0.03309 vapor0.01434 0.03315 vapor0.01436 0.03322 vapor0.01437 0.03329 vapor0.01439 0.03336 vapor0.01440 0.03343 vapor0.01442 0.03349 vapor0.01443 0.03356 vapor0.01444 0.03363 vapor0.01446 0.03369 vapor0.01447 0.03376 vapor0.01449 0.03382 vapor0.01450 0.03389 vapor0.01451 0.03395 vapor0.01453 0.03402 vapor0.01454 0.03408 vapor0.01455 0.03414 vapor0.01457 0.03420 vapor0.01458 0.03427 vapor0.01459 0.03433 vapor0.01461 0.03439 vapor0.01462 0.03445 vapor

Page 175: Crane Fluid Flow Problems

0.01463 0.03451 vapor0.01465 0.03457 vapor0.01466 0.03463 vapor0.01467 0.03469 vapor0.01468 0.03475 vapor0.01470 0.03481 vapor0.01471 0.03487 vapor0.01472 0.03493 vapor0.01473 0.03499 vapor0.01474 0.03505 vapor0.01476 0.03511 vapor0.01477 0.03517 vapor0.01478 0.03522 vapor0.01479 0.03528 vapor0.01480 0.03534 vapor0.01481 0.03539 vapor0.01483 0.03545 vapor0.01484 0.03551 vapor0.01485 0.03556 vapor0.01486 0.03562 vapor0.01487 0.03567 vapor0.01488 0.03573 vapor0.01489 0.03578 vapor0.01490 0.03584 vapor0.01492 0.03589 vapor0.01493 0.03595 vapor0.01494 0.03600 vapor0.01495 0.03606 vapor0.01496 0.03611 vapor0.01497 0.03616 vapor0.01498 0.03622 vapor0.01499 0.03627 vapor0.01500 0.03632 vapor0.01501 0.03637 vapor0.01502 0.03643 vapor0.01503 0.03648 vapor0.01504 0.03653 vapor0.01505 0.03658 vapor0.01506 0.03663 vapor0.01507 0.03668 vapor0.01508 0.03674 vapor0.01509 0.03679 vapor0.01510 0.03684 vapor0.01511 0.03689 vapor0.01512 0.03694 vapor0.01513 0.03699 vapor0.01514 0.03704 vapor0.01515 0.03709 vapor0.01516 0.03714 vapor

Page 176: Crane Fluid Flow Problems

0.01517 0.03719 vapor0.01518 0.03724 vapor0.01519 0.03729 vapor0.01520 0.03733 vapor0.01521 0.03738 vapor0.01522 0.03743 vapor0.01523 0.03748 vapor0.01524 0.03753 vapor0.01525 0.03758 vapor0.01525 0.03762 vapor0.01526 0.03767 vapor0.01527 0.03772 vapor0.01528 0.03777 vapor0.01529 0.03781 vapor0.01530 0.03786 vapor0.01531 0.03791 vapor0.01532 0.03796 vapor0.01533 0.03800 vapor0.01533 0.03805 vapor0.01534 0.03810 vapor0.01535 0.03814 vapor0.01536 0.03819 vapor0.01537 0.03823 vapor0.01538 0.03828 vapor0.01539 0.03833 vapor0.01540 0.03837 vapor0.01540 0.03842 vapor0.01541 0.03846 vapor0.01542 0.03851 vapor0.01543 0.03855 vapor0.01544 0.03860 vapor0.01545 0.03864 vapor0.01545 0.03869 vapor0.01546 0.03873 vapor0.01547 0.03877 vapor0.01548 0.03882 vapor0.01549 0.03886 vapor0.01550 0.03891 vapor0.01550 0.03895 vapor0.01551 0.03899 vapor0.01552 0.03904 vapor

Page 177: Crane Fluid Flow Problems

Water Phase DataData on Saturation Curve

7.57 5.57 6.14 7.71 6.43 6.29 7.29 7.43 7.43 6.71 7.71

382.22 201 54.370 0.018392 355.46 356.15 0.54470 0.79784 1.0680 4,426.0 -0.00120382.63 202 54.354 0.018398 355.90 356.59 0.54522 0.79763 1.0683 4,423.7 -0.00120383.05 203 54.337 0.018404 356.35 357.04 0.54575 0.79743 1.0686 4,421.3 -0.00119383.46 204 54.321 0.018409 356.79 357.48 0.54627 0.79722 1.0688 4,419.0 -0.00119383.87 205 54.305 0.018415 357.22 357.92 0.54679 0.79701 1.0691 4,416.7 -0.00119384.28 206 54.288 0.018420 357.66 358.36 0.54731 0.79681 1.0694 4,414.4 -0.00118384.69 207 54.272 0.018426 358.09 358.80 0.54782 0.79661 1.0696 4,412.1 -0.00118385.10 208 54.256 0.018431 358.53 359.24 0.54834 0.79640 1.0699 4,409.8 -0.00117385.51 209 54.240 0.018437 358.96 359.67 0.54885 0.79620 1.0702 4,407.5 -0.00117385.91 210 54.224 0.018442 359.39 360.11 0.54936 0.79600 1.0704 4,405.2 -0.00117386.31 211 54.207 0.018448 359.82 360.54 0.54986 0.79580 1.0707 4,402.9 -0.00116386.71 212 54.191 0.018453 360.25 360.97 0.55037 0.79560 1.0710 4,400.6 -0.00116387.11 213 54.175 0.018459 360.67 361.40 0.55087 0.79541 1.0712 4,398.3 -0.00116387.51 214 54.160 0.018464 361.10 361.83 0.55137 0.79521 1.0715 4,396.1 -0.00115387.91 215 54.144 0.018469 361.52 362.25 0.55187 0.79501 1.0718 4,393.8 -0.00115388.30 216 54.128 0.018475 361.94 362.68 0.55237 0.79482 1.0720 4,391.5 -0.00114388.70 217 54.112 0.018480 362.36 363.10 0.55286 0.79462 1.0723 4,389.3 -0.00114389.09 218 54.096 0.018486 362.78 363.52 0.55336 0.79443 1.0726 4,387.0 -0.00114389.48 219 54.080 0.018491 363.20 363.95 0.55385 0.79424 1.0728 4,384.8 -0.00113389.87 220 54.065 0.018496 363.61 364.36 0.55434 0.79405 1.0731 4,382.5 -0.00113390.26 221 54.049 0.018502 364.03 364.78 0.55483 0.79386 1.0733 4,380.3 -0.00113390.65 222 54.034 0.018507 364.44 365.20 0.55531 0.79367 1.0736 4,378.1 -0.00112391.03 223 54.018 0.018512 364.85 365.61 0.55580 0.79348 1.0739 4,375.8 -0.00112391.42 224 54.002 0.018518 365.26 366.03 0.55628 0.79329 1.0741 4,373.6 -0.00112391.80 225 53.987 0.018523 365.67 366.44 0.55676 0.79310 1.0744 4,371.4 -0.00111392.18 226 53.971 0.018528 366.08 366.85 0.55724 0.79292 1.0747 4,369.2 -0.00111392.56 227 53.956 0.018534 366.48 367.26 0.55772 0.79273 1.0749 4,367.0 -0.00110392.94 228 53.941 0.018539 366.89 367.67 0.55819 0.79255 1.0752 4,364.8 -0.00110393.32 229 53.925 0.018544 367.29 368.08 0.55867 0.79236 1.0754 4,362.6 -0.00110393.70 230 53.910 0.018549 367.69 368.48 0.55914 0.79218 1.0757 4,360.4 -0.00109394.07 231 53.895 0.018555 368.10 368.89 0.55961 0.79200 1.0760 4,358.2 -0.00109394.44 232 53.880 0.018560 368.50 369.29 0.56008 0.79182 1.0762 4,356.0 -0.00109394.82 233 53.864 0.018565 368.89 369.70 0.56054 0.79163 1.0765 4,353.8 -0.00108395.19 234 53.849 0.018570 369.29 370.10 0.56101 0.79145 1.0767 4,351.7 -0.00108395.56 235 53.834 0.018576 369.69 370.50 0.56147 0.79128 1.0770 4,349.5 -0.00108395.93 236 53.819 0.018581 370.08 370.89 0.56193 0.79110 1.0773 4,347.3 -0.00107396.30 237 53.804 0.018586 370.48 371.29 0.56239 0.79092 1.0775 4,345.2 -0.00107396.66 238 53.789 0.018591 370.87 371.69 0.56285 0.79074 1.0778 4,343.0 -0.00106397.03 239 53.774 0.018596 371.26 372.08 0.56331 0.79057 1.0781 4,340.8 -0.00106397.39 240 53.759 0.018601 371.65 372.48 0.56376 0.79039 1.0783 4,338.7 -0.00106397.75 241 53.744 0.018607 372.04 372.87 0.56422 0.79022 1.0786 4,336.6 -0.00105398.12 242 53.729 0.018612 372.43 373.26 0.56467 0.79004 1.0788 4,334.4 -0.00105398.48 243 53.715 0.018617 372.81 373.65 0.56512 0.78987 1.0791 4,332.3 -0.00105398.84 244 53.700 0.018622 373.20 374.04 0.56557 0.78970 1.0793 4,330.1 -0.00104399.19 245 53.685 0.018627 373.58 374.43 0.56602 0.78953 1.0796 4,328.0 -0.00104399.55 246 53.670 0.018632 373.97 374.81 0.56647 0.78935 1.0799 4,325.9 -0.00104

Temperature (F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 178: Crane Fluid Flow Problems

399.91 247 53.656 0.018637 374.35 375.20 0.56691 0.78918 1.0801 4,323.8 -0.00103400.26 248 53.641 0.018643 374.73 375.58 0.56735 0.78901 1.0804 4,321.7 -0.00103400.62 249 53.626 0.018648 375.11 375.97 0.56779 0.78885 1.0806 4,319.5 -0.00103400.97 250 53.612 0.018653 375.49 376.35 0.56824 0.78868 1.0809 4,317.4 -0.00102401.32 251 53.597 0.018658 375.86 376.73 0.56867 0.78851 1.0812 4,315.3 -0.00102401.67 252 53.583 0.018663 376.24 377.11 0.56911 0.78834 1.0814 4,313.2 -0.00101402.02 253 53.568 0.018668 376.62 377.49 0.56955 0.78818 1.0817 4,311.1 -0.00101402.37 254 53.554 0.018673 376.99 377.87 0.56998 0.78801 1.0819 4,309.1 -0.00101402.72 255 53.539 0.018678 377.36 378.25 0.57042 0.78785 1.0822 4,307.0 -0.00100403.06 256 53.525 0.018683 377.74 378.62 0.57085 0.78768 1.0825 4,304.9 -0.00100403.41 257 53.510 0.018688 378.11 379.00 0.57128 0.78752 1.0827 4,302.8 -0.00100403.75 258 53.496 0.018693 378.48 379.37 0.57171 0.78736 1.0830 4,300.7 -0.00099404.10 259 53.482 0.018698 378.85 379.74 0.57213 0.78719 1.0832 4,298.7 -0.00099404.44 260 53.467 0.018703 379.21 380.11 0.57256 0.78703 1.0835 4,296.6 -0.00099404.78 261 53.453 0.018708 379.58 380.49 0.57298 0.78687 1.0837 4,294.5 -0.00098405.12 262 53.439 0.018713 379.95 380.86 0.57341 0.78671 1.0840 4,292.5 -0.00098405.46 263 53.425 0.018718 380.31 381.22 0.57383 0.78655 1.0843 4,290.4 -0.00098405.80 264 53.411 0.018723 380.68 381.59 0.57425 0.78639 1.0845 4,288.4 -0.00097406.13 265 53.396 0.018728 381.04 381.96 0.57467 0.78623 1.0848 4,286.3 -0.00097406.47 266 53.382 0.018733 381.40 382.32 0.57509 0.78607 1.0850 4,284.3 -0.00097406.80 267 53.368 0.018738 381.76 382.69 0.57551 0.78592 1.0853 4,282.2 -0.00096407.14 268 53.354 0.018743 382.12 383.05 0.57592 0.78576 1.0855 4,280.2 -0.00096407.47 269 53.340 0.018748 382.48 383.41 0.57634 0.78560 1.0858 4,278.2 -0.00096407.80 270 53.326 0.018753 382.84 383.78 0.57675 0.78545 1.0861 4,276.1 -0.00095408.13 271 53.312 0.018757 383.20 384.14 0.57716 0.78529 1.0863 4,274.1 -0.00095408.46 272 53.298 0.018762 383.55 384.50 0.57757 0.78514 1.0866 4,272.1 -0.00094408.79 273 53.284 0.018767 383.91 384.86 0.57798 0.78499 1.0868 4,270.1 -0.00094409.12 274 53.271 0.018772 384.26 385.21 0.57839 0.78483 1.0871 4,268.0 -0.00094409.45 275 53.257 0.018777 384.62 385.57 0.57880 0.78468 1.0873 4,266.0 -0.00093409.78 276 53.243 0.018782 384.97 385.93 0.57920 0.78453 1.0876 4,264.0 -0.00093410.10 277 53.229 0.018787 385.32 386.28 0.57961 0.78438 1.0878 4,262.0 -0.00093410.43 278 53.215 0.018792 385.67 386.64 0.58001 0.78423 1.0881 4,260.0 -0.00092410.75 279 53.202 0.018796 386.02 386.99 0.58041 0.78407 1.0884 4,258.0 -0.00092411.07 280 53.188 0.018801 386.37 387.34 0.58081 0.78392 1.0886 4,256.0 -0.00092411.40 281 53.174 0.018806 386.72 387.69 0.58121 0.78378 1.0889 4,254.0 -0.00091411.72 282 53.161 0.018811 387.06 388.05 0.58161 0.78363 1.0891 4,252.1 -0.00091412.04 283 53.147 0.018816 387.41 388.40 0.58201 0.78348 1.0894 4,250.1 -0.00091412.36 284 53.133 0.018821 387.75 388.74 0.58241 0.78333 1.0896 4,248.1 -0.00090412.68 285 53.120 0.018825 388.10 389.09 0.58280 0.78318 1.0899 4,246.1 -0.00090412.99 286 53.106 0.018830 388.44 389.44 0.58319 0.78304 1.0901 4,244.1 -0.00090413.31 287 53.093 0.018835 388.79 389.79 0.58359 0.78289 1.0904 4,242.2 -0.00089413.63 288 53.079 0.018840 389.13 390.13 0.58398 0.78275 1.0907 4,240.2 -0.00089413.94 289 53.066 0.018845 389.47 390.48 0.58437 0.78260 1.0909 4,238.2 -0.00089414.26 290 53.052 0.018849 389.81 390.82 0.58476 0.78246 1.0912 4,236.3 -0.00088414.57 291 53.039 0.018854 390.15 391.16 0.58515 0.78231 1.0914 4,234.3 -0.00088414.88 292 53.025 0.018859 390.49 391.51 0.58553 0.78217 1.0917 4,232.4 -0.00088415.19 293 53.012 0.018864 390.82 391.85 0.58592 0.78203 1.0919 4,230.4 -0.00087415.50 294 52.999 0.018868 391.16 392.19 0.58631 0.78188 1.0922 4,228.5 -0.00087415.81 295 52.985 0.018873 391.50 392.53 0.58669 0.78174 1.0924 4,226.5 -0.00086416.12 296 52.972 0.018878 391.83 392.87 0.58707 0.78160 1.0927 4,224.6 -0.00086416.43 297 52.959 0.018883 392.17 393.20 0.58746 0.78146 1.0929 4,222.6 -0.00086416.74 298 52.945 0.018887 392.50 393.54 0.58784 0.78132 1.0932 4,220.7 -0.00085

Page 179: Crane Fluid Flow Problems

417.05 299 52.932 0.018892 392.83 393.88 0.58822 0.78118 1.0935 4,218.8 -0.00085417.35 300 52.919 0.018897 393.16 394.21 0.58859 0.78104 1.0937 4,216.9 -0.00085417.66 301 52.906 0.018901 393.49 394.55 0.58897 0.78090 1.0940 4,214.9 -0.00084417.96 302 52.893 0.018906 393.82 394.88 0.58935 0.78076 1.0942 4,213.0 -0.00084418.27 303 52.880 0.018911 394.15 395.22 0.58972 0.78062 1.0945 4,211.1 -0.00084418.57 304 52.866 0.018916 394.48 395.55 0.59010 0.78049 1.0947 4,209.2 -0.00083418.87 305 52.853 0.018920 394.81 395.88 0.59047 0.78035 1.0950 4,207.3 -0.00083419.17 306 52.840 0.018925 395.14 396.21 0.59085 0.78021 1.0952 4,205.3 -0.00083419.47 307 52.827 0.018930 395.46 396.54 0.59122 0.78007 1.0955 4,203.4 -0.00082419.77 308 52.814 0.018934 395.79 396.87 0.59159 0.77994 1.0957 4,201.5 -0.00082420.07 309 52.801 0.018939 396.12 397.20 0.59196 0.77980 1.0960 4,199.6 -0.00082420.37 310 52.788 0.018944 396.44 397.53 0.59233 0.77967 1.0962 4,197.7 -0.00081420.67 311 52.775 0.018948 396.76 397.85 0.59269 0.77953 1.0965 4,195.8 -0.00081420.97 312 52.762 0.018953 397.09 398.18 0.59306 0.77940 1.0967 4,194.0 -0.00081421.26 313 52.749 0.018958 397.41 398.51 0.59343 0.77927 1.0970 4,192.1 -0.00080421.56 314 52.737 0.018962 397.73 398.83 0.59379 0.77913 1.0973 4,190.2 -0.00080421.85 315 52.724 0.018967 398.05 399.16 0.59416 0.77900 1.0975 4,188.3 -0.00080422.15 316 52.711 0.018971 398.37 399.48 0.59452 0.77887 1.0978 4,186.4 -0.00079422.44 317 52.698 0.018976 398.69 399.80 0.59488 0.77874 1.0980 4,184.5 -0.00079422.73 318 52.685 0.018981 399.01 400.12 0.59524 0.77861 1.0983 4,182.7 -0.00079423.02 319 52.673 0.018985 399.32 400.45 0.59560 0.77848 1.0985 4,180.8 -0.00078423.31 320 52.660 0.018990 399.64 400.77 0.59596 0.77834 1.0988 4,178.9 -0.00078423.61 321 52.647 0.018994 399.96 401.09 0.59632 0.77821 1.0990 4,177.1 -0.00078423.90 322 52.634 0.018999 400.27 401.41 0.59668 0.77809 1.0993 4,175.2 -0.00077424.18 323 52.622 0.019004 400.59 401.72 0.59703 0.77796 1.0995 4,173.3 -0.00077424.47 324 52.609 0.019008 400.90 402.04 0.59739 0.77783 1.0998 4,171.5 -0.00077424.76 325 52.596 0.019013 401.22 402.36 0.59775 0.77770 1.1000 4,169.6 -0.00076425.05 326 52.584 0.019017 401.53 402.68 0.59810 0.77757 1.1003 4,167.8 -0.00076425.33 327 52.571 0.019022 401.84 402.99 0.59845 0.77744 1.1005 4,165.9 -0.00076425.62 328 52.558 0.019026 402.15 403.31 0.59880 0.77732 1.1008 4,164.1 -0.00075425.90 329 52.546 0.019031 402.46 403.62 0.59916 0.77719 1.1010 4,162.2 -0.00075426.19 330 52.533 0.019036 402.77 403.94 0.59951 0.77706 1.1013 4,160.4 -0.00075426.47 331 52.521 0.019040 403.08 404.25 0.59986 0.77694 1.1016 4,158.6 -0.00074426.75 332 52.508 0.019045 403.39 404.56 0.60020 0.77681 1.1018 4,156.7 -0.00074427.04 333 52.496 0.019049 403.70 404.87 0.60055 0.77669 1.1021 4,154.9 -0.00074427.32 334 52.483 0.019054 404.01 405.19 0.60090 0.77656 1.1023 4,153.1 -0.00073427.60 335 52.471 0.019058 404.31 405.50 0.60125 0.77644 1.1026 4,151.2 -0.00073427.88 336 52.458 0.019063 404.62 405.81 0.60159 0.77631 1.1028 4,149.4 -0.00073428.16 337 52.446 0.019067 404.93 406.12 0.60194 0.77619 1.1031 4,147.6 -0.00072428.44 338 52.434 0.019072 405.23 406.42 0.60228 0.77607 1.1033 4,145.8 -0.00072428.72 339 52.421 0.019076 405.53 406.73 0.60262 0.77594 1.1036 4,143.9 -0.00072429.00 340 52.409 0.019081 405.84 407.04 0.60296 0.77582 1.1038 4,142.1 -0.00071429.27 341 52.397 0.019085 406.14 407.35 0.60330 0.77570 1.1041 4,140.3 -0.00071429.55 342 52.384 0.019090 406.44 407.65 0.60365 0.77558 1.1043 4,138.5 -0.00070429.83 343 52.372 0.019094 406.74 407.96 0.60398 0.77546 1.1046 4,136.7 -0.00070430.10 344 52.360 0.019099 407.05 408.26 0.60432 0.77534 1.1048 4,134.9 -0.00070430.38 345 52.347 0.019103 407.35 408.57 0.60466 0.77522 1.1051 4,133.1 -0.00069430.65 346 52.335 0.019108 407.65 408.87 0.60500 0.77510 1.1053 4,131.3 -0.00069430.92 347 52.323 0.019112 407.95 409.17 0.60533 0.77498 1.1056 4,129.5 -0.00069431.20 348 52.311 0.019117 408.24 409.48 0.60567 0.77486 1.1058 4,127.7 -0.00068431.47 349 52.299 0.019121 408.54 409.78 0.60601 0.77474 1.1061 4,125.9 -0.00068431.74 350 52.286 0.019125 408.84 410.08 0.60634 0.77462 1.1063 4,124.1 -0.00068

Page 180: Crane Fluid Flow Problems

432.01 351 52.274 0.019130 409.14 410.38 0.60667 0.77450 1.1066 4,122.3 -0.00067432.28 352 52.262 0.019134 409.43 410.68 0.60700 0.77438 1.1068 4,120.6 -0.00067432.55 353 52.250 0.019139 409.73 410.98 0.60734 0.77427 1.1071 4,118.8 -0.00067432.82 354 52.238 0.019143 410.02 411.28 0.60767 0.77415 1.1074 4,117.0 -0.00066433.09 355 52.226 0.019148 410.32 411.58 0.60800 0.77403 1.1076 4,115.2 -0.00066433.36 356 52.214 0.019152 410.61 411.87 0.60833 0.77391 1.1079 4,113.4 -0.00066433.62 357 52.202 0.019156 410.90 412.17 0.60866 0.77380 1.1081 4,111.7 -0.00065433.89 358 52.190 0.019161 411.20 412.47 0.60898 0.77368 1.1084 4,109.9 -0.00065434.16 359 52.178 0.019165 411.49 412.76 0.60931 0.77357 1.1086 4,108.1 -0.00065434.42 360 52.166 0.019170 411.78 413.06 0.60964 0.77345 1.1089 4,106.4 -0.00064434.69 361 52.154 0.019174 412.07 413.35 0.60996 0.77334 1.1091 4,104.6 -0.00064434.95 362 52.142 0.019178 412.36 413.65 0.61029 0.77322 1.1094 4,102.8 -0.00064435.22 363 52.130 0.019183 412.65 413.94 0.61061 0.77311 1.1096 4,101.1 -0.00063435.48 364 52.118 0.019187 412.94 414.24 0.61094 0.77299 1.1099 4,099.3 -0.00063435.74 365 52.106 0.019192 413.23 414.53 0.61126 0.77288 1.1101 4,097.6 -0.00063436.01 366 52.094 0.019196 413.52 414.82 0.61158 0.77277 1.1104 4,095.8 -0.00062436.27 367 52.082 0.019200 413.81 415.11 0.61190 0.77265 1.1106 4,094.1 -0.00062436.53 368 52.071 0.019205 414.09 415.40 0.61222 0.77254 1.1109 4,092.3 -0.00062436.79 369 52.059 0.019209 414.38 415.69 0.61254 0.77243 1.1111 4,090.6 -0.00061437.05 370 52.047 0.019213 414.67 415.98 0.61286 0.77232 1.1114 4,088.8 -0.00061437.31 371 52.035 0.019218 414.95 416.27 0.61318 0.77221 1.1116 4,087.1 -0.00061437.57 372 52.023 0.019222 415.24 416.56 0.61350 0.77210 1.1119 4,085.4 -0.00060437.83 373 52.012 0.019227 415.52 416.85 0.61382 0.77198 1.1121 4,083.6 -0.00060438.09 374 52.000 0.019231 415.80 417.14 0.61413 0.77187 1.1124 4,081.9 -0.00060438.34 375 51.988 0.019235 416.09 417.42 0.61445 0.77176 1.1126 4,080.2 -0.00059438.60 376 51.976 0.019240 416.37 417.71 0.61476 0.77165 1.1129 4,078.4 -0.00059438.86 377 51.965 0.019244 416.65 418.00 0.61508 0.77154 1.1131 4,076.7 -0.00059439.11 378 51.953 0.019248 416.93 418.28 0.61539 0.77144 1.1134 4,075.0 -0.00058439.37 379 51.941 0.019253 417.22 418.57 0.61571 0.77133 1.1136 4,073.3 -0.00058439.62 380 51.930 0.019257 417.50 418.85 0.61602 0.77122 1.1139 4,071.6 -0.00058439.88 381 51.918 0.019261 417.78 419.14 0.61633 0.77111 1.1141 4,069.8 -0.00057440.13 382 51.906 0.019265 418.06 419.42 0.61664 0.77100 1.1144 4,068.1 -0.00057440.38 383 51.895 0.019270 418.34 419.70 0.61695 0.77089 1.1146 4,066.4 -0.00057440.64 384 51.883 0.019274 418.61 419.98 0.61726 0.77079 1.1149 4,064.7 -0.00056440.89 385 51.872 0.019278 418.89 420.27 0.61757 0.77068 1.1152 4,063.0 -0.00056441.14 386 51.860 0.019283 419.17 420.55 0.61788 0.77057 1.1154 4,061.3 -0.00056441.39 387 51.848 0.019287 419.45 420.83 0.61819 0.77047 1.1157 4,059.6 -0.00055441.64 388 51.837 0.019291 419.72 421.11 0.61849 0.77036 1.1159 4,057.9 -0.00055441.89 389 51.825 0.019296 420.00 421.39 0.61880 0.77025 1.1162 4,056.2 -0.00055442.14 390 51.814 0.019300 420.28 421.67 0.61911 0.77015 1.1164 4,054.5 -0.00054442.39 391 51.802 0.019304 420.55 421.95 0.61941 0.77004 1.1167 4,052.8 -0.00054442.64 392 51.791 0.019308 420.83 422.23 0.61972 0.76994 1.1169 4,051.1 -0.00054442.89 393 51.779 0.019313 421.10 422.51 0.62002 0.76983 1.1172 4,049.4 -0.00053443.14 394 51.768 0.019317 421.37 422.78 0.62033 0.76973 1.1174 4,047.7 -0.00053443.39 395 51.757 0.019321 421.65 423.06 0.62063 0.76962 1.1177 4,046.0 -0.00053443.63 396 51.745 0.019325 421.92 423.34 0.62093 0.76952 1.1179 4,044.3 -0.00052443.88 397 51.734 0.019330 422.19 423.61 0.62123 0.76942 1.1182 4,042.6 -0.00052444.13 398 51.722 0.019334 422.46 423.89 0.62153 0.76931 1.1184 4,041.0 -0.00052444.37 399 51.711 0.019338 422.73 424.16 0.62183 0.76921 1.1187 4,039.3 -0.00051444.62 400 51.700 0.019342 423.01 424.44 0.62213 0.76911 1.1189 4,037.6 -0.00051

Vapor Phase Data

Page 181: Crane Fluid Flow Problems

Data on Saturation Curve

382.22 201 0.4391 2.2772 1,114.9 1,199.7 1.5466 0.48461 0.69522 1,651.4 0.32005382.63 202 0.4412 2.2664 1,114.9 1,199.7 1.5462 0.48500 0.69602 1,651.4 0.31938383.05 203 0.4433 2.2556 1,115.0 1,199.8 1.5458 0.48540 0.69682 1,651.5 0.31872383.46 204 0.4454 2.2450 1,115.1 1,199.9 1.5454 0.48579 0.69761 1,651.6 0.31807383.87 205 0.4476 2.2344 1,115.1 1,199.9 1.5450 0.48617 0.69841 1,651.7 0.31741384.28 206 0.4497 2.2239 1,115.2 1,200.0 1.5445 0.48656 0.69921 1,651.8 0.31676384.69 207 0.4518 2.2136 1,115.2 1,200.1 1.5441 0.48695 0.70000 1,651.9 0.31612385.10 208 0.4539 2.2033 1,115.3 1,200.1 1.5437 0.48733 0.70080 1,652.0 0.31548385.51 209 0.4560 2.1931 1,115.3 1,200.2 1.5433 0.48772 0.70159 1,652.1 0.31484385.91 210 0.4581 2.1831 1,115.4 1,200.2 1.5429 0.48810 0.70238 1,652.1 0.31421386.31 211 0.4602 2.1731 1,115.4 1,200.3 1.5425 0.48848 0.70317 1,652.2 0.31358386.71 212 0.4623 2.1632 1,115.4 1,200.4 1.5421 0.48887 0.70396 1,652.3 0.31295387.11 213 0.4644 2.1534 1,115.5 1,200.4 1.5417 0.48925 0.70475 1,652.4 0.31233387.51 214 0.4665 2.1437 1,115.5 1,200.5 1.5413 0.48963 0.70553 1,652.5 0.31171387.91 215 0.4686 2.1340 1,115.6 1,200.5 1.5409 0.49000 0.70632 1,652.5 0.31110388.30 216 0.4707 2.1245 1,115.6 1,200.6 1.5405 0.49038 0.70710 1,652.6 0.31049388.70 217 0.4728 2.1150 1,115.7 1,200.7 1.5401 0.49076 0.70789 1,652.7 0.30988389.09 218 0.4749 2.1057 1,115.7 1,200.7 1.5397 0.49113 0.70867 1,652.8 0.30928389.48 219 0.4770 2.0964 1,115.8 1,200.8 1.5393 0.49151 0.70945 1,652.8 0.30868389.87 220 0.4791 2.0872 1,115.8 1,200.8 1.5390 0.49188 0.71023 1,652.9 0.30808390.26 221 0.4812 2.0780 1,115.9 1,200.9 1.5386 0.49225 0.71101 1,653.0 0.30749390.65 222 0.4833 2.0690 1,115.9 1,201.0 1.5382 0.49262 0.71179 1,653.1 0.30690391.03 223 0.4854 2.0600 1,115.9 1,201.0 1.5378 0.49299 0.71256 1,653.1 0.30632391.42 224 0.4875 2.0511 1,116.0 1,201.1 1.5374 0.49336 0.71334 1,653.2 0.30573391.80 225 0.4896 2.0423 1,116.0 1,201.1 1.5370 0.49373 0.71411 1,653.3 0.30515392.18 226 0.4918 2.0336 1,116.1 1,201.2 1.5367 0.49410 0.71489 1,653.3 0.30458392.56 227 0.4939 2.0249 1,116.1 1,201.2 1.5363 0.49446 0.71566 1,653.4 0.30400392.94 228 0.4960 2.0163 1,116.2 1,201.3 1.5359 0.49483 0.71643 1,653.5 0.30343393.32 229 0.4981 2.0078 1,116.2 1,201.3 1.5355 0.49519 0.71720 1,653.5 0.30287393.70 230 0.5002 1.9993 1,116.2 1,201.4 1.5352 0.49556 0.71797 1,653.6 0.30231394.07 231 0.5023 1.9909 1,116.3 1,201.4 1.5348 0.49592 0.71874 1,653.6 0.30175394.44 232 0.5044 1.9826 1,116.3 1,201.5 1.5344 0.49628 0.71951 1,653.7 0.30119394.82 233 0.5065 1.9744 1,116.4 1,201.5 1.5341 0.49664 0.72028 1,653.8 0.30064395.19 234 0.5086 1.9662 1,116.4 1,201.6 1.5337 0.49700 0.72104 1,653.8 0.30008395.56 235 0.5107 1.9581 1,116.4 1,201.7 1.5333 0.49736 0.72181 1,653.9 0.29954395.93 236 0.5128 1.9501 1,116.5 1,201.7 1.5330 0.49772 0.72257 1,653.9 0.29899396.30 237 0.5149 1.9421 1,116.5 1,201.8 1.5326 0.49808 0.72333 1,654.0 0.29845396.66 238 0.5170 1.9342 1,116.6 1,201.8 1.5322 0.49843 0.72410 1,654.0 0.29791397.03 239 0.5191 1.9263 1,116.6 1,201.9 1.5319 0.49879 0.72486 1,654.1 0.29738397.39 240 0.5212 1.9185 1,116.6 1,201.9 1.5315 0.49914 0.72562 1,654.2 0.29684397.75 241 0.5233 1.9108 1,116.7 1,201.9 1.5312 0.49950 0.72638 1,654.2 0.29631398.12 242 0.5254 1.9032 1,116.7 1,202.0 1.5308 0.49985 0.72714 1,654.3 0.29579398.48 243 0.5276 1.8956 1,116.7 1,202.0 1.5304 0.50020 0.72789 1,654.3 0.29526398.84 244 0.5297 1.8880 1,116.8 1,202.1 1.5301 0.50055 0.72865 1,654.4 0.29474399.19 245 0.5318 1.8805 1,116.8 1,202.1 1.5297 0.50090 0.72941 1,654.4 0.29422399.55 246 0.5339 1.8731 1,116.9 1,202.2 1.5294 0.50125 0.73016 1,654.5 0.29370399.91 247 0.5360 1.8658 1,116.9 1,202.2 1.5290 0.50160 0.73092 1,654.5 0.29319400.26 248 0.5381 1.8584 1,116.9 1,202.3 1.5287 0.50195 0.73167 1,654.5 0.29268400.62 249 0.5402 1.8512 1,117.0 1,202.3 1.5283 0.50230 0.73242 1,654.6 0.29217

Temperature (F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 182: Crane Fluid Flow Problems

400.97 250 0.5423 1.8440 1,117.0 1,202.4 1.5280 0.50264 0.73317 1,654.6 0.29167401.32 251 0.5444 1.8369 1,117.0 1,202.4 1.5277 0.50299 0.73392 1,654.7 0.29116401.67 252 0.5465 1.8298 1,117.1 1,202.5 1.5273 0.50333 0.73467 1,654.7 0.29066402.02 253 0.5486 1.8227 1,117.1 1,202.5 1.5270 0.50368 0.73542 1,654.8 0.29017402.37 254 0.5507 1.8158 1,117.1 1,202.5 1.5266 0.50402 0.73617 1,654.8 0.28967402.72 255 0.5528 1.8088 1,117.2 1,202.6 1.5263 0.50436 0.73692 1,654.8 0.28918403.06 256 0.5550 1.8020 1,117.2 1,202.6 1.5259 0.50470 0.73766 1,654.9 0.28869403.41 257 0.5571 1.7952 1,117.2 1,202.7 1.5256 0.50504 0.73841 1,654.9 0.28820403.75 258 0.5592 1.7884 1,117.3 1,202.7 1.5253 0.50538 0.73916 1,655.0 0.28772404.10 259 0.5613 1.7817 1,117.3 1,202.7 1.5249 0.50572 0.73990 1,655.0 0.28723404.44 260 0.5634 1.7750 1,117.3 1,202.8 1.5246 0.50606 0.74064 1,655.0 0.28675404.78 261 0.5655 1.7684 1,117.4 1,202.8 1.5243 0.50640 0.74139 1,655.1 0.28628405.12 262 0.5676 1.7618 1,117.4 1,202.9 1.5239 0.50673 0.74213 1,655.1 0.28580405.46 263 0.5697 1.7553 1,117.4 1,202.9 1.5236 0.50707 0.74287 1,655.2 0.28533405.80 264 0.5718 1.7488 1,117.5 1,202.9 1.5233 0.50740 0.74361 1,655.2 0.28486406.13 265 0.5739 1.7424 1,117.5 1,203.0 1.5230 0.50774 0.74435 1,655.2 0.28439406.47 266 0.5760 1.7360 1,117.5 1,203.0 1.5226 0.50807 0.74509 1,655.3 0.28392406.80 267 0.5782 1.7297 1,117.5 1,203.1 1.5223 0.50841 0.74583 1,655.3 0.28346407.14 268 0.5803 1.7234 1,117.6 1,203.1 1.5220 0.50874 0.74657 1,655.3 0.28300407.47 269 0.5824 1.7171 1,117.6 1,203.1 1.5217 0.50907 0.74730 1,655.3 0.28254407.80 270 0.5845 1.7109 1,117.6 1,203.2 1.5213 0.50940 0.74804 1,655.4 0.28208408.13 271 0.5866 1.7048 1,117.7 1,203.2 1.5210 0.50973 0.74877 1,655.4 0.28162408.46 272 0.5887 1.6987 1,117.7 1,203.2 1.5207 0.51006 0.74951 1,655.4 0.28117408.79 273 0.5908 1.6926 1,117.7 1,203.3 1.5204 0.51039 0.75024 1,655.5 0.28072409.12 274 0.5929 1.6866 1,117.7 1,203.3 1.5200 0.51072 0.75098 1,655.5 0.28027409.45 275 0.5950 1.6806 1,117.8 1,203.4 1.5197 0.51104 0.75171 1,655.5 0.27983409.78 276 0.5971 1.6746 1,117.8 1,203.4 1.5194 0.51137 0.75244 1,655.5 0.27938410.10 277 0.5993 1.6687 1,117.8 1,203.4 1.5191 0.51170 0.75317 1,655.6 0.27894410.43 278 0.6014 1.6629 1,117.9 1,203.5 1.5188 0.51202 0.75390 1,655.6 0.27850410.75 279 0.6035 1.6571 1,117.9 1,203.5 1.5185 0.51234 0.75463 1,655.6 0.27806411.07 280 0.6056 1.6513 1,117.9 1,203.5 1.5182 0.51267 0.75536 1,655.6 0.27763411.40 281 0.6077 1.6455 1,117.9 1,203.6 1.5178 0.51299 0.75609 1,655.7 0.27719411.72 282 0.6098 1.6398 1,118.0 1,203.6 1.5175 0.51331 0.75682 1,655.7 0.27676412.04 283 0.6119 1.6342 1,118.0 1,203.6 1.5172 0.51364 0.75755 1,655.7 0.27633412.36 284 0.6140 1.6286 1,118.0 1,203.7 1.5169 0.51396 0.75827 1,655.7 0.27590412.68 285 0.6162 1.6230 1,118.0 1,203.7 1.5166 0.51428 0.75900 1,655.8 0.27548412.99 286 0.6183 1.6174 1,118.1 1,203.7 1.5163 0.51460 0.75973 1,655.8 0.27505413.31 287 0.6204 1.6119 1,118.1 1,203.8 1.5160 0.51491 0.76045 1,655.8 0.27463413.63 288 0.6225 1.6064 1,118.1 1,203.8 1.5157 0.51523 0.76118 1,655.8 0.27421413.94 289 0.6246 1.6010 1,118.1 1,203.8 1.5154 0.51555 0.76190 1,655.8 0.27379414.26 290 0.6267 1.5956 1,118.2 1,203.9 1.5151 0.51587 0.76262 1,655.8 0.27338414.57 291 0.6288 1.5902 1,118.2 1,203.9 1.5148 0.51618 0.76335 1,655.9 0.27296414.88 292 0.6310 1.5849 1,118.2 1,203.9 1.5145 0.51650 0.76407 1,655.9 0.27255415.19 293 0.6331 1.5796 1,118.2 1,203.9 1.5142 0.51682 0.76479 1,655.9 0.27214415.50 294 0.6352 1.5744 1,118.3 1,204.0 1.5139 0.51713 0.76551 1,655.9 0.27173415.81 295 0.6373 1.5691 1,118.3 1,204.0 1.5136 0.51744 0.76623 1,655.9 0.27132416.12 296 0.6394 1.5639 1,118.3 1,204.0 1.5133 0.51776 0.76695 1,655.9 0.27092416.43 297 0.6415 1.5588 1,118.3 1,204.1 1.5130 0.51807 0.76767 1,655.9 0.27052416.74 298 0.6436 1.5537 1,118.4 1,204.1 1.5127 0.51838 0.76839 1,656.0 0.27011417.05 299 0.6458 1.5486 1,118.4 1,204.1 1.5124 0.51869 0.76910 1,656.0 0.26971417.35 300 0.6479 1.5435 1,118.4 1,204.1 1.5121 0.51900 0.76982 1,656.0 0.26932417.66 301 0.6500 1.5385 1,118.4 1,204.2 1.5118 0.51931 0.77054 1,656.0 0.26892

Page 183: Crane Fluid Flow Problems

417.96 302 0.6521 1.5335 1,118.4 1,204.2 1.5115 0.51962 0.77126 1,656.0 0.26852418.27 303 0.6542 1.5285 1,118.5 1,204.2 1.5112 0.51993 0.77197 1,656.0 0.26813418.57 304 0.6563 1.5236 1,118.5 1,204.3 1.5109 0.52024 0.77269 1,656.0 0.26774418.87 305 0.6585 1.5187 1,118.5 1,204.3 1.5106 0.52055 0.77340 1,656.0 0.26735419.17 306 0.6606 1.5138 1,118.5 1,204.3 1.5104 0.52085 0.77412 1,656.0 0.26696419.47 307 0.6627 1.5090 1,118.6 1,204.3 1.5101 0.52116 0.77483 1,656.1 0.26658419.77 308 0.6648 1.5042 1,118.6 1,204.4 1.5098 0.52147 0.77554 1,656.1 0.26619420.07 309 0.6669 1.4994 1,118.6 1,204.4 1.5095 0.52177 0.77625 1,656.1 0.26581420.37 310 0.6691 1.4947 1,118.6 1,204.4 1.5092 0.52208 0.77697 1,656.1 0.26543420.67 311 0.6712 1.4899 1,118.6 1,204.4 1.5089 0.52238 0.77768 1,656.1 0.26505420.97 312 0.6733 1.4853 1,118.7 1,204.5 1.5086 0.52269 0.77839 1,656.1 0.26467421.26 313 0.6754 1.4806 1,118.7 1,204.5 1.5083 0.52299 0.77910 1,656.1 0.26429421.56 314 0.6775 1.4760 1,118.7 1,204.5 1.5081 0.52329 0.77981 1,656.1 0.26392421.85 315 0.6796 1.4714 1,118.7 1,204.5 1.5078 0.52359 0.78052 1,656.1 0.26355422.15 316 0.6818 1.4668 1,118.7 1,204.6 1.5075 0.52389 0.78123 1,656.1 0.26317422.44 317 0.6839 1.4622 1,118.8 1,204.6 1.5072 0.52419 0.78194 1,656.1 0.26280422.73 318 0.6860 1.4577 1,118.8 1,204.6 1.5069 0.52449 0.78265 1,656.1 0.26244423.02 319 0.6881 1.4532 1,118.8 1,204.6 1.5067 0.52479 0.78335 1,656.1 0.26207423.31 320 0.6903 1.4488 1,118.8 1,204.7 1.5064 0.52509 0.78406 1,656.1 0.26170423.61 321 0.6924 1.4443 1,118.8 1,204.7 1.5061 0.52539 0.78477 1,656.1 0.26134423.90 322 0.6945 1.4399 1,118.8 1,204.7 1.5058 0.52569 0.78547 1,656.1 0.26098424.18 323 0.6966 1.4355 1,118.9 1,204.7 1.5056 0.52599 0.78618 1,656.1 0.26062424.47 324 0.6987 1.4312 1,118.9 1,204.7 1.5053 0.52628 0.78689 1,656.1 0.26026424.76 325 0.7009 1.4268 1,118.9 1,204.8 1.5050 0.52658 0.78759 1,656.1 0.25990425.05 326 0.7030 1.4225 1,118.9 1,204.8 1.5047 0.52688 0.78830 1,656.1 0.25954425.33 327 0.7051 1.4182 1,118.9 1,204.8 1.5045 0.52717 0.78900 1,656.1 0.25919425.62 328 0.7072 1.4140 1,118.9 1,204.8 1.5042 0.52747 0.78970 1,656.1 0.25883425.90 329 0.7094 1.4097 1,119.0 1,204.9 1.5039 0.52776 0.79041 1,656.1 0.25848426.19 330 0.7115 1.4055 1,119.0 1,204.9 1.5036 0.52806 0.79111 1,656.1 0.25813426.47 331 0.7136 1.4014 1,119.0 1,204.9 1.5034 0.52835 0.79181 1,656.1 0.25778426.75 332 0.7157 1.3972 1,119.0 1,204.9 1.5031 0.52864 0.79251 1,656.1 0.25743427.04 333 0.7178 1.3931 1,119.0 1,204.9 1.5028 0.52893 0.79322 1,656.1 0.25708427.32 334 0.7200 1.3889 1,119.0 1,205.0 1.5026 0.52923 0.79392 1,656.1 0.25674427.60 335 0.7221 1.3849 1,119.1 1,205.0 1.5023 0.52952 0.79462 1,656.1 0.25639427.88 336 0.7242 1.3808 1,119.1 1,205.0 1.5020 0.52981 0.79532 1,656.1 0.25605428.16 337 0.7263 1.3768 1,119.1 1,205.0 1.5018 0.53010 0.79602 1,656.1 0.25571428.44 338 0.7285 1.3727 1,119.1 1,205.0 1.5015 0.53039 0.79672 1,656.1 0.25537428.72 339 0.7306 1.3687 1,119.1 1,205.0 1.5012 0.53068 0.79742 1,656.0 0.25503429.00 340 0.7327 1.3648 1,119.1 1,205.1 1.5010 0.53096 0.79812 1,656.0 0.25469429.27 341 0.7349 1.3608 1,119.2 1,205.1 1.5007 0.53125 0.79881 1,656.0 0.25436429.55 342 0.7370 1.3569 1,119.2 1,205.1 1.5004 0.53154 0.79951 1,656.0 0.25402429.83 343 0.7391 1.3530 1,119.2 1,205.1 1.5002 0.53183 0.80021 1,656.0 0.25369430.10 344 0.7412 1.3491 1,119.2 1,205.1 1.4999 0.53211 0.80091 1,656.0 0.25336430.38 345 0.7434 1.3452 1,119.2 1,205.2 1.4997 0.53240 0.80160 1,656.0 0.25303430.65 346 0.7455 1.3414 1,119.2 1,205.2 1.4994 0.53269 0.80230 1,656.0 0.25270430.92 347 0.7476 1.3376 1,119.2 1,205.2 1.4991 0.53297 0.80300 1,656.0 0.25237431.20 348 0.7497 1.3338 1,119.3 1,205.2 1.4989 0.53326 0.80369 1,656.0 0.25204431.47 349 0.7519 1.3300 1,119.3 1,205.2 1.4986 0.53354 0.80439 1,656.0 0.25172431.74 350 0.7540 1.3263 1,119.3 1,205.2 1.4984 0.53382 0.80508 1,655.9 0.25139432.01 351 0.7561 1.3225 1,119.3 1,205.3 1.4981 0.53411 0.80578 1,655.9 0.25107432.28 352 0.7583 1.3188 1,119.3 1,205.3 1.4978 0.53439 0.80647 1,655.9 0.25075432.55 353 0.7604 1.3151 1,119.3 1,205.3 1.4976 0.53467 0.80717 1,655.9 0.25043

Page 184: Crane Fluid Flow Problems

432.82 354 0.7625 1.3114 1,119.3 1,205.3 1.4973 0.53496 0.80786 1,655.9 0.25011433.09 355 0.7647 1.3078 1,119.3 1,205.3 1.4971 0.53524 0.80855 1,655.9 0.24979433.36 356 0.7668 1.3041 1,119.4 1,205.3 1.4968 0.53552 0.80925 1,655.9 0.24947433.62 357 0.7689 1.3005 1,119.4 1,205.3 1.4966 0.53580 0.80994 1,655.8 0.24915433.89 358 0.7711 1.2969 1,119.4 1,205.4 1.4963 0.53608 0.81063 1,655.8 0.24884434.16 359 0.7732 1.2934 1,119.4 1,205.4 1.4961 0.53636 0.81132 1,655.8 0.24853434.42 360 0.7753 1.2898 1,119.4 1,205.4 1.4958 0.53664 0.81202 1,655.8 0.24821434.69 361 0.7775 1.2863 1,119.4 1,205.4 1.4956 0.53692 0.81271 1,655.8 0.24790434.95 362 0.7796 1.2827 1,119.4 1,205.4 1.4953 0.53719 0.81340 1,655.8 0.24759435.22 363 0.7817 1.2792 1,119.4 1,205.4 1.4951 0.53747 0.81409 1,655.7 0.24728435.48 364 0.7839 1.2758 1,119.5 1,205.4 1.4948 0.53775 0.81478 1,655.7 0.24697435.74 365 0.7860 1.2723 1,119.5 1,205.5 1.4946 0.53803 0.81547 1,655.7 0.24667436.01 366 0.7881 1.2689 1,119.5 1,205.5 1.4943 0.53830 0.81616 1,655.7 0.24636436.27 367 0.7903 1.2654 1,119.5 1,205.5 1.4941 0.53858 0.81685 1,655.7 0.24606436.53 368 0.7924 1.2620 1,119.5 1,205.5 1.4938 0.53886 0.81754 1,655.7 0.24575436.79 369 0.7945 1.2586 1,119.5 1,205.5 1.4936 0.53913 0.81823 1,655.6 0.24545437.05 370 0.7967 1.2553 1,119.5 1,205.5 1.4933 0.53941 0.81892 1,655.6 0.24515437.31 371 0.7988 1.2519 1,119.5 1,205.5 1.4931 0.53968 0.81960 1,655.6 0.24485437.57 372 0.8009 1.2486 1,119.5 1,205.5 1.4928 0.53995 0.82029 1,655.6 0.24455437.83 373 0.8031 1.2452 1,119.5 1,205.6 1.4926 0.54023 0.82098 1,655.6 0.24425438.09 374 0.8052 1.2419 1,119.6 1,205.6 1.4924 0.54050 0.82167 1,655.5 0.24395438.34 375 0.8073 1.2386 1,119.6 1,205.6 1.4921 0.54077 0.82236 1,655.5 0.24366438.60 376 0.8095 1.2354 1,119.6 1,205.6 1.4919 0.54105 0.82304 1,655.5 0.24336438.86 377 0.8116 1.2321 1,119.6 1,205.6 1.4916 0.54132 0.82373 1,655.5 0.24307439.11 378 0.8138 1.2289 1,119.6 1,205.6 1.4914 0.54159 0.82442 1,655.4 0.24278439.37 379 0.8159 1.2257 1,119.6 1,205.6 1.4911 0.54186 0.82510 1,655.4 0.24248439.62 380 0.8180 1.2225 1,119.6 1,205.6 1.4909 0.54213 0.82579 1,655.4 0.24219439.88 381 0.8202 1.2193 1,119.6 1,205.6 1.4907 0.54240 0.82647 1,655.4 0.24190440.13 382 0.8223 1.2161 1,119.6 1,205.6 1.4904 0.54267 0.82716 1,655.4 0.24161440.38 383 0.8245 1.2129 1,119.6 1,205.7 1.4902 0.54294 0.82784 1,655.3 0.24133440.64 384 0.8266 1.2098 1,119.6 1,205.7 1.4899 0.54321 0.82853 1,655.3 0.24104440.89 385 0.8287 1.2067 1,119.7 1,205.7 1.4897 0.54348 0.82921 1,655.3 0.24075441.14 386 0.8309 1.2036 1,119.7 1,205.7 1.4895 0.54375 0.82990 1,655.3 0.24047441.39 387 0.8330 1.2005 1,119.7 1,205.7 1.4892 0.54401 0.83058 1,655.2 0.24019441.64 388 0.8352 1.1974 1,119.7 1,205.7 1.4890 0.54428 0.83127 1,655.2 0.23990441.89 389 0.8373 1.1943 1,119.7 1,205.7 1.4888 0.54455 0.83195 1,655.2 0.23962442.14 390 0.8394 1.1913 1,119.7 1,205.7 1.4885 0.54482 0.83263 1,655.2 0.23934442.39 391 0.8416 1.1882 1,119.7 1,205.7 1.4883 0.54508 0.83332 1,655.1 0.23906442.64 392 0.8437 1.1852 1,119.7 1,205.7 1.4881 0.54535 0.83400 1,655.1 0.23878442.89 393 0.8459 1.1822 1,119.7 1,205.7 1.4878 0.54561 0.83468 1,655.1 0.23850443.14 394 0.8480 1.1792 1,119.7 1,205.8 1.4876 0.54588 0.83537 1,655.0 0.23823443.39 395 0.8502 1.1763 1,119.7 1,205.8 1.4874 0.54614 0.83605 1,655.0 0.23795443.63 396 0.8523 1.1733 1,119.7 1,205.8 1.4871 0.54641 0.83673 1,655.0 0.23767443.88 397 0.8544 1.1704 1,119.7 1,205.8 1.4869 0.54667 0.83741 1,655.0 0.23740444.13 398 0.8566 1.1674 1,119.7 1,205.8 1.4867 0.54693 0.83809 1,654.9 0.23713444.37 399 0.8587 1.1645 1,119.8 1,205.8 1.4864 0.54720 0.83878 1,654.9 0.23685444.62 400 0.8609 1.1616 1,119.8 1,205.8 1.4862 0.54746 0.83946 1,654.9 0.23658

Auxiliary Data( All data downloaded from NIST website: http://webbook.nist.gov/chemistry/fluid/ )

Reference States

Page 185: Crane Fluid Flow Problems

Internal energy U = 0.0Entropy S = 0.0

Additional fluid data

705.10

3200.1 psia

20.102

Acentric factor 0.3443

Normal boiling point 211.95

Dipole moment 1.855 Debye

at 273.16 K for saturated liquid.at 273.16 K for saturated liquid.

Critical temperature (Tc) oF

Critical pressure (Pc)

Critical density (Dc) lbm/ft3

oF

Page 186: Crane Fluid Flow Problems

7.14 7.00 6.29 4.57

Phase

0.13827 0.66638 0.0002 liquid0.13810 0.66626 0.0002 liquid0.13793 0.66613 0.0002 liquid0.13776 0.66600 0.0002 liquid0.13759 0.66588 0.0002 liquid0.13742 0.66575 0.0002 liquid0.13725 0.66563 0.0002 liquid0.13708 0.66550 0.0002 liquid0.13692 0.66538 0.0002 liquid0.13675 0.66525 0.0002 liquid0.13659 0.66513 0.0002 liquid0.13643 0.66500 0.0002 liquid0.13626 0.66488 0.0002 liquid0.13610 0.66475 0.0002 liquid0.13594 0.66463 0.0002 liquid0.13578 0.66450 0.0002 liquid0.13563 0.66438 0.0002 liquid0.13547 0.66425 0.0002 liquid0.13531 0.66413 0.0002 liquid0.13516 0.66400 0.0002 liquid0.13500 0.66388 0.0002 liquid0.13485 0.66375 0.0002 liquid0.13470 0.66363 0.0002 liquid0.13455 0.66350 0.0002 liquid0.13440 0.66338 0.0002 liquid0.13425 0.66326 0.0002 liquid0.13410 0.66313 0.0002 liquid0.13395 0.66301 0.0002 liquid0.13380 0.66288 0.0002 liquid0.13366 0.66276 0.0002 liquid0.13351 0.66263 0.0002 liquid0.13336 0.66251 0.0002 liquid0.13322 0.66238 0.0002 liquid0.13308 0.66226 0.0002 liquid0.13293 0.66213 0.0002 liquid0.13279 0.66201 0.0002 liquid0.13265 0.66188 0.0002 liquid0.13251 0.66176 0.0002 liquid0.13237 0.66164 0.0002 liquid0.13223 0.66151 0.0002 liquid0.13210 0.66139 0.0002 liquid0.13196 0.66126 0.0002 liquid0.13182 0.66114 0.0002 liquid0.13169 0.66101 0.0002 liquid0.13155 0.66089 0.0002 liquid0.13142 0.66076 0.0002 liquid

Viscosity (cP)

Therm. Cond.

(W/m*K)

Surf. Tension (lb/in)

Page 187: Crane Fluid Flow Problems

0.13128 0.66064 0.0002 liquid0.13115 0.66052 0.0002 liquid0.13102 0.66039 0.0002 liquid0.13089 0.66027 0.0002 liquid0.13075 0.66014 0.0002 liquid0.13062 0.66002 0.0002 liquid0.13049 0.65990 0.0002 liquid0.13037 0.65977 0.0002 liquid0.13024 0.65965 0.0002 liquid0.13011 0.65952 0.0002 liquid0.12998 0.65940 0.0002 liquid0.12986 0.65928 0.0002 liquid0.12973 0.65915 0.0002 liquid0.12961 0.65903 0.0002 liquid0.12948 0.65890 0.0002 liquid0.12936 0.65878 0.0002 liquid0.12923 0.65866 0.0002 liquid0.12911 0.65853 0.0002 liquid0.12899 0.65841 0.0002 liquid0.12887 0.65829 0.0002 liquid0.12875 0.65816 0.0002 liquid0.12862 0.65804 0.0002 liquid0.12851 0.65791 0.0002 liquid0.12839 0.65779 0.0002 liquid0.12827 0.65767 0.0002 liquid0.12815 0.65754 0.0002 liquid0.12803 0.65742 0.0002 liquid0.12791 0.65730 0.0002 liquid0.12780 0.65717 0.0002 liquid0.12768 0.65705 0.0002 liquid0.12757 0.65693 0.0002 liquid0.12745 0.65680 0.0002 liquid0.12734 0.65668 0.0002 liquid0.12722 0.65656 0.0002 liquid0.12711 0.65643 0.0002 liquid0.12700 0.65631 0.0002 liquid0.12688 0.65619 0.0002 liquid0.12677 0.65606 0.0002 liquid0.12666 0.65594 0.0002 liquid0.12655 0.65582 0.0002 liquid0.12644 0.65569 0.0002 liquid0.12633 0.65557 0.0002 liquid0.12622 0.65545 0.0002 liquid0.12611 0.65533 0.0002 liquid0.12600 0.65520 0.0002 liquid0.12589 0.65508 0.0002 liquid0.12579 0.65496 0.0002 liquid0.12568 0.65483 0.0002 liquid0.12557 0.65471 0.0002 liquid0.12547 0.65459 0.0002 liquid0.12536 0.65447 0.0002 liquid0.12526 0.65434 0.0002 liquid

Page 188: Crane Fluid Flow Problems

0.12515 0.65422 0.0002 liquid0.12505 0.65410 0.0002 liquid0.12494 0.65398 0.0002 liquid0.12484 0.65385 0.0002 liquid0.12474 0.65373 0.0002 liquid0.12463 0.65361 0.0002 liquid0.12453 0.65349 0.0002 liquid0.12443 0.65336 0.0002 liquid0.12433 0.65324 0.0002 liquid0.12423 0.65312 0.0002 liquid0.12413 0.65300 0.0002 liquid0.12403 0.65287 0.0002 liquid0.12393 0.65275 0.0002 liquid0.12383 0.65263 0.0002 liquid0.12373 0.65251 0.0002 liquid0.12363 0.65238 0.0002 liquid0.12353 0.65226 0.0002 liquid0.12343 0.65214 0.0002 liquid0.12334 0.65202 0.0002 liquid0.12324 0.65190 0.0002 liquid0.12314 0.65177 0.0002 liquid0.12305 0.65165 0.0002 liquid0.12295 0.65153 0.0002 liquid0.12285 0.65141 0.0002 liquid0.12276 0.65129 0.0002 liquid0.12266 0.65116 0.0002 liquid0.12257 0.65104 0.0002 liquid0.12248 0.65092 0.0002 liquid0.12238 0.65080 0.0002 liquid0.12229 0.65068 0.0002 liquid0.12220 0.65055 0.0002 liquid0.12210 0.65043 0.0002 liquid0.12201 0.65031 0.0002 liquid0.12192 0.65019 0.0002 liquid0.12183 0.65007 0.0002 liquid0.12174 0.64995 0.0002 liquid0.12165 0.64983 0.0002 liquid0.12155 0.64970 0.0002 liquid0.12146 0.64958 0.0002 liquid0.12137 0.64946 0.0002 liquid0.12129 0.64934 0.0002 liquid0.12120 0.64922 0.0002 liquid0.12111 0.64910 0.0002 liquid0.12102 0.64898 0.0002 liquid0.12093 0.64885 0.0002 liquid0.12084 0.64873 0.0002 liquid0.12075 0.64861 0.0002 liquid0.12067 0.64849 0.0002 liquid0.12058 0.64837 0.0002 liquid0.12049 0.64825 0.0002 liquid0.12041 0.64813 0.0002 liquid0.12032 0.64801 0.0002 liquid

Page 189: Crane Fluid Flow Problems

0.12024 0.64788 0.0002 liquid0.12015 0.64776 0.0002 liquid0.12007 0.64764 0.0002 liquid0.11998 0.64752 0.0002 liquid0.11990 0.64740 0.0002 liquid0.11981 0.64728 0.0002 liquid0.11973 0.64716 0.0002 liquid0.11964 0.64704 0.0002 liquid0.11956 0.64692 0.0002 liquid0.11948 0.64680 0.0002 liquid0.11939 0.64667 0.0002 liquid0.11931 0.64655 0.0002 liquid0.11923 0.64643 0.0002 liquid0.11915 0.64631 0.0002 liquid0.11907 0.64619 0.0002 liquid0.11899 0.64607 0.0002 liquid0.11890 0.64595 0.0002 liquid0.11882 0.64583 0.0002 liquid0.11874 0.64571 0.0002 liquid0.11866 0.64559 0.0002 liquid0.11858 0.64547 0.0002 liquid0.11850 0.64535 0.0002 liquid0.11842 0.64523 0.0002 liquid0.11834 0.64511 0.0002 liquid0.11827 0.64499 0.0002 liquid0.11819 0.64487 0.0002 liquid0.11811 0.64475 0.0002 liquid0.11803 0.64463 0.0002 liquid0.11795 0.64451 0.0002 liquid0.11787 0.64439 0.0002 liquid0.11780 0.64426 0.0002 liquid0.11772 0.64414 0.0002 liquid0.11764 0.64402 0.0002 liquid0.11757 0.64390 0.0002 liquid0.11749 0.64378 0.0002 liquid0.11741 0.64366 0.0002 liquid0.11734 0.64354 0.0002 liquid0.11726 0.64342 0.0002 liquid0.11719 0.64330 0.0002 liquid0.11711 0.64318 0.0002 liquid0.11704 0.64306 0.0002 liquid0.11696 0.64294 0.0002 liquid0.11689 0.64282 0.0002 liquid0.11681 0.64270 0.0002 liquid0.11674 0.64258 0.0002 liquid0.11666 0.64246 0.0002 liquid0.11659 0.64234 0.0002 liquid0.11652 0.64223 0.0002 liquid0.11644 0.64211 0.0002 liquid0.11637 0.64199 0.0002 liquid

Page 190: Crane Fluid Flow Problems

Phase

0.01553 0.03908 vapor0.01554 0.03913 vapor0.01554 0.03917 vapor0.01555 0.03921 vapor0.01556 0.03925 vapor0.01557 0.03930 vapor0.01558 0.03934 vapor0.01558 0.03938 vapor0.01559 0.03943 vapor0.01560 0.03947 vapor0.01561 0.03951 vapor0.01561 0.03955 vapor0.01562 0.03959 vapor0.01563 0.03964 vapor0.01564 0.03968 vapor0.01564 0.03972 vapor0.01565 0.03976 vapor0.01566 0.03980 vapor0.01567 0.03985 vapor0.01567 0.03989 vapor0.01568 0.03993 vapor0.01569 0.03997 vapor0.01570 0.04001 vapor0.01570 0.04005 vapor0.01571 0.04009 vapor0.01572 0.04013 vapor0.01573 0.04017 vapor0.01573 0.04021 vapor0.01574 0.04025 vapor0.01575 0.04030 vapor0.01576 0.04034 vapor0.01576 0.04038 vapor0.01577 0.04042 vapor0.01578 0.04046 vapor0.01578 0.04050 vapor0.01579 0.04054 vapor0.01580 0.04058 vapor0.01580 0.04062 vapor0.01581 0.04065 vapor0.01582 0.04069 vapor0.01583 0.04073 vapor0.01583 0.04077 vapor0.01584 0.04081 vapor0.01585 0.04085 vapor0.01585 0.04089 vapor0.01586 0.04093 vapor0.01587 0.04097 vapor0.01587 0.04101 vapor0.01588 0.04105 vapor

Viscosity (cP)

Therm. Cond.

(W/m*K)

Page 191: Crane Fluid Flow Problems

0.01589 0.04108 vapor0.01589 0.04112 vapor0.01590 0.04116 vapor0.01591 0.04120 vapor0.01591 0.04124 vapor0.01592 0.04128 vapor0.01593 0.04132 vapor0.01593 0.04135 vapor0.01594 0.04139 vapor0.01595 0.04143 vapor0.01595 0.04147 vapor0.01596 0.04150 vapor0.01597 0.04154 vapor0.01597 0.04158 vapor0.01598 0.04162 vapor0.01599 0.04166 vapor0.01599 0.04169 vapor0.01600 0.04173 vapor0.01601 0.04177 vapor0.01601 0.04180 vapor0.01602 0.04184 vapor0.01603 0.04188 vapor0.01603 0.04192 vapor0.01604 0.04195 vapor0.01604 0.04199 vapor0.01605 0.04203 vapor0.01606 0.04206 vapor0.01606 0.04210 vapor0.01607 0.04214 vapor0.01608 0.04217 vapor0.01608 0.04221 vapor0.01609 0.04225 vapor0.01610 0.04228 vapor0.01610 0.04232 vapor0.01611 0.04235 vapor0.01611 0.04239 vapor0.01612 0.04243 vapor0.01613 0.04246 vapor0.01613 0.04250 vapor0.01614 0.04253 vapor0.01614 0.04257 vapor0.01615 0.04261 vapor0.01616 0.04264 vapor0.01616 0.04268 vapor0.01617 0.04271 vapor0.01617 0.04275 vapor0.01618 0.04278 vapor0.01619 0.04282 vapor0.01619 0.04285 vapor0.01620 0.04289 vapor0.01620 0.04292 vapor0.01621 0.04296 vapor

Page 192: Crane Fluid Flow Problems

0.01622 0.04300 vapor0.01622 0.04303 vapor0.01623 0.04307 vapor0.01623 0.04310 vapor0.01624 0.04313 vapor0.01625 0.04317 vapor0.01625 0.04320 vapor0.01626 0.04324 vapor0.01626 0.04327 vapor0.01627 0.04331 vapor0.01627 0.04334 vapor0.01628 0.04338 vapor0.01629 0.04341 vapor0.01629 0.04345 vapor0.01630 0.04348 vapor0.01630 0.04351 vapor0.01631 0.04355 vapor0.01631 0.04358 vapor0.01632 0.04362 vapor0.01633 0.04365 vapor0.01633 0.04369 vapor0.01634 0.04372 vapor0.01634 0.04375 vapor0.01635 0.04379 vapor0.01635 0.04382 vapor0.01636 0.04385 vapor0.01636 0.04389 vapor0.01637 0.04392 vapor0.01638 0.04396 vapor0.01638 0.04399 vapor0.01639 0.04402 vapor0.01639 0.04406 vapor0.01640 0.04409 vapor0.01640 0.04412 vapor0.01641 0.04416 vapor0.01641 0.04419 vapor0.01642 0.04422 vapor0.01643 0.04426 vapor0.01643 0.04429 vapor0.01644 0.04432 vapor0.01644 0.04435 vapor0.01645 0.04439 vapor0.01645 0.04442 vapor0.01646 0.04445 vapor0.01646 0.04449 vapor0.01647 0.04452 vapor0.01647 0.04455 vapor0.01648 0.04458 vapor0.01648 0.04462 vapor0.01649 0.04465 vapor0.01649 0.04468 vapor0.01650 0.04472 vapor

Page 193: Crane Fluid Flow Problems

0.01651 0.04475 vapor0.01651 0.04478 vapor0.01652 0.04481 vapor0.01652 0.04485 vapor0.01653 0.04488 vapor0.01653 0.04491 vapor0.01654 0.04494 vapor0.01654 0.04497 vapor0.01655 0.04501 vapor0.01655 0.04504 vapor0.01656 0.04507 vapor0.01656 0.04510 vapor0.01657 0.04513 vapor0.01657 0.04517 vapor0.01658 0.04520 vapor0.01658 0.04523 vapor0.01659 0.04526 vapor0.01659 0.04529 vapor0.01660 0.04533 vapor0.01660 0.04536 vapor0.01661 0.04539 vapor0.01661 0.04542 vapor0.01662 0.04545 vapor0.01662 0.04548 vapor0.01663 0.04552 vapor0.01663 0.04555 vapor0.01664 0.04558 vapor0.01664 0.04561 vapor0.01665 0.04564 vapor0.01665 0.04567 vapor0.01666 0.04570 vapor0.01666 0.04574 vapor0.01667 0.04577 vapor0.01667 0.04580 vapor0.01668 0.04583 vapor0.01668 0.04586 vapor0.01669 0.04589 vapor0.01669 0.04592 vapor0.01670 0.04595 vapor0.01670 0.04599 vapor0.01671 0.04602 vapor0.01671 0.04605 vapor0.01672 0.04608 vapor0.01672 0.04611 vapor0.01673 0.04614 vapor0.01673 0.04617 vapor0.01674 0.04620 vapor

Page 194: Crane Fluid Flow Problems

Water Phase DataData on Saturation Curve7.57 5.57 6.14 7.71 6.43 6.29 7.29 7.43 7.43 6.71 7.71

444.86 401 51.688 0.01935 423.28 424.71 0.62243 0.76900 1.1192 4,035.9 -0.00051445.10 402 51.677 0.01935 423.55 424.99 0.62273 0.76890 1.1194 4,034.3 -0.00050445.35 403 51.666 0.01936 423.82 425.26 0.62303 0.76880 1.1197 4,032.6 -0.00050445.59 404 51.654 0.01936 424.08 425.53 0.62333 0.76870 1.1199 4,030.9 -0.00050445.83 405 51.643 0.01936 424.35 425.80 0.62362 0.76860 1.1202 4,029.3 -0.00049446.08 406 51.632 0.01937 424.62 426.08 0.62392 0.76850 1.1204 4,027.6 -0.00049446.32 407 51.621 0.01937 424.89 426.35 0.62422 0.76839 1.1207 4,025.9 -0.00049446.56 408 51.609 0.01938 425.16 426.62 0.62451 0.76829 1.1209 4,024.3 -0.00048446.80 409 51.598 0.01938 425.42 426.89 0.62481 0.76819 1.1212 4,022.6 -0.00048447.04 410 51.587 0.01939 425.69 427.16 0.62510 0.76809 1.1214 4,020.9 -0.00048447.28 411 51.576 0.01939 425.95 427.43 0.62539 0.76799 1.1217 4,019.3 -0.00047447.52 412 51.564 0.01939 426.22 427.70 0.62569 0.76789 1.1219 4,017.6 -0.00047447.76 413 51.553 0.01940 426.48 427.97 0.62598 0.76780 1.1222 4,016.0 -0.00047448.00 414 51.542 0.01940 426.75 428.24 0.62627 0.76770 1.1224 4,014.3 -0.00046448.24 415 51.531 0.01941 427.01 428.50 0.62656 0.76760 1.1227 4,012.7 -0.00046448.47 416 51.520 0.01941 427.28 428.77 0.62685 0.76750 1.1230 4,011.0 -0.00046448.71 417 51.509 0.01941 427.54 429.04 0.62714 0.76740 1.1232 4,009.4 -0.00045448.95 418 51.498 0.01942 427.80 429.30 0.62743 0.76730 1.1235 4,007.8 -0.00045449.18 419 51.487 0.01942 428.06 429.57 0.62772 0.76721 1.1237 4,006.1 -0.00045449.42 420 51.475 0.01943 428.33 429.84 0.62801 0.76711 1.1240 4,004.5 -0.00044449.66 421 51.464 0.01943 428.59 430.10 0.62830 0.76701 1.1242 4,002.8 -0.00044449.89 422 51.453 0.01944 428.85 430.37 0.62858 0.76691 1.1245 4,001.2 -0.00044450.13 423 51.442 0.01944 429.11 430.63 0.62887 0.76682 1.1247 3,999.6 -0.00043450.36 424 51.431 0.01944 429.37 430.90 0.62916 0.76672 1.1250 3,997.9 -0.00043450.59 425 51.420 0.01945 429.63 431.16 0.62944 0.76662 1.1252 3,996.3 -0.00043450.83 426 51.409 0.01945 429.89 431.42 0.62973 0.76653 1.1255 3,994.7 -0.00042451.06 427 51.398 0.01946 430.15 431.68 0.63001 0.76643 1.1257 3,993.1 -0.00042451.29 428 51.387 0.01946 430.40 431.95 0.63030 0.76634 1.1260 3,991.4 -0.00042451.53 429 51.376 0.01946 430.66 432.21 0.63058 0.76624 1.1262 3,989.8 -0.00041451.76 430 51.365 0.01947 430.92 432.47 0.63086 0.76615 1.1265 3,988.2 -0.00041451.99 431 51.354 0.01947 431.18 432.73 0.63114 0.76605 1.1267 3,986.6 -0.00041452.22 432 51.344 0.01948 431.43 432.99 0.63143 0.76596 1.1270 3,985.0 -0.00040452.45 433 51.333 0.01948 431.69 433.25 0.63171 0.76586 1.1272 3,983.3 -0.00040452.68 434 51.322 0.01949 431.95 433.51 0.63199 0.76577 1.1275 3,981.7 -0.00040452.91 435 51.311 0.01949 432.20 433.77 0.63227 0.76568 1.1277 3,980.1 -0.00039453.14 436 51.300 0.01949 432.46 434.03 0.63255 0.76558 1.1280 3,978.5 -0.00039453.37 437 51.289 0.01950 432.71 434.29 0.63283 0.76549 1.1282 3,976.9 -0.00039453.60 438 51.278 0.01950 432.97 434.55 0.63311 0.76540 1.1285 3,975.3 -0.00038453.82 439 51.267 0.01951 433.22 434.81 0.63339 0.76530 1.1288 3,973.7 -0.00038454.05 440 51.257 0.01951 433.47 435.06 0.63366 0.76521 1.1290 3,972.1 -0.00038454.28 441 51.246 0.01951 433.73 435.32 0.63394 0.76512 1.1293 3,970.5 -0.00037454.51 442 51.235 0.01952 433.98 435.58 0.63422 0.76503 1.1295 3,968.9 -0.00037454.73 443 51.224 0.01952 434.23 435.83 0.63449 0.76494 1.1298 3,967.3 -0.00037454.96 444 51.213 0.01953 434.48 436.09 0.63477 0.76484 1.1300 3,965.7 -0.00036455.18 445 51.203 0.01953 434.74 436.34 0.63505 0.76475 1.1303 3,964.1 -0.00036455.41 446 51.192 0.01953 434.99 436.60 0.63532 0.76466 1.1305 3,962.5 -0.00036455.63 447 51.181 0.01954 435.24 436.85 0.63559 0.76457 1.1308 3,960.9 -0.00035

Temperature oF

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 195: Crane Fluid Flow Problems

455.86 448 51.170 0.01954 435.49 437.11 0.63587 0.76448 1.1310 3,959.3 -0.00035456.08 449 51.160 0.01955 435.74 437.36 0.63614 0.76439 1.1313 3,957.7 -0.00035456.31 450 51.149 0.01955 435.99 437.62 0.63642 0.76430 1.1315 3,956.2 -0.00034456.53 451 51.138 0.01956 436.24 437.87 0.63669 0.76421 1.1318 3,954.6 -0.00034456.75 452 51.128 0.01956 436.49 438.12 0.63696 0.76412 1.1320 3,953.0 -0.00034456.98 453 51.117 0.01956 436.73 438.37 0.63723 0.76403 1.1323 3,951.4 -0.00033457.20 454 51.106 0.01957 436.98 438.63 0.63750 0.76394 1.1325 3,949.8 -0.00033457.42 455 51.096 0.01957 437.23 438.88 0.63777 0.76385 1.1328 3,948.3 -0.00033457.64 456 51.085 0.01958 437.48 439.13 0.63804 0.76376 1.1330 3,946.7 -0.00032457.86 457 51.074 0.01958 437.72 439.38 0.63831 0.76367 1.1333 3,945.1 -0.00032458.08 458 51.064 0.01958 437.97 439.63 0.63858 0.76358 1.1336 3,943.5 -0.00032458.30 459 51.053 0.01959 438.22 439.88 0.63885 0.76350 1.1338 3,942.0 -0.00031458.52 460 51.043 0.01959 438.46 440.13 0.63912 0.76341 1.1341 3,940.4 -0.00031458.74 461 51.032 0.01960 438.71 440.38 0.63939 0.76332 1.1343 3,938.8 -0.00031458.96 462 51.021 0.01960 438.95 440.63 0.63965 0.76323 1.1346 3,937.3 -0.00030459.18 463 51.011 0.01960 439.20 440.88 0.63992 0.76315 1.1348 3,935.7 -0.00030459.40 464 51.000 0.01961 439.44 441.13 0.64019 0.76306 1.1351 3,934.1 -0.00030459.62 465 50.990 0.01961 439.69 441.38 0.64045 0.76297 1.1353 3,932.6 -0.00030459.84 466 50.979 0.01962 439.93 441.62 0.64072 0.76288 1.1356 3,931.0 -0.00029460.05 467 50.969 0.01962 440.17 441.87 0.64098 0.76280 1.1358 3,929.5 -0.00029460.27 468 50.958 0.01962 440.42 442.12 0.64125 0.76271 1.1361 3,927.9 -0.00029460.49 469 50.948 0.01963 440.66 442.36 0.64151 0.76263 1.1363 3,926.4 -0.00028460.70 470 50.937 0.01963 440.90 442.61 0.64177 0.76254 1.1366 3,924.8 -0.00028460.92 471 50.927 0.01964 441.14 442.86 0.64204 0.76245 1.1368 3,923.2 -0.00028461.14 472 50.916 0.01964 441.38 443.10 0.64230 0.76237 1.1371 3,921.7 -0.00027461.35 473 50.906 0.01964 441.63 443.35 0.64256 0.76228 1.1374 3,920.1 -0.00027461.57 474 50.895 0.01965 441.87 443.59 0.64283 0.76220 1.1376 3,918.6 -0.00027461.78 475 50.885 0.01965 442.11 443.84 0.64309 0.76211 1.1379 3,917.1 -0.00026462.00 476 50.875 0.01966 442.35 444.08 0.64335 0.76203 1.1381 3,915.5 -0.00026462.21 477 50.864 0.01966 442.59 444.32 0.64361 0.76194 1.1384 3,914.0 -0.00026462.42 478 50.854 0.01966 442.83 444.57 0.64387 0.76186 1.1386 3,912.4 -0.00025462.64 479 50.843 0.01967 443.07 444.81 0.64413 0.76178 1.1389 3,910.9 -0.00025462.85 480 50.833 0.01967 443.31 445.05 0.64439 0.76169 1.1391 3,909.4 -0.00025463.06 481 50.823 0.01968 443.54 445.30 0.64465 0.76161 1.1394 3,907.8 -0.00024463.27 482 50.812 0.01968 443.78 445.54 0.64490 0.76153 1.1396 3,906.3 -0.00024463.49 483 50.802 0.01968 444.02 445.78 0.64516 0.76144 1.1399 3,904.8 -0.00024463.70 484 50.792 0.01969 444.26 446.02 0.64542 0.76136 1.1401 3,903.2 -0.00023463.91 485 50.781 0.01969 444.49 446.26 0.64568 0.76128 1.1404 3,901.7 -0.00023464.12 486 50.771 0.01970 444.73 446.50 0.64593 0.76119 1.1407 3,900.2 -0.00023464.33 487 50.761 0.01970 444.97 446.74 0.64619 0.76111 1.1409 3,898.6 -0.00022464.54 488 50.750 0.01970 445.20 446.98 0.64645 0.76103 1.1412 3,897.1 -0.00022464.75 489 50.740 0.01971 445.44 447.22 0.64670 0.76095 1.1414 3,895.6 -0.00022464.96 490 50.730 0.01971 445.67 447.46 0.64696 0.76086 1.1417 3,894.1 -0.00021465.17 491 50.719 0.01972 445.91 447.70 0.64721 0.76078 1.1419 3,892.5 -0.00021465.38 492 50.709 0.01972 446.14 447.94 0.64747 0.76070 1.1422 3,891.0 -0.00021465.59 493 50.699 0.01972 446.38 448.18 0.64772 0.76062 1.1424 3,889.5 -0.00020465.80 494 50.689 0.01973 446.61 448.42 0.64797 0.76054 1.1427 3,888.0 -0.00020466.00 495 50.679 0.01973 446.85 448.66 0.64823 0.76046 1.1429 3,886.5 -0.00020466.21 496 50.668 0.01974 447.08 448.89 0.64848 0.76038 1.1432 3,885.0 -0.00019466.42 497 50.658 0.01974 447.31 449.13 0.64873 0.76030 1.1435 3,883.5 -0.00019466.63 498 50.648 0.01974 447.55 449.37 0.64898 0.76022 1.1437 3,881.9 -0.00019466.83 499 50.638 0.01975 447.78 449.60 0.64923 0.76014 1.1440 3,880.4 -0.00018

Page 196: Crane Fluid Flow Problems

467.04 500 50.628 0.01975 448.01 449.84 0.64949 0.76006 1.1442 3,878.9 -0.00018467.24 501 50.617 0.01976 448.24 450.08 0.64974 0.75998 1.1445 3,877.4 -0.00018467.45 502 50.607 0.01976 448.48 450.31 0.64999 0.75990 1.1447 3,875.9 -0.00017467.66 503 50.597 0.01976 448.71 450.55 0.65024 0.75982 1.1450 3,874.4 -0.00017467.86 504 50.587 0.01977 448.94 450.78 0.65049 0.75974 1.1452 3,872.9 -0.00017468.07 505 50.577 0.01977 449.17 451.02 0.65074 0.75966 1.1455 3,871.4 -0.00016468.27 506 50.567 0.01978 449.40 451.25 0.65098 0.75958 1.1458 3,869.9 -0.00016468.47 507 50.557 0.01978 449.63 451.49 0.65123 0.75950 1.1460 3,868.4 -0.00016468.68 508 50.546 0.01978 449.86 451.72 0.65148 0.75942 1.1463 3,866.9 -0.00015468.88 509 50.536 0.01979 450.09 451.95 0.65173 0.75934 1.1465 3,865.4 -0.00015469.09 510 50.526 0.01979 450.32 452.19 0.65198 0.75927 1.1468 3,863.9 -0.00015469.29 511 50.516 0.01980 450.55 452.42 0.65222 0.75919 1.1470 3,862.4 -0.00014469.49 512 50.506 0.01980 450.78 452.65 0.65247 0.75911 1.1473 3,860.9 -0.00014469.69 513 50.496 0.01980 451.00 452.88 0.65271 0.75903 1.1475 3,859.5 -0.00014469.90 514 50.486 0.01981 451.23 453.12 0.65296 0.75895 1.1478 3,858.0 -0.00013470.10 515 50.476 0.01981 451.46 453.35 0.65321 0.75888 1.1481 3,856.5 -0.00013470.30 516 50.466 0.01982 451.69 453.58 0.65345 0.75880 1.1483 3,855.0 -0.00013470.50 517 50.456 0.01982 451.91 453.81 0.65370 0.75872 1.1486 3,853.5 -0.00012470.70 518 50.446 0.01982 452.14 454.04 0.65394 0.75865 1.1488 3,852.0 -0.00012470.90 519 50.436 0.01983 452.37 454.27 0.65418 0.75857 1.1491 3,850.5 -0.00012471.10 520 50.426 0.01983 452.59 454.50 0.65443 0.75849 1.1493 3,849.1 -0.00011471.30 521 50.416 0.01984 452.82 454.73 0.65467 0.75842 1.1496 3,847.6 -0.00011471.50 522 50.406 0.01984 453.04 454.96 0.65491 0.75834 1.1499 3,846.1 -0.00011471.70 523 50.396 0.01984 453.27 455.19 0.65515 0.75827 1.1501 3,844.6 -0.00010471.90 524 50.386 0.01985 453.50 455.42 0.65540 0.75819 1.1504 3,843.2 -0.00010472.10 525 50.376 0.01985 453.72 455.65 0.65564 0.75811 1.1506 3,841.7 -0.00010472.30 526 50.366 0.01986 453.94 455.88 0.65588 0.75804 1.1509 3,840.2 -0.00009472.49 527 50.356 0.01986 454.17 456.11 0.65612 0.75796 1.1511 3,838.7 -0.00009472.69 528 50.346 0.01986 454.39 456.33 0.65636 0.75789 1.1514 3,837.3 -0.00009472.89 529 50.336 0.01987 454.62 456.56 0.65660 0.75781 1.1516 3,835.8 -0.00008473.09 530 50.327 0.01987 454.84 456.79 0.65684 0.75774 1.1519 3,834.3 -0.00008473.28 531 50.317 0.01987 455.06 457.02 0.65708 0.75766 1.1522 3,832.9 -0.00008473.48 532 50.307 0.01988 455.29 457.24 0.65732 0.75759 1.1524 3,831.4 -0.00007473.68 533 50.297 0.01988 455.51 457.47 0.65756 0.75752 1.1527 3,829.9 -0.00007473.87 534 50.287 0.01989 455.73 457.70 0.65780 0.75744 1.1529 3,828.5 -0.00007474.07 535 50.277 0.01989 455.95 457.92 0.65804 0.75737 1.1532 3,827.0 -0.00006474.27 536 50.267 0.01989 456.17 458.15 0.65827 0.75729 1.1534 3,825.6 -0.00006474.46 537 50.257 0.01990 456.39 458.37 0.65851 0.75722 1.1537 3,824.1 -0.00006474.66 538 50.248 0.01990 456.62 458.60 0.65875 0.75715 1.1540 3,822.6 -0.00005474.85 539 50.238 0.01991 456.84 458.82 0.65898 0.75707 1.1542 3,821.2 -0.00005475.05 540 50.228 0.01991 457.06 459.05 0.65922 0.75700 1.1545 3,819.7 -0.00005475.24 541 50.218 0.01991 457.28 459.27 0.65946 0.75693 1.1547 3,818.3 -0.00004475.43 542 50.208 0.01992 457.50 459.50 0.65969 0.75685 1.1550 3,816.8 -0.00004475.63 543 50.199 0.01992 457.72 459.72 0.65993 0.75678 1.1553 3,815.4 -0.00004475.82 544 50.189 0.01993 457.94 459.94 0.66016 0.75671 1.1555 3,813.9 -0.00003476.01 545 50.179 0.01993 458.16 460.17 0.66040 0.75664 1.1558 3,812.5 -0.00003476.21 546 50.169 0.01993 458.37 460.39 0.66063 0.75656 1.1560 3,811.0 -0.00003476.40 547 50.160 0.01994 458.59 460.61 0.66087 0.75649 1.1563 3,809.6 -0.00002476.59 548 50.150 0.01994 458.81 460.84 0.66110 0.75642 1.1565 3,808.1 -0.00002476.78 549 50.140 0.01994 459.03 461.06 0.66133 0.75635 1.1568 3,806.7 -0.00002476.98 550 50.130 0.01995 459.25 461.28 0.66157 0.75628 1.1571 3,805.3 -0.00001477.17 551 50.121 0.01995 459.47 461.50 0.66180 0.75621 1.1573 3,803.8 -0.00001

Page 197: Crane Fluid Flow Problems

477.36 552 50.111 0.01996 459.68 461.72 0.66203 0.75614 1.1576 3,802.4 -0.00001477.55 553 50.101 0.01996 459.90 461.94 0.66226 0.75606 1.1578 3,800.9 0.00000477.74 554 50.091 0.01996 460.12 462.16 0.66249 0.75599 1.1581 3,799.5 0.000001477.93 555 50.082 0.01997 460.33 462.39 0.66273 0.75592 1.1584 3,798.1 0.000005478.12 556 50.072 0.01997 460.55 462.61 0.66296 0.75585 1.1586 3,796.6 0.000008478.31 557 50.062 0.01998 460.77 462.83 0.66319 0.75578 1.1589 3,795.2 0.000011478.50 558 50.053 0.01998 460.98 463.05 0.66342 0.75571 1.1591 3,793.8 0.000015478.69 559 50.043 0.01998 461.20 463.27 0.66365 0.75564 1.1594 3,792.3 0.000018478.88 560 50.033 0.01999 461.41 463.48 0.66388 0.75557 1.1596 3,790.9 0.000021479.07 561 50.024 0.01999 461.63 463.70 0.66411 0.75550 1.1599 3,789.5 0.000025479.26 562 50.014 0.01999 461.84 463.92 0.66434 0.75543 1.1602 3,788.1 0.000028479.45 563 50.004 0.02000 462.06 464.14 0.66457 0.75536 1.1604 3,786.6 0.000031479.63 564 49.995 0.02000 462.27 464.36 0.66479 0.75529 1.1607 3,785.2 0.000035479.82 565 49.985 0.02001 462.48 464.58 0.66502 0.75522 1.1609 3,783.8 0.000038480.01 566 49.976 0.02001 462.70 464.80 0.66525 0.75515 1.1612 3,782.4 0.000041480.20 567 49.966 0.02001 462.91 465.01 0.66548 0.75509 1.1615 3,780.9 0.000045480.38 568 49.956 0.02002 463.12 465.23 0.66571 0.75502 1.1617 3,779.5 0.000048480.57 569 49.947 0.02002 463.34 465.45 0.66593 0.75495 1.1620 3,778.1 0.000051480.76 570 49.937 0.02003 463.55 465.66 0.66616 0.75488 1.1622 3,776.7 0.000055480.94 571 49.928 0.02003 463.76 465.88 0.66639 0.75481 1.1625 3,775.3 0.000058481.13 572 49.918 0.02003 463.97 466.10 0.66661 0.75474 1.1628 3,773.8 0.000062481.32 573 49.909 0.02004 464.19 466.31 0.66684 0.75468 1.1630 3,772.4 0.000065481.50 574 49.899 0.02004 464.40 466.53 0.66706 0.75461 1.1633 3,771.0 0.000068481.69 575 49.890 0.02004 464.61 466.74 0.66729 0.75454 1.1635 3,769.6 0.000072481.87 576 49.880 0.02005 464.82 466.96 0.66751 0.75447 1.1638 3,768.2 0.000075482.06 577 49.870 0.02005 465.03 467.17 0.66774 0.75440 1.1641 3,766.8 0.000078482.24 578 49.861 0.02006 465.24 467.39 0.66796 0.75434 1.1643 3,765.4 0.000082482.43 579 49.851 0.02006 465.45 467.60 0.66818 0.75427 1.1646 3,764.0 0.000085482.61 580 49.842 0.02006 465.66 467.82 0.66841 0.75420 1.1649 3,762.6 0.000088482.79 581 49.832 0.02007 465.87 468.03 0.66863 0.75414 1.1651 3,761.2 0.000092482.98 582 49.823 0.02007 466.08 468.25 0.66885 0.75407 1.1654 3,759.8 0.000095483.16 583 49.813 0.02008 466.29 468.46 0.66908 0.75400 1.1656 3,758.4 0.000099483.34 584 49.804 0.02008 466.50 468.67 0.66930 0.75394 1.1659 3,757.0 0.000102483.53 585 49.795 0.02008 466.71 468.89 0.66952 0.75387 1.1662 3,755.6 0.000105483.71 586 49.785 0.02009 466.92 469.10 0.66974 0.75380 1.1664 3,754.2 0.000109483.89 587 49.776 0.02009 467.13 469.31 0.66997 0.75374 1.1667 3,752.8 0.000112484.07 588 49.766 0.02009 467.34 469.53 0.67019 0.75367 1.1669 3,751.4 0.000115484.26 589 49.757 0.02010 467.55 469.74 0.67041 0.75361 1.1672 3,750.0 0.000119484.44 590 49.747 0.02010 467.75 469.95 0.67063 0.75354 1.1675 3,748.6 0.000122484.62 591 49.738 0.02011 467.96 470.16 0.67085 0.75347 1.1677 3,747.2 0.000125484.80 592 49.728 0.02011 468.17 470.37 0.67107 0.75341 1.1680 3,745.8 0.000129484.98 593 49.719 0.02011 468.38 470.58 0.67129 0.75334 1.1683 3,744.4 0.000132485.16 594 49.710 0.02012 468.58 470.80 0.67151 0.75328 1.1685 3,743.0 0.000136485.34 595 49.700 0.02012 468.79 471.01 0.67173 0.75321 1.1688 3,741.6 0.000139485.52 596 49.691 0.02012 469.00 471.22 0.67195 0.75315 1.1690 3,740.2 0.000142485.70 597 49.681 0.02013 469.20 471.43 0.67216 0.75308 1.1693 3,738.8 0.000146485.88 598 49.672 0.02013 469.41 471.64 0.67238 0.75302 1.1696 3,737.4 0.000149486.06 599 49.663 0.02014 469.61 471.85 0.67260 0.75296 1.1698 3,736.1 0.000152486.24 600 49.653 0.02014 469.82 472.06 0.67282 0.75289 1.1701 3,734.7 0.000156

Vapor Phase Data

Page 198: Crane Fluid Flow Problems

Data on Saturation Curve

444.86 401 0.8630 1.15870 1,119.8 1,205.8 1.4860 0.54772 0.84014 1,654.8 0.236310445.10 402 0.8652 1.15580 1,119.8 1,205.8 1.4857 0.54799 0.84082 1,654.8 0.236040445.35 403 0.8673 1.15300 1,119.8 1,205.8 1.4855 0.54825 0.84150 1,654.8 0.235770445.59 404 0.8695 1.15010 1,119.8 1,205.8 1.4853 0.54851 0.84218 1,654.7 0.235510445.83 405 0.8716 1.14730 1,119.8 1,205.8 1.4851 0.54877 0.84286 1,654.7 0.235240446.08 406 0.8738 1.14450 1,119.8 1,205.8 1.4848 0.54903 0.84354 1,654.7 0.234970446.32 407 0.8759 1.14170 1,119.8 1,205.8 1.4846 0.54929 0.84422 1,654.6 0.234710446.56 408 0.8781 1.13890 1,119.8 1,205.9 1.4844 0.54955 0.84490 1,654.6 0.234440446.80 409 0.8802 1.13610 1,119.8 1,205.9 1.4841 0.54981 0.84558 1,654.6 0.234180447.04 410 0.8824 1.13330 1,119.8 1,205.9 1.4839 0.55007 0.84626 1,654.6 0.233920447.28 411 0.8845 1.13060 1,119.8 1,205.9 1.4837 0.55033 0.84694 1,654.5 0.233650447.52 412 0.8867 1.12780 1,119.8 1,205.9 1.4835 0.55059 0.84762 1,654.5 0.233390447.76 413 0.8888 1.12510 1,119.8 1,205.9 1.4832 0.55084 0.84830 1,654.5 0.233130448.00 414 0.8910 1.12240 1,119.8 1,205.9 1.4830 0.55110 0.84898 1,654.4 0.232870448.24 415 0.8931 1.11970 1,119.8 1,205.9 1.4828 0.55136 0.84965 1,654.4 0.232610448.47 416 0.8953 1.11700 1,119.8 1,205.9 1.4826 0.55162 0.85033 1,654.3 0.232360448.71 417 0.8974 1.11430 1,119.9 1,205.9 1.4824 0.55187 0.85101 1,654.3 0.232100448.95 418 0.8996 1.11170 1,119.9 1,205.9 1.4821 0.55213 0.85169 1,654.3 0.231840449.18 419 0.9017 1.10900 1,119.9 1,205.9 1.4819 0.55239 0.85237 1,654.2 0.231590449.42 420 0.9039 1.10640 1,119.9 1,205.9 1.4817 0.55264 0.85304 1,654.2 0.231330449.66 421 0.9060 1.10370 1,119.9 1,205.9 1.4815 0.55290 0.85372 1,654.2 0.231080449.89 422 0.9082 1.10110 1,119.9 1,205.9 1.4812 0.55315 0.85440 1,654.1 0.230830450.13 423 0.9103 1.09850 1,119.9 1,205.9 1.4810 0.55341 0.85508 1,654.1 0.230580450.36 424 0.9125 1.09590 1,119.9 1,205.9 1.4808 0.55366 0.85575 1,654.1 0.230330450.59 425 0.9146 1.09330 1,119.9 1,205.9 1.4806 0.55391 0.85643 1,654.0 0.230070450.83 426 0.9168 1.09080 1,119.9 1,205.9 1.4804 0.55417 0.85711 1,654.0 0.229830451.06 427 0.9190 1.08820 1,119.9 1,205.9 1.4801 0.55442 0.85778 1,653.9 0.229580451.29 428 0.9211 1.08570 1,119.9 1,205.9 1.4799 0.55467 0.85846 1,653.9 0.229330451.53 429 0.9233 1.08310 1,119.9 1,205.9 1.4797 0.55493 0.85914 1,653.9 0.229080451.76 430 0.9254 1.08060 1,119.9 1,205.9 1.4795 0.55518 0.85981 1,653.8 0.228830451.99 431 0.9276 1.07810 1,119.9 1,205.9 1.4793 0.55543 0.86049 1,653.8 0.228590452.22 432 0.9297 1.07560 1,119.9 1,205.9 1.4791 0.55568 0.86116 1,653.8 0.228340452.45 433 0.9319 1.07310 1,119.9 1,205.9 1.4788 0.55593 0.86184 1,653.7 0.228100452.68 434 0.9341 1.07060 1,119.9 1,205.9 1.4786 0.55619 0.86252 1,653.7 0.227860452.91 435 0.9362 1.06810 1,119.9 1,205.9 1.4784 0.55644 0.86319 1,653.6 0.227610453.14 436 0.9384 1.06570 1,119.9 1,205.9 1.4782 0.55669 0.86387 1,653.6 0.227370453.37 437 0.9405 1.06320 1,119.9 1,206.0 1.4780 0.55694 0.86454 1,653.6 0.227130453.60 438 0.9427 1.06080 1,119.9 1,206.0 1.4778 0.55719 0.86522 1,653.5 0.226890453.82 439 0.9449 1.05840 1,119.9 1,206.0 1.4776 0.55744 0.86589 1,653.5 0.226650454.05 440 0.9470 1.05600 1,119.9 1,206.0 1.4773 0.55769 0.86657 1,653.4 0.226410454.28 441 0.9492 1.05360 1,119.9 1,206.0 1.4771 0.55793 0.86724 1,653.4 0.226170454.51 442 0.9513 1.05120 1,119.9 1,206.0 1.4769 0.55818 0.86792 1,653.4 0.225940454.73 443 0.9535 1.04880 1,119.9 1,206.0 1.4767 0.55843 0.86859 1,653.3 0.225700454.96 444 0.9557 1.04640 1,119.9 1,206.0 1.4765 0.55868 0.86927 1,653.3 0.225460455.18 445 0.9578 1.04400 1,119.9 1,206.0 1.4763 0.55893 0.86994 1,653.2 0.225230455.41 446 0.9600 1.04170 1,119.9 1,206.0 1.4761 0.55917 0.87062 1,653.2 0.224990455.63 447 0.9621 1.03930 1,119.9 1,206.0 1.4759 0.55942 0.87129 1,653.1 0.224760455.86 448 0.9643 1.03700 1,119.9 1,206.0 1.4757 0.55967 0.87196 1,653.1 0.224530456.08 449 0.9665 1.03470 1,119.9 1,206.0 1.4754 0.55991 0.87264 1,653.1 0.224290

Temperature (F)

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 199: Crane Fluid Flow Problems

456.31 450 0.9686 1.03240 1,119.9 1,206.0 1.4752 0.56016 0.87331 1,653.0 0.224060456.53 451 0.9708 1.03010 1,119.9 1,206.0 1.4750 0.56041 0.87399 1,653.0 0.223830456.75 452 0.9730 1.02780 1,119.9 1,206.0 1.4748 0.56065 0.87466 1,652.9 0.223600456.98 453 0.9751 1.02550 1,119.9 1,206.0 1.4746 0.56090 0.87533 1,652.9 0.223370457.20 454 0.9773 1.02320 1,119.9 1,206.0 1.4744 0.56114 0.87601 1,652.8 0.223140457.42 455 0.9795 1.02100 1,119.9 1,206.0 1.4742 0.56139 0.87668 1,652.8 0.222910457.64 456 0.9816 1.01870 1,119.9 1,206.0 1.4740 0.56163 0.87735 1,652.7 0.222680457.86 457 0.9838 1.01650 1,119.9 1,206.0 1.4738 0.56187 0.87803 1,652.7 0.222460458.08 458 0.9860 1.01420 1,119.9 1,205.9 1.4736 0.56212 0.87870 1,652.6 0.222230458.30 459 0.9881 1.01200 1,119.9 1,205.9 1.4734 0.56236 0.87937 1,652.6 0.222010458.52 460 0.9903 1.00980 1,119.9 1,205.9 1.4732 0.56260 0.88005 1,652.6 0.221780458.74 461 0.9925 1.00760 1,119.9 1,205.9 1.4730 0.56285 0.88072 1,652.5 0.221560458.96 462 0.9947 1.00540 1,119.9 1,205.9 1.4728 0.56309 0.88139 1,652.5 0.221330459.18 463 0.9968 1.00320 1,119.9 1,205.9 1.4725 0.56333 0.88207 1,652.4 0.221110459.40 464 0.9990 1.00100 1,119.9 1,205.9 1.4723 0.56357 0.88274 1,652.4 0.220890459.62 465 1.0012 0.99884 1,119.9 1,205.9 1.4721 0.56382 0.88341 1,652.3 0.220660459.84 466 1.0033 0.99668 1,119.9 1,205.9 1.4719 0.56406 0.88408 1,652.3 0.220440460.05 467 1.0055 0.99453 1,119.9 1,205.9 1.4717 0.56430 0.88476 1,652.2 0.220220460.27 468 1.0077 0.99238 1,119.9 1,205.9 1.4715 0.56454 0.88543 1,652.2 0.220000460.49 469 1.0098 0.99025 1,119.9 1,205.9 1.4713 0.56478 0.88610 1,652.1 0.219780460.70 470 1.0120 0.98812 1,119.9 1,205.9 1.4711 0.56502 0.88677 1,652.1 0.219560460.92 471 1.0142 0.98600 1,119.9 1,205.9 1.4709 0.56526 0.88745 1,652.0 0.219350461.14 472 1.0164 0.98390 1,119.9 1,205.9 1.4707 0.56550 0.88812 1,652.0 0.219130461.35 473 1.0185 0.98179 1,119.9 1,205.9 1.4705 0.56574 0.88879 1,651.9 0.218910461.57 474 1.0207 0.97970 1,119.9 1,205.9 1.4703 0.56598 0.88946 1,651.9 0.218700461.78 475 1.0229 0.97762 1,119.9 1,205.9 1.4701 0.56622 0.89014 1,651.8 0.218480462.00 476 1.0251 0.97554 1,119.9 1,205.9 1.4699 0.56646 0.89081 1,651.8 0.218270462.21 477 1.0272 0.97348 1,119.9 1,205.9 1.4697 0.56669 0.89148 1,651.7 0.218050462.42 478 1.0294 0.97142 1,119.9 1,205.9 1.4695 0.56693 0.89215 1,651.7 0.217840462.64 479 1.0316 0.96937 1,119.9 1,205.9 1.4693 0.56717 0.89282 1,651.6 0.217620462.85 480 1.0338 0.96733 1,119.9 1,205.9 1.4691 0.56741 0.89350 1,651.6 0.217410463.06 481 1.0360 0.96529 1,119.9 1,205.9 1.4689 0.56764 0.89417 1,651.5 0.217200463.27 482 1.0381 0.96327 1,119.9 1,205.9 1.4687 0.56788 0.89484 1,651.5 0.216990463.49 483 1.0403 0.96125 1,119.9 1,205.9 1.4685 0.56812 0.89551 1,651.4 0.216780463.70 484 1.0425 0.95924 1,119.9 1,205.9 1.4683 0.56835 0.89618 1,651.4 0.216570463.91 485 1.0447 0.95724 1,119.9 1,205.9 1.4681 0.56859 0.89686 1,651.3 0.216360464.12 486 1.0468 0.95525 1,119.9 1,205.9 1.4679 0.56883 0.89753 1,651.3 0.216150464.33 487 1.0490 0.95326 1,119.9 1,205.9 1.4677 0.56906 0.89820 1,651.2 0.215940464.54 488 1.0512 0.95128 1,119.9 1,205.9 1.4675 0.56930 0.89887 1,651.2 0.215730464.75 489 1.0534 0.94931 1,119.9 1,205.8 1.4673 0.56953 0.89954 1,651.1 0.215530464.96 490 1.0556 0.94735 1,119.9 1,205.8 1.4671 0.56977 0.90021 1,651.1 0.215320465.17 491 1.0578 0.94540 1,119.9 1,205.8 1.4670 0.57000 0.90089 1,651.0 0.215110465.38 492 1.0599 0.94345 1,119.9 1,205.8 1.4668 0.57024 0.90156 1,651.0 0.214910465.59 493 1.0621 0.94151 1,119.9 1,205.8 1.4666 0.57047 0.90223 1,650.9 0.214700465.80 494 1.0643 0.93958 1,119.9 1,205.8 1.4664 0.57071 0.90290 1,650.9 0.214500466.00 495 1.0665 0.93766 1,119.9 1,205.8 1.4662 0.57094 0.90357 1,650.8 0.214290466.21 496 1.0687 0.93574 1,119.9 1,205.8 1.4660 0.57117 0.90424 1,650.7 0.214090466.42 497 1.0709 0.93383 1,119.9 1,205.8 1.4658 0.57141 0.90492 1,650.7 0.213890466.63 498 1.0730 0.93193 1,119.9 1,205.8 1.4656 0.57164 0.90559 1,650.6 0.213680466.83 499 1.0752 0.93003 1,119.9 1,205.8 1.4654 0.57187 0.90626 1,650.6 0.213480467.04 500 1.0774 0.92815 1,119.8 1,205.8 1.4652 0.57210 0.90693 1,650.5 0.213280467.24 501 1.0796 0.92627 1,119.8 1,205.8 1.4650 0.57234 0.90760 1,650.5 0.213080

Page 200: Crane Fluid Flow Problems

467.45 502 1.0818 0.92439 1,119.8 1,205.8 1.4648 0.57257 0.90827 1,650.4 0.212880467.66 503 1.0840 0.92253 1,119.8 1,205.8 1.4646 0.57280 0.90894 1,650.4 0.212680467.86 504 1.0862 0.92067 1,119.8 1,205.8 1.4644 0.57303 0.90962 1,650.3 0.212480468.07 505 1.0884 0.91882 1,119.8 1,205.7 1.4643 0.57326 0.91029 1,650.2 0.212280468.27 506 1.0905 0.91697 1,119.8 1,205.7 1.4641 0.57349 0.91096 1,650.2 0.212090468.47 507 1.0927 0.91514 1,119.8 1,205.7 1.4639 0.57372 0.91163 1,650.1 0.211890468.68 508 1.0949 0.91331 1,119.8 1,205.7 1.4637 0.57395 0.91230 1,650.1 0.211690468.88 509 1.0971 0.91148 1,119.8 1,205.7 1.4635 0.57418 0.91297 1,650.0 0.211500469.09 510 1.0993 0.90967 1,119.8 1,205.7 1.4633 0.57441 0.91365 1,650.0 0.211300469.29 511 1.1015 0.90786 1,119.8 1,205.7 1.4631 0.57464 0.91432 1,649.9 0.211100469.49 512 1.1037 0.90605 1,119.8 1,205.7 1.4629 0.57487 0.91499 1,649.8 0.210910469.69 513 1.1059 0.90426 1,119.8 1,205.7 1.4627 0.57510 0.91566 1,649.8 0.210710469.90 514 1.1081 0.90247 1,119.8 1,205.7 1.4625 0.57533 0.91633 1,649.7 0.210520470.10 515 1.1103 0.90069 1,119.8 1,205.7 1.4624 0.57556 0.91700 1,649.7 0.210330470.30 516 1.1125 0.89891 1,119.8 1,205.7 1.4622 0.57579 0.91768 1,649.6 0.210130470.50 517 1.1147 0.89714 1,119.8 1,205.7 1.4620 0.57602 0.91835 1,649.6 0.209940470.70 518 1.1168 0.89538 1,119.8 1,205.6 1.4618 0.57625 0.91902 1,649.5 0.209750470.90 519 1.1190 0.89362 1,119.8 1,205.6 1.4616 0.57647 0.91969 1,649.4 0.209560471.10 520 1.1212 0.89187 1,119.8 1,205.6 1.4614 0.57670 0.92036 1,649.4 0.209370471.30 521 1.1234 0.89013 1,119.7 1,205.6 1.4612 0.57693 0.92104 1,649.3 0.209180471.50 522 1.1256 0.88839 1,119.7 1,205.6 1.4610 0.57716 0.92171 1,649.3 0.208990471.70 523 1.1278 0.88666 1,119.7 1,205.6 1.4609 0.57738 0.92238 1,649.2 0.208800471.90 524 1.1300 0.88494 1,119.7 1,205.6 1.4607 0.57761 0.92305 1,649.1 0.208610472.10 525 1.1322 0.88322 1,119.7 1,205.6 1.4605 0.57784 0.92372 1,649.1 0.208420472.30 526 1.1344 0.88151 1,119.7 1,205.6 1.4603 0.57806 0.92439 1,649.0 0.208230472.49 527 1.1366 0.87980 1,119.7 1,205.6 1.4601 0.57829 0.92507 1,649.0 0.208050472.69 528 1.1388 0.87811 1,119.7 1,205.6 1.4599 0.57852 0.92574 1,648.9 0.207860472.89 529 1.1410 0.87641 1,119.7 1,205.6 1.4598 0.57874 0.92641 1,648.8 0.207670473.09 530 1.1432 0.87473 1,119.7 1,205.5 1.4596 0.57897 0.92708 1,648.8 0.207490473.28 531 1.1454 0.87305 1,119.7 1,205.5 1.4594 0.57919 0.92776 1,648.7 0.207300473.48 532 1.1476 0.87137 1,119.7 1,205.5 1.4592 0.57942 0.92843 1,648.7 0.207120473.68 533 1.1498 0.86970 1,119.7 1,205.5 1.4590 0.57964 0.92910 1,648.6 0.206930473.87 534 1.1520 0.86804 1,119.7 1,205.5 1.4588 0.57987 0.92977 1,648.5 0.206750474.07 535 1.1542 0.86638 1,119.7 1,205.5 1.4587 0.58009 0.93044 1,648.5 0.206560474.27 536 1.1564 0.86473 1,119.7 1,205.5 1.4585 0.58031 0.93112 1,648.4 0.206380474.46 537 1.1586 0.86309 1,119.6 1,205.5 1.4583 0.58054 0.93179 1,648.3 0.206200474.66 538 1.1608 0.86145 1,119.6 1,205.5 1.4581 0.58076 0.93246 1,648.3 0.206020474.85 539 1.1630 0.85982 1,119.6 1,205.5 1.4579 0.58099 0.93313 1,648.2 0.205830475.05 540 1.1652 0.85819 1,119.6 1,205.4 1.4577 0.58121 0.93381 1,648.2 0.205650475.24 541 1.1674 0.85657 1,119.6 1,205.4 1.4576 0.58143 0.93448 1,648.1 0.205470475.43 542 1.1697 0.85495 1,119.6 1,205.4 1.4574 0.58165 0.93515 1,648.0 0.205290475.63 543 1.1719 0.85334 1,119.6 1,205.4 1.4572 0.58188 0.93583 1,648.0 0.205110475.82 544 1.1741 0.85174 1,119.6 1,205.4 1.4570 0.58210 0.93650 1,647.9 0.204930476.01 545 1.1763 0.85014 1,119.6 1,205.4 1.4568 0.58232 0.93717 1,647.8 0.204750476.21 546 1.1785 0.84855 1,119.6 1,205.4 1.4567 0.58254 0.93784 1,647.8 0.204570476.40 547 1.1807 0.84696 1,119.6 1,205.4 1.4565 0.58277 0.93852 1,647.7 0.204400476.59 548 1.1829 0.84538 1,119.6 1,205.4 1.4563 0.58299 0.93919 1,647.7 0.204220476.78 549 1.1851 0.84381 1,119.6 1,205.3 1.4561 0.58321 0.93986 1,647.6 0.204040476.98 550 1.1873 0.84223 1,119.6 1,205.3 1.4559 0.58343 0.94054 1,647.5 0.203860477.17 551 1.1895 0.84067 1,119.5 1,205.3 1.4558 0.58365 0.94121 1,647.5 0.203690477.36 552 1.1917 0.83911 1,119.5 1,205.3 1.4556 0.58387 0.94188 1,647.4 0.203510477.55 553 1.1939 0.83756 1,119.5 1,205.3 1.4554 0.58409 0.94256 1,647.3 0.203340

Page 201: Crane Fluid Flow Problems

477.74 554 1.1962 0.83601 1,119.5 1,205.3 1.4552 0.58431 0.94323 1,647.3 0.203160477.93 555 1.1984 0.83446 1,119.5 1,205.3 1.4551 0.58453 0.94391 1,647.2 0.202990478.12 556 1.2006 0.83293 1,119.5 1,205.3 1.4549 0.58475 0.94458 1,647.1 0.202810478.31 557 1.2028 0.83139 1,119.5 1,205.2 1.4547 0.58497 0.94525 1,647.1 0.202640478.50 558 1.2050 0.82987 1,119.5 1,205.2 1.4545 0.58519 0.94593 1,647.0 0.202460478.69 559 1.2072 0.82834 1,119.5 1,205.2 1.4543 0.58541 0.94660 1,646.9 0.202290478.88 560 1.2094 0.82683 1,119.5 1,205.2 1.4542 0.58563 0.94728 1,646.9 0.202120479.07 561 1.2117 0.82532 1,119.5 1,205.2 1.4540 0.58585 0.94795 1,646.8 0.201950479.26 562 1.2139 0.82381 1,119.5 1,205.2 1.4538 0.58607 0.94862 1,646.7 0.201770479.45 563 1.2161 0.82231 1,119.4 1,205.2 1.4536 0.58629 0.94930 1,646.7 0.201600479.63 564 1.2183 0.82081 1,119.4 1,205.2 1.4535 0.58650 0.94997 1,646.6 0.201430479.82 565 1.2205 0.81932 1,119.4 1,205.1 1.4533 0.58672 0.95065 1,646.5 0.201260480.01 566 1.2227 0.81784 1,119.4 1,205.1 1.4531 0.58694 0.95132 1,646.5 0.201090480.20 567 1.2250 0.81635 1,119.4 1,205.1 1.4529 0.58716 0.95200 1,646.4 0.200920480.38 568 1.2272 0.81488 1,119.4 1,205.1 1.4528 0.58738 0.95267 1,646.3 0.200750480.57 569 1.2294 0.81341 1,119.4 1,205.1 1.4526 0.58759 0.95335 1,646.3 0.200580480.76 570 1.2316 0.81194 1,119.4 1,205.1 1.4524 0.58781 0.95402 1,646.2 0.200410480.94 571 1.2338 0.81048 1,119.4 1,205.1 1.4522 0.58803 0.95470 1,646.1 0.200250481.13 572 1.2361 0.80902 1,119.4 1,205.1 1.4521 0.58824 0.95537 1,646.1 0.200080481.32 573 1.2383 0.80757 1,119.4 1,205.0 1.4519 0.58846 0.95605 1,646.0 0.199910481.50 574 1.2405 0.80613 1,119.3 1,205.0 1.4517 0.58868 0.95672 1,645.9 0.199740481.69 575 1.2427 0.80469 1,119.3 1,205.0 1.4515 0.58889 0.95740 1,645.9 0.199580481.87 576 1.2449 0.80325 1,119.3 1,205.0 1.4514 0.58911 0.95807 1,645.8 0.199410482.06 577 1.2472 0.80182 1,119.3 1,205.0 1.4512 0.58933 0.95875 1,645.7 0.199250482.24 578 1.2494 0.80039 1,119.3 1,205.0 1.4510 0.58954 0.95942 1,645.7 0.199080482.43 579 1.2516 0.79897 1,119.3 1,205.0 1.4509 0.58976 0.96010 1,645.6 0.198910482.61 580 1.2538 0.79755 1,119.3 1,204.9 1.4507 0.58997 0.96078 1,645.5 0.198750482.79 581 1.2561 0.79614 1,119.3 1,204.9 1.4505 0.59019 0.96145 1,645.4 0.198590482.98 582 1.2583 0.79473 1,119.3 1,204.9 1.4503 0.59040 0.96213 1,645.4 0.198420483.16 583 1.2605 0.79333 1,119.3 1,204.9 1.4502 0.59062 0.96281 1,645.3 0.198260483.34 584 1.2627 0.79193 1,119.2 1,204.9 1.4500 0.59083 0.96348 1,645.2 0.198090483.53 585 1.2650 0.79053 1,119.2 1,204.9 1.4498 0.59105 0.96416 1,645.2 0.197930483.71 586 1.2672 0.78914 1,119.2 1,204.9 1.4497 0.59126 0.96484 1,645.1 0.197770483.89 587 1.2694 0.78776 1,119.2 1,204.8 1.4495 0.59147 0.96551 1,645.0 0.197610484.07 588 1.2717 0.78638 1,119.2 1,204.8 1.4493 0.59169 0.96619 1,645.0 0.197450484.26 589 1.2739 0.78500 1,119.2 1,204.8 1.4492 0.59190 0.96687 1,644.9 0.197280484.44 590 1.2761 0.78363 1,119.2 1,204.8 1.4490 0.59212 0.96754 1,644.8 0.197120484.62 591 1.2783 0.78226 1,119.2 1,204.8 1.4488 0.59233 0.96822 1,644.7 0.196960484.80 592 1.2806 0.78090 1,119.2 1,204.8 1.4486 0.59254 0.96890 1,644.7 0.196800484.98 593 1.2828 0.77954 1,119.2 1,204.8 1.4485 0.59276 0.96958 1,644.6 0.196640485.16 594 1.2850 0.77819 1,119.1 1,204.7 1.4483 0.59297 0.97025 1,644.5 0.196480485.34 595 1.2873 0.77684 1,119.1 1,204.7 1.4481 0.59318 0.97093 1,644.5 0.196320485.52 596 1.2895 0.77549 1,119.1 1,204.7 1.4480 0.59339 0.97161 1,644.4 0.196170485.70 597 1.2917 0.77415 1,119.1 1,204.7 1.4478 0.59361 0.97229 1,644.3 0.196010485.88 598 1.2940 0.77281 1,119.1 1,204.7 1.4476 0.59382 0.97297 1,644.2 0.195850486.06 599 1.2962 0.77148 1,119.1 1,204.7 1.4475 0.59403 0.97364 1,644.2 0.195690486.24 600 1.2984 0.77015 1,119.1 1,204.6 1.4473 0.59424 0.97432 1,644.1 0.195530

Auxiliary Data( All data downloaded from NIST website: http://webbook.nist.gov/chemistry/fluid/ )

Reference States

Page 202: Crane Fluid Flow Problems

Internal energy U = 0.0Entropy S = 0.0

Additional fluid data

705.10

3200.1 psia

20.102

Acentric factor 0.3443

Normal boiling point 211.95

Dipole moment 1.855 Debye

at 273.16 K for saturated liquid.at 273.16 K for saturated liquid.

Critical temperature (Tc) oF

Critical pressure (Pc)

Critical density (Dc) lbm/ft3

oF

Page 203: Crane Fluid Flow Problems

7.14 7.00 6.29 4.57

Phase

0.1163 0.64187 0.0002 liquid0.11623 0.64175 0.0002 liquid0.11615 0.64163 0.0002 liquid0.11608 0.64151 0.0002 liquid0.11601 0.64139 0.0002 liquid0.11594 0.64127 0.0002 liquid0.11587 0.64115 0.0002 liquid

0.1158 0.64103 0.0002 liquid0.11572 0.64091 0.0002 liquid0.11565 0.64079 0.0002 liquid0.11558 0.64067 0.0002 liquid0.11551 0.64055 0.0002 liquid0.11544 0.64043 0.0002 liquid0.11537 0.64031 0.0002 liquid

0.1153 0.64019 0.0002 liquid0.11523 0.64007 0.0002 liquid0.11516 0.63995 0.0002 liquid

0.1151 0.63984 0.0002 liquid0.11503 0.63972 0.0002 liquid0.11496 0.63960 0.0002 liquid0.11489 0.63948 0.0002 liquid0.11482 0.63936 0.0002 liquid0.11475 0.63924 0.0002 liquid0.11469 0.63912 0.0002 liquid0.11462 0.63900 0.0002 liquid0.11455 0.63888 0.0002 liquid0.11448 0.63876 0.0002 liquid0.11442 0.63864 0.0002 liquid0.11435 0.63853 0.0002 liquid0.11428 0.63841 0.0002 liquid0.11422 0.63829 0.0002 liquid0.11415 0.63817 0.0002 liquid0.11408 0.63805 0.0002 liquid0.11402 0.63793 0.0002 liquid0.11395 0.63781 0.0002 liquid0.11389 0.63769 0.0002 liquid0.11382 0.63757 0.0002 liquid0.11375 0.63746 0.0002 liquid0.11369 0.63734 0.0002 liquid0.11362 0.63722 0.0002 liquid0.11356 0.63710 0.0002 liquid

0.1135 0.63698 0.0002 liquid0.11343 0.63686 0.0002 liquid0.11337 0.63674 0.0002 liquid

0.1133 0.63662 0.0002 liquid0.11324 0.63651 0.0002 liquid0.11318 0.63639 0.0002 liquid

Viscosity (cP)

Therm. Cond.

(W/m*K)

Surf. Tension (lb/in)

Page 204: Crane Fluid Flow Problems

0.11311 0.63627 0.0002 liquid0.11305 0.63615 0.0002 liquid0.11299 0.63603 0.0002 liquid0.11292 0.63591 0.0002 liquid0.11286 0.63580 0.0002 liquid

0.1128 0.63568 0.0002 liquid0.11273 0.63556 0.0002 liquid0.11267 0.63544 0.0002 liquid0.11261 0.63532 0.0002 liquid0.11255 0.63520 0.0002 liquid0.11249 0.63508 0.0002 liquid0.11242 0.63497 0.0002 liquid0.11236 0.63485 0.0002 liquid

0.1123 0.63473 0.0002 liquid0.11224 0.63461 0.0002 liquid0.11218 0.63449 0.0002 liquid0.11212 0.63438 0.0002 liquid0.11206 0.63426 0.0002 liquid

0.112 0.63414 0.0002 liquid0.11194 0.63402 0.0002 liquid0.11188 0.63390 0.0002 liquid0.11182 0.63379 0.0002 liquid0.11176 0.63367 0.0002 liquid

0.1117 0.63355 0.0002 liquid0.11164 0.63343 0.0002 liquid0.11158 0.63331 0.0002 liquid0.11152 0.63320 0.0002 liquid0.11146 0.63308 0.0002 liquid

0.1114 0.63296 0.0002 liquid0.11134 0.63284 0.0002 liquid0.11128 0.63272 0.0002 liquid0.11122 0.63261 0.0002 liquid0.11117 0.63249 0.0002 liquid0.11111 0.63237 0.0002 liquid0.11105 0.63225 0.0002 liquid0.11099 0.63213 0.0002 liquid0.11093 0.63202 0.0002 liquid0.11088 0.63190 0.0002 liquid0.11082 0.63178 0.0002 liquid0.11076 0.63166 0.0002 liquid

0.1107 0.63155 0.0002 liquid0.11065 0.63143 0.0002 liquid0.11059 0.63131 0.0002 liquid0.11053 0.63119 0.0002 liquid0.11048 0.63108 0.0002 liquid0.11042 0.63096 0.0002 liquid0.11036 0.63084 0.0002 liquid0.11031 0.63072 0.0002 liquid0.11025 0.63061 0.0002 liquid0.11019 0.63049 0.0002 liquid0.11014 0.63037 0.0002 liquid0.11008 0.63025 0.0002 liquid

Page 205: Crane Fluid Flow Problems

0.11003 0.63014 0.0002 liquid0.10997 0.63002 0.0002 liquid0.10992 0.62990 0.0002 liquid0.10986 0.62978 0.0002 liquid0.10981 0.62967 0.0002 liquid0.10975 0.62955 0.0002 liquid

0.1097 0.62943 0.0002 liquid0.10964 0.62932 0.0002 liquid0.10959 0.62920 0.0002 liquid0.10953 0.62908 0.0002 liquid0.10948 0.62896 0.0002 liquid0.10942 0.62885 0.0002 liquid0.10937 0.62873 0.0002 liquid0.10932 0.62861 0.0002 liquid0.10926 0.62850 0.0002 liquid0.10921 0.62838 0.0002 liquid0.10915 0.62826 0.0002 liquid

0.1091 0.62814 0.0002 liquid0.10905 0.62803 0.0002 liquid0.10899 0.62791 0.0002 liquid0.10894 0.62779 0.0002 liquid0.10889 0.62768 0.0002 liquid0.10884 0.62756 0.0002 liquid0.10878 0.62744 0.0002 liquid0.10873 0.62733 0.0002 liquid0.10868 0.62721 0.0002 liquid0.10863 0.62709 0.0002 liquid0.10857 0.62697 0.0002 liquid0.10852 0.62686 0.0002 liquid0.10847 0.62674 0.0002 liquid0.10842 0.62662 0.0002 liquid0.10836 0.62651 0.0002 liquid0.10831 0.62639 0.0002 liquid0.10826 0.62627 0.0002 liquid0.10821 0.62616 0.0002 liquid0.10816 0.62604 0.0002 liquid0.10811 0.62592 0.0002 liquid0.10806 0.62581 0.0002 liquid0.10801 0.62569 0.0002 liquid0.10795 0.62557 0.0002 liquid

0.1079 0.62546 0.0002 liquid0.10785 0.62534 0.0002 liquid

0.1078 0.62522 0.0002 liquid0.10775 0.62511 0.0002 liquid

0.1077 0.62499 0.0002 liquid0.10765 0.62487 0.0002 liquid

0.1076 0.62476 0.0002 liquid0.10755 0.62464 0.0002 liquid

0.1075 0.62452 0.0002 liquid0.10745 0.62441 0.0002 liquid

0.1074 0.62429 0.0002 liquid0.10735 0.62418 0.0002 liquid

Page 206: Crane Fluid Flow Problems

0.1073 0.62406 0.0002 liquid0.10725 0.62394 0.0002 liquid

0.1072 0.62383 0.0002 liquid0.10716 0.62371 0.0002 liquid0.10711 0.62359 0.0002 liquid0.10706 0.62348 0.0002 liquid0.10701 0.62336 0.0002 liquid0.10696 0.62325 0.0002 liquid0.10691 0.62313 0.0002 liquid0.10686 0.62301 0.0002 liquid0.10681 0.62290 0.0002 liquid0.10677 0.62278 0.0002 liquid0.10672 0.62266 0.0002 liquid0.10667 0.62255 0.0002 liquid0.10662 0.62243 0.0002 liquid0.10657 0.62232 0.0002 liquid0.10652 0.62220 0.0001 liquid0.10648 0.62208 0.0001 liquid0.10643 0.62197 0.0001 liquid0.10638 0.62185 0.0001 liquid0.10633 0.62174 0.0001 liquid0.10629 0.62162 0.0001 liquid0.10624 0.62150 0.0001 liquid0.10619 0.62139 0.0001 liquid0.10615 0.62127 0.0001 liquid

0.1061 0.62116 0.0001 liquid0.10605 0.62104 0.0001 liquid

0.106 0.62092 0.0001 liquid0.10596 0.62081 0.0001 liquid0.10591 0.62069 0.0001 liquid0.10586 0.62058 0.0001 liquid0.10582 0.62046 0.0001 liquid0.10577 0.62034 0.0001 liquid0.10573 0.62023 0.0001 liquid0.10568 0.62011 0.0001 liquid0.10563 0.62000 0.0001 liquid0.10559 0.61988 0.0001 liquid0.10554 0.61977 0.0001 liquid

0.1055 0.61965 0.0001 liquid0.10545 0.61953 0.0001 liquid

0.1054 0.61942 0.0001 liquid0.10536 0.61930 0.0001 liquid0.10531 0.61919 0.0001 liquid0.10527 0.61907 0.0001 liquid0.10522 0.61896 0.0001 liquid0.10518 0.61884 0.0001 liquid0.10513 0.61872 0.0001 liquid0.10509 0.61861 0.0001 liquid0.10504 0.61849 0.0001 liquid

Page 207: Crane Fluid Flow Problems

Phase

0.01674 0.04623 vapor0.01675 0.04626 vapor0.01675 0.04629 vapor0.01676 0.04632 vapor0.01676 0.04635 vapor0.01677 0.04639 vapor0.01677 0.04642 vapor0.01678 0.04645 vapor0.01678 0.04648 vapor0.01679 0.04651 vapor0.01679 0.04654 vapor

0.0168 0.04657 vapor0.0168 0.04660 vapor0.0168 0.04663 vapor

0.01681 0.04666 vapor0.01681 0.04669 vapor0.01682 0.04672 vapor0.01682 0.04675 vapor0.01683 0.04678 vapor0.01683 0.04681 vapor0.01684 0.04684 vapor0.01684 0.04687 vapor0.01685 0.04690 vapor0.01685 0.04693 vapor0.01686 0.04696 vapor0.01686 0.04699 vapor0.01687 0.04702 vapor0.01687 0.04705 vapor0.01687 0.04708 vapor0.01688 0.04711 vapor0.01688 0.04714 vapor0.01689 0.04717 vapor0.01689 0.04720 vapor

0.0169 0.04723 vapor0.0169 0.04726 vapor

0.01691 0.04729 vapor0.01691 0.04732 vapor0.01692 0.04735 vapor0.01692 0.04738 vapor0.01693 0.04741 vapor0.01693 0.04744 vapor0.01693 0.04747 vapor0.01694 0.04750 vapor0.01694 0.04753 vapor0.01695 0.04756 vapor0.01695 0.04759 vapor0.01696 0.04761 vapor0.01696 0.04764 vapor0.01697 0.04767 vapor

Viscosity (cP)

Therm. Cond.

(W/m*K)

Page 208: Crane Fluid Flow Problems

0.01697 0.04770 vapor0.01697 0.04773 vapor0.01698 0.04776 vapor0.01698 0.04779 vapor0.01699 0.04782 vapor0.01699 0.04785 vapor

0.017 0.04788 vapor0.017 0.04791 vapor

0.01701 0.04794 vapor0.01701 0.04797 vapor0.01701 0.04800 vapor0.01702 0.04802 vapor0.01702 0.04805 vapor0.01703 0.04808 vapor0.01703 0.04811 vapor0.01704 0.04814 vapor0.01704 0.04817 vapor0.01705 0.04820 vapor0.01705 0.04823 vapor0.01705 0.04826 vapor0.01706 0.04829 vapor0.01706 0.04831 vapor0.01707 0.04834 vapor0.01707 0.04837 vapor0.01708 0.04840 vapor0.01708 0.04843 vapor0.01708 0.04846 vapor0.01709 0.04849 vapor0.01709 0.04852 vapor

0.0171 0.04854 vapor0.0171 0.04857 vapor

0.01711 0.04860 vapor0.01711 0.04863 vapor0.01712 0.04866 vapor0.01712 0.04869 vapor0.01712 0.04872 vapor0.01713 0.04874 vapor0.01713 0.04877 vapor0.01714 0.04880 vapor0.01714 0.04883 vapor0.01714 0.04886 vapor0.01715 0.04889 vapor0.01715 0.04892 vapor0.01716 0.04894 vapor0.01716 0.04897 vapor0.01717 0.04900 vapor0.01717 0.04903 vapor0.01717 0.04906 vapor0.01718 0.04909 vapor0.01718 0.04911 vapor0.01719 0.04914 vapor0.01719 0.04917 vapor

Page 209: Crane Fluid Flow Problems

0.0172 0.04920 vapor0.0172 0.04923 vapor0.0172 0.04926 vapor

0.01721 0.04928 vapor0.01721 0.04931 vapor0.01722 0.04934 vapor0.01722 0.04937 vapor0.01722 0.04940 vapor0.01723 0.04942 vapor0.01723 0.04945 vapor0.01724 0.04948 vapor0.01724 0.04951 vapor0.01725 0.04954 vapor0.01725 0.04956 vapor0.01725 0.04959 vapor0.01726 0.04962 vapor0.01726 0.04965 vapor0.01727 0.04968 vapor0.01727 0.04970 vapor0.01727 0.04973 vapor0.01728 0.04976 vapor0.01728 0.04979 vapor0.01729 0.04982 vapor0.01729 0.04984 vapor0.01729 0.04987 vapor

0.0173 0.04990 vapor0.0173 0.04993 vapor

0.01731 0.04995 vapor0.01731 0.04998 vapor0.01731 0.05001 vapor0.01732 0.05004 vapor0.01732 0.05007 vapor0.01733 0.05009 vapor0.01733 0.05012 vapor0.01733 0.05015 vapor0.01734 0.05018 vapor0.01734 0.05020 vapor0.01735 0.05023 vapor0.01735 0.05026 vapor0.01735 0.05029 vapor0.01736 0.05031 vapor0.01736 0.05034 vapor0.01737 0.05037 vapor0.01737 0.05040 vapor0.01737 0.05042 vapor0.01738 0.05045 vapor0.01738 0.05048 vapor0.01739 0.05051 vapor0.01739 0.05053 vapor0.01739 0.05056 vapor

0.0174 0.05059 vapor0.0174 0.05062 vapor

Page 210: Crane Fluid Flow Problems

0.01741 0.05064 vapor0.01741 0.05067 vapor0.01741 0.05070 vapor0.01742 0.05073 vapor0.01742 0.05075 vapor0.01743 0.05078 vapor0.01743 0.05081 vapor0.01743 0.05084 vapor0.01744 0.05086 vapor0.01744 0.05089 vapor0.01745 0.05092 vapor0.01745 0.05095 vapor0.01745 0.05097 vapor0.01746 0.05100 vapor0.01746 0.05103 vapor0.01747 0.05105 vapor0.01747 0.05108 vapor0.01747 0.05111 vapor0.01748 0.05114 vapor0.01748 0.05116 vapor0.01748 0.05119 vapor0.01749 0.05122 vapor0.01749 0.05124 vapor

0.0175 0.05127 vapor0.0175 0.05130 vapor0.0175 0.05133 vapor

0.01751 0.05135 vapor0.01751 0.05138 vapor0.01752 0.05141 vapor0.01752 0.05143 vapor0.01752 0.05146 vapor0.01753 0.05149 vapor0.01753 0.05152 vapor0.01753 0.05154 vapor0.01754 0.05157 vapor0.01754 0.05160 vapor0.01755 0.05162 vapor0.01755 0.05165 vapor0.01755 0.05168 vapor0.01756 0.05170 vapor0.01756 0.05173 vapor0.01756 0.05176 vapor0.01757 0.05179 vapor0.01757 0.05181 vapor0.01758 0.05184 vapor0.01758 0.05187 vapor0.01758 0.05189 vapor

Page 211: Crane Fluid Flow Problems

Water Phase DataData on Saturation Curve

486.42 601 49.644 0.02014 470.03 472.27 0.67304 0.75283 1.1704 3,733.3 0.000159486.60 602 49.635 0.02015 470.23 472.48 0.67325 0.75276 1.1706 3,731.9 0.000163486.78 603 49.625 0.02015 470.44 472.69 0.67347 0.75270 1.1709 3,730.5 0.000166486.96 604 49.616 0.02016 470.64 472.89 0.67369 0.75264 1.1711 3,729.1 0.000169487.14 605 49.607 0.02016 470.84 473.10 0.67390 0.75257 1.1714 3,727.8 0.000173487.31 606 49.597 0.02016 471.05 473.31 0.67412 0.75251 1.1717 3,726.4 0.000176487.49 607 49.588 0.02017 471.25 473.52 0.67434 0.75245 1.1719 3,725.0 0.000180487.67 608 49.579 0.02017 471.46 473.73 0.67455 0.75238 1.1722 3,723.6 0.000183487.85 609 49.569 0.02017 471.66 473.94 0.67477 0.75232 1.1725 3,722.3 0.000186488.02 610 49.560 0.02018 471.86 474.14 0.67498 0.75226 1.1727 3,720.9 0.000190488.20 611 49.551 0.02018 472.07 474.35 0.67520 0.75219 1.1730 3,719.5 0.000193488.38 612 49.542 0.02019 472.27 474.56 0.67541 0.75213 1.1732 3,718.1 0.000196488.55 613 49.532 0.02019 472.47 474.76 0.67563 0.75207 1.1735 3,716.8 0.000200488.73 614 49.523 0.02019 472.67 474.97 0.67584 0.75201 1.1738 3,715.4 0.000203488.91 615 49.514 0.02020 472.88 475.18 0.67605 0.75194 1.1740 3,714.0 0.000207489.08 616 49.505 0.02020 473.08 475.38 0.67627 0.75188 1.1743 3,712.7 0.000210489.26 617 49.495 0.02020 473.28 475.59 0.67648 0.75182 1.1746 3,711.3 0.000213489.43 618 49.486 0.02021 473.48 475.80 0.67669 0.75176 1.1748 3,709.9 0.000217489.61 619 49.477 0.02021 473.68 476.00 0.67691 0.75170 1.1751 3,708.6 0.000220489.78 620 49.468 0.02022 473.89 476.21 0.67712 0.75163 1.1754 3,707.2 0.000224489.96 621 49.458 0.02022 474.09 476.41 0.67733 0.75157 1.1756 3,705.8 0.000227490.13 622 49.449 0.02022 474.29 476.62 0.67754 0.75151 1.1759 3,704.5 0.000230490.31 623 49.440 0.02023 474.49 476.82 0.67775 0.75145 1.1762 3,703.1 0.000234490.48 624 49.431 0.02023 474.69 477.03 0.67797 0.75139 1.1764 3,701.8 0.000237490.66 625 49.422 0.02023 474.89 477.23 0.67818 0.75133 1.1767 3,700.4 0.000241490.83 626 49.412 0.02024 475.09 477.43 0.67839 0.75127 1.1770 3,699.0 0.000244491.00 627 49.403 0.02024 475.29 477.64 0.67860 0.75121 1.1772 3,697.7 0.000247491.18 628 49.394 0.02025 475.49 477.84 0.67881 0.75114 1.1775 3,696.3 0.000251491.35 629 49.385 0.02025 475.69 478.05 0.67902 0.75108 1.1778 3,695.0 0.000254491.52 630 49.376 0.02025 475.89 478.25 0.67923 0.75102 1.1780 3,693.6 0.000258491.70 631 49.366 0.02026 476.08 478.45 0.67944 0.75096 1.1783 3,692.3 0.000261491.87 632 49.357 0.02026 476.28 478.65 0.67965 0.75090 1.1785 3,690.9 0.000264492.04 633 49.348 0.02026 476.48 478.86 0.67986 0.75084 1.1788 3,689.6 0.000268492.21 634 49.339 0.02027 476.68 479.06 0.68006 0.75078 1.1791 3,688.2 0.000271492.38 635 49.330 0.02027 476.88 479.26 0.68027 0.75072 1.1793 3,686.9 0.000275492.56 636 49.321 0.02028 477.08 479.46 0.68048 0.75066 1.1796 3,685.5 0.000278492.73 637 49.312 0.02028 477.27 479.67 0.68069 0.75060 1.1799 3,684.2 0.000281492.90 638 49.303 0.02028 477.47 479.87 0.68090 0.75054 1.1801 3,682.8 0.000285493.07 639 49.293 0.02029 477.67 480.07 0.68111 0.75049 1.1804 3,681.5 0.000288493.24 640 49.284 0.02029 477.87 480.27 0.68131 0.75043 1.1807 3,680.1 0.000292493.41 641 49.275 0.02029 478.06 480.47 0.68152 0.75037 1.1809 3,678.8 0.000295493.58 642 49.266 0.02030 478.26 480.67 0.68173 0.75031 1.1812 3,677.4 0.000298493.75 643 49.257 0.02030 478.46 480.87 0.68193 0.75025 1.1815 3,676.1 0.000302493.92 644 49.248 0.02031 478.65 481.07 0.68214 0.75019 1.1817 3,674.8 0.000305494.09 645 49.239 0.02031 478.85 481.27 0.68235 0.75013 1.1820 3,673.4 0.000309494.26 646 49.230 0.02031 479.04 481.47 0.68255 0.75007 1.1823 3,672.1 0.000312494.43 647 49.221 0.02032 479.24 481.67 0.68276 0.75001 1.1825 3,670.8 0.000316

Temperature oF

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 212: Crane Fluid Flow Problems

494.60 648 49.212 0.02032 479.44 481.87 0.68296 0.74996 1.1828 3,669.4 0.000319494.77 649 49.203 0.02032 479.63 482.07 0.68317 0.74990 1.1831 3,668.1 0.000322494.94 650 49.194 0.02033 479.83 482.27 0.68337 0.74984 1.1834 3,666.7 0.000326495.10 651 49.185 0.02033 480.02 482.47 0.68358 0.74978 1.1836 3,665.4 0.000329495.27 652 49.176 0.02034 480.22 482.67 0.68378 0.74972 1.1839 3,664.1 0.000333495.44 653 49.167 0.02034 480.41 482.87 0.68399 0.74967 1.1842 3,662.7 0.000336495.61 654 49.158 0.02034 480.60 483.07 0.68419 0.74961 1.1844 3,661.4 0.000340495.78 655 49.149 0.02035 480.80 483.27 0.68439 0.74955 1.1847 3,660.1 0.000343495.94 656 49.140 0.02035 480.99 483.46 0.68460 0.74949 1.1850 3,658.8 0.000346496.11 657 49.131 0.02035 481.19 483.66 0.68480 0.74944 1.1852 3,657.4 0.000350496.28 658 49.122 0.02036 481.38 483.86 0.68500 0.74938 1.1855 3,656.1 0.000353496.45 659 49.113 0.02036 481.57 484.06 0.68520 0.74932 1.1858 3,654.8 0.000357496.61 660 49.104 0.02037 481.77 484.26 0.68541 0.74927 1.1860 3,653.5 0.000360496.78 661 49.095 0.02037 481.96 484.45 0.68561 0.74921 1.1863 3,652.1 0.000364496.95 662 49.086 0.02037 482.15 484.65 0.68581 0.74915 1.1866 3,650.8 0.000367497.11 663 49.077 0.02038 482.34 484.85 0.68601 0.74910 1.1868 3,649.5 0.000370497.28 664 49.068 0.02038 482.54 485.04 0.68622 0.74904 1.1871 3,648.2 0.000374497.44 665 49.059 0.02038 482.73 485.24 0.68642 0.74898 1.1874 3,646.8 0.000377497.61 666 49.050 0.02039 482.92 485.44 0.68662 0.74893 1.1877 3,645.5 0.000381497.78 667 49.041 0.02039 483.11 485.63 0.68682 0.74887 1.1879 3,644.2 0.000384497.94 668 49.032 0.02040 483.30 485.83 0.68702 0.74882 1.1882 3,642.9 0.000388498.11 669 49.023 0.02040 483.50 486.02 0.68722 0.74876 1.1885 3,641.6 0.000391498.27 670 49.014 0.02040 483.69 486.22 0.68742 0.74870 1.1887 3,640.2 0.000394498.44 671 49.005 0.02041 483.88 486.41 0.68762 0.74865 1.1890 3,638.9 0.000398498.60 672 48.996 0.02041 484.07 486.61 0.68782 0.74859 1.1893 3,637.6 0.000401498.76 673 48.987 0.02041 484.26 486.80 0.68802 0.74854 1.1895 3,636.3 0.000405498.93 674 48.978 0.02042 484.45 487.00 0.68822 0.74848 1.1898 3,635.0 0.000408499.09 675 48.970 0.02042 484.64 487.19 0.68842 0.74843 1.1901 3,633.7 0.000412499.26 676 48.961 0.02043 484.83 487.39 0.68862 0.74837 1.1904 3,632.4 0.000415499.42 677 48.952 0.02043 485.02 487.58 0.68881 0.74832 1.1906 3,631.1 0.000419499.58 678 48.943 0.02043 485.21 487.78 0.68901 0.74826 1.1909 3,629.7 0.000422499.75 679 48.934 0.02044 485.40 487.97 0.68921 0.74821 1.1912 3,628.4 0.000425499.91 680 48.925 0.02044 485.59 488.16 0.68941 0.74815 1.1914 3,627.1 0.000429500.07 681 48.916 0.02044 485.78 488.36 0.68961 0.74810 1.1917 3,625.8 0.000432500.24 682 48.907 0.02045 485.97 488.55 0.68980 0.74804 1.1920 3,624.5 0.000436500.40 683 48.899 0.02045 486.16 488.74 0.69000 0.74799 1.1923 3,623.2 0.000439500.56 684 48.890 0.02045 486.35 488.94 0.69020 0.74793 1.1925 3,621.9 0.000443500.72 685 48.881 0.02046 486.54 489.13 0.69040 0.74788 1.1928 3,620.6 0.000446500.88 686 48.872 0.02046 486.72 489.32 0.69059 0.74783 1.1931 3,619.3 0.000450501.05 687 48.863 0.02047 486.91 489.52 0.69079 0.74777 1.1933 3,618.0 0.000453501.21 688 48.854 0.02047 487.10 489.71 0.69099 0.74772 1.1936 3,616.7 0.000457501.37 689 48.845 0.02047 487.29 489.90 0.69118 0.74767 1.1939 3,615.4 0.000460501.53 690 48.837 0.02048 487.48 490.09 0.69138 0.74761 1.1942 3,614.1 0.000464501.69 691 48.828 0.02048 487.66 490.28 0.69157 0.74756 1.1944 3,612.8 0.000467501.85 692 48.819 0.02048 487.85 490.48 0.69177 0.74750 1.1947 3,611.5 0.000470502.01 693 48.810 0.02049 488.04 490.67 0.69196 0.74745 1.1950 3,610.2 0.000474502.17 694 48.801 0.02049 488.22 490.86 0.69216 0.74740 1.1953 3,608.9 0.000477502.33 695 48.793 0.02050 488.41 491.05 0.69235 0.74735 1.1955 3,607.6 0.000481502.49 696 48.784 0.02050 488.60 491.24 0.69255 0.74729 1.1958 3,606.3 0.000484502.65 697 48.775 0.02050 488.78 491.43 0.69274 0.74724 1.1961 3,605.0 0.000488502.81 698 48.766 0.02051 488.97 491.62 0.69294 0.74719 1.1963 3,603.7 0.000491502.97 699 48.758 0.02051 489.16 491.81 0.69313 0.74713 1.1966 3,602.5 0.000495

Page 213: Crane Fluid Flow Problems

503.13 700 48.749 0.02051 489.34 492.00 0.69332 0.74708 1.1969 3,601.2 0.000498503.29 701 48.740 0.02052 489.53 492.19 0.69352 0.74703 1.1972 3,599.9 0.000502503.45 702 48.731 0.02052 489.71 492.38 0.69371 0.74698 1.1974 3,598.6 0.000505503.61 703 48.722 0.02052 489.90 492.57 0.69390 0.74692 1.1977 3,597.3 0.000509503.77 704 48.714 0.02053 490.09 492.76 0.69410 0.74687 1.1980 3,596.0 0.000512503.93 705 48.705 0.02053 490.27 492.95 0.69429 0.74682 1.1983 3,594.7 0.000516504.09 706 48.696 0.02054 490.46 493.14 0.69448 0.74677 1.1985 3,593.4 0.000519504.24 707 48.688 0.02054 490.64 493.33 0.69467 0.74672 1.1988 3,592.1 0.000523504.40 708 48.679 0.02054 490.82 493.52 0.69487 0.74666 1.1991 3,590.9 0.000526504.56 709 48.670 0.02055 491.01 493.71 0.69506 0.74661 1.1994 3,589.6 0.000530504.72 710 48.661 0.02055 491.19 493.90 0.69525 0.74656 1.1996 3,588.3 0.000533504.88 711 48.653 0.02055 491.38 494.08 0.69544 0.74651 1.1999 3,587.0 0.000537505.03 712 48.644 0.02056 491.56 494.27 0.69563 0.74646 1.2002 3,585.7 0.000540505.19 713 48.635 0.02056 491.75 494.46 0.69582 0.74641 1.2005 3,584.5 0.000544505.35 714 48.627 0.02057 491.93 494.65 0.69601 0.74636 1.2007 3,583.2 0.000547505.50 715 48.618 0.02057 492.11 494.84 0.69620 0.74631 1.2010 3,581.9 0.000551505.66 716 48.609 0.02057 492.30 495.02 0.69639 0.74625 1.2013 3,580.6 0.000554505.82 717 48.600 0.02058 492.48 495.21 0.69658 0.74620 1.2016 3,579.3 0.000558505.97 718 48.592 0.02058 492.66 495.40 0.69677 0.74615 1.2018 3,578.1 0.000561506.13 719 48.583 0.02058 492.84 495.59 0.69696 0.74610 1.2021 3,576.8 0.000565506.29 720 48.574 0.02059 493.03 495.77 0.69715 0.74605 1.2024 3,575.5 0.000568506.44 721 48.566 0.02059 493.21 495.96 0.69734 0.74600 1.2027 3,574.2 0.000572506.60 722 48.557 0.02059 493.39 496.15 0.69753 0.74595 1.2029 3,573.0 0.000575506.75 723 48.548 0.02060 493.57 496.33 0.69772 0.74590 1.2032 3,571.7 0.000579506.91 724 48.540 0.02060 493.76 496.52 0.69791 0.74585 1.2035 3,570.4 0.000582507.06 725 48.531 0.02061 493.94 496.70 0.69810 0.74580 1.2038 3,569.2 0.000586507.22 726 48.523 0.02061 494.12 496.89 0.69829 0.74575 1.2041 3,567.9 0.000589507.37 727 48.514 0.02061 494.30 497.08 0.69848 0.74570 1.2043 3,566.6 0.000593507.53 728 48.505 0.02062 494.48 497.26 0.69866 0.74565 1.2046 3,565.4 0.000596507.68 729 48.497 0.02062 494.66 497.45 0.69885 0.74560 1.2049 3,564.1 0.000600507.84 730 48.488 0.02062 494.85 497.63 0.69904 0.74555 1.2052 3,562.8 0.000603507.99 731 48.479 0.02063 495.03 497.82 0.69923 0.74550 1.2054 3,561.6 0.000607508.15 732 48.471 0.02063 495.21 498.00 0.69941 0.74545 1.2057 3,560.3 0.000610508.30 733 48.462 0.02064 495.39 498.19 0.69960 0.74540 1.2060 3,559.0 0.000614508.45 734 48.454 0.02064 495.57 498.37 0.69979 0.74535 1.2063 3,557.8 0.000617508.61 735 48.445 0.02064 495.75 498.56 0.69997 0.74531 1.2066 3,556.5 0.000621508.76 736 48.436 0.02065 495.93 498.74 0.70016 0.74526 1.2068 3,555.2 0.000624508.91 737 48.428 0.02065 496.11 498.93 0.70035 0.74521 1.2071 3,554.0 0.000628509.07 738 48.419 0.02065 496.29 499.11 0.70053 0.74516 1.2074 3,552.7 0.000631509.22 739 48.411 0.02066 496.47 499.29 0.70072 0.74511 1.2077 3,551.5 0.000635509.37 740 48.402 0.02066 496.65 499.48 0.70091 0.74506 1.2080 3,550.2 0.000638509.53 741 48.394 0.02066 496.83 499.66 0.70109 0.74501 1.2082 3,548.9 0.000642509.68 742 48.385 0.02067 497.01 499.85 0.70128 0.74496 1.2085 3,547.7 0.000645509.83 743 48.376 0.02067 497.18 500.03 0.70146 0.74492 1.2088 3,546.4 0.000649509.98 744 48.368 0.02068 497.36 500.21 0.70165 0.74487 1.2091 3,545.2 0.000652510.14 745 48.359 0.02068 497.54 500.40 0.70183 0.74482 1.2094 3,543.9 0.000656510.29 746 48.351 0.02068 497.72 500.58 0.70202 0.74477 1.2096 3,542.7 0.000659510.44 747 48.342 0.02069 497.90 500.76 0.70220 0.74472 1.2099 3,541.4 0.000663510.59 748 48.334 0.02069 498.08 500.94 0.70238 0.74468 1.2102 3,540.1 0.000667510.74 749 48.325 0.02069 498.26 501.13 0.70257 0.74463 1.2105 3,538.9 0.000670510.89 750 48.317 0.02070 498.43 501.31 0.70275 0.74458 1.2108 3,537.6 0.000674511.04 751 48.308 0.02070 498.61 501.49 0.70294 0.74453 1.2110 3,536.4 0.000677

Page 214: Crane Fluid Flow Problems

511.20 752 48.300 0.02070 498.79 501.67 0.70312 0.74448 1.2113 3,535.1 0.000681511.35 753 48.291 0.02071 498.97 501.85 0.70330 0.74444 1.2116 3,533.9 0.000684511.50 754 48.283 0.02071 499.14 502.04 0.70349 0.74439 1.2119 3,532.6 0.000688511.65 755 48.274 0.02072 499.32 502.22 0.70367 0.74434 1.2122 3,531.4 0.000691511.80 756 48.266 0.02072 499.50 502.40 0.70385 0.74430 1.2124 3,530.2 0.000695511.95 757 48.257 0.02072 499.68 502.58 0.70404 0.74425 1.2127 3,528.9 0.000698512.10 758 48.249 0.02073 499.85 502.76 0.70422 0.74420 1.2130 3,527.7 0.000702512.25 759 48.240 0.02073 500.03 502.94 0.70440 0.74415 1.2133 3,526.4 0.000705512.40 760 48.232 0.02073 500.21 503.12 0.70458 0.74411 1.2136 3,525.2 0.000709512.55 761 48.223 0.02074 500.38 503.30 0.70476 0.74406 1.2138 3,523.9 0.000713512.70 762 48.215 0.02074 500.56 503.48 0.70495 0.74401 1.2141 3,522.7 0.000716512.85 763 48.206 0.02074 500.73 503.67 0.70513 0.74397 1.2144 3,521.4 0.000720512.99 764 48.198 0.02075 500.91 503.85 0.70531 0.74392 1.2147 3,520.2 0.000723513.14 765 48.189 0.02075 501.09 504.03 0.70549 0.74388 1.2150 3,519.0 0.000727513.29 766 48.181 0.02076 501.26 504.21 0.70567 0.74383 1.2153 3,517.7 0.000730513.44 767 48.172 0.02076 501.44 504.39 0.70585 0.74378 1.2155 3,516.5 0.000734513.59 768 48.164 0.02076 501.61 504.56 0.70603 0.74374 1.2158 3,515.2 0.000737513.74 769 48.155 0.02077 501.79 504.74 0.70621 0.74369 1.2161 3,514.0 0.000741513.89 770 48.147 0.02077 501.96 504.92 0.70639 0.74365 1.2164 3,512.8 0.000745514.03 771 48.139 0.02077 502.14 505.10 0.70657 0.74360 1.2167 3,511.5 0.000748514.18 772 48.130 0.02078 502.31 505.28 0.70675 0.74355 1.2170 3,510.3 0.000752514.33 773 48.122 0.02078 502.49 505.46 0.70693 0.74351 1.2172 3,509.1 0.000755514.48 774 48.113 0.02078 502.66 505.64 0.70711 0.74346 1.2175 3,507.8 0.000759514.63 775 48.105 0.02079 502.84 505.82 0.70729 0.74342 1.2178 3,506.6 0.000762514.77 776 48.096 0.02079 503.01 506.00 0.70747 0.74337 1.2181 3,505.4 0.000766514.92 777 48.088 0.02080 503.18 506.18 0.70765 0.74333 1.2184 3,504.1 0.000770515.07 778 48.080 0.02080 503.36 506.35 0.70783 0.74328 1.2187 3,502.9 0.000773515.21 779 48.071 0.02080 503.53 506.53 0.70801 0.74324 1.2189 3,501.7 0.000777515.36 780 48.063 0.02081 503.71 506.71 0.70819 0.74319 1.2192 3,500.4 0.000780515.51 781 48.054 0.02081 503.88 506.89 0.70837 0.74315 1.2195 3,499.2 0.000784515.65 782 48.046 0.02081 504.05 507.07 0.70854 0.74310 1.2198 3,498.0 0.000788515.80 783 48.038 0.02082 504.23 507.24 0.70872 0.74306 1.2201 3,496.7 0.000791515.95 784 48.029 0.02082 504.40 507.42 0.70890 0.74301 1.2204 3,495.5 0.000795516.09 785 48.021 0.02082 504.57 507.60 0.70908 0.74297 1.2207 3,494.3 0.000798516.24 786 48.012 0.02083 504.74 507.78 0.70926 0.74292 1.2209 3,493.1 0.000802516.39 787 48.004 0.02083 504.92 507.95 0.70943 0.74288 1.2212 3,491.8 0.000805516.53 788 47.996 0.02084 505.09 508.13 0.70961 0.74283 1.2215 3,490.6 0.000809516.68 789 47.987 0.02084 505.26 508.31 0.70979 0.74279 1.2218 3,489.4 0.000813516.82 790 47.979 0.02084 505.43 508.48 0.70996 0.74275 1.2221 3,488.2 0.000816516.97 791 47.971 0.02085 505.61 508.66 0.71014 0.74270 1.2224 3,486.9 0.000820517.11 792 47.962 0.02085 505.78 508.84 0.71032 0.74266 1.2227 3,485.7 0.000823517.26 793 47.954 0.02085 505.95 509.01 0.71049 0.74261 1.2230 3,484.5 0.000827517.40 794 47.946 0.02086 506.12 509.19 0.71067 0.74257 1.2232 3,483.3 0.000831517.55 795 47.937 0.02086 506.29 509.36 0.71085 0.74253 1.2235 3,482.1 0.000834517.69 796 47.929 0.02086 506.46 509.54 0.71102 0.74248 1.2238 3,480.8 0.000838517.84 797 47.921 0.02087 506.64 509.72 0.71120 0.74244 1.2241 3,479.6 0.000841517.98 798 47.912 0.02087 506.81 509.89 0.71137 0.74240 1.2244 3,478.4 0.000845518.12 799 47.904 0.02088 506.98 510.07 0.71155 0.74235 1.2247 3,477.2 0.000849518.27 800 47.896 0.02088 507.15 510.24 0.71173 0.74231 1.2250 3,476.0 0.000852

Steam Phase Data

Page 215: Crane Fluid Flow Problems

Data on Saturation Curve

486.42 601 1.3007 0.76883 1,119.1 1,204.6 1.4471 0.59445 0.97500 1,644.0 0.195380486.60 602 1.3029 0.76751 1,119.1 1,204.6 1.4470 0.59466 0.97568 1,644.0 0.195220486.78 603 1.3051 0.76620 1,119.0 1,204.6 1.4468 0.59488 0.97636 1,643.9 0.195060486.96 604 1.3074 0.76488 1,119.0 1,204.6 1.4466 0.59509 0.97704 1,643.8 0.194910487.14 605 1.3096 0.76358 1,119.0 1,204.6 1.4465 0.59530 0.97772 1,643.7 0.194750487.31 606 1.3119 0.76227 1,119.0 1,204.6 1.4463 0.59551 0.97840 1,643.7 0.194600487.49 607 1.3141 0.76098 1,119.0 1,204.5 1.4461 0.59572 0.97908 1,643.6 0.194440487.67 608 1.3163 0.75968 1,119.0 1,204.5 1.4460 0.59593 0.97976 1,643.5 0.194290487.85 609 1.3186 0.75839 1,119.0 1,204.5 1.4458 0.59614 0.98044 1,643.4 0.194130488.02 610 1.3208 0.75710 1,119.0 1,204.5 1.4456 0.59635 0.98112 1,643.4 0.193980488.20 611 1.3231 0.75582 1,119.0 1,204.5 1.4455 0.59656 0.98180 1,643.3 0.193830488.38 612 1.3253 0.75454 1,118.9 1,204.5 1.4453 0.59677 0.98248 1,643.2 0.193670488.55 613 1.3275 0.75327 1,118.9 1,204.4 1.4451 0.59698 0.98316 1,643.1 0.193520488.73 614 1.3298 0.75200 1,118.9 1,204.4 1.4450 0.59719 0.98384 1,643.1 0.193370488.91 615 1.3320 0.75073 1,118.9 1,204.4 1.4448 0.59740 0.98452 1,643.0 0.193220489.08 616 1.3343 0.74947 1,118.9 1,204.4 1.4446 0.59761 0.98520 1,642.9 0.193060489.26 617 1.3365 0.74821 1,118.9 1,204.4 1.4445 0.59781 0.98588 1,642.8 0.192910489.43 618 1.3388 0.74696 1,118.9 1,204.3 1.4443 0.59802 0.98656 1,642.8 0.192760489.61 619 1.3410 0.74571 1,118.9 1,204.3 1.4442 0.59823 0.98724 1,642.7 0.192610489.78 620 1.3433 0.74446 1,118.8 1,204.3 1.4440 0.59844 0.98792 1,642.6 0.192460489.96 621 1.3455 0.74322 1,118.8 1,204.3 1.4438 0.59865 0.98860 1,642.5 0.192310490.13 622 1.3477 0.74198 1,118.8 1,204.3 1.4437 0.59886 0.98929 1,642.5 0.192160490.31 623 1.3500 0.74074 1,118.8 1,204.3 1.4435 0.59906 0.98997 1,642.4 0.192010490.48 624 1.3522 0.73951 1,118.8 1,204.2 1.4433 0.59927 0.99065 1,642.3 0.191860490.66 625 1.3545 0.73829 1,118.8 1,204.2 1.4432 0.59948 0.99133 1,642.2 0.191710490.83 626 1.3567 0.73706 1,118.8 1,204.2 1.4430 0.59969 0.99202 1,642.2 0.191560491.00 627 1.3590 0.73584 1,118.8 1,204.2 1.4428 0.59990 0.99270 1,642.1 0.191420491.18 628 1.3612 0.73462 1,118.7 1,204.2 1.4427 0.60010 0.99338 1,642.0 0.191270491.35 629 1.3635 0.73341 1,118.7 1,204.2 1.4425 0.60031 0.99406 1,641.9 0.191120491.52 630 1.3657 0.73220 1,118.7 1,204.1 1.4424 0.60052 0.99475 1,641.9 0.190970491.70 631 1.3680 0.73100 1,118.7 1,204.1 1.4422 0.60072 0.99543 1,641.8 0.190830491.87 632 1.3702 0.72980 1,118.7 1,204.1 1.4420 0.60093 0.99611 1,641.7 0.190680492.04 633 1.3725 0.72860 1,118.7 1,204.1 1.4419 0.60114 0.99680 1,641.6 0.190530492.21 634 1.3748 0.72740 1,118.7 1,204.1 1.4417 0.60134 0.99748 1,641.6 0.190390492.38 635 1.3770 0.72621 1,118.7 1,204.0 1.4416 0.60155 0.99816 1,641.5 0.190240492.56 636 1.3793 0.72503 1,118.6 1,204.0 1.4414 0.60175 0.99885 1,641.4 0.190100492.73 637 1.3815 0.72384 1,118.6 1,204.0 1.4412 0.60196 0.99953 1,641.3 0.189950492.90 638 1.3838 0.72266 1,118.6 1,204.0 1.4411 0.60217 1.00020 1,641.2 0.189810493.07 639 1.3860 0.72149 1,118.6 1,204.0 1.4409 0.60237 1.00090 1,641.2 0.189660493.24 640 1.3883 0.72031 1,118.6 1,204.0 1.4408 0.60258 1.00160 1,641.1 0.189520493.41 641 1.3905 0.71915 1,118.6 1,203.9 1.4406 0.60278 1.00230 1,641.0 0.189370493.58 642 1.3928 0.71798 1,118.6 1,203.9 1.4404 0.60299 1.00300 1,640.9 0.189230493.75 643 1.3951 0.71682 1,118.5 1,203.9 1.4403 0.60319 1.00360 1,640.9 0.189090493.92 644 1.3973 0.71566 1,118.5 1,203.9 1.4401 0.60340 1.00430 1,640.8 0.188940494.09 645 1.3996 0.71450 1,118.5 1,203.9 1.4400 0.60360 1.00500 1,640.7 0.188800494.26 646 1.4018 0.71335 1,118.5 1,203.8 1.4398 0.60380 1.00570 1,640.6 0.188660494.43 647 1.4041 0.71220 1,118.5 1,203.8 1.4396 0.60401 1.00640 1,640.5 0.188520494.60 648 1.4064 0.71106 1,118.5 1,203.8 1.4395 0.60421 1.00710 1,640.5 0.188370494.77 649 1.4086 0.70992 1,118.5 1,203.8 1.4393 0.60442 1.00780 1,640.4 0.188230

Temperature oF

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 216: Crane Fluid Flow Problems

494.94 650 1.4109 0.70878 1,118.4 1,203.8 1.4392 0.60462 1.00840 1,640.3 0.188090495.10 651 1.4131 0.70764 1,118.4 1,203.7 1.4390 0.60482 1.00910 1,640.2 0.187950495.27 652 1.4154 0.70651 1,118.4 1,203.7 1.4389 0.60503 1.00980 1,640.1 0.187810495.44 653 1.4177 0.70538 1,118.4 1,203.7 1.4387 0.60523 1.01050 1,640.1 0.187670495.61 654 1.4199 0.70426 1,118.4 1,203.7 1.4385 0.60543 1.01120 1,640.0 0.187530495.78 655 1.4222 0.70314 1,118.4 1,203.7 1.4384 0.60564 1.01190 1,639.9 0.187390495.94 656 1.4245 0.70202 1,118.4 1,203.6 1.4382 0.60584 1.01260 1,639.8 0.187250496.11 657 1.4267 0.70090 1,118.4 1,203.6 1.4381 0.60604 1.01330 1,639.7 0.187110496.28 658 1.4290 0.69979 1,118.3 1,203.6 1.4379 0.60625 1.01390 1,639.7 0.186970496.45 659 1.4313 0.69868 1,118.3 1,203.6 1.4378 0.60645 1.01460 1,639.6 0.186830496.61 660 1.4335 0.69758 1,118.3 1,203.6 1.4376 0.60665 1.01530 1,639.5 0.186690496.78 661 1.4358 0.69648 1,118.3 1,203.5 1.4374 0.60685 1.01600 1,639.4 0.186560496.95 662 1.4381 0.69538 1,118.3 1,203.5 1.4373 0.60705 1.01670 1,639.3 0.186420497.11 663 1.4403 0.69428 1,118.3 1,203.5 1.4371 0.60726 1.01740 1,639.3 0.186280497.28 664 1.4426 0.69319 1,118.2 1,203.5 1.4370 0.60746 1.01810 1,639.2 0.186140497.44 665 1.4449 0.69210 1,118.2 1,203.5 1.4368 0.60766 1.01880 1,639.1 0.186010497.61 666 1.4472 0.69101 1,118.2 1,203.4 1.4367 0.60786 1.01950 1,639.0 0.185870497.78 667 1.4494 0.68993 1,118.2 1,203.4 1.4365 0.60806 1.02020 1,638.9 0.185730497.94 668 1.4517 0.68885 1,118.2 1,203.4 1.4364 0.60826 1.02080 1,638.9 0.185600498.11 669 1.4540 0.68777 1,118.2 1,203.4 1.4362 0.60847 1.02150 1,638.8 0.185460498.27 670 1.4562 0.68670 1,118.2 1,203.4 1.4360 0.60867 1.02220 1,638.7 0.185330498.44 671 1.4585 0.68563 1,118.1 1,203.3 1.4359 0.60887 1.02290 1,638.6 0.185190498.60 672 1.4608 0.68456 1,118.1 1,203.3 1.4357 0.60907 1.02360 1,638.5 0.185060498.76 673 1.4631 0.68350 1,118.1 1,203.3 1.4356 0.60927 1.02430 1,638.4 0.184920498.93 674 1.4653 0.68243 1,118.1 1,203.3 1.4354 0.60947 1.02500 1,638.4 0.184790499.09 675 1.4676 0.68138 1,118.1 1,203.2 1.4353 0.60967 1.02570 1,638.3 0.184650499.26 676 1.4699 0.68032 1,118.1 1,203.2 1.4351 0.60987 1.02640 1,638.2 0.184520499.42 677 1.4722 0.67927 1,118.1 1,203.2 1.4350 0.61007 1.02710 1,638.1 0.184380499.58 678 1.4745 0.67822 1,118.0 1,203.2 1.4348 0.61027 1.02780 1,638.0 0.184250499.75 679 1.4767 0.67717 1,118.0 1,203.2 1.4347 0.61047 1.02850 1,637.9 0.184120499.91 680 1.4790 0.67613 1,118.0 1,203.1 1.4345 0.61067 1.02910 1,637.9 0.183980500.07 681 1.4813 0.67509 1,118.0 1,203.1 1.4343 0.61087 1.02980 1,637.8 0.183850500.24 682 1.4836 0.67405 1,118.0 1,203.1 1.4342 0.61107 1.03050 1,637.7 0.183720500.40 683 1.4858 0.67302 1,118.0 1,203.1 1.4340 0.61127 1.03120 1,637.6 0.183590500.56 684 1.4881 0.67198 1,117.9 1,203.1 1.4339 0.61147 1.03190 1,637.5 0.183450500.72 685 1.4904 0.67095 1,117.9 1,203.0 1.4337 0.61166 1.03260 1,637.4 0.183320500.88 686 1.4927 0.66993 1,117.9 1,203.0 1.4336 0.61186 1.03330 1,637.4 0.183190501.05 687 1.4950 0.66891 1,117.9 1,203.0 1.4334 0.61206 1.03400 1,637.3 0.183060501.21 688 1.4973 0.66789 1,117.9 1,203.0 1.4333 0.61226 1.03470 1,637.2 0.182930501.37 689 1.4995 0.66687 1,117.9 1,202.9 1.4331 0.61246 1.03540 1,637.1 0.182800501.53 690 1.5018 0.66585 1,117.8 1,202.9 1.4330 0.61266 1.03610 1,637.0 0.182670501.69 691 1.5041 0.66484 1,117.8 1,202.9 1.4328 0.61285 1.03680 1,636.9 0.182540501.85 692 1.5064 0.66383 1,117.8 1,202.9 1.4327 0.61305 1.03750 1,636.9 0.182410502.01 693 1.5087 0.66283 1,117.8 1,202.9 1.4325 0.61325 1.03820 1,636.8 0.182280502.17 694 1.5110 0.66182 1,117.8 1,202.8 1.4324 0.61345 1.03890 1,636.7 0.182150502.33 695 1.5133 0.66082 1,117.8 1,202.8 1.4322 0.61365 1.03960 1,636.6 0.182020502.49 696 1.5156 0.65982 1,117.7 1,202.8 1.4321 0.61384 1.04030 1,636.5 0.181890502.65 697 1.5178 0.65883 1,117.7 1,202.8 1.4319 0.61404 1.04100 1,636.4 0.181760502.81 698 1.5201 0.65784 1,117.7 1,202.7 1.4318 0.61424 1.04170 1,636.4 0.181640502.97 699 1.5224 0.65685 1,117.7 1,202.7 1.4316 0.61444 1.04240 1,636.3 0.181510503.13 700 1.5247 0.65586 1,117.7 1,202.7 1.4315 0.61463 1.04310 1,636.2 0.181380503.29 701 1.5270 0.65487 1,117.7 1,202.7 1.4313 0.61483 1.04380 1,636.1 0.181250

Page 217: Crane Fluid Flow Problems

503.45 702 1.5293 0.65389 1,117.6 1,202.6 1.4312 0.61503 1.04440 1,636.0 0.181120503.61 703 1.5316 0.65291 1,117.6 1,202.6 1.4310 0.61522 1.04510 1,635.9 0.181000503.77 704 1.5339 0.65194 1,117.6 1,202.6 1.4309 0.61542 1.04580 1,635.8 0.180870503.93 705 1.5362 0.65096 1,117.6 1,202.6 1.4307 0.61562 1.04650 1,635.8 0.180740504.09 706 1.5385 0.64999 1,117.6 1,202.6 1.4306 0.61581 1.04720 1,635.7 0.180620504.24 707 1.5408 0.64903 1,117.6 1,202.5 1.4304 0.61601 1.04790 1,635.6 0.180490504.40 708 1.5431 0.64806 1,117.5 1,202.5 1.4303 0.61620 1.04860 1,635.5 0.180360504.56 709 1.5454 0.64710 1,117.5 1,202.5 1.4301 0.61640 1.04930 1,635.4 0.180240504.72 710 1.5477 0.64614 1,117.5 1,202.5 1.4300 0.61660 1.05000 1,635.3 0.180110504.88 711 1.5500 0.64518 1,117.5 1,202.4 1.4298 0.61679 1.05070 1,635.2 0.179990505.03 712 1.5523 0.64422 1,117.5 1,202.4 1.4297 0.61699 1.05140 1,635.1 0.179860505.19 713 1.5546 0.64327 1,117.5 1,202.4 1.4295 0.61718 1.05210 1,635.1 0.179740505.35 714 1.5569 0.64232 1,117.4 1,202.4 1.4294 0.61738 1.05280 1,635.0 0.179610505.50 715 1.5592 0.64137 1,117.4 1,202.3 1.4292 0.61757 1.05350 1,634.9 0.179490505.66 716 1.5615 0.64043 1,117.4 1,202.3 1.4291 0.61777 1.05420 1,634.8 0.179370505.82 717 1.5638 0.63949 1,117.4 1,202.3 1.4289 0.61796 1.05500 1,634.7 0.179240505.97 718 1.5661 0.63855 1,117.4 1,202.3 1.4288 0.61816 1.05570 1,634.6 0.179120506.13 719 1.5684 0.63761 1,117.4 1,202.2 1.4286 0.61835 1.05640 1,634.5 0.179000506.29 720 1.5707 0.63667 1,117.3 1,202.2 1.4285 0.61855 1.05710 1,634.5 0.178870506.44 721 1.5730 0.63574 1,117.3 1,202.2 1.4284 0.61874 1.05780 1,634.4 0.178750506.60 722 1.5753 0.63481 1,117.3 1,202.2 1.4282 0.61894 1.05850 1,634.3 0.178630506.75 723 1.5776 0.63388 1,117.3 1,202.2 1.4281 0.61913 1.05920 1,634.2 0.178500506.91 724 1.5799 0.63296 1,117.3 1,202.1 1.4279 0.61932 1.05990 1,634.1 0.178380507.06 725 1.5822 0.63204 1,117.3 1,202.1 1.4278 0.61952 1.06060 1,634.0 0.178260507.22 726 1.5845 0.63112 1,117.2 1,202.1 1.4276 0.61971 1.06130 1,633.9 0.178140507.37 727 1.5868 0.63020 1,117.2 1,202.1 1.4275 0.61991 1.06200 1,633.8 0.178020507.53 728 1.5891 0.62928 1,117.2 1,202.0 1.4273 0.62010 1.06270 1,633.7 0.177900507.68 729 1.5914 0.62837 1,117.2 1,202.0 1.4272 0.62029 1.06340 1,633.7 0.177770507.84 730 1.5937 0.62746 1,117.2 1,202.0 1.4270 0.62049 1.06410 1,633.6 0.177650507.99 731 1.5960 0.62655 1,117.1 1,202.0 1.4269 0.62068 1.06480 1,633.5 0.177530508.15 732 1.5983 0.62565 1,117.1 1,201.9 1.4267 0.62087 1.06550 1,633.4 0.177410508.30 733 1.6007 0.62474 1,117.1 1,201.9 1.4266 0.62107 1.06620 1,633.3 0.177290508.45 734 1.6030 0.62384 1,117.1 1,201.9 1.4265 0.62126 1.06690 1,633.2 0.177170508.61 735 1.6053 0.62294 1,117.1 1,201.9 1.4263 0.62145 1.06760 1,633.1 0.177050508.76 736 1.6076 0.62205 1,117.1 1,201.8 1.4262 0.62164 1.06830 1,633.0 0.176930508.91 737 1.6099 0.62115 1,117.0 1,201.8 1.4260 0.62184 1.06900 1,633.0 0.176810509.07 738 1.6122 0.62026 1,117.0 1,201.8 1.4259 0.62203 1.06980 1,632.9 0.176690509.22 739 1.6145 0.61937 1,117.0 1,201.8 1.4257 0.62222 1.07050 1,632.8 0.176580509.37 740 1.6169 0.61848 1,117.0 1,201.7 1.4256 0.62241 1.07120 1,632.7 0.176460509.53 741 1.6192 0.61760 1,117.0 1,201.7 1.4254 0.62261 1.07190 1,632.6 0.176340509.68 742 1.6215 0.61672 1,116.9 1,201.7 1.4253 0.62280 1.07260 1,632.5 0.176220509.83 743 1.6238 0.61584 1,116.9 1,201.7 1.4252 0.62299 1.07330 1,632.4 0.176100509.98 744 1.6261 0.61496 1,116.9 1,201.6 1.4250 0.62318 1.07400 1,632.3 0.175980510.14 745 1.6284 0.61408 1,116.9 1,201.6 1.4249 0.62337 1.07470 1,632.2 0.175870510.29 746 1.6308 0.61321 1,116.9 1,201.6 1.4247 0.62356 1.07540 1,632.1 0.175750510.44 747 1.6331 0.61234 1,116.8 1,201.5 1.4246 0.62376 1.07610 1,632.1 0.175630510.59 748 1.6354 0.61147 1,116.8 1,201.5 1.4244 0.62395 1.07680 1,632.0 0.175510510.74 749 1.6377 0.61060 1,116.8 1,201.5 1.4243 0.62414 1.07760 1,631.9 0.175400510.89 750 1.6400 0.60974 1,116.8 1,201.5 1.4242 0.62433 1.07830 1,631.8 0.175280511.04 751 1.6424 0.60888 1,116.8 1,201.4 1.4240 0.62452 1.07900 1,631.7 0.175160511.20 752 1.6447 0.60802 1,116.8 1,201.4 1.4239 0.62471 1.07970 1,631.6 0.175050511.35 753 1.6470 0.60716 1,116.7 1,201.4 1.4237 0.62490 1.08040 1,631.5 0.174930

Page 218: Crane Fluid Flow Problems

511.50 754 1.6493 0.60631 1,116.7 1,201.4 1.4236 0.62509 1.08110 1,631.4 0.174820511.65 755 1.6517 0.60545 1,116.7 1,201.3 1.4234 0.62528 1.08180 1,631.3 0.174700511.80 756 1.6540 0.60460 1,116.7 1,201.3 1.4233 0.62547 1.08250 1,631.2 0.174590511.95 757 1.6563 0.60375 1,116.7 1,201.3 1.4232 0.62566 1.08330 1,631.1 0.174470512.10 758 1.6586 0.60290 1,116.6 1,201.3 1.4230 0.62585 1.08400 1,631.1 0.174360512.25 759 1.6610 0.60206 1,116.6 1,201.2 1.4229 0.62605 1.08470 1,631.0 0.174240512.40 760 1.6633 0.60122 1,116.6 1,201.2 1.4227 0.62624 1.08540 1,630.9 0.174130512.55 761 1.6656 0.60038 1,116.6 1,201.2 1.4226 0.62643 1.08610 1,630.8 0.174010512.70 762 1.6680 0.59954 1,116.6 1,201.2 1.4224 0.62662 1.08680 1,630.7 0.173900512.85 763 1.6703 0.59870 1,116.5 1,201.1 1.4223 0.62680 1.08750 1,630.6 0.173780512.99 764 1.6726 0.59787 1,116.5 1,201.1 1.4222 0.62699 1.08830 1,630.5 0.173670513.14 765 1.6749 0.59704 1,116.5 1,201.1 1.4220 0.62718 1.08900 1,630.4 0.173560513.29 766 1.6773 0.59621 1,116.5 1,201.0 1.4219 0.62737 1.08970 1,630.3 0.173440513.44 767 1.6796 0.59538 1,116.5 1,201.0 1.4217 0.62756 1.09040 1,630.2 0.173330513.59 768 1.6819 0.59455 1,116.4 1,201.0 1.4216 0.62775 1.09110 1,630.1 0.173220513.74 769 1.6843 0.59373 1,116.4 1,201.0 1.4215 0.62794 1.09180 1,630.0 0.173100513.89 770 1.6866 0.59291 1,116.4 1,200.9 1.4213 0.62813 1.09260 1,629.9 0.172990514.03 771 1.6889 0.59209 1,116.4 1,200.9 1.4212 0.62832 1.09330 1,629.9 0.172880514.18 772 1.6913 0.59127 1,116.4 1,200.9 1.4210 0.62851 1.09400 1,629.8 0.172770514.33 773 1.6936 0.59045 1,116.3 1,200.9 1.4209 0.62870 1.09470 1,629.7 0.172660514.48 774 1.6960 0.58964 1,116.3 1,200.8 1.4208 0.62889 1.09540 1,629.6 0.172540514.63 775 1.6983 0.58883 1,116.3 1,200.8 1.4206 0.62907 1.09610 1,629.5 0.172430514.77 776 1.7006 0.58802 1,116.3 1,200.8 1.4205 0.62926 1.09690 1,629.4 0.172320514.92 777 1.7030 0.58721 1,116.3 1,200.8 1.4203 0.62945 1.09760 1,629.3 0.172210515.07 778 1.7053 0.58641 1,116.2 1,200.7 1.4202 0.62964 1.09830 1,629.2 0.172100515.21 779 1.7076 0.58560 1,116.2 1,200.7 1.4201 0.62983 1.09900 1,629.1 0.171990515.36 780 1.7100 0.58480 1,116.2 1,200.7 1.4199 0.63001 1.09970 1,629.0 0.171880515.51 781 1.7123 0.58400 1,116.2 1,200.6 1.4198 0.63020 1.10050 1,628.9 0.171770515.65 782 1.7147 0.58320 1,116.2 1,200.6 1.4196 0.63039 1.10120 1,628.8 0.171660515.80 783 1.7170 0.58241 1,116.1 1,200.6 1.4195 0.63058 1.10190 1,628.7 0.171550515.95 784 1.7194 0.58161 1,116.1 1,200.6 1.4194 0.63077 1.10260 1,628.6 0.171440516.09 785 1.7217 0.58082 1,116.1 1,200.5 1.4192 0.63095 1.10340 1,628.5 0.171330516.24 786 1.7240 0.58003 1,116.1 1,200.5 1.4191 0.63114 1.10410 1,628.5 0.171220516.39 787 1.7264 0.57924 1,116.1 1,200.5 1.4189 0.63133 1.10480 1,628.4 0.171110516.53 788 1.7287 0.57846 1,116.0 1,200.4 1.4188 0.63152 1.10550 1,628.3 0.171000516.68 789 1.7311 0.57767 1,116.0 1,200.4 1.4187 0.63170 1.10620 1,628.2 0.170890516.82 790 1.7334 0.57689 1,116.0 1,200.4 1.4185 0.63189 1.10700 1,628.1 0.170780516.97 791 1.7358 0.57611 1,116.0 1,200.4 1.4184 0.63208 1.10770 1,628.0 0.170670517.11 792 1.7381 0.57533 1,116.0 1,200.3 1.4182 0.63226 1.10840 1,627.9 0.170560517.26 793 1.7405 0.57456 1,115.9 1,200.3 1.4181 0.63245 1.10910 1,627.8 0.170460517.40 794 1.7428 0.57378 1,115.9 1,200.3 1.4180 0.63264 1.10990 1,627.7 0.170350517.55 795 1.7452 0.57301 1,115.9 1,200.2 1.4178 0.63282 1.11060 1,627.6 0.170240517.69 796 1.7475 0.57224 1,115.9 1,200.2 1.4177 0.63301 1.11130 1,627.5 0.170130517.84 797 1.7499 0.57147 1,115.9 1,200.2 1.4176 0.63320 1.11200 1,627.4 0.170020517.98 798 1.7522 0.57070 1,115.8 1,200.2 1.4174 0.63338 1.11280 1,627.3 0.169920518.12 799 1.7546 0.56994 1,115.8 1,200.1 1.4173 0.63357 1.11350 1,627.2 0.169810518.27 800 1.7569 0.56917 1,115.8 1,200.1 1.4171 0.63375 1.11420 1,627.1 0.169700

Auxiliary Data( All data downloaded from NIST website: http://webbook.nist.gov/chemistry/fluid/ )

Reference States

Page 219: Crane Fluid Flow Problems

Internal energy U = 0.0Entropy S = 0.0

Additional fluid data

705.10

3200.1 psia

20.102

Acentric factor 0.3443

Normal boiling point 211.95

Dipole moment 1.855 Debye

at 273.16 K for saturated liquid.at 273.16 K for saturated liquid.

Critical temperature (Tc) oF

Critical pressure (Pc)

Critical density (Dc) lbm/ft3

oF

Page 220: Crane Fluid Flow Problems

Phase

0.10500 0.61838 0.0001 liquid0.10495 0.61826 0.0001 liquid0.10491 0.61815 0.0001 liquid0.10486 0.61803 0.0001 liquid0.10482 0.61792 0.0001 liquid0.10478 0.61780 0.0001 liquid0.10473 0.61769 0.0001 liquid0.10469 0.61757 0.0001 liquid0.10464 0.61745 0.0001 liquid0.10460 0.61734 0.0001 liquid0.10455 0.61722 0.0001 liquid0.10451 0.61711 0.0001 liquid0.10447 0.61699 0.0001 liquid0.10442 0.61688 0.0001 liquid0.10438 0.61676 0.0001 liquid0.10434 0.61665 0.0001 liquid0.10429 0.61653 0.0001 liquid0.10425 0.61642 0.0001 liquid0.10421 0.61630 0.0001 liquid0.10416 0.61619 0.0001 liquid0.10412 0.61607 0.0001 liquid0.10408 0.61596 0.0001 liquid0.10403 0.61584 0.0001 liquid0.10399 0.61573 0.0001 liquid0.10395 0.61561 0.0001 liquid0.10390 0.61550 0.0001 liquid0.10386 0.61538 0.0001 liquid0.10382 0.61527 0.0001 liquid0.10378 0.61515 0.0001 liquid0.10373 0.61504 0.0001 liquid0.10369 0.61492 0.0001 liquid0.10365 0.61480 0.0001 liquid0.10361 0.61469 0.0001 liquid0.10356 0.61458 0.0001 liquid0.10352 0.61446 0.0001 liquid0.10348 0.61435 0.0001 liquid0.10344 0.61423 0.0001 liquid0.10340 0.61412 0.0001 liquid0.10336 0.61400 0.0001 liquid0.10331 0.61389 0.0001 liquid0.10327 0.61377 0.0001 liquid0.10323 0.61366 0.0001 liquid0.10319 0.61354 0.0001 liquid0.10315 0.61343 0.0001 liquid0.10311 0.61331 0.0001 liquid0.10306 0.61320 0.0001 liquid0.10302 0.61308 0.0001 liquid

Viscosity (cP)

Therm. Cond.

(W/m*K)

Surf. Tension (lb/in)

Page 221: Crane Fluid Flow Problems

0.10298 0.61297 0.0001 liquid0.10294 0.61285 0.0001 liquid0.10290 0.61274 0.0001 liquid0.10286 0.61262 0.0001 liquid0.10282 0.61251 0.0001 liquid0.10278 0.61239 0.0001 liquid0.10274 0.61228 0.0001 liquid0.10270 0.61216 0.0001 liquid0.10266 0.61205 0.0001 liquid0.10262 0.61193 0.0001 liquid0.10257 0.61182 0.0001 liquid0.10253 0.61171 0.0001 liquid0.10249 0.61159 0.0001 liquid0.10245 0.61148 0.0001 liquid0.10241 0.61136 0.0001 liquid0.10237 0.61125 0.0001 liquid0.10233 0.61113 0.0001 liquid0.10229 0.61102 0.0001 liquid0.10225 0.61090 0.0001 liquid0.10221 0.61079 0.0001 liquid0.10217 0.61067 0.0001 liquid0.10213 0.61056 0.0001 liquid0.10210 0.61045 0.0001 liquid0.10206 0.61033 0.0001 liquid0.10202 0.61022 0.0001 liquid0.10198 0.61010 0.0001 liquid0.10194 0.60999 0.0001 liquid0.10190 0.60987 0.0001 liquid0.10186 0.60976 0.0001 liquid0.10182 0.60965 0.0001 liquid0.10178 0.60953 0.0001 liquid0.10174 0.60942 0.0001 liquid0.10170 0.60930 0.0001 liquid0.10166 0.60919 0.0001 liquid0.10162 0.60907 0.0001 liquid0.10159 0.60896 0.0001 liquid0.10155 0.60885 0.0001 liquid0.10151 0.60873 0.0001 liquid0.10147 0.60862 0.0001 liquid0.10143 0.60850 0.0001 liquid0.10139 0.60839 0.0001 liquid0.10135 0.60827 0.0001 liquid0.10132 0.60816 0.0001 liquid0.10128 0.60805 0.0001 liquid0.10124 0.60793 0.0001 liquid0.10120 0.60782 0.0001 liquid0.10116 0.60770 0.0001 liquid0.10113 0.60759 0.0001 liquid0.10109 0.60748 0.0001 liquid0.10105 0.60736 0.0001 liquid0.10101 0.60725 0.0001 liquid0.10097 0.60713 0.0001 liquid

Page 222: Crane Fluid Flow Problems

0.10094 0.60702 0.0001 liquid0.10090 0.60691 0.0001 liquid0.10086 0.60679 0.0001 liquid0.10082 0.60668 0.0001 liquid0.10079 0.60656 0.0001 liquid0.10075 0.60645 0.0001 liquid0.10071 0.60634 0.0001 liquid0.10067 0.60622 0.0001 liquid0.10064 0.60611 0.0001 liquid0.10060 0.60600 0.0001 liquid0.10056 0.60588 0.0001 liquid0.10053 0.60577 0.0001 liquid0.10049 0.60565 0.0001 liquid0.10045 0.60554 0.0001 liquid0.10041 0.60543 0.0001 liquid0.10038 0.60531 0.0001 liquid0.10034 0.60520 0.0001 liquid0.10030 0.60509 0.0001 liquid0.10027 0.60497 0.0001 liquid0.10023 0.60486 0.0001 liquid0.10019 0.60474 0.0001 liquid0.10016 0.60463 0.0001 liquid0.10012 0.60452 0.0001 liquid0.10009 0.60440 0.0001 liquid0.10005 0.60429 0.0001 liquid0.10001 0.60418 0.0001 liquid0.09998 0.60406 0.0001 liquid0.09994 0.60395 0.0001 liquid0.09990 0.60384 0.0001 liquid0.09987 0.60372 0.0001 liquid0.09983 0.60361 0.0001 liquid0.09980 0.60350 0.0001 liquid0.09976 0.60338 0.0001 liquid0.09972 0.60327 0.0001 liquid0.09969 0.60315 0.0001 liquid0.09965 0.60304 0.0001 liquid0.09962 0.60293 0.0001 liquid0.09958 0.60281 0.0001 liquid0.09955 0.60270 0.0001 liquid0.09951 0.60259 0.0001 liquid0.09948 0.60247 0.0001 liquid0.09944 0.60236 0.0001 liquid0.09940 0.60225 0.0001 liquid0.09937 0.60213 0.0001 liquid0.09933 0.60202 0.0001 liquid0.09930 0.60191 0.0001 liquid0.09926 0.60179 0.0001 liquid0.09923 0.60168 0.0001 liquid0.09919 0.60157 0.0001 liquid0.09916 0.60145 0.0001 liquid0.09912 0.60134 0.0001 liquid0.09909 0.60123 0.0001 liquid

Page 223: Crane Fluid Flow Problems

0.09905 0.60112 0.0001 liquid0.09902 0.60100 0.0001 liquid0.09898 0.60089 0.0001 liquid0.09895 0.60078 0.0001 liquid0.09891 0.60066 0.0001 liquid0.09888 0.60055 0.0001 liquid0.09885 0.60044 0.0001 liquid0.09881 0.60032 0.0001 liquid0.09878 0.60021 0.0001 liquid0.09874 0.60010 0.0001 liquid0.09871 0.59998 0.0001 liquid0.09867 0.59987 0.0001 liquid0.09864 0.59976 0.0001 liquid0.09860 0.59965 0.0001 liquid0.09857 0.59953 0.0001 liquid0.09854 0.59942 0.0001 liquid0.09850 0.59931 0.0001 liquid0.09847 0.59919 0.0001 liquid0.09843 0.59908 0.0001 liquid0.09840 0.59897 0.0001 liquid0.09837 0.59886 0.0001 liquid0.09833 0.59874 0.0001 liquid0.09830 0.59863 0.0001 liquid0.09827 0.59852 0.0001 liquid0.09823 0.59840 0.0001 liquid0.09820 0.59829 0.0001 liquid0.09816 0.59818 0.0001 liquid0.09813 0.59807 0.0001 liquid0.09810 0.59795 0.0001 liquid0.09806 0.59784 0.0001 liquid0.09803 0.59773 0.0001 liquid0.09800 0.59761 0.0001 liquid0.09796 0.59750 0.0001 liquid0.09793 0.59739 0.0001 liquid0.09790 0.59728 0.0001 liquid0.09786 0.59716 0.0001 liquid0.09783 0.59705 0.0001 liquid0.09780 0.59694 0.0001 liquid0.09776 0.59683 0.0001 liquid0.09773 0.59671 0.0001 liquid0.09770 0.59660 0.0001 liquid0.09767 0.59649 0.0001 liquid0.09763 0.59638 0.0001 liquid0.09760 0.59626 0.0001 liquid0.09757 0.59615 0.0001 liquid0.09753 0.59604 0.0001 liquid0.09750 0.59593 0.0001 liquid0.09747 0.59581 0.0001 liquid0.09744 0.59570 0.0001 liquid

Page 224: Crane Fluid Flow Problems

Phase

0.01759 0.05192 vapor0.01759 0.05195 vapor0.01760 0.05197 vapor0.01760 0.05200 vapor0.01760 0.05203 vapor0.01761 0.05205 vapor0.01761 0.05208 vapor0.01761 0.05211 vapor0.01762 0.05213 vapor0.01762 0.05216 vapor0.01763 0.05219 vapor0.01763 0.05221 vapor0.01763 0.05224 vapor0.01764 0.05227 vapor0.01764 0.05229 vapor0.01764 0.05232 vapor0.01765 0.05235 vapor0.01765 0.05237 vapor0.01765 0.05240 vapor0.01766 0.05243 vapor0.01766 0.05246 vapor0.01767 0.05248 vapor0.01767 0.05251 vapor0.01767 0.05254 vapor0.01768 0.05256 vapor0.01768 0.05259 vapor0.01768 0.05262 vapor0.01769 0.05264 vapor0.01769 0.05267 vapor0.01770 0.05269 vapor0.01770 0.05272 vapor0.01770 0.05275 vapor0.01771 0.05277 vapor0.01771 0.05280 vapor0.01771 0.05283 vapor0.01772 0.05285 vapor0.01772 0.05288 vapor0.01772 0.05291 vapor0.01773 0.05293 vapor0.01773 0.05296 vapor0.01774 0.05299 vapor0.01774 0.05301 vapor0.01774 0.05304 vapor0.01775 0.05307 vapor0.01775 0.05309 vapor0.01775 0.05312 vapor0.01776 0.05315 vapor0.01776 0.05317 vapor0.01776 0.05320 vapor

Viscosity (cP)

Therm. Cond.

(W/m*K)

Page 225: Crane Fluid Flow Problems

0.01777 0.05323 vapor0.01777 0.05325 vapor0.01778 0.05328 vapor0.01778 0.05331 vapor0.01778 0.05333 vapor0.01779 0.05336 vapor0.01779 0.05338 vapor0.01779 0.05341 vapor0.01780 0.05344 vapor0.01780 0.05346 vapor0.01780 0.05349 vapor0.01781 0.05352 vapor0.01781 0.05354 vapor0.01782 0.05357 vapor0.01782 0.05360 vapor0.01782 0.05362 vapor0.01783 0.05365 vapor0.01783 0.05368 vapor0.01783 0.05370 vapor0.01784 0.05373 vapor0.01784 0.05375 vapor0.01784 0.05378 vapor0.01785 0.05381 vapor0.01785 0.05383 vapor0.01785 0.05386 vapor0.01786 0.05389 vapor0.01786 0.05391 vapor0.01786 0.05394 vapor0.01787 0.05397 vapor0.01787 0.05399 vapor0.01788 0.05402 vapor0.01788 0.05404 vapor0.01788 0.05407 vapor0.01789 0.05410 vapor0.01789 0.05412 vapor0.01789 0.05415 vapor0.01790 0.05418 vapor0.01790 0.05420 vapor0.01790 0.05423 vapor0.01791 0.05425 vapor0.01791 0.05428 vapor0.01791 0.05431 vapor0.01792 0.05433 vapor0.01792 0.05436 vapor0.01792 0.05439 vapor0.01793 0.05441 vapor0.01793 0.05444 vapor0.01794 0.05446 vapor0.01794 0.05449 vapor0.01794 0.05452 vapor0.01795 0.05454 vapor0.01795 0.05457 vapor

Page 226: Crane Fluid Flow Problems

0.01795 0.05460 vapor0.01796 0.05462 vapor0.01796 0.05465 vapor0.01796 0.05467 vapor0.01797 0.05470 vapor0.01797 0.05473 vapor0.01797 0.05475 vapor0.01798 0.05478 vapor0.01798 0.05481 vapor0.01798 0.05483 vapor0.01799 0.05486 vapor0.01799 0.05488 vapor0.01799 0.05491 vapor0.01800 0.05494 vapor0.01800 0.05496 vapor0.01800 0.05499 vapor0.01801 0.05502 vapor0.01801 0.05504 vapor0.01801 0.05507 vapor0.01802 0.05509 vapor0.01802 0.05512 vapor0.01803 0.05515 vapor0.01803 0.05517 vapor0.01803 0.05520 vapor0.01804 0.05522 vapor0.01804 0.05525 vapor0.01804 0.05528 vapor0.01805 0.05530 vapor0.01805 0.05533 vapor0.01805 0.05536 vapor0.01806 0.05538 vapor0.01806 0.05541 vapor0.01806 0.05543 vapor0.01807 0.05546 vapor0.01807 0.05549 vapor0.01807 0.05551 vapor0.01808 0.05554 vapor0.01808 0.05557 vapor0.01808 0.05559 vapor0.01809 0.05562 vapor0.01809 0.05564 vapor0.01809 0.05567 vapor0.01810 0.05570 vapor0.01810 0.05572 vapor0.01810 0.05575 vapor0.01811 0.05577 vapor0.01811 0.05580 vapor0.01811 0.05583 vapor0.01812 0.05585 vapor0.01812 0.05588 vapor0.01812 0.05591 vapor0.01813 0.05593 vapor

Page 227: Crane Fluid Flow Problems

0.01813 0.05596 vapor0.01813 0.05598 vapor0.01814 0.05601 vapor0.01814 0.05604 vapor0.01814 0.05606 vapor0.01815 0.05609 vapor0.01815 0.05611 vapor0.01815 0.05614 vapor0.01816 0.05617 vapor0.01816 0.05619 vapor0.01816 0.05622 vapor0.01817 0.05624 vapor0.01817 0.05627 vapor0.01817 0.05630 vapor0.01818 0.05632 vapor0.01818 0.05635 vapor0.01818 0.05638 vapor0.01819 0.05640 vapor0.01819 0.05643 vapor0.01819 0.05645 vapor0.01820 0.05648 vapor0.01820 0.05651 vapor0.01820 0.05653 vapor0.01821 0.05656 vapor0.01821 0.05658 vapor0.01821 0.05661 vapor0.01822 0.05664 vapor0.01822 0.05666 vapor0.01822 0.05669 vapor0.01823 0.05672 vapor0.01823 0.05674 vapor0.01823 0.05677 vapor0.01824 0.05679 vapor0.01824 0.05682 vapor0.01824 0.05685 vapor0.01825 0.05687 vapor0.01825 0.05690 vapor0.01825 0.05692 vapor0.01826 0.05695 vapor0.01826 0.05698 vapor0.01826 0.05700 vapor0.01827 0.05703 vapor0.01827 0.05706 vapor0.01827 0.05708 vapor0.01828 0.05711 vapor0.01828 0.05713 vapor0.01828 0.05716 vapor

Page 228: Crane Fluid Flow Problems

Super Heated Steam DataIsobaric Data for P = 614.70 psia7.57 5.57 6.14 7.71 6.43 6.29 7.29 7.43 7.43 6.71 7.71 7.14

480 614.7 50.00 0.0200 462.51 464.78 0.66505 0.75510 1.1601 3,788.3 3.08E-05 0.10672481 614.7 49.95 0.0200 463.66 465.94 0.66628 0.75474 1.1616 3,780.1 4.98E-05 0.10645482 614.7 49.89 0.0200 464.82 467.11 0.66752 0.75438 1.1631 3,771.9 6.90E-05 0.10619483 614.7 49.84 0.0201 465.99 468.27 0.66875 0.75402 1.1647 3,763.6 8.83E-05 0.10592484 614.7 49.78 0.0201 467.15 469.44 0.66999 0.75366 1.1662 3,755.3 0.000108 0.10566485 614.7 49.73 0.0201 468.31 470.60 0.67122 0.75331 1.1678 3,746.9 0.000128 0.10540486 614.7 49.67 0.0201 469.48 471.77 0.67246 0.75296 1.1694 3,738.6 0.000148 0.10514487 614.7 49.62 0.0202 470.65 472.94 0.67370 0.75261 1.1710 3,730.1 0.000168 0.10487488 614.7 49.56 0.0202 471.82 474.11 0.67493 0.75226 1.1726 3,721.7 0.000188 0.10461

488.85 614.7 49.52 0.0202 472.82 475.12 0.67599 0.75196 1.1740 3,714.4 0.000206 0.10439488.85 614.7 1.331 0.7511 1,118.9 1,204.4 1.4449 0.59733 0.98431 1,643.0 0.19326 0.01764

489 614.7 1.331 0.7514 1,119.0 1,204.5 1.4450 0.59671 0.98299 1,643.4 0.19318 0.01764490 614.7 1.328 0.7533 1,119.8 1,205.5 1.4460 0.59254 0.97409 1,646.0 0.19265 0.01767491 614.7 1.324 0.7551 1,120.5 1,206.5 1.4471 0.58856 0.96557 1,648.6 0.19211 0.01770492 614.7 1.321 0.7570 1,121.3 1,207.5 1.4481 0.58474 0.95740 1,651.1 0.19157 0.01773493 614.7 1.318 0.7588 1,122.0 1,208.4 1.4491 0.58109 0.94955 1,653.6 0.19102 0.01775494 614.7 1.315 0.7606 1,122.8 1,209.4 1.4501 0.57759 0.94200 1,656.0 0.19048 0.01778495 614.7 1.312 0.7624 1,123.5 1,210.3 1.4510 0.57423 0.93474 1,658.5 0.18993 0.01781496 614.7 1.309 0.7642 1,124.2 1,211.2 1.4520 0.57100 0.92775 1,660.8 0.18938 0.01784497 614.7 1.306 0.7660 1,125.0 1,212.2 1.4530 0.56790 0.92101 1,663.2 0.18882 0.01786498 614.7 1.303 0.7678 1,125.7 1,213.1 1.4539 0.56491 0.91450 1,665.5 0.18827 0.01789499 614.7 1.300 0.7695 1,126.4 1,214.0 1.4549 0.56203 0.90822 1,667.8 0.18771 0.01792500 614.7 1.297 0.7713 1,127.1 1,214.9 1.4558 0.55926 0.90215 1,670.1 0.18715 0.01795501 614.7 1.294 0.7730 1,127.8 1,215.8 1.4568 0.55658 0.89628 1,672.3 0.18660 0.01797502 614.7 1.291 0.7748 1,128.5 1,216.7 1.4577 0.55400 0.89060 1,674.5 0.18604 0.01800503 614.7 1.288 0.7765 1,129.2 1,217.6 1.4586 0.55150 0.88509 1,676.7 0.18548 0.01803504 614.7 1.285 0.7782 1,129.9 1,218.4 1.4595 0.54908 0.87975 1,678.8 0.18492 0.01806505 614.7 1.282 0.7800 1,130.5 1,219.3 1.4605 0.54674 0.87457 1,681.0 0.18436 0.01808506 614.7 1.279 0.7817 1,131.2 1,220.2 1.4614 0.54448 0.86954 1,683.1 0.18380 0.01811507 614.7 1.277 0.7834 1,131.9 1,221.1 1.4623 0.54228 0.86465 1,685.2 0.18324 0.01814508 614.7 1.274 0.7851 1,132.6 1,221.9 1.4631 0.54015 0.85990 1,687.3 0.18269 0.01816509 614.7 1.271 0.7867 1,133.2 1,222.8 1.4640 0.53808 0.85528 1,689.3 0.18213 0.01819510 614.7 1.268 0.7884 1,133.9 1,223.6 1.4649 0.53606 0.85078 1,691.4 0.18157 0.01822511 614.7 1.266 0.7901 1,134.6 1,224.5 1.4658 0.53411 0.84639 1,693.4 0.18102 0.01825512 614.7 1.263 0.7918 1,135.2 1,225.3 1.4667 0.53221 0.84212 1,695.4 0.18046 0.01827513 614.7 1.260 0.7934 1,135.9 1,226.2 1.4675 0.53035 0.83796 1,697.4 0.17991 0.01830514 614.7 1.258 0.7951 1,136.5 1,227.0 1.4684 0.52855 0.83389 1,699.4 0.17936 0.01833515 614.7 1.255 0.7967 1,137.2 1,227.8 1.4692 0.52679 0.82993 1,701.3 0.17881 0.01835516 614.7 1.253 0.7983 1,137.8 1,228.7 1.4701 0.52508 0.82606 1,703.3 0.17826 0.01838517 614.7 1.250 0.8000 1,138.4 1,229.5 1.4709 0.52340 0.82227 1,705.2 0.17771 0.01841518 614.7 1.248 0.8016 1,139.1 1,230.3 1.4718 0.52177 0.81857 1,707.1 0.17716 0.01843519 614.7 1.245 0.8032 1,139.7 1,231.1 1.4726 0.52018 0.81496 1,709.0 0.17662 0.01846520 614.7 1.243 0.8048 1,140.3 1,231.9 1.4734 0.51862 0.81142 1,710.9 0.17607 0.01849521 614.7 1.240 0.8064 1,141.0 1,232.8 1.4743 0.51709 0.80796 1,712.7 0.17553 0.01852522 614.7 1.238 0.8080 1,141.6 1,233.6 1.4751 0.51560 0.80457 1,714.6 0.17499 0.01854523 614.7 1.235 0.8096 1,142.2 1,234.4 1.4759 0.51414 0.80125 1,716.4 0.17445 0.01857524 614.7 1.233 0.8112 1,142.8 1,235.2 1.4767 0.51271 0.79800 1,718.3 0.17391 0.01860525 614.7 1.230 0.8128 1,143.4 1,236.0 1.4775 0.51132 0.79481 1,720.1 0.17337 0.01862526 614.7 1.228 0.8144 1,144.1 1,236.7 1.4783 0.50995 0.79168 1,721.9 0.17284 0.01865527 614.7 1.226 0.8159 1,144.7 1,237.5 1.4791 0.50860 0.78862 1,723.7 0.17230 0.01868

Temperature oF

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Viscosity (cP)

Page 229: Crane Fluid Flow Problems

528 614.7 1.223 0.8175 1,145.3 1,238.3 1.4799 0.50729 0.78561 1,725.5 0.17177 0.01870529 614.7 1.221 0.8191 1,145.9 1,239.1 1.4807 0.50599 0.78266 1,727.3 0.17124 0.01873530 614.7 1.219 0.8206 1,146.5 1,239.9 1.4815 0.50473 0.77977 1,729.1 0.17071 0.01876531 614.7 1.216 0.8222 1,147.1 1,240.7 1.4823 0.50349 0.77692 1,730.8 0.17018 0.01878532 614.7 1.214 0.8237 1,147.7 1,241.4 1.4831 0.50226 0.77413 1,732.6 0.16966 0.01881533 614.7 1.212 0.8253 1,148.3 1,242.2 1.4839 0.50107 0.77139 1,734.3 0.16914 0.01884534 614.7 1.210 0.8268 1,148.9 1,243.0 1.4846 0.49989 0.76870 1,736.0 0.16861 0.01886535 614.7 1.207 0.8284 1,149.5 1,243.8 1.4854 0.49873 0.76605 1,737.8 0.16809 0.01889536 614.7 1.205 0.8299 1,150.1 1,244.5 1.4862 0.49760 0.76344 1,739.5 0.16758 0.01892537 614.7 1.203 0.8314 1,150.6 1,245.3 1.4869 0.49648 0.76089 1,741.2 0.16706 0.01894538 614.7 1.201 0.8329 1,151.2 1,246.0 1.4877 0.49538 0.75837 1,742.9 0.16655 0.01897539 614.7 1.198 0.8344 1,151.8 1,246.8 1.4885 0.49430 0.75589 1,744.6 0.16603 0.01900540 614.7 1.196 0.8360 1,152.4 1,247.6 1.4892 0.49324 0.75346 1,746.2 0.16552 0.01902541 614.7 1.194 0.8375 1,153.0 1,248.3 1.4900 0.49219 0.75106 1,747.9 0.16501 0.01905542 614.7 1.192 0.8390 1,153.6 1,249.1 1.4907 0.49117 0.74870 1,749.6 0.16451 0.01907543 614.7 1.190 0.8405 1,154.1 1,249.8 1.4915 0.49015 0.74638 1,751.2 0.16400 0.01910544 614.7 1.188 0.8420 1,154.7 1,250.5 1.4922 0.48916 0.74410 1,752.9 0.16350 0.01913545 614.7 1.186 0.8435 1,155.3 1,251.3 1.4929 0.48818 0.74185 1,754.5 0.16300 0.01915546 614.7 1.184 0.8449 1,155.9 1,252.0 1.4937 0.48721 0.73963 1,756.2 0.16250 0.01918547 614.7 1.181 0.8464 1,156.4 1,252.8 1.4944 0.48626 0.73745 1,757.8 0.16200 0.01921548 614.7 1.179 0.8479 1,157.0 1,253.5 1.4951 0.48532 0.73530 1,759.4 0.16150 0.01923549 614.7 1.177 0.8494 1,157.6 1,254.2 1.4959 0.48440 0.73319 1,761.0 0.16101 0.01926550 614.7 1.175 0.8509 1,158.1 1,255.0 1.4966 0.48349 0.73110 1,762.6 0.16052 0.01929551 614.7 1.173 0.8523 1,158.7 1,255.7 1.4973 0.48259 0.72905 1,764.2 0.16002 0.01931552 614.7 1.171 0.8538 1,159.2 1,256.4 1.4980 0.48171 0.72702 1,765.8 0.15954 0.01934553 614.7 1.169 0.8553 1,159.8 1,257.2 1.4988 0.48084 0.72502 1,767.4 0.15905 0.01936554 614.7 1.167 0.8567 1,160.4 1,257.9 1.4995 0.47998 0.72306 1,769.0 0.15856 0.01939555 614.7 1.165 0.8582 1,160.9 1,258.6 1.5002 0.47913 0.72112 1,770.6 0.15808 0.01942556 614.7 1.163 0.8596 1,161.5 1,259.3 1.5009 0.47830 0.71920 1,772.1 0.15760 0.01944557 614.7 1.161 0.8611 1,162.0 1,260.0 1.5016 0.47748 0.71732 1,773.7 0.15712 0.01947558 614.7 1.159 0.8625 1,162.6 1,260.8 1.5023 0.47667 0.71546 1,775.3 0.15664 0.01950559 614.7 1.158 0.8639 1,163.1 1,261.5 1.5030 0.47587 0.71362 1,776.8 0.15616 0.01952560 614.7 1.156 0.8654 1,163.7 1,262.2 1.5037 0.47508 0.71181 1,778.3 0.15569 0.01955561 614.7 1.154 0.8668 1,164.2 1,262.9 1.5044 0.47430 0.71003 1,779.9 0.15522 0.01957562 614.7 1.152 0.8682 1,164.8 1,263.6 1.5051 0.47353 0.70826 1,781.4 0.15475 0.01960563 614.7 1.150 0.8697 1,165.3 1,264.3 1.5058 0.47277 0.70653 1,782.9 0.15428 0.01963564 614.7 1.148 0.8711 1,165.9 1,265.0 1.5065 0.47202 0.70481 1,784.5 0.15381 0.01965565 614.7 1.146 0.8725 1,166.4 1,265.7 1.5072 0.47129 0.70312 1,786.0 0.15334 0.01968566 614.7 1.144 0.8739 1,166.9 1,266.4 1.5079 0.47056 0.70145 1,787.5 0.15288 0.01970567 614.7 1.142 0.8754 1,167.5 1,267.1 1.5085 0.46984 0.69980 1,789.0 0.15242 0.01973568 614.7 1.141 0.8768 1,168.0 1,267.8 1.5092 0.46913 0.69818 1,790.5 0.15196 0.01976569 614.7 1.139 0.8782 1,168.6 1,268.5 1.5099 0.46843 0.69657 1,792.0 0.15150 0.01978570 614.7 1.137 0.8796 1,169.1 1,269.2 1.5106 0.46774 0.69499 1,793.5 0.15104 0.01981571 614.7 1.135 0.8810 1,169.6 1,269.9 1.5112 0.46706 0.69342 1,795.0 0.15059 0.01983572 614.7 1.133 0.8824 1,170.2 1,270.6 1.5119 0.46638 0.69188 1,796.4 0.15013 0.01986573 614.7 1.132 0.8838 1,170.7 1,271.3 1.5126 0.46572 0.69035 1,797.9 0.14968 0.01989574 614.7 1.130 0.8852 1,171.2 1,272.0 1.5133 0.46506 0.68884 1,799.4 0.14923 0.01991575 614.7 1.128 0.8866 1,171.8 1,272.7 1.5139 0.46442 0.68736 1,800.8 0.14879 0.01994576 614.7 1.126 0.8880 1,172.3 1,273.4 1.5146 0.46378 0.68589 1,802.3 0.14834 0.01996577 614.7 1.124 0.8893 1,172.8 1,274.0 1.5152 0.46314 0.68444 1,803.7 0.14789 0.01999578 614.7 1.123 0.8907 1,173.3 1,274.7 1.5159 0.46252 0.68301 1,805.2 0.14745 0.02002579 614.7 1.121 0.8921 1,173.9 1,275.4 1.5166 0.46190 0.68159 1,806.6 0.14701 0.02004580 614.7 1.119 0.8935 1,174.4 1,276.1 1.5172 0.46130 0.68019 1,808.1 0.14657 0.02007581 614.7 1.118 0.8949 1,174.9 1,276.8 1.5179 0.46070 0.67881 1,809.5 0.14613 0.02009

Page 230: Crane Fluid Flow Problems

582 614.7 1.116 0.8962 1,175.4 1,277.5 1.5185 0.46010 0.67745 1,810.9 0.14570 0.02012583 614.7 1.114 0.8976 1,176.0 1,278.1 1.5192 0.45952 0.67610 1,812.4 0.14526 0.02015584 614.7 1.112 0.8990 1,176.5 1,278.8 1.5198 0.45894 0.67477 1,813.8 0.14483 0.02017585 614.7 1.111 0.9003 1,177.0 1,279.5 1.5205 0.45837 0.67345 1,815.2 0.14440 0.02020586 614.7 1.109 0.9017 1,177.5 1,280.2 1.5211 0.45780 0.67215 1,816.6 0.14397 0.02022587 614.7 1.107 0.9031 1,178.0 1,280.8 1.5217 0.45724 0.67087 1,818.0 0.14354 0.02025588 614.7 1.106 0.9044 1,178.5 1,281.5 1.5224 0.45669 0.66960 1,819.4 0.14312 0.02027589 614.7 1.104 0.9058 1,179.1 1,282.2 1.5230 0.45615 0.66834 1,820.8 0.14269 0.02030590 614.7 1.102 0.9071 1,179.6 1,282.8 1.5237 0.45561 0.66710 1,822.2 0.14227 0.02033591 614.7 1.101 0.9085 1,180.1 1,283.5 1.5243 0.45508 0.66588 1,823.6 0.14185 0.02035592 614.7 1.099 0.9098 1,180.6 1,284.2 1.5249 0.45455 0.66467 1,825.0 0.14143 0.02038593 614.7 1.098 0.9112 1,181.1 1,284.8 1.5256 0.45403 0.66347 1,826.4 0.14101 0.02040594 614.7 1.096 0.9125 1,181.6 1,285.5 1.5262 0.45352 0.66229 1,827.8 0.14060 0.02043595 614.7 1.094 0.9139 1,182.1 1,286.1 1.5268 0.45301 0.66112 1,829.1 0.14018 0.02045596 614.7 1.093 0.9152 1,182.6 1,286.8 1.5274 0.45251 0.65996 1,830.5 0.13977 0.02048597 614.7 1.091 0.9165 1,183.1 1,287.5 1.5281 0.45202 0.65882 1,831.9 0.13936 0.02051598 614.7 1.090 0.9179 1,183.6 1,288.1 1.5287 0.45153 0.65769 1,833.3 0.13895 0.02053599 614.7 1.088 0.9192 1,184.2 1,288.8 1.5293 0.45105 0.65657 1,834.6 0.13854 0.02056600 614.7 1.086 0.9205 1,184.7 1,289.4 1.5299 0.45057 0.65547 1,836.0 0.13814 0.02058601 614.7 1.085 0.9219 1,185.2 1,290.1 1.5305 0.45010 0.65438 1,837.3 0.13773 0.02061602 614.7 1.083 0.9232 1,185.7 1,290.7 1.5312 0.44963 0.65330 1,838.7 0.13733 0.02063603 614.7 1.082 0.9245 1,186.2 1,291.4 1.5318 0.44917 0.65223 1,840.0 0.13693 0.02066604 614.7 1.080 0.9259 1,186.7 1,292.1 1.5324 0.44872 0.65117 1,841.4 0.13653 0.02069605 614.7 1.079 0.9272 1,187.2 1,292.7 1.5330 0.44827 0.65013 1,842.7 0.13613 0.02071606 614.7 1.077 0.9285 1,187.7 1,293.4 1.5336 0.44783 0.64910 1,844.0 0.13573 0.02074607 614.7 1.076 0.9298 1,188.2 1,294.0 1.5342 0.44739 0.64808 1,845.4 0.13534 0.02076608 614.7 1.074 0.9311 1,188.7 1,294.7 1.5348 0.44695 0.64707 1,846.7 0.13495 0.02079609 614.7 1.073 0.9324 1,189.2 1,295.3 1.5354 0.44652 0.64607 1,848.0 0.13455 0.02081610 614.7 1.071 0.9337 1,189.7 1,295.9 1.5360 0.44610 0.64508 1,849.3 0.13416 0.02084611 614.7 1.070 0.9351 1,190.2 1,296.6 1.5366 0.44568 0.64410 1,850.6 0.13378 0.02086612 614.7 1.068 0.9364 1,190.6 1,297.2 1.5372 0.44527 0.64314 1,852.0 0.13339 0.02089613 614.7 1.067 0.9377 1,191.1 1,297.9 1.5378 0.44486 0.64218 1,853.3 0.13300 0.02092614 614.7 1.065 0.9390 1,191.6 1,298.5 1.5384 0.44445 0.64124 1,854.6 0.13262 0.02094615 614.7 1.064 0.9403 1,192.1 1,299.2 1.5390 0.44405 0.64030 1,855.9 0.13224 0.02097616 614.7 1.062 0.9416 1,192.6 1,299.8 1.5396 0.44366 0.63937 1,857.2 0.13185 0.02099617 614.7 1.061 0.9429 1,193.1 1,300.4 1.5402 0.44327 0.63846 1,858.5 0.13147 0.02102618 614.7 1.059 0.9442 1,193.6 1,301.1 1.5408 0.44288 0.63755 1,859.8 0.13110 0.02104619 614.7 1.058 0.9455 1,194.1 1,301.7 1.5414 0.44250 0.63666 1,861.1 0.13072 0.02107620 614.7 1.056 0.9468 1,194.6 1,302.3 1.5420 0.44212 0.63577 1,862.4 0.13034 0.02109621 614.7 1.055 0.9480 1,195.1 1,303.0 1.5426 0.44175 0.63489 1,863.6 0.12997 0.02112622 614.7 1.053 0.9493 1,195.6 1,303.6 1.5432 0.44138 0.63403 1,864.9 0.12960 0.02114623 614.7 1.052 0.9506 1,196.0 1,304.2 1.5438 0.44102 0.63317 1,866.2 0.12923 0.02117624 614.7 1.051 0.9519 1,196.5 1,304.9 1.5443 0.44066 0.63232 1,867.5 0.12886 0.02119625 614.7 1.049 0.9532 1,197.0 1,305.5 1.5449 0.44030 0.63148 1,868.7 0.12849 0.02122626 614.7 1.048 0.9545 1,197.5 1,306.1 1.5455 0.43995 0.63065 1,870.0 0.12812 0.02125627 614.7 1.046 0.9557 1,198.0 1,306.8 1.5461 0.43960 0.62982 1,871.3 0.12776 0.02127628 614.7 1.045 0.9570 1,198.5 1,307.4 1.5467 0.43926 0.62901 1,872.5 0.12740 0.02130629 614.7 1.044 0.9583 1,199.0 1,308.0 1.5472 0.43892 0.62820 1,873.8 0.12703 0.02132630 614.7 1.042 0.9596 1,199.4 1,308.7 1.5478 0.43858 0.62741 1,875.1 0.12667 0.02135631 614.7 1.041 0.9609 1,199.9 1,309.3 1.5484 0.43825 0.62662 1,876.3 0.12631 0.02137632 614.7 1.039 0.9621 1,200.4 1,309.9 1.5490 0.43792 0.62584 1,877.6 0.12596 0.02140633 614.7 1.038 0.9634 1,200.9 1,310.5 1.5495 0.43760 0.62506 1,878.8 0.12560 0.02142634 614.7 1.037 0.9647 1,201.4 1,311.2 1.5501 0.43728 0.62430 1,880.1 0.12525 0.02145635 614.7 1.035 0.9659 1,201.8 1,311.8 1.5507 0.43696 0.62354 1,881.3 0.12489 0.02147

Page 231: Crane Fluid Flow Problems

636 614.7 1.034 0.9672 1,202.3 1,312.4 1.5513 0.43665 0.62279 1,882.5 0.12454 0.02150637 614.7 1.033 0.9685 1,202.8 1,313.0 1.5518 0.43634 0.62205 1,883.8 0.12419 0.02152638 614.7 1.031 0.9697 1,203.3 1,313.7 1.5524 0.43603 0.62131 1,885.0 0.12384 0.02155639 614.7 1.030 0.9710 1,203.8 1,314.3 1.5530 0.43573 0.62059 1,886.2 0.12349 0.02157640 614.7 1.029 0.9722 1,204.2 1,314.9 1.5535 0.43543 0.61987 1,887.5 0.12314 0.02160641 614.7 1.027 0.9735 1,204.7 1,315.5 1.5541 0.43514 0.61916 1,888.7 0.12280 0.02162642 614.7 1.026 0.9748 1,205.2 1,316.1 1.5546 0.43484 0.61845 1,889.9 0.12246 0.02165643 614.7 1.025 0.9760 1,205.7 1,316.8 1.5552 0.43455 0.61775 1,891.1 0.12211 0.02167644 614.7 1.023 0.9773 1,206.1 1,317.4 1.5558 0.43427 0.61706 1,892.4 0.12177 0.02170645 614.7 1.022 0.9785 1,206.6 1,318.0 1.5563 0.43399 0.61638 1,893.6 0.12143 0.02173646 614.7 1.021 0.9798 1,207.1 1,318.6 1.5569 0.43371 0.61570 1,894.8 0.12109 0.02175647 614.7 1.019 0.9810 1,207.6 1,319.2 1.5574 0.43343 0.61503 1,896.0 0.12076 0.02178648 614.7 1.018 0.9823 1,208.0 1,319.8 1.5580 0.43316 0.61437 1,897.2 0.12042 0.02180649 614.7 1.017 0.9835 1,208.5 1,320.4 1.5585 0.43289 0.61371 1,898.4 0.12009 0.02183650 614.7 1.016 0.9848 1,209.0 1,321.1 1.5591 0.43262 0.61306 1,899.6 0.11975 0.02185651 614.7 1.014 0.9860 1,209.4 1,321.7 1.5596 0.43236 0.61242 1,900.8 0.11942 0.02188652 614.7 1.013 0.9872 1,209.9 1,322.3 1.5602 0.43210 0.61178 1,902.0 0.11909 0.02190653 614.7 1.012 0.9885 1,210.4 1,322.9 1.5607 0.43184 0.61115 1,903.2 0.11876 0.02193654 614.7 1.010 0.9897 1,210.9 1,323.5 1.5613 0.43159 0.61052 1,904.4 0.11843 0.02195655 614.7 1.009 0.9910 1,211.3 1,324.1 1.5618 0.43133 0.60990 1,905.6 0.11811 0.02198656 614.7 1.008 0.9922 1,211.8 1,324.7 1.5624 0.43108 0.60929 1,906.8 0.11778 0.02200657 614.7 1.007 0.9934 1,212.3 1,325.3 1.5629 0.43084 0.60868 1,908.0 0.11746 0.02203658 614.7 1.005 0.9947 1,212.7 1,325.9 1.5635 0.43060 0.60808 1,909.2 0.11713 0.02205659 614.7 1.004 0.9959 1,213.2 1,326.6 1.5640 0.43036 0.60749 1,910.3 0.11681 0.02208660 614.7 1.003 0.9971 1,213.7 1,327.2 1.5646 0.43012 0.60690 1,911.5 0.11649 0.02210661 614.7 1.002 0.9984 1,214.1 1,327.8 1.5651 0.42988 0.60631 1,912.7 0.11617 0.02213662 614.7 1.000 0.9996 1,214.6 1,328.4 1.5656 0.42965 0.60573 1,913.9 0.11585 0.02215663 614.7 0.999 1.0008 1,215.1 1,329.0 1.5662 0.42942 0.60516 1,915.0 0.11554 0.02218664 614.7 0.998 1.0021 1,215.5 1,329.6 1.5667 0.42920 0.60460 1,916.2 0.11522 0.02220665 614.7 0.997 1.0033 1,216.0 1,330.2 1.5673 0.42897 0.60403 1,917.4 0.11491 0.02223666 614.7 0.996 1.0045 1,216.5 1,330.8 1.5678 0.42875 0.60348 1,918.6 0.11459 0.02225667 614.7 0.994 1.0057 1,216.9 1,331.4 1.5683 0.42853 0.60293 1,919.7 0.11428 0.02228668 614.7 0.993 1.0070 1,217.4 1,332.0 1.5689 0.42831 0.60238 1,920.9 0.11397 0.02230669 614.7 0.992 1.0082 1,217.8 1,332.6 1.5694 0.42810 0.60184 1,922.0 0.11366 0.02233670 614.7 0.991 1.0094 1,218.3 1,333.2 1.5699 0.42789 0.60131 1,923.2 0.11335 0.02235671 614.7 0.990 1.0106 1,218.8 1,333.8 1.5705 0.42768 0.60078 1,924.3 0.11305 0.02238672 614.7 0.988 1.0118 1,219.2 1,334.4 1.5710 0.42747 0.60025 1,925.5 0.11274 0.02240673 614.7 0.987 1.0130 1,219.7 1,335.0 1.5715 0.42727 0.59973 1,926.7 0.11244 0.02243674 614.7 0.986 1.0143 1,220.2 1,335.6 1.5721 0.42707 0.59922 1,927.8 0.11213 0.02245675 614.7 0.985 1.0155 1,220.6 1,336.2 1.5726 0.42687 0.59871 1,928.9 0.11183 0.02248676 614.7 0.984 1.0167 1,221.1 1,336.8 1.5731 0.42667 0.59820 1,930.1 0.11153 0.02250677 614.7 0.982 1.0179 1,221.5 1,337.4 1.5736 0.42648 0.59770 1,931.2 0.11123 0.02253678 614.7 0.981 1.0191 1,222.0 1,338.0 1.5742 0.42629 0.59721 1,932.4 0.11093 0.02255679 614.7 0.980 1.0203 1,222.5 1,338.6 1.5747 0.42610 0.59672 1,933.5 0.11063 0.02258680 614.7 0.979 1.0215 1,222.9 1,339.2 1.5752 0.42591 0.59623 1,934.6 0.11034 0.02260

Auxiliary Data( All data downloaded from NIST website: http://webbook.nist.gov/chemistry/fluid/ )

Reference States

Internal energy U = 0.0Entropy S = 0.0

at 273.16 K for saturated liquid.at 273.16 K for saturated liquid.

Page 232: Crane Fluid Flow Problems

Additional fluid data

705.10

3200.1 psia

20.102

Acentric factor 0.3443

Normal boiling point 211.95

Dipole moment 1.855 Debye

Critical temperature (Tc) oF

Critical pressure (Pc)

Critical density (Dc) lbm/ft3

oF

Page 233: Crane Fluid Flow Problems

7.00 4.57 4.57

Phase

0.62287 liquid0.62220 liquid0.62153 liquid0.62085 liquid0.62017 liquid0.61949 liquid0.61880 liquid0.61810 liquid0.61740 liquid0.61680 liquid0.05229 vapor0.05228 vapor0.05224 vapor0.05219 vapor0.05215 vapor0.05211 vapor0.05208 vapor0.05204 vapor0.05201 vapor0.05197 vapor0.05194 vapor0.05191 vapor0.05188 vapor0.05185 vapor0.05182 vapor0.05179 vapor0.05177 vapor0.05174 vapor0.05172 vapor0.05170 vapor0.05168 vapor0.05166 vapor0.05164 vapor0.05162 vapor0.05160 vapor0.05158 vapor0.05157 vapor0.05155 vapor0.05154 vapor0.05152 vapor0.05151 vapor0.05150 vapor0.05149 vapor0.05148 vapor0.05147 vapor0.05146 vapor0.05145 vapor0.05145 vapor0.05144 vapor0.05143 vapor

Therm. Cond.

(W/m*K)

Page 234: Crane Fluid Flow Problems

0.05143 vapor0.05143 vapor0.05142 vapor0.05142 vapor0.05142 vapor0.05142 vapor0.05141 vapor0.05141 vapor0.05142 vapor0.05142 vapor0.05142 vapor0.05142 vapor0.05142 vapor0.05143 vapor0.05143 vapor0.05143 vapor0.05144 vapor0.05145 vapor0.05145 vapor0.05146 vapor0.05147 vapor0.05147 vapor0.05148 vapor0.05149 vapor0.05150 vapor0.05151 vapor0.05152 vapor0.05153 vapor0.05154 vapor0.05156 vapor0.05157 vapor0.05158 vapor0.05159 vapor0.05161 vapor0.05162 vapor0.05164 vapor0.05165 vapor0.05167 vapor0.05168 vapor0.05170 vapor0.05172 vapor0.05173 vapor0.05175 vapor0.05177 vapor0.05179 vapor0.05181 vapor0.05183 vapor0.05185 vapor0.05187 vapor0.05189 vapor0.05191 vapor0.05193 vapor0.05195 vapor0.05197 vapor

Page 235: Crane Fluid Flow Problems

0.05199 vapor0.05202 vapor0.05204 vapor0.05206 vapor0.05209 vapor0.05211 vapor0.05214 vapor0.05216 vapor0.05218 vapor0.05221 vapor0.05224 vapor0.05226 vapor0.05229 vapor0.05232 vapor0.05234 vapor0.05237 vapor0.05240 vapor0.05243 vapor0.05245 vapor0.05248 vapor0.05251 vapor0.05254 vapor0.05257 vapor0.05260 vapor0.05263 vapor0.05266 vapor0.05269 vapor0.05272 vapor0.05275 vapor0.05278 vapor0.05282 vapor0.05285 vapor0.05288 vapor0.05291 vapor0.05294 vapor0.05298 vapor0.05301 vapor0.05304 vapor0.05308 vapor0.05311 vapor0.05315 vapor0.05318 vapor0.05322 vapor0.05325 vapor0.05329 vapor0.05332 vapor0.05336 vapor0.05339 vapor0.05343 vapor0.05347 vapor0.05350 vapor0.05354 vapor0.05358 vapor0.05361 vapor

Page 236: Crane Fluid Flow Problems

0.05365 vapor0.05369 vapor0.05373 vapor0.05376 vapor0.05380 vapor0.05384 vapor0.05388 vapor0.05392 vapor0.05396 vapor0.05400 vapor0.05404 vapor0.05408 vapor0.05412 vapor0.05416 vapor0.05420 vapor0.05424 vapor0.05428 vapor0.05432 vapor0.05436 vapor0.05440 vapor0.05444 vapor0.05449 vapor0.05453 vapor0.05457 vapor0.05461 vapor0.05465 vapor0.05470 vapor0.05474 vapor0.05478 vapor0.05483 vapor0.05487 vapor0.05491 vapor0.05496 vapor0.05500 vapor0.05504 vapor0.05509 vapor0.05513 vapor0.05518 vapor0.05522 vapor0.05527 vapor0.05531 vapor0.05536 vapor0.05540 vapor0.05545 vapor0.05549 vapor

Page 237: Crane Fluid Flow Problems

Super Heated Steam DataIsobaric Data for P = 614.70 psia

681 614.7 0.9778 1.0227 1,223.4 1,339.8 1.5757 0.42572 0.59575 1,935.8 0.11004

682 614.7 0.9766 1.0239 1,223.8 1,340.4 1.5763 0.42554 0.59527 1,936.9 0.10975

683 614.7 0.9755 1.0251 1,224.3 1,341.0 1.5768 0.42536 0.59480 1,938.0 0.10946

684 614.7 0.9743 1.0264 1,224.7 1,341.6 1.5773 0.42518 0.59433 1,939.2 0.10916

685 614.7 0.9732 1.0276 1,225.2 1,342.2 1.5778 0.42500 0.59387 1,940.3 0.10887

686 614.7 0.9721 1.0288 1,225.7 1,342.8 1.5783 0.42483 0.59341 1,941.4 0.10858

687 614.7 0.9709 1.0300 1,226.1 1,343.3 1.5789 0.42465 0.59295 1,942.5 0.10829

688 614.7 0.9698 1.0312 1,226.6 1,343.9 1.5794 0.42448 0.59250 1,943.7 0.10801

689 614.7 0.9687 1.0324 1,227.0 1,344.5 1.5799 0.42431 0.59206 1,944.8 0.10772

690 614.7 0.9675 1.0336 1,227.5 1,345.1 1.5804 0.42415 0.59161 1,945.9 0.10743

691 614.7 0.9664 1.0348 1,227.9 1,345.7 1.5809 0.42398 0.59118 1,947.0 0.10715

692 614.7 0.9653 1.0359 1,228.4 1,346.3 1.5814 0.42382 0.59074 1,948.1 0.10687

693 614.7 0.9642 1.0371 1,228.8 1,346.9 1.5819 0.42366 0.59031 1,949.2 0.10659

694 614.7 0.9631 1.0383 1,229.3 1,347.5 1.5825 0.42350 0.58989 1,950.3 0.10630

695 614.7 0.9620 1.0395 1,229.8 1,348.1 1.5830 0.42334 0.58946 1,951.5 0.10602

696 614.7 0.9609 1.0407 1,230.2 1,348.7 1.5835 0.42319 0.58904 1,952.6 0.10575

697 614.7 0.9598 1.0419 1,230.7 1,349.3 1.5840 0.42303 0.58863 1,953.7 0.10547

698 614.7 0.9587 1.0431 1,231.1 1,349.8 1.5845 0.42288 0.58822 1,954.8 0.10519

699 614.7 0.9576 1.0443 1,231.6 1,350.4 1.5850 0.42273 0.58781 1,955.9 0.10492

700 614.7 0.9565 1.0455 1,232.0 1,351.0 1.5855 0.42259 0.58741 1,957.0 0.10464

701 614.7 0.9554 1.0467 1,232.5 1,351.6 1.5860 0.42244 0.58701 1,958.1 0.10437

702 614.7 0.9543 1.0479 1,232.9 1,352.2 1.5865 0.42230 0.58661 1,959.2 0.10409

703 614.7 0.9533 1.0490 1,233.4 1,352.8 1.5870 0.42215 0.58622 1,960.2 0.10382

Temperature oF

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 238: Crane Fluid Flow Problems

704 614.7 0.9522 1.0502 1,233.8 1,353.4 1.5875 0.42201 0.58583 1,961.3 0.10355

705 614.7 0.9511 1.0514 1,234.3 1,354.0 1.5880 0.42187 0.58545 1,962.4 0.10328

706 614.7 0.9500 1.0526 1,234.7 1,354.5 1.5885 0.42174 0.58507 1,963.5 0.10301

707 614.7 0.9490 1.0538 1,235.2 1,355.1 1.5890 0.42160 0.58469 1,964.6 0.10275

708 614.7 0.9479 1.0550 1,235.6 1,355.7 1.5895 0.42147 0.58432 1,965.7 0.10248

709 614.7 0.9469 1.0561 1,236.1 1,356.3 1.5900 0.42134 0.58394 1,966.8 0.10222

710 614.7 0.9458 1.0573 1,236.5 1,356.9 1.5905 0.42121 0.58358 1,967.8 0.10195

711 614.7 0.9447 1.0585 1,237.0 1,357.5 1.5910 0.42108 0.58321 1,968.9 0.10169

712 614.7 0.9437 1.0597 1,237.4 1,358.0 1.5915 0.42095 0.58285 1,970.0 0.10142

713 614.7 0.9426 1.0608 1,237.9 1,358.6 1.5920 0.42083 0.58249 1,971.1 0.10116

714 614.7 0.9416 1.0620 1,238.3 1,359.2 1.5925 0.42070 0.58214 1,972.2 0.10090

715 614.7 0.9406 1.0632 1,238.8 1,359.8 1.5930 0.42058 0.58179 1,973.2 0.10064

716 614.7 0.9395 1.0644 1,239.2 1,360.4 1.5935 0.42046 0.58144 1,974.3 0.10038

717 614.7 0.9385 1.0655 1,239.7 1,361.0 1.5940 0.42034 0.58109 1,975.4 0.10013

718 614.7 0.9375 1.0667 1,240.1 1,361.5 1.5945 0.42022 0.58075 1,976.4 0.09987

719 614.7 0.9364 1.0679 1,240.6 1,362.1 1.5950 0.42011 0.58041 1,977.5 0.09961

720 614.7 0.9354 1.0691 1,241.0 1,362.7 1.5955 0.41999 0.58008 1,978.6 0.09936

721 614.7 0.9344 1.0702 1,241.5 1,363.3 1.5960 0.41988 0.57975 1,979.6 0.09911

722 614.7 0.9334 1.0714 1,241.9 1,363.9 1.5965 0.41977 0.57942 1,980.7 0.09885

723 614.7 0.9324 1.0726 1,242.3 1,364.4 1.5970 0.41966 0.57909 1,981.8 0.09860

724 614.7 0.9313 1.0737 1,242.8 1,365.0 1.5975 0.41955 0.57877 1,982.8 0.09835

725 614.7 0.9303 1.0749 1,243.2 1,365.6 1.5979 0.41944 0.57845 1,983.9 0.09810

726 614.7 0.9293 1.0761 1,243.7 1,366.2 1.5984 0.41933 0.57813 1,984.9 0.09785

727 614.7 0.9283 1.0772 1,244.1 1,366.7 1.5989 0.41923 0.57781 1,986.0 0.09760

728 614.7 0.9273 1.0784 1,244.6 1,367.3 1.5994 0.41913 0.57750 1,987.0 0.09736

729 614.7 0.9263 1.0796 1,245.0 1,367.9 1.5999 0.41903 0.57719 1,988.1 0.09711

Page 239: Crane Fluid Flow Problems

730 614.7 0.9253 1.0807 1,245.5 1,368.5 1.6004 0.41892 0.57689 1,989.1 0.09686

731 614.7 0.9243 1.0819 1,245.9 1,369.1 1.6009 0.41883 0.57658 1,990.2 0.09662

732 614.7 0.9233 1.0830 1,246.4 1,369.6 1.6013 0.41873 0.57628 1,991.2 0.09637

733 614.7 0.9223 1.0842 1,246.8 1,370.2 1.6018 0.41863 0.57598 1,992.3 0.09613

734 614.7 0.9214 1.0854 1,247.2 1,370.8 1.6023 0.41854 0.57569 1,993.3 0.09589

735 614.7 0.9204 1.0865 1,247.7 1,371.4 1.6028 0.41844 0.57539 1,994.3 0.09565

736 614.7 0.9194 1.0877 1,248.1 1,371.9 1.6033 0.41835 0.57510 1,995.4 0.09541

737 614.7 0.9184 1.0888 1,248.6 1,372.5 1.6038 0.41826 0.57482 1,996.4 0.09517

738 614.7 0.9174 1.0900 1,249.0 1,373.1 1.6042 0.41817 0.57453 1,997.5 0.09493

739 614.7 0.9165 1.0911 1,249.5 1,373.7 1.6047 0.41808 0.57425 1,998.5 0.09469

740 614.7 0.9155 1.0923 1,249.9 1,374.2 1.6052 0.41799 0.57397 1,999.5 0.09446

741 614.7 0.9145 1.0935 1,250.3 1,374.8 1.6057 0.41791 0.57369 2,000.6 0.09422

742 614.7 0.9136 1.0946 1,250.8 1,375.4 1.6061 0.41782 0.57342 2,001.6 0.09399

743 614.7 0.9126 1.0958 1,251.2 1,376.0 1.6066 0.41774 0.57314 2,002.6 0.09375

744 614.7 0.9117 1.0969 1,251.7 1,376.5 1.6071 0.41766 0.57287 2,003.7 0.09352

745 614.7 0.9107 1.0981 1,252.1 1,377.1 1.6076 0.41758 0.57261 2,004.7 0.09329

746 614.7 0.9097 1.0992 1,252.6 1,377.7 1.6080 0.41750 0.57234 2,005.7 0.09305

747 614.7 0.9088 1.1004 1,253.0 1,378.2 1.6085 0.41742 0.57208 2,006.7 0.09282

748 614.7 0.9078 1.1015 1,253.4 1,378.8 1.6090 0.41734 0.57182 2,007.8 0.09259

749 614.7 0.9069 1.1027 1,253.9 1,379.4 1.6095 0.41726 0.57156 2,008.8 0.09236

750 614.7 0.9060 1.1038 1,254.3 1,380.0 1.6099 0.41719 0.57130 2,009.8 0.09214

751 614.7 0.9050 1.1050 1,254.8 1,380.5 1.6104 0.41711 0.57105 2,010.8 0.09191

752 614.7 0.9041 1.1061 1,255.2 1,381.1 1.6109 0.41704 0.57080 2,011.8 0.09168

753 614.7 0.9031 1.1072 1,255.6 1,381.7 1.6114 0.41697 0.57055 2,012.9 0.09146

754 614.7 0.9022 1.1084 1,256.1 1,382.2 1.6118 0.41690 0.57030 2,013.9 0.09123

755 614.7 0.9013 1.1095 1,256.5 1,382.8 1.6123 0.41683 0.57006 2,014.9 0.09101

Page 240: Crane Fluid Flow Problems

756 614.7 0.9004 1.1107 1,257.0 1,383.4 1.6128 0.41676 0.56982 2,015.9 0.09078

757 614.7 0.8994 1.1118 1,257.4 1,384.0 1.6132 0.41669 0.56958 2,016.9 0.09056

758 614.7 0.8985 1.1130 1,257.8 1,384.5 1.6137 0.41662 0.56934 2,017.9 0.09034

759 614.7 0.8976 1.1141 1,258.3 1,385.1 1.6142 0.41656 0.56910 2,018.9 0.09012

760 614.7 0.8967 1.1153 1,258.7 1,385.7 1.6146 0.41649 0.56887 2,019.9 0.08990

761 614.7 0.8957 1.1164 1,259.2 1,386.2 1.6151 0.41643 0.56864 2,020.9 0.08968

762 614.7 0.8948 1.1175 1,259.6 1,386.8 1.6156 0.41637 0.56841 2,021.9 0.08946

763 614.7 0.8939 1.1187 1,260.0 1,387.4 1.6160 0.41631 0.56818 2,023.0 0.08924

764 614.7 0.8930 1.1198 1,260.5 1,387.9 1.6165 0.41625 0.56795 2,024.0 0.08902

765 614.7 0.8921 1.1209 1,260.9 1,388.5 1.6170 0.41619 0.56773 2,025.0 0.08881

766 614.7 0.8912 1.1221 1,261.3 1,389.1 1.6174 0.41613 0.56751 2,026.0 0.08859

767 614.7 0.8903 1.1232 1,261.8 1,389.6 1.6179 0.41607 0.56729 2,027.0 0.08838

768 614.7 0.8894 1.1244 1,262.2 1,390.2 1.6183 0.41601 0.56707 2,027.9 0.08816

769 614.7 0.8885 1.1255 1,262.7 1,390.8 1.6188 0.41596 0.56686 2,028.9 0.08795

770 614.7 0.8876 1.1266 1,263.1 1,391.3 1.6193 0.41590 0.56664 2,029.9 0.08774

771 614.7 0.8867 1.1278 1,263.5 1,391.9 1.6197 0.41585 0.56643 2,030.9 0.08752

772 614.7 0.8858 1.1289 1,264.0 1,392.5 1.6202 0.41580 0.56622 2,031.9 0.08731

773 614.7 0.8849 1.1300 1,264.4 1,393.0 1.6207 0.41575 0.56601 2,032.9 0.08710

774 614.7 0.8841 1.1312 1,264.8 1,393.6 1.6211 0.41570 0.56581 2,033.9 0.08689

775 614.7 0.8832 1.1323 1,265.3 1,394.2 1.6216 0.41565 0.56560 2,034.9 0.08668

776 614.7 0.8823 1.1334 1,265.7 1,394.7 1.6220 0.41560 0.56540 2,035.9 0.08648

777 614.7 0.8814 1.1346 1,266.2 1,395.3 1.6225 0.41555 0.56520 2,036.9 0.08627

778 614.7 0.8805 1.1357 1,266.6 1,395.9 1.6229 0.41550 0.56500 2,037.9 0.08606

779 614.7 0.8797 1.1368 1,267.0 1,396.4 1.6234 0.41546 0.56481 2,038.8 0.08586

780 614.7 0.8788 1.1379 1,267.5 1,397.0 1.6239 0.41541 0.56461 2,039.8 0.08565

781 614.7 0.8779 1.1391 1,267.9 1,397.6 1.6243 0.41537 0.56442 2,040.8 0.08545

Page 241: Crane Fluid Flow Problems

782 614.7 0.8770 1.1402 1,268.3 1,398.1 1.6248 0.41532 0.56423 2,041.8 0.08524

783 614.7 0.8762 1.1413 1,268.8 1,398.7 1.6252 0.41528 0.56404 2,042.8 0.08504

784 614.7 0.8753 1.1425 1,269.2 1,399.3 1.6257 0.41524 0.56385 2,043.7 0.08484

785 614.7 0.8745 1.1436 1,269.6 1,399.8 1.6261 0.41520 0.56366 2,044.7 0.08463

786 614.7 0.8736 1.1447 1,270.1 1,400.4 1.6266 0.41516 0.56348 2,045.7 0.08443

787 614.7 0.8727 1.1458 1,270.5 1,400.9 1.6270 0.41512 0.56329 2,046.7 0.08423

788 614.7 0.8719 1.1470 1,271.0 1,401.5 1.6275 0.41508 0.56311 2,047.6 0.08403

789 614.7 0.8710 1.1481 1,271.4 1,402.1 1.6279 0.41504 0.56293 2,048.6 0.08383

790 614.7 0.8702 1.1492 1,271.8 1,402.6 1.6284 0.41500 0.56276 2,049.6 0.08364

791 614.7 0.8693 1.1503 1,272.3 1,403.2 1.6288 0.41497 0.56258 2,050.6 0.08344

792 614.7 0.8685 1.1514 1,272.7 1,403.8 1.6293 0.41493 0.56241 2,051.5 0.08324

793 614.7 0.8676 1.1526 1,273.1 1,404.3 1.6297 0.41490 0.56223 2,052.5 0.08304

794 614.7 0.8668 1.1537 1,273.6 1,404.9 1.6302 0.41486 0.56206 2,053.5 0.08285

795 614.7 0.8659 1.1548 1,274.0 1,405.4 1.6306 0.41483 0.56189 2,054.4 0.08265

796 614.7 0.8651 1.1559 1,274.4 1,406.0 1.6311 0.41480 0.56172 2,055.4 0.08246

797 614.7 0.8643 1.1570 1,274.9 1,406.6 1.6315 0.41477 0.56156 2,056.4 0.08227

798 614.7 0.8634 1.1582 1,275.3 1,407.1 1.6320 0.41474 0.56139 2,057.3 0.08207

799 614.7 0.8626 1.1593 1,275.7 1,407.7 1.6324 0.41471 0.56123 2,058.3 0.08188

800 614.7 0.8618 1.1604 1,276.2 1,408.2 1.6329 0.41468 0.56106 2,059.2 0.08169

801 614.7 0.8609 1.1615 1,276.6 1,408.8 1.6333 0.41465 0.56090 2,060.2 0.08150

802 614.7 0.8601 1.1626 1,277.0 1,409.4 1.6337 0.41462 0.56074 2,061.2 0.08131

803 614.7 0.8593 1.1638 1,277.5 1,409.9 1.6342 0.41459 0.56059 2,062.1 0.08112

804 614.7 0.8585 1.1649 1,277.9 1,410.5 1.6346 0.41457 0.56043 2,063.1 0.08093

805 614.7 0.8576 1.1660 1,278.3 1,411.1 1.6351 0.41454 0.56028 2,064.0 0.08074

806 614.7 0.8568 1.1671 1,278.8 1,411.6 1.6355 0.41452 0.56012 2,065.0 0.08055

807 614.7 0.8560 1.1682 1,279.2 1,412.2 1.6360 0.41449 0.55997 2,065.9 0.08036

Page 242: Crane Fluid Flow Problems

808 614.7 0.8552 1.1693 1,279.6 1,412.7 1.6364 0.41447 0.55982 2,066.9 0.08018

809 614.7 0.8544 1.1704 1,280.1 1,413.3 1.6368 0.41445 0.55967 2,067.8 0.07999

810 614.7 0.8536 1.1716 1,280.5 1,413.9 1.6373 0.41443 0.55952 2,068.8 0.07981

811 614.7 0.8528 1.1727 1,280.9 1,414.4 1.6377 0.41441 0.55938 2,069.7 0.07962

812 614.7 0.8520 1.1738 1,281.4 1,415.0 1.6382 0.41438 0.55923 2,070.7 0.07944

813 614.7 0.8511 1.1749 1,281.8 1,415.5 1.6386 0.41436 0.55909 2,071.6 0.07925

814 614.7 0.8503 1.1760 1,282.2 1,416.1 1.6390 0.41435 0.55894 2,072.6 0.07907

815 614.7 0.8495 1.1771 1,282.7 1,416.6 1.6395 0.41433 0.55880 2,073.5 0.07889

816 614.7 0.8487 1.1782 1,283.1 1,417.2 1.6399 0.41431 0.55866 2,074.5 0.07871

817 614.7 0.8479 1.1793 1,283.5 1,417.8 1.6404 0.41429 0.55853 2,075.4 0.07853

818 614.7 0.8471 1.1804 1,284.0 1,418.3 1.6408 0.41428 0.55839 2,076.3 0.07835

819 614.7 0.8464 1.1815 1,284.4 1,418.9 1.6412 0.41426 0.55825 2,077.3 0.07817

820 614.7 0.8456 1.1827 1,284.8 1,419.4 1.6417 0.41424 0.55812 2,078.2 0.07799

821 614.7 0.8448 1.1838 1,285.3 1,420.0 1.6421 0.41423 0.55799 2,079.2 0.07781

822 614.7 0.8440 1.1849 1,285.7 1,420.6 1.6425 0.41422 0.55785 2,080.1 0.07763

823 614.7 0.8432 1.1860 1,286.1 1,421.1 1.6430 0.41420 0.55772 2,081.0 0.07745

824 614.7 0.8424 1.1871 1,286.5 1,421.7 1.6434 0.41419 0.55759 2,082.0 0.07728

825 614.7 0.8416 1.1882 1,287.0 1,422.2 1.6438 0.41418 0.55747 2,082.9 0.07710

826 614.7 0.8408 1.1893 1,287.4 1,422.8 1.6443 0.41417 0.55734 2,083.8 0.07692

827 614.7 0.8401 1.1904 1,287.8 1,423.3 1.6447 0.41415 0.55721 2,084.8 0.07675

828 614.7 0.8393 1.1915 1,288.3 1,423.9 1.6451 0.41414 0.55709 2,085.7 0.07657

829 614.7 0.8385 1.1926 1,288.7 1,424.5 1.6456 0.41413 0.55697 2,086.6 0.07640

830 614.7 0.8377 1.1937 1,289.1 1,425.0 1.6460 0.41413 0.55684 2,087.6 0.07623

831 614.7 0.8370 1.1948 1,289.6 1,425.6 1.6464 0.41412 0.55672 2,088.5 0.07605

832 614.7 0.8362 1.1959 1,290.0 1,426.1 1.6469 0.41411 0.55660 2,089.4 0.07588

833 614.7 0.8354 1.1970 1,290.4 1,426.7 1.6473 0.41410 0.55649 2,090.4 0.07571

Page 243: Crane Fluid Flow Problems

834 614.7 0.8346 1.1981 1,290.9 1,427.2 1.6477 0.41409 0.55637 2,091.3 0.07554

835 614.7 0.8339 1.1992 1,291.3 1,427.8 1.6482 0.41409 0.55625 2,092.2 0.07537

836 614.7 0.8331 1.2003 1,291.7 1,428.4 1.6486 0.41408 0.55614 2,093.1 0.07520

837 614.7 0.8323 1.2014 1,292.2 1,428.9 1.6490 0.41408 0.55602 2,094.1 0.07503

838 614.7 0.8316 1.2025 1,292.6 1,429.5 1.6495 0.41407 0.55591 2,095.0 0.07486

839 614.7 0.8308 1.2036 1,293.0 1,430.0 1.6499 0.41407 0.55580 2,095.9 0.07469

840 614.7 0.8301 1.2047 1,293.4 1,430.6 1.6503 0.41407 0.55569 2,096.8 0.07452

841 614.7 0.8293 1.2058 1,293.9 1,431.1 1.6507 0.41406 0.55558 2,097.7 0.07435

842 614.7 0.8286 1.2069 1,294.3 1,431.7 1.6512 0.41406 0.55547 2,098.7 0.07419

843 614.7 0.8278 1.2080 1,294.7 1,432.2 1.6516 0.41406 0.55537 2,099.6 0.07402

844 614.7 0.8271 1.2091 1,295.2 1,432.8 1.6520 0.41406 0.55526 2,100.5 0.07386

845 614.7 0.8263 1.2102 1,295.6 1,433.4 1.6524 0.41406 0.55515 2,101.4 0.07369

846 614.7 0.8256 1.2113 1,296.0 1,433.9 1.6529 0.41406 0.55505 2,102.3 0.07353

847 614.7 0.8248 1.2124 1,296.5 1,434.5 1.6533 0.41406 0.55495 2,103.2 0.07336

848 614.7 0.8241 1.2135 1,296.9 1,435.0 1.6537 0.41406 0.55485 2,104.2 0.07320

849 614.7 0.8233 1.2146 1,297.3 1,435.6 1.6541 0.41406 0.55475 2,105.1 0.07304

850 614.7 0.8226 1.2157 1,297.8 1,436.1 1.6546 0.41406 0.55465 2,106.0 0.07287

851 614.7 0.8218 1.2168 1,298.2 1,436.7 1.6550 0.41406 0.55455 2,106.9 0.07271

852 614.7 0.8211 1.2179 1,298.6 1,437.2 1.6554 0.41407 0.55445 2,107.8 0.07255

853 614.7 0.8204 1.2190 1,299.0 1,437.8 1.6558 0.41407 0.55435 2,108.7 0.07239

854 614.7 0.8196 1.2201 1,299.5 1,438.3 1.6563 0.41407 0.55426 2,109.6 0.07223

855 614.7 0.8189 1.2212 1,299.9 1,438.9 1.6567 0.41408 0.55416 2,110.5 0.07207

856 614.7 0.8182 1.2223 1,300.3 1,439.5 1.6571 0.41408 0.55407 2,111.4 0.07191

857 614.7 0.8174 1.2233 1,300.8 1,440.0 1.6575 0.41409 0.55398 2,112.3 0.07175

858 614.7 0.8167 1.2244 1,301.2 1,440.6 1.6579 0.41409 0.55388 2,113.3 0.07159

859 614.7 0.8160 1.2255 1,301.6 1,441.1 1.6584 0.41410 0.55379 2,114.2 0.07143

Page 244: Crane Fluid Flow Problems

860 614.7 0.8153 1.2266 1,302.0 1,441.7 1.6588 0.41411 0.55370 2,115.1 0.07128

861 614.7 0.8145 1.2277 1,302.5 1,442.2 1.6592 0.41411 0.55362 2,116.0 0.07112

862 614.7 0.8138 1.2288 1,302.9 1,442.8 1.6596 0.41412 0.55353 2,116.9 0.07096

863 614.7 0.8131 1.2299 1,303.3 1,443.3 1.6600 0.41413 0.55344 2,117.8 0.07081

864 614.7 0.8124 1.2310 1,303.8 1,443.9 1.6605 0.41414 0.55335 2,118.7 0.07065

865 614.7 0.8116 1.2321 1,304.2 1,444.4 1.6609 0.41415 0.55327 2,119.6 0.07049

866 614.7 0.8109 1.2332 1,304.6 1,445.0 1.6613 0.41416 0.55319 2,120.5 0.07034

867 614.7 0.8102 1.2343 1,305.1 1,445.5 1.6617 0.41417 0.55310 2,121.4 0.07019

868 614.7 0.8095 1.2353 1,305.5 1,446.1 1.6621 0.41418 0.55302 2,122.3 0.07003

869 614.7 0.8088 1.2364 1,305.9 1,446.7 1.6625 0.41419 0.55294 2,123.2 0.06988

870 614.7 0.8081 1.2375 1,306.3 1,447.2 1.6630 0.41420 0.55286 2,124.0 0.06973

871 614.7 0.8074 1.2386 1,306.8 1,447.8 1.6634 0.41421 0.55278 2,124.9 0.06957

872 614.7 0.8067 1.2397 1,307.2 1,448.3 1.6638 0.41423 0.55270 2,125.8 0.06942

873 614.7 0.8060 1.2408 1,307.6 1,448.9 1.6642 0.41424 0.55262 2,126.7 0.06927

874 614.7 0.8052 1.2419 1,308.1 1,449.4 1.6646 0.41425 0.55255 2,127.6 0.06912

875 614.7 0.8045 1.2429 1,308.5 1,450.0 1.6650 0.41426 0.55247 2,128.5 0.06897

876 614.7 0.8038 1.2440 1,308.9 1,450.5 1.6654 0.41428 0.55239 2,129.4 0.06882

877 614.7 0.8031 1.2451 1,309.3 1,451.1 1.6659 0.41429 0.55232 2,130.3 0.06867

878 614.7 0.8024 1.2462 1,309.8 1,451.6 1.6663 0.41431 0.55225 2,131.2 0.06852

879 614.7 0.8017 1.2473 1,310.2 1,452.2 1.6667 0.41432 0.55217 2,132.1 0.06837

880 614.7 0.8011 1.2484 1,310.6 1,452.7 1.6671 0.41434 0.55210 2,133.0 0.06823

Auxiliary Data( All data downloaded from NIST website: http://webbook.nist.gov/chemistry/fluid/ )

Reference States

Internal energy U = 0.0Entropy S = 0.0

Additional fluid data

at 273.16 K for saturated liquid.at 273.16 K for saturated liquid.

Page 245: Crane Fluid Flow Problems

705.10

3200.1 psia

20.102

Acentric factor 0.3443

Normal boiling point 211.95

Dipole moment 1.855 Debye

Critical temperature (Tc) oF

Critical pressure (Pc)

Critical density (Dc) lbm/ft3

oF

Page 246: Crane Fluid Flow Problems

Phase

0.02263 0.05554 vapor

0.02265 0.05559 vapor

0.02268 0.05563 vapor

0.02270 0.05568 vapor

0.02272 0.05572 vapor

0.02275 0.05577 vapor

0.02277 0.05582 vapor

0.02280 0.05586 vapor

0.02282 0.05591 vapor

0.02285 0.05596 vapor

0.02287 0.05601 vapor

0.02290 0.05605 vapor

0.02292 0.0561 vapor

0.02295 0.05615 vapor

0.02297 0.0562 vapor

0.02300 0.05624 vapor

0.02302 0.05629 vapor

0.02305 0.05634 vapor

0.02307 0.05639 vapor

0.02310 0.05644 vapor

0.02312 0.05648 vapor

0.02315 0.05653 vapor

0.02317 0.05658 vapor

Viscosity (cP)

Therm. Cond.

(W/m*K)

Page 247: Crane Fluid Flow Problems

0.02319 0.05663 vapor

0.02322 0.05668 vapor

0.02324 0.05673 vapor

0.02327 0.05678 vapor

0.02329 0.05683 vapor

0.02332 0.05688 vapor

0.02334 0.05693 vapor

0.02337 0.05698 vapor

0.02339 0.05703 vapor

0.02342 0.05708 vapor

0.02344 0.05713 vapor

0.02347 0.05718 vapor

0.02349 0.05723 vapor

0.02352 0.05728 vapor

0.02354 0.05733 vapor

0.02356 0.05738 vapor

0.02359 0.05743 vapor

0.02361 0.05748 vapor

0.02364 0.05753 vapor

0.02366 0.05759 vapor

0.02369 0.05764 vapor

0.02371 0.05769 vapor

0.02374 0.05774 vapor

0.02376 0.05779 vapor

0.02379 0.05784 vapor

0.02381 0.0579 vapor

Page 248: Crane Fluid Flow Problems

0.02383 0.05795 vapor

0.02386 0.058 vapor

0.02388 0.05805 vapor

0.02391 0.05811 vapor

0.02393 0.05816 vapor

0.02396 0.05821 vapor

0.02398 0.05826 vapor

0.02401 0.05832 vapor

0.02403 0.05837 vapor

0.02405 0.05842 vapor

0.02408 0.05848 vapor

0.02410 0.05853 vapor

0.02413 0.05858 vapor

0.02415 0.05864 vapor

0.02418 0.05869 vapor

0.02420 0.05874 vapor

0.02423 0.0588 vapor

0.02425 0.05885 vapor

0.02427 0.0589 vapor

0.02430 0.05896 vapor

0.02432 0.05901 vapor

0.02435 0.05907 vapor

0.02437 0.05912 vapor

0.02440 0.05918 vapor

0.02442 0.05923 vapor

0.02444 0.05929 vapor

Page 249: Crane Fluid Flow Problems

0.02447 0.05934 vapor

0.02449 0.05939 vapor

0.02452 0.05945 vapor

0.02454 0.0595 vapor

0.02457 0.05956 vapor

0.02459 0.05962 vapor

0.02461 0.05967 vapor

0.02464 0.05973 vapor

0.02466 0.05978 vapor

0.02469 0.05984 vapor

0.02471 0.05989 vapor

0.02474 0.05995 vapor

0.02476 0.06 vapor

0.02478 0.06006 vapor

0.02481 0.06012 vapor

0.02483 0.06017 vapor

0.02486 0.06023 vapor

0.02488 0.06028 vapor

0.02491 0.06034 vapor

0.02493 0.0604 vapor

0.02495 0.06045 vapor

0.02498 0.06051 vapor

0.02500 0.06057 vapor

0.02503 0.06062 vapor

0.02505 0.06068 vapor

0.02507 0.06074 vapor

Page 250: Crane Fluid Flow Problems

0.02510 0.06079 vapor

0.02512 0.06085 vapor

0.02515 0.06091 vapor

0.02517 0.06097 vapor

0.02520 0.06102 vapor

0.02522 0.06108 vapor

0.02524 0.06114 vapor

0.02527 0.0612 vapor

0.02529 0.06125 vapor

0.02532 0.06131 vapor

0.02534 0.06137 vapor

0.02536 0.06143 vapor

0.02539 0.06149 vapor

0.02541 0.06154 vapor

0.02544 0.0616 vapor

0.02546 0.06166 vapor

0.02548 0.06172 vapor

0.02551 0.06178 vapor

0.02553 0.06184 vapor

0.02556 0.06189 vapor

0.02558 0.06195 vapor

0.02560 0.06201 vapor

0.02563 0.06207 vapor

0.02565 0.06213 vapor

0.02568 0.06219 vapor

0.02570 0.06225 vapor

Page 251: Crane Fluid Flow Problems

0.02572 0.06231 vapor

0.02575 0.06236 vapor

0.02577 0.06242 vapor

0.02580 0.06248 vapor

0.02582 0.06254 vapor

0.02584 0.0626 vapor

0.02587 0.06266 vapor

0.02589 0.06272 vapor

0.02592 0.06278 vapor

0.02594 0.06284 vapor

0.02596 0.0629 vapor

0.02599 0.06296 vapor

0.02601 0.06302 vapor

0.02604 0.06308 vapor

0.02606 0.06314 vapor

0.02608 0.0632 vapor

0.02611 0.06326 vapor

0.02613 0.06332 vapor

0.02616 0.06338 vapor

0.02618 0.06344 vapor

0.02620 0.0635 vapor

0.02623 0.06356 vapor

0.02625 0.06362 vapor

0.02627 0.06368 vapor

0.02630 0.06374 vapor

0.02632 0.0638 vapor

Page 252: Crane Fluid Flow Problems

0.02635 0.06386 vapor

0.02637 0.06393 vapor

0.02639 0.06399 vapor

0.02642 0.06405 vapor

0.02644 0.06411 vapor

0.02647 0.06417 vapor

0.02649 0.06423 vapor

0.02651 0.06429 vapor

0.02654 0.06435 vapor

0.02656 0.06441 vapor

0.02658 0.06448 vapor

0.02661 0.06454 vapor

0.02663 0.0646 vapor

0.02666 0.06466 vapor

0.02668 0.06472 vapor

0.02670 0.06478 vapor

0.02673 0.06485 vapor

0.02675 0.06491 vapor

0.02677 0.06497 vapor

0.02680 0.06503 vapor

0.02682 0.06509 vapor

0.02685 0.06516 vapor

0.02687 0.06522 vapor

0.02689 0.06528 vapor

0.02692 0.06534 vapor

0.02694 0.06541 vapor

Page 253: Crane Fluid Flow Problems

0.02696 0.06547 vapor

0.02699 0.06553 vapor

0.02701 0.06559 vapor

0.02704 0.06566 vapor

0.02706 0.06572 vapor

0.02708 0.06578 vapor

0.02711 0.06584 vapor

0.02713 0.06591 vapor

0.02715 0.06597 vapor

0.02718 0.06603 vapor

0.02720 0.06609 vapor

0.02723 0.06616 vapor

0.02725 0.06622 vapor

0.02727 0.06628 vapor

0.02730 0.06635 vapor

0.02732 0.06641 vapor

0.02734 0.06647 vapor

0.02737 0.06654 vapor

0.02739 0.0666 vapor

0.02741 0.06666 vapor

0.02744 0.06673 vapor

Page 254: Crane Fluid Flow Problems

Super Heated Steam DataIsobaric Data for P = 36.500 psia

250 36.5 58.822 0.0170 218.68 218.79 0.36803 0.87491 1.0146 4,981.6 -0.00205251 36.5 58.793 0.0170 219.69 219.81 0.36946 0.87425 1.0149 4,978.9 -0.00204252 36.5 58.765 0.0170 220.70 220.82 0.37089 0.87359 1.0151 4,976.2 -0.00204253 36.5 58.737 0.0170 221.72 221.84 0.37231 0.87294 1.0153 4,973.4 -0.00203254 36.5 58.708 0.0170 222.74 222.85 0.37374 0.87228 1.0156 4,970.6 -0.00203255 36.5 58.679 0.0170 223.75 223.87 0.37516 0.87163 1.0158 4,967.8 -0.00202256 36.5 58.651 0.0171 224.77 224.88 0.37658 0.87097 1.0160 4,965.0 -0.00202257 36.5 58.622 0.0171 225.78 225.90 0.37800 0.87032 1.0163 4,962.1 -0.00201258 36.5 58.593 0.0171 226.80 226.91 0.37941 0.86967 1.0165 4,959.2 -0.00201259 36.5 58.564 0.0171 227.82 227.93 0.38083 0.86902 1.0168 4,956.3 -0.00200260 36.5 58.535 0.0171 228.83 228.95 0.38224 0.86837 1.0170 4,953.3 -0.00200261 36.5 58.506 0.0171 229.85 229.97 0.38366 0.86772 1.0173 4,950.4 -0.00199

261.73 36.5 58.485 0.0171 230.60 230.71 0.38469 0.86725 1.0174 4,948.2 -0.00199261.73 36.5 0.0874 11.4410 1,091.5 1,168.8 1.6850 0.39354 0.53138 1,591.2 0.60543

262 36.5 0.0874 11.4460 1,091.6 1,168.9 1.6852 0.39333 0.53107 1,591.6 0.60413263 36.5 0.0872 11.4640 1,092.0 1,169.5 1.6860 0.39256 0.52995 1,592.9 0.59937264 36.5 0.0871 11.4820 1,092.4 1,170.0 1.6867 0.39182 0.52887 1,594.3 0.59472265 36.5 0.0870 11.5000 1,092.8 1,170.5 1.6874 0.39111 0.52783 1,595.6 0.59017266 36.5 0.0868 11.5180 1,093.2 1,171.1 1.6882 0.39043 0.52683 1,597.0 0.58572267 36.5 0.0867 11.5370 1,093.6 1,171.6 1.6889 0.38977 0.52586 1,598.3 0.58137268 36.5 0.0865 11.5550 1,094.0 1,172.1 1.6896 0.38914 0.52493 1,599.7 0.57710269 36.5 0.0864 11.5730 1,094.4 1,172.6 1.6903 0.38854 0.52403 1,601.0 0.57292270 36.5 0.0863 11.5910 1,094.8 1,173.2 1.6911 0.38796 0.52316 1,602.3 0.56883271 36.5 0.0861 11.6090 1,095.2 1,173.7 1.6918 0.38740 0.52232 1,603.6 0.56480272 36.5 0.0860 11.6270 1,095.6 1,174.2 1.6925 0.38685 0.52151 1,604.9 0.56085273 36.5 0.0859 11.6450 1,096.0 1,174.7 1.6932 0.38633 0.52072 1,606.2 0.55697274 36.5 0.0857 11.6630 1,096.4 1,175.2 1.6939 0.38583 0.51996 1,607.5 0.55316275 36.5 0.0856 11.6810 1,096.8 1,175.8 1.6946 0.38534 0.51922 1,608.8 0.54941276 36.5 0.0855 11.6990 1,097.2 1,176.3 1.6953 0.38486 0.51850 1,610.1 0.54572277 36.5 0.0853 11.7170 1,097.6 1,176.8 1.6960 0.38440 0.51780 1,611.4 0.54208278 36.5 0.0852 11.7350 1,098.0 1,177.3 1.6967 0.38396 0.51712 1,612.7 0.53851279 36.5 0.0851 11.7530 1,098.4 1,177.8 1.6974 0.38353 0.51645 1,613.9 0.53498280 36.5 0.0850 11.7710 1,098.8 1,178.3 1.6981 0.38311 0.51581 1,615.2 0.53151281 36.5 0.0848 11.7890 1,099.2 1,178.9 1.6988 0.38270 0.51518 1,616.5 0.52809282 36.5 0.0847 11.8070 1,099.6 1,179.4 1.6995 0.38231 0.51457 1,617.7 0.52471283 36.5 0.0846 11.8250 1,100.0 1,179.9 1.7002 0.38192 0.51397 1,619.0 0.52138284 36.5 0.0844 11.8420 1,100.4 1,180.4 1.7009 0.38155 0.51338 1,620.2 0.51809285 36.5 0.0843 11.8600 1,100.8 1,180.9 1.7016 0.38119 0.51281 1,621.5 0.51485286 36.5 0.0842 11.8780 1,101.1 1,181.4 1.7023 0.38083 0.51226 1,622.7 0.51164287 36.5 0.0841 11.8960 1,101.5 1,181.9 1.7030 0.38048 0.51171 1,624.0 0.50848288 36.5 0.0839 11.9140 1,101.9 1,182.5 1.7036 0.38015 0.51118 1,625.2 0.50535289 36.5 0.0838 11.9320 1,102.3 1,183.0 1.7043 0.37982 0.51066 1,626.4 0.50227290 36.5 0.0837 11.9490 1,102.7 1,183.5 1.7050 0.37950 0.51015 1,627.7 0.49921291 36.5 0.0836 11.9670 1,103.1 1,184.0 1.7057 0.37918 0.50965 1,628.9 0.49619

Temperature oF

Pressure (psia)

Density (lbm/ft3)

Volume (ft3/lbm)

Internal Energy

(Btu/lbm)

Enthalpy (Btu/lbm)

Entropy (Btu/lbm*R)

Cv (Btu/lbm*R)

Cp (Btu/lbm*R)

Sound Spd. (ft/s)

Joule-Thomson (F/psia)

Page 255: Crane Fluid Flow Problems

292 36.5 0.0834 11.9850 1,103.5 1,184.5 1.7064 0.37888 0.50916 1,630.1 0.49321293 36.5 0.0833 12.0030 1,103.9 1,185.0 1.7070 0.37858 0.50868 1,631.3 0.49026294 36.5 0.0832 12.0200 1,104.3 1,185.5 1.7077 0.37829 0.50821 1,632.6 0.48734295 36.5 0.0831 12.0380 1,104.7 1,186.0 1.7084 0.37800 0.50775 1,633.8 0.48445296 36.5 0.0829 12.0560 1,105.0 1,186.5 1.7091 0.37772 0.50730 1,635.0 0.48159297 36.5 0.0828 12.0730 1,105.4 1,187.0 1.7097 0.37745 0.50685 1,636.2 0.47877298 36.5 0.0827 12.0910 1,105.8 1,187.5 1.7104 0.37718 0.50642 1,637.4 0.47597299 36.5 0.0826 12.1090 1,106.2 1,188.0 1.7111 0.37692 0.50599 1,638.6 0.47320300 36.5 0.0825 12.1260 1,106.6 1,188.6 1.7117 0.37666 0.50558 1,639.8 0.47045301 36.5 0.0823 12.1440 1,107.0 1,189.1 1.7124 0.37641 0.50516 1,641.0 0.46774302 36.5 0.0822 12.1620 1,107.4 1,189.6 1.7131 0.37617 0.50476 1,642.2 0.46505303 36.5 0.0821 12.1790 1,107.7 1,190.1 1.7137 0.37592 0.50437 1,643.4 0.46238304 36.5 0.0820 12.1970 1,108.1 1,190.6 1.7144 0.37569 0.50398 1,644.6 0.45975305 36.5 0.0819 12.2150 1,108.5 1,191.1 1.7150 0.37546 0.50359 1,645.8 0.45713306 36.5 0.0818 12.2320 1,108.9 1,191.6 1.7157 0.37523 0.50322 1,647.0 0.45455307 36.5 0.0816 12.2500 1,109.3 1,192.1 1.7164 0.37501 0.50285 1,648.2 0.45198308 36.5 0.0815 12.2670 1,109.7 1,192.6 1.7170 0.37479 0.50249 1,649.4 0.44944309 36.5 0.0814 12.2850 1,110.1 1,193.1 1.7177 0.37458 0.50213 1,650.6 0.44692310 36.5 0.0813 12.3020 1,110.4 1,193.6 1.7183 0.37437 0.50178 1,651.7 0.44443311 36.5 0.0812 12.3200 1,110.8 1,194.1 1.7190 0.37417 0.50144 1,652.9 0.44196312 36.5 0.0811 12.3380 1,111.2 1,194.6 1.7196 0.37397 0.50110 1,654.1 0.43951313 36.5 0.0809 12.3550 1,111.6 1,195.1 1.7203 0.37377 0.50076 1,655.3 0.43708314 36.5 0.0808 12.3730 1,112.0 1,195.6 1.7209 0.37358 0.50044 1,656.5 0.43467315 36.5 0.0807 12.3900 1,112.4 1,196.1 1.7216 0.37339 0.50011 1,657.6 0.43228316 36.5 0.0806 12.4080 1,112.7 1,196.6 1.7222 0.37320 0.49980 1,658.8 0.42992317 36.5 0.0805 12.4250 1,113.1 1,197.1 1.7229 0.37302 0.49949 1,660.0 0.42757318 36.5 0.0804 12.4430 1,113.5 1,197.6 1.7235 0.37284 0.49918 1,661.1 0.42525319 36.5 0.0803 12.4600 1,113.9 1,198.1 1.7241 0.37267 0.49888 1,662.3 0.42294320 36.5 0.0801 12.4780 1,114.3 1,198.6 1.7248 0.37249 0.49858 1,663.4 0.42066321 36.5 0.0800 12.4950 1,114.6 1,199.1 1.7254 0.37233 0.49829 1,664.6 0.41839322 36.5 0.0799 12.5120 1,115.0 1,199.6 1.7261 0.37216 0.49800 1,665.8 0.41614323 36.5 0.0798 12.5300 1,115.4 1,200.1 1.7267 0.37200 0.49772 1,666.9 0.41391324 36.5 0.0797 12.5470 1,115.8 1,200.6 1.7273 0.37184 0.49744 1,668.1 0.41170325 36.5 0.0796 12.5650 1,116.2 1,201.1 1.7280 0.37169 0.49717 1,669.2 0.40951326 36.5 0.0795 12.5820 1,116.5 1,201.6 1.7286 0.37153 0.49690 1,670.4 0.40734327 36.5 0.0794 12.5990 1,116.9 1,202.1 1.7292 0.37138 0.49663 1,671.5 0.40518328 36.5 0.0793 12.6170 1,117.3 1,202.6 1.7299 0.37124 0.49637 1,672.7 0.40304329 36.5 0.0792 12.6340 1,117.7 1,203.1 1.7305 0.37109 0.49612 1,673.8 0.40092330 36.5 0.0790 12.6520 1,118.1 1,203.6 1.7311 0.37095 0.49586 1,674.9 0.39882331 36.5 0.0789 12.6690 1,118.4 1,204.1 1.7317 0.37081 0.49562 1,676.1 0.39673332 36.5 0.0788 12.6860 1,118.8 1,204.6 1.7324 0.37068 0.49537 1,677.2 0.39466333 36.5 0.0787 12.7040 1,119.2 1,205.0 1.7330 0.37054 0.49513 1,678.4 0.39261334 36.5 0.0786 12.7210 1,119.6 1,205.5 1.7336 0.37041 0.49489 1,679.5 0.39057335 36.5 0.0785 12.7380 1,119.9 1,206.0 1.7342 0.37028 0.49466 1,680.6 0.38855336 36.5 0.0784 12.7560 1,120.3 1,206.5 1.7349 0.37016 0.49443 1,681.8 0.38655337 36.5 0.0783 12.7730 1,120.7 1,207.0 1.7355 0.37004 0.49421 1,682.9 0.38456338 36.5 0.0782 12.7900 1,121.1 1,207.5 1.7361 0.36992 0.49398 1,684.0 0.38259339 36.5 0.0781 12.8080 1,121.4 1,208.0 1.7367 0.36980 0.49376 1,685.2 0.38063340 36.5 0.0780 12.8250 1,121.8 1,208.5 1.7373 0.36968 0.49355 1,686.3 0.37869

Page 256: Crane Fluid Flow Problems

341 36.5 0.0779 12.8420 1,122.2 1,209.0 1.7380 0.36957 0.49334 1,687.4 0.37676342 36.5 0.0778 12.8600 1,122.6 1,209.5 1.7386 0.36946 0.49313 1,688.5 0.37485343 36.5 0.0777 12.8770 1,123.0 1,210.0 1.7392 0.36935 0.49292 1,689.6 0.37295344 36.5 0.0776 12.8940 1,123.3 1,210.5 1.7398 0.36924 0.49272 1,690.8 0.37107345 36.5 0.0775 12.9110 1,123.7 1,211.0 1.7404 0.36914 0.49252 1,691.9 0.36920346 36.5 0.0773 12.9290 1,124.1 1,211.5 1.7410 0.36904 0.49233 1,693.0 0.36735347 36.5 0.0772 12.9460 1,124.5 1,212.0 1.7416 0.36894 0.49214 1,694.1 0.36551348 36.5 0.0771 12.9630 1,124.8 1,212.5 1.7422 0.36884 0.49195 1,695.2 0.36369349 36.5 0.0770 12.9800 1,125.2 1,212.9 1.7429 0.36874 0.49176 1,696.3 0.36187350 36.5 0.0769 12.9980 1,125.6 1,213.4 1.7435 0.36865 0.49158 1,697.4 0.36008351 36.5 0.0768 13.0150 1,126.0 1,213.9 1.7441 0.36856 0.49140 1,698.5 0.35829352 36.5 0.0767 13.0320 1,126.3 1,214.4 1.7447 0.36847 0.49122 1,699.7 0.35652353 36.5 0.0766 13.0490 1,126.7 1,214.9 1.7453 0.36838 0.49104 1,700.8 0.35477354 36.5 0.0765 13.0670 1,127.1 1,215.4 1.7459 0.36829 0.49087 1,701.9 0.35302355 36.5 0.0764 13.0840 1,127.5 1,215.9 1.7465 0.36821 0.49070 1,703.0 0.35129356 36.5 0.0763 13.1010 1,127.8 1,216.4 1.7471 0.36813 0.49054 1,704.1 0.34958357 36.5 0.0762 13.1180 1,128.2 1,216.9 1.7477 0.36805 0.49037 1,705.2 0.34787358 36.5 0.0761 13.1350 1,128.6 1,217.4 1.7483 0.36797 0.49021 1,706.3 0.34618359 36.5 0.0760 13.1530 1,129.0 1,217.9 1.7489 0.36789 0.49006 1,707.4 0.34450360 36.5 0.0759 13.1700 1,129.3 1,218.3 1.7495 0.36782 0.48990 1,708.5 0.34284361 36.5 0.0758 13.1870 1,129.7 1,218.8 1.7501 0.36774 0.48975 1,709.5 0.34118362 36.5 0.0757 13.2040 1,130.1 1,219.3 1.7507 0.36767 0.48960 1,710.6 0.33954363 36.5 0.0756 13.2210 1,130.4 1,219.8 1.7513 0.36760 0.48945 1,711.7 0.33791364 36.5 0.0755 13.2380 1,130.8 1,220.3 1.7519 0.36753 0.48930 1,712.8 0.33629365 36.5 0.0754 13.2550 1,131.2 1,220.8 1.7525 0.36747 0.48916 1,713.9 0.33469366 36.5 0.0753 13.2730 1,131.6 1,221.3 1.7531 0.36740 0.48902 1,715.0 0.33309367 36.5 0.0752 13.2900 1,131.9 1,221.8 1.7536 0.36734 0.48888 1,716.1 0.33151368 36.5 0.0751 13.3070 1,132.3 1,222.3 1.7542 0.36728 0.48874 1,717.2 0.32994369 36.5 0.0751 13.3240 1,132.7 1,222.7 1.7548 0.36722 0.48861 1,718.2 0.32838370 36.5 0.0750 13.3410 1,133.1 1,223.2 1.7554 0.36716 0.48848 1,719.3 0.32683371 36.5 0.0749 13.3580 1,133.4 1,223.7 1.7560 0.36710 0.48835 1,720.4 0.32530372 36.5 0.0748 13.3750 1,133.8 1,224.2 1.7566 0.36705 0.48822 1,721.5 0.32377373 36.5 0.0747 13.3920 1,134.2 1,224.7 1.7572 0.36699 0.48810 1,722.6 0.32226374 36.5 0.0746 13.4100 1,134.6 1,225.2 1.7578 0.36694 0.48797 1,723.6 0.32075375 36.5 0.0745 13.4270 1,134.9 1,225.7 1.7584 0.36689 0.48785 1,724.7 0.31926376 36.5 0.0744 13.4440 1,135.3 1,226.2 1.7589 0.36684 0.48774 1,725.8 0.31778377 36.5 0.0743 13.4610 1,135.7 1,226.6 1.7595 0.36679 0.48762 1,726.9 0.31631378 36.5 0.0742 13.4780 1,136.0 1,227.1 1.7601 0.36675 0.48750 1,727.9 0.31485379 36.5 0.0741 13.4950 1,136.4 1,227.6 1.7607 0.36670 0.48739 1,729.0 0.31339380 36.5 0.0740 13.5120 1,136.8 1,228.1 1.7613 0.36666 0.48728 1,730.1 0.31195381 36.5 0.0739 13.5290 1,137.2 1,228.6 1.7618 0.36661 0.48717 1,731.1 0.31052382 36.5 0.0738 13.5460 1,137.5 1,229.1 1.7624 0.36657 0.48707 1,732.2 0.30910383 36.5 0.0737 13.5630 1,137.9 1,229.6 1.7630 0.36653 0.48696 1,733.3 0.30769384 36.5 0.0736 13.5800 1,138.3 1,230.1 1.7636 0.36649 0.48686 1,734.3 0.30629385 36.5 0.0735 13.5970 1,138.6 1,230.5 1.7642 0.36646 0.48676 1,735.4 0.30490386 36.5 0.0735 13.6140 1,139.0 1,231.0 1.7647 0.36642 0.48666 1,736.5 0.30352387 36.5 0.0734 13.6310 1,139.4 1,231.5 1.7653 0.36639 0.48656 1,737.5 0.30215388 36.5 0.0733 13.6490 1,139.8 1,232.0 1.7659 0.36635 0.48647 1,738.6 0.30079389 36.5 0.0732 13.6660 1,140.1 1,232.5 1.7665 0.36632 0.48637 1,739.6 0.29944

Page 257: Crane Fluid Flow Problems

390 36.5 0.0731 13.6830 1,140.5 1,233.0 1.7670 0.36629 0.48628 1,740.7 0.29810391 36.5 0.0730 13.7000 1,140.9 1,233.5 1.7676 0.36626 0.48619 1,741.7 0.29676392 36.5 0.0729 13.7170 1,141.2 1,234.0 1.7682 0.36623 0.48610 1,742.8 0.29544393 36.5 0.0728 13.7340 1,141.6 1,234.4 1.7687 0.36620 0.48602 1,743.8 0.29412394 36.5 0.0727 13.7510 1,142.0 1,234.9 1.7693 0.36618 0.48593 1,744.9 0.29282395 36.5 0.0726 13.7680 1,142.4 1,235.4 1.7699 0.36615 0.48585 1,745.9 0.29152396 36.5 0.0725 13.7850 1,142.7 1,235.9 1.7704 0.36613 0.48577 1,747.0 0.29023397 36.5 0.0725 13.8020 1,143.1 1,236.4 1.7710 0.36610 0.48569 1,748.0 0.28895398 36.5 0.0724 13.8190 1,143.5 1,236.9 1.7716 0.36608 0.48561 1,749.1 0.28768399 36.5 0.0723 13.8360 1,143.8 1,237.4 1.7721 0.36606 0.48553 1,750.1 0.28642400 36.5 0.0722 13.8530 1,144.2 1,237.8 1.7727 0.36604 0.48546 1,751.2 0.28517

Page 258: Crane Fluid Flow Problems

Phase

0.22978 0.68332 liquid0.22865 0.68336 liquid0.22753 0.68341 liquid0.22642 0.68345 liquid0.22532 0.68348 liquid0.22424 0.68352 liquid0.22316 0.68355 liquid0.22209 0.68357 liquid0.22103 0.68360 liquid0.21998 0.68362 liquid0.21894 0.68364 liquid0.21791 0.68365 liquid0.21716 0.68366 liquid0.01322 0.02845 vapor0.01323 0.02846 vapor0.01325 0.02849 vapor0.01327 0.02853 vapor0.01329 0.02856 vapor0.01331 0.02859 vapor0.01334 0.02863 vapor0.01336 0.02866 vapor0.01338 0.02869 vapor0.01340 0.02873 vapor0.01342 0.02876 vapor0.01344 0.02880 vapor0.01347 0.02883 vapor0.01349 0.02887 vapor0.01351 0.02890 vapor0.01353 0.02894 vapor0.01355 0.02897 vapor0.01358 0.02901 vapor0.01360 0.02905 vapor0.01362 0.02908 vapor0.01364 0.02912 vapor0.01366 0.02915 vapor0.01369 0.02919 vapor0.01371 0.02923 vapor0.01373 0.02926 vapor0.01375 0.02930 vapor0.01378 0.02934 vapor0.01380 0.02937 vapor0.01382 0.02941 vapor0.01384 0.02945 vapor0.01386 0.02949 vapor

Viscosity (cP)

Therm. Cond.

(W/m*K)

Page 259: Crane Fluid Flow Problems

0.01389 0.02952 vapor0.01391 0.02956 vapor0.01393 0.02960 vapor0.01395 0.02964 vapor0.01397 0.02968 vapor0.01400 0.02972 vapor0.01402 0.02975 vapor0.01404 0.02979 vapor0.01406 0.02983 vapor0.01408 0.02987 vapor0.01411 0.02991 vapor0.01413 0.02995 vapor0.01415 0.02999 vapor0.01417 0.03003 vapor0.01420 0.03007 vapor0.01422 0.03011 vapor0.01424 0.03015 vapor0.01426 0.03019 vapor0.01428 0.03023 vapor0.01431 0.03027 vapor0.01433 0.03031 vapor0.01435 0.03035 vapor0.01437 0.03039 vapor0.01440 0.03043 vapor0.01442 0.03047 vapor0.01444 0.03051 vapor0.01446 0.03055 vapor0.01449 0.03060 vapor0.01451 0.03064 vapor0.01453 0.03068 vapor0.01455 0.03072 vapor0.01457 0.03076 vapor0.01460 0.03080 vapor0.01462 0.03085 vapor0.01464 0.03089 vapor0.01466 0.03093 vapor0.01469 0.03097 vapor0.01471 0.03101 vapor0.01473 0.03106 vapor0.01475 0.03110 vapor0.01478 0.03114 vapor0.01480 0.03119 vapor0.01482 0.03123 vapor0.01484 0.03127 vapor0.01487 0.03132 vapor0.01489 0.03136 vapor0.01491 0.03140 vapor0.01493 0.03145 vapor0.01496 0.03149 vapor

Page 260: Crane Fluid Flow Problems

0.01498 0.03153 vapor0.01500 0.03158 vapor0.01502 0.03162 vapor0.01505 0.03167 vapor0.01507 0.03171 vapor0.01509 0.03175 vapor0.01511 0.03180 vapor0.01514 0.03184 vapor0.01516 0.03189 vapor0.01518 0.03193 vapor0.01520 0.03198 vapor0.01523 0.03202 vapor0.01525 0.03207 vapor0.01527 0.03211 vapor0.01529 0.03216 vapor0.01532 0.03220 vapor0.01534 0.03225 vapor0.01536 0.03229 vapor0.01538 0.03234 vapor0.01541 0.03238 vapor0.01543 0.03243 vapor0.01545 0.03248 vapor0.01547 0.03252 vapor0.01550 0.03257 vapor0.01552 0.03261 vapor0.01554 0.03266 vapor0.01556 0.03271 vapor0.01559 0.03275 vapor0.01561 0.03280 vapor0.01563 0.03285 vapor0.01565 0.03289 vapor0.01568 0.03294 vapor0.01570 0.03299 vapor0.01572 0.03303 vapor0.01574 0.03308 vapor0.01577 0.03313 vapor0.01579 0.03318 vapor0.01581 0.03322 vapor0.01583 0.03327 vapor0.01586 0.03332 vapor0.01588 0.03336 vapor0.01590 0.03341 vapor0.01593 0.03346 vapor0.01595 0.03351 vapor0.01597 0.03356 vapor0.01599 0.03360 vapor0.01602 0.03365 vapor0.01604 0.03370 vapor0.01606 0.03375 vapor

Page 261: Crane Fluid Flow Problems

0.01608 0.03380 vapor0.01611 0.03385 vapor0.01613 0.03389 vapor0.01615 0.03394 vapor0.01618 0.03399 vapor0.01620 0.03404 vapor0.01622 0.03409 vapor0.01624 0.03414 vapor0.01627 0.03419 vapor0.01629 0.03424 vapor0.01631 0.03428 vapor

Page 262: Crane Fluid Flow Problems

Crane 410 fittingsthread378-173164

wfn217 (Chemical) 13 Dec 06 8:49

In Crane TP 410, K for a fitting is found by multiplying a number times f T. fT is called the friction factor. Is fT related to the roughness?

dtn6770 (Mechanical) 13 Dec 06 9:45

fT is related to roughness by way of the Moody Diagram and its use of relative roughness. Relative roughness is the materials absolute roughness divided by the inside diameter.

STYMIEDPIPER (Mechanical) 13 Dec 06 10:53

Crane 410 lists values for fT

wfn217 (Chemical) 13 Dec 06 10:57

I wanted to know whether the listed fT values are strictly due to geometry or also a function of roughness.

BigInch (Petroleum) 13 Dec 06 11:05

geometry

vzeos (Mechanical) 13 Dec 06 12:03

wfn217- In Crane TP 410 fT is the fully turbulent flow friction factor defined by the equation below. Dis the pipe I. D. and k is the pipe roughness.

1/√fT= 2Log{(3.7D/k)

Crane's equivalent length calculations assume fully developed turbulent flow. See Crane TP 410, Page26. The fT values provided by Crane imply a k value of about 0.00180".

BigInch (Petroleum) 13 Dec 06 12:16

vzeos,

You are totally correct. Seems I reversed the question. K is determined by geometry, but the equivaletlength is indeed based on 0.0018 roughness.

DLANDISSR (Mechanical) 13 Dec 06 14:45

fT is the friction factor in the turbulent region of flow. It is calculated from the Colebrook-White equation which is an iteration. The Moody Diagram is derived from the Colebrook-White equation.

katmar (Chemical) 13 Dec 06 15:00

BigInch nailed the answer with his first post, but this question highlights what I consider to be one of the weaker points of the Crane 410 manual so please forgive me a little rant here. I have seen Crane's treatment of the K value for pipe fittings cause so much confusion - it really is a great pity they chose to do it this way.

The Crane engineers noted that the K values for fittings generally decreased as the fitting size increased. But it all went wrong when they noticed that this rate of decrease was close to the same as the rate at which the friction factor for fully developed turbulent flow in commercial steel pipe decreased as the pipe size increased. The fatal mistake was to link the two. See Crane Fig 2-14 and associated commentary.

For example, on page A-29 the K value for a 90 degree butt-weld pipe bend with an r/d of 1.5 is given as 14fT. The values of fT are given at the top of page A-26 as a function of pipe size. The values may have been calculated using the function referenced by vzeos, but for the purposes of calculating K values they are constants for each pipe size.

This apparent link between the K value and the friction factor gives the impression that the K value is linked to the pipe roughness - but in fact it is not because fT is defined to be at a particular roughness. Even worse, it is possible to be misled into believing the Crane K values compensate for changes in Reynolds number because everyone knows that the friction factor is influenced by the Reynolds number. But again, it is not because fT is defined to be in a particular Reynolds regime (fully turbulent).

To use the example of the 90 degree bend I gave above, it would have been better for Crane to give theK value as 14J, where J is simply a fudge-factor and would still be given by the values in the table on Page A-26 but without any reference to the friction factor. (Note that I have selected J as my symbol simply because it has no prior definition in the Crane Nomenclature table.)

The upshot of all of this is that in Crane's treatment, the K value of a fitting is a function onlypipe size (or geometry to use the terms used by wfn217 and BigInch). This was an improvement over previous work where the K value had been assumed to be constant for all sizes of fittings, and at the time that Crane first published this method it was rightly acclaimed as an important advance but IMHOit was badly worded and newer editions of 410 have unfortunately done nothing to remove the confusion.

I have awarded a star to BigInch for his comment that if you want to convert the Crane K value to an equivalent length, you must use the fT value from Crane's table on page A-26 (which is based on a roughness of 0.0018") and NOT the actual friction factor of the pipe you are using. The Crane description of this on pages 2-8 to 2-11 is extremely confusing, and the example 4-7 is just plain wrong because the K values given in the 410 manual apply only to fully developed turbulent flow and should never be used for laminar flow.

If you are working with laminar flow it is much better to work with equivalent lengths than with fixed or even Crane K values. Resistance values for fittings increase rapidly at low Reynolds numbers, but so does the friction factor. This means that if you use fixed L/D values, which get multiplied by the friction factor in the Darcy-Weisbach equation, the high resistance values are automatically compensated for. Or even better, use the 2-K or 3-K methods proposed by Hooper and Darby.

Page 263: Crane Fluid Flow Problems

katmar (Chemical) 13 Dec 06 15:00

BigInch nailed the answer with his first post, but this question highlights what I consider to be one of the weaker points of the Crane 410 manual so please forgive me a little rant here. I have seen Crane's treatment of the K value for pipe fittings cause so much confusion - it really is a great pity they chose to do it this way.

The Crane engineers noted that the K values for fittings generally decreased as the fitting size increased. But it all went wrong when they noticed that this rate of decrease was close to the same as the rate at which the friction factor for fully developed turbulent flow in commercial steel pipe decreased as the pipe size increased. The fatal mistake was to link the two. See Crane Fig 2-14 and associated commentary.

For example, on page A-29 the K value for a 90 degree butt-weld pipe bend with an r/d of 1.5 is given as 14fT. The values of fT are given at the top of page A-26 as a function of pipe size. The values may have been calculated using the function referenced by vzeos, but for the purposes of calculating K values they are constants for each pipe size.

This apparent link between the K value and the friction factor gives the impression that the K value is linked to the pipe roughness - but in fact it is not because fT is defined to be at a particular roughness. Even worse, it is possible to be misled into believing the Crane K values compensate for changes in Reynolds number because everyone knows that the friction factor is influenced by the Reynolds number. But again, it is not because fT is defined to be in a particular Reynolds regime (fully turbulent).

To use the example of the 90 degree bend I gave above, it would have been better for Crane to give theK value as 14J, where J is simply a fudge-factor and would still be given by the values in the table on Page A-26 but without any reference to the friction factor. (Note that I have selected J as my symbol simply because it has no prior definition in the Crane Nomenclature table.)

The upshot of all of this is that in Crane's treatment, the K value of a fitting is a function onlypipe size (or geometry to use the terms used by wfn217 and BigInch). This was an improvement over previous work where the K value had been assumed to be constant for all sizes of fittings, and at the time that Crane first published this method it was rightly acclaimed as an important advance but IMHOit was badly worded and newer editions of 410 have unfortunately done nothing to remove the confusion.

I have awarded a star to BigInch for his comment that if you want to convert the Crane K value to an equivalent length, you must use the fT value from Crane's table on page A-26 (which is based on a roughness of 0.0018") and NOT the actual friction factor of the pipe you are using. The Crane description of this on pages 2-8 to 2-11 is extremely confusing, and the example 4-7 is just plain wrong because the K values given in the 410 manual apply only to fully developed turbulent flow and should never be used for laminar flow.

If you are working with laminar flow it is much better to work with equivalent lengths than with fixed or even Crane K values. Resistance values for fittings increase rapidly at low Reynolds numbers, but so does the friction factor. This means that if you use fixed L/D values, which get multiplied by the friction factor in the Darcy-Weisbach equation, the high resistance values are automatically compensated for. Or even better, use the 2-K or 3-K methods proposed by Hooper and Darby.

Page 264: Crane Fluid Flow Problems

katmar (Chemical) 13 Dec 06 15:00

BigInch nailed the answer with his first post, but this question highlights what I consider to be one of the weaker points of the Crane 410 manual so please forgive me a little rant here. I have seen Crane's treatment of the K value for pipe fittings cause so much confusion - it really is a great pity they chose to do it this way.

The Crane engineers noted that the K values for fittings generally decreased as the fitting size increased. But it all went wrong when they noticed that this rate of decrease was close to the same as the rate at which the friction factor for fully developed turbulent flow in commercial steel pipe decreased as the pipe size increased. The fatal mistake was to link the two. See Crane Fig 2-14 and associated commentary.

For example, on page A-29 the K value for a 90 degree butt-weld pipe bend with an r/d of 1.5 is given as 14fT. The values of fT are given at the top of page A-26 as a function of pipe size. The values may have been calculated using the function referenced by vzeos, but for the purposes of calculating K values they are constants for each pipe size.

This apparent link between the K value and the friction factor gives the impression that the K value is linked to the pipe roughness - but in fact it is not because fT is defined to be at a particular roughness. Even worse, it is possible to be misled into believing the Crane K values compensate for changes in Reynolds number because everyone knows that the friction factor is influenced by the Reynolds number. But again, it is not because fT is defined to be in a particular Reynolds regime (fully turbulent).

To use the example of the 90 degree bend I gave above, it would have been better for Crane to give theK value as 14J, where J is simply a fudge-factor and would still be given by the values in the table on Page A-26 but without any reference to the friction factor. (Note that I have selected J as my symbol simply because it has no prior definition in the Crane Nomenclature table.)

The upshot of all of this is that in Crane's treatment, the K value of a fitting is a function onlypipe size (or geometry to use the terms used by wfn217 and BigInch). This was an improvement over previous work where the K value had been assumed to be constant for all sizes of fittings, and at the time that Crane first published this method it was rightly acclaimed as an important advance but IMHOit was badly worded and newer editions of 410 have unfortunately done nothing to remove the confusion.

I have awarded a star to BigInch for his comment that if you want to convert the Crane K value to an equivalent length, you must use the fT value from Crane's table on page A-26 (which is based on a roughness of 0.0018") and NOT the actual friction factor of the pipe you are using. The Crane description of this on pages 2-8 to 2-11 is extremely confusing, and the example 4-7 is just plain wrong because the K values given in the 410 manual apply only to fully developed turbulent flow and should never be used for laminar flow.

If you are working with laminar flow it is much better to work with equivalent lengths than with fixed or even Crane K values. Resistance values for fittings increase rapidly at low Reynolds numbers, but so does the friction factor. This means that if you use fixed L/D values, which get multiplied by the friction factor in the Darcy-Weisbach equation, the high resistance values are automatically compensated for. Or even better, use the 2-K or 3-K methods proposed by Hooper and Darby.

Montemayor (Chemical) 13 Dec 06 18:59

And I select Harvey as the preferred Ranter of the day and worthy - as well - of recognition for bringing to everyone's attention the importance of really understanding and reading through what is putin front of our eyes. We, as professional engineers, are not being asked to believe or accept 100% of what we are offered or given - regardless of how “sacred” the Cow may seem. Everything in engineering is subject to scrutiny and improvements.

I have a lot of respect and gratitude for what has gone into putting together Crane's Tech Paper #410. However, everything Harvey has stated regarding the concept of their K values is not only valid, but 100% positive criticism that should be heard and applied. Major world-class engineering firms agree with what Harvey states - and so do some of the biggest chemical process companies. To quote one: “Until recently, the use of K coefficients for valves and fittings has been considered more accurate than the use of equivalent lengths of pipe, but recent research has disclosed that K coefficients are not constant for all sizes of any one type of valve or fitting; so the use of equivalent lengths, with some exceptions, is now preferred.” And this is in addition to the problems of understanding/interpreting what TP 410 is saying. We have a better option, as Harvey states, in the 2-K or 3-K methods.

Great comments and good engineering knowledge, Harvey!

wfn217 (Chemical) 14 Dec 06 11:39

The number that Crane multiplies by fT to obtain K is the same number listed as L/D in Cameron

katmar (Chemical) 14 Dec 06 13:45

wfn217,

the Darcy-Weisbach correlation for pressure drop is

?P = ( fL/D + K ) ?V2 / 2

So if you want to express the resistance of a fitting in terms of the equivalent length (i.e. L/D) instead of K then you have to calculate

L/D = K/f

and since Crane express their K's as (Constant) x fT you would get

L/D = (Constant) x fT / f

If f is evaluated at the same conditions as fT (which is what my rant above was all about!) then of course

L/D = (Constant)

which means that for commercial steel pipe in the fully turbulent regime the (Constant) used by Crane will indeed be the L/D value given by Cameron. You just have to remember that because Crane evaluated these (Constants) for commercial steel pipe in the fully turbulent regime, if you want to get back to the L/D values you must use fT and not the friction factor in your particular case.

Katmar SoftwareEngineering & Risk Analysis Softwarehttp://katmarsoftware.com

wfn217 (Chemical) 14 Dec 06 14:35

katmar,

Page 265: Crane Fluid Flow Problems

katmar (Chemical) 14 Dec 06 13:45

wfn217,

the Darcy-Weisbach correlation for pressure drop is

?P = ( fL/D + K ) ?V2 / 2

So if you want to express the resistance of a fitting in terms of the equivalent length (i.e. L/D) instead of K then you have to calculate

L/D = K/f

and since Crane express their K's as (Constant) x fT you would get

L/D = (Constant) x fT / f

If f is evaluated at the same conditions as fT (which is what my rant above was all about!) then of course

L/D = (Constant)

which means that for commercial steel pipe in the fully turbulent regime the (Constant) used by Crane will indeed be the L/D value given by Cameron. You just have to remember that because Crane evaluated these (Constants) for commercial steel pipe in the fully turbulent regime, if you want to get back to the L/D values you must use fT and not the friction factor in your particular case.

Katmar SoftwareEngineering & Risk Analysis Softwarehttp://katmarsoftware.com

wfn217 (Chemical) 14 Dec 06 14:35

katmar,

katmar (Chemical) 14 Dec 06 15:15

wfn217,

It has been found experimentally that the resistance factor (i.e. K value) for a fitting depends on both the fitting size and the Reynolds number. In the Darcy-Weisbach equation (in which I managed to get the wrong symbols before)

ΔP = ( fL/D + K ) ρV2 / 2

you can see that if you use a K value the pressure drop is not influenced by the fitting size or the Reynolds number. When you use Crane K values the value is corrected (via the table on page A-26) for fitting size before you insert the value into the D-W equation, but many of the older references gave single K values for all fitting sizes.

On the other hand, you can see that if you use equivalent lengths, then the value is multiplied by the actual friction factor for your application, and because the friction factor does depend on the fitting size and the Reynolds number it automatically corrects the calculation for both these factors. This makes the equivalent length method both easier to use, and more accurate than K values. It is easier to use because you only have to remember a single L/D value for a given type of fitting.

As Montemayor and I said before, the very best way is to use the 2-K or 3-K method but these are computationally much more involved. In my software I use 3-K because once it is programmed it makes no extra work to use it, but if I am doing a hand calc then I use the equivalent length method.

Hope this makes it clear

Harvey

tickle (Chemical) 14 Dec 06 18:17

Thank you Katmar for your wonderful explanation.

I have questioned Crane myself, but learnt to accept that its findings were as practical as required.

I think that younger engineers blindly use equations and computer programs - because they are there. They do not understand the applicable circumstances or the limitations. In fact whilst reading the post one of the junior engineers questioned me regarding recommended pipe diameters. They had sized thesteam piping for maximum flow and minimum pressure. They were blindly going to use a calculated diameter because it was less than or equal to the recommended velocity without considering the application and whether the worst case conditions could occur at the same time, (they can't and a smaller pipe diameter was my recommendation).

Page 266: Crane Fluid Flow Problems

katmar (Chemical) 14 Dec 06 15:15

wfn217,

It has been found experimentally that the resistance factor (i.e. K value) for a fitting depends on both the fitting size and the Reynolds number. In the Darcy-Weisbach equation (in which I managed to get the wrong symbols before)

ΔP = ( fL/D + K ) ρV2 / 2

you can see that if you use a K value the pressure drop is not influenced by the fitting size or the Reynolds number. When you use Crane K values the value is corrected (via the table on page A-26) for fitting size before you insert the value into the D-W equation, but many of the older references gave single K values for all fitting sizes.

On the other hand, you can see that if you use equivalent lengths, then the value is multiplied by the actual friction factor for your application, and because the friction factor does depend on the fitting size and the Reynolds number it automatically corrects the calculation for both these factors. This makes the equivalent length method both easier to use, and more accurate than K values. It is easier to use because you only have to remember a single L/D value for a given type of fitting.

As Montemayor and I said before, the very best way is to use the 2-K or 3-K method but these are computationally much more involved. In my software I use 3-K because once it is programmed it makes no extra work to use it, but if I am doing a hand calc then I use the equivalent length method.

Hope this makes it clear

Harvey

tickle (Chemical) 14 Dec 06 18:17

Thank you Katmar for your wonderful explanation.

I have questioned Crane myself, but learnt to accept that its findings were as practical as required.

I think that younger engineers blindly use equations and computer programs - because they are there. They do not understand the applicable circumstances or the limitations. In fact whilst reading the post one of the junior engineers questioned me regarding recommended pipe diameters. They had sized thesteam piping for maximum flow and minimum pressure. They were blindly going to use a calculated diameter because it was less than or equal to the recommended velocity without considering the application and whether the worst case conditions could occur at the same time, (they can't and a smaller pipe diameter was my recommendation).

pleckner (Chemical) 14 Dec 06 20:11

I invite everyone to read my article on this subject published at

http://www.cheresources.com/eqlength.shtml

I don't agree that using equivalent lengths is the proper way to perform a system hydraulcs calculation (my arguments are in the above mentioned article). You must not mix the friction factor for a fitting with the friction factor of a pipe because they are not the same, whether we are talking about CRANE'sfriction factor at fully developed turbulent flow or the two-K or three-K methods. The pressure loss of a fitting obtained from these methods is not the same nor nearly the same as the pressure loss of a fitting obtained from multiplying the pipe friction factor x the equivalent length of the fitting.

The most accurate way to perform the calculation is to use one of these methods (three-k perferred) and add the losses to those of the pipe, not to combine them all into an equivalent length of straight pipe and multiply by the pipe friction factor.

The two-K or three-K methods were developed to address the fact that fittings are indded somewhat dependent on Reynolds number, but this is still not the same as a pipe friction factor.

I will also argue that for fully developed turbulent flow, there is nothing wrong with CRANE's values.

katmar (Chemical) 15 Dec 06 5:15

pleckner,

There is a lot more that we agree on than on which we differ. It was never my intention to suggest that there is anything wrong with applying Crane's K values to fully developed turbulent flow. I have recommended MANY times here that people should get their hands on a copy of Crane 410. Probably 95% or more of our flow calcs are for fully developed turbulent flow, and Crane is ideal for this.

My main objection was to the confusion caused by Crane's wording and their linking of the K value to the turbulent friction factor. I believe the posts in this thread confirm that this confusion is widespread, and I have often seen engineers struggle to come to terms with it. Despite the shortcomings of Crane 410, my copy "lives" in the very front of the top drawer of the filing cabinet right next to my desk.

We all agree that the multi-K methods are better than the L/D method. However, I disagree with Crane's statement (which is echoed in your article) that “K is a constant under all flow conditions, including laminar flow”. In your example you give the K value for a long radius bend as 0.36. Applying the 3-K method at a Reynolds number of 100 in the same sized pipe gives a K value of 8.3. This means that a pressure drop calculation using the Crane value will be 90% understated, if we take 3-K as the benchmark. I accept that a similar calculation at Re = 100 using the L/D method will over-estimate the pressure drop but for most calculations this would be the conservative option.

I have one objection to the example in your article. 92% of the pressure drop is due to the reducer, but nobody would ever try to calculate the pressure drop through a reducer with the L/D method. Including the reducer exaggerates the negative aspects of the L/D method.

Neglecting the reducer, the calculated pressure drops using the various methods are

L/D method - 0.97 psi Crane K - 0.75 psi Darby 3-K - 0.87 psi

Who would put his neck on the block over which of these numbers is correct? The L/D and Crane answers are within 15% of the 3-K answer, and all three answers are probably adequate for practical purposes.Katmar SoftwareEngineering & Risk Analysis Software

BigInch (Petroleum) 15 Dec 06 6:12

That's my humble opinion also. With all the other inaccuracies inherent in hydraulics and more specifically how systems are usually operated at one or the other of the extreme ranges, if you design a system close enough so that you have to worry about the difference in pressure drops from laminar or turbulent flow in a few fittings, that's just plain tooooo close. If for some reason you need to examine an existing system, the actual data's there for the taking.

Page 267: Crane Fluid Flow Problems

katmar (Chemical) 15 Dec 06 5:15

pleckner,

There is a lot more that we agree on than on which we differ. It was never my intention to suggest that there is anything wrong with applying Crane's K values to fully developed turbulent flow. I have recommended MANY times here that people should get their hands on a copy of Crane 410. Probably 95% or more of our flow calcs are for fully developed turbulent flow, and Crane is ideal for this.

My main objection was to the confusion caused by Crane's wording and their linking of the K value to the turbulent friction factor. I believe the posts in this thread confirm that this confusion is widespread, and I have often seen engineers struggle to come to terms with it. Despite the shortcomings of Crane 410, my copy "lives" in the very front of the top drawer of the filing cabinet right next to my desk.

We all agree that the multi-K methods are better than the L/D method. However, I disagree with Crane's statement (which is echoed in your article) that “K is a constant under all flow conditions, including laminar flow”. In your example you give the K value for a long radius bend as 0.36. Applying the 3-K method at a Reynolds number of 100 in the same sized pipe gives a K value of 8.3. This means that a pressure drop calculation using the Crane value will be 90% understated, if we take 3-K as the benchmark. I accept that a similar calculation at Re = 100 using the L/D method will over-estimate the pressure drop but for most calculations this would be the conservative option.

I have one objection to the example in your article. 92% of the pressure drop is due to the reducer, but nobody would ever try to calculate the pressure drop through a reducer with the L/D method. Including the reducer exaggerates the negative aspects of the L/D method.

Neglecting the reducer, the calculated pressure drops using the various methods are

L/D method - 0.97 psi Crane K - 0.75 psi Darby 3-K - 0.87 psi

Who would put his neck on the block over which of these numbers is correct? The L/D and Crane answers are within 15% of the 3-K answer, and all three answers are probably adequate for practical purposes.Katmar SoftwareEngineering & Risk Analysis Software

BigInch (Petroleum) 15 Dec 06 6:12

That's my humble opinion also. With all the other inaccuracies inherent in hydraulics and more specifically how systems are usually operated at one or the other of the extreme ranges, if you design a system close enough so that you have to worry about the difference in pressure drops from laminar or turbulent flow in a few fittings, that's just plain tooooo close. If for some reason you need to examine an existing system, the actual data's there for the taking.

pleckner (Chemical) 15 Dec 06 8:01

We are in agreement.

I put the reducers into the L/D equation only as a means for comparison. I agree with you (Katmar) onthat. But then again, I don't use the equivalent length method, ever.

Katmar, I'm one up on you, I keep CRANE on my desk, I'm too lazy to go into my file cabinet.

wfn217 (Chemical) 15 Dec 06 9:09

It should be noted that pleckner's article states that K for a fitting has little to do with friction, which answers my original question. I have seen someone try to scale the fT values in Crane from pipe to tubing based on roughness.

LeSabre (Petroleum) 15 Dec 06 10:07

pleckner,

Great article. I appreciate your logical presentation. I am curious, however, about your representation that in 1979 Crane “...discussed and used the two-friction factor method for calculating the total pressure drop in a piping system...(f for straight pipe and ft for valves and fittings)”. It is my understanding from reading the TP 410 Foreword (4th paragraph, quoted below) that Crane’s intent was to have the pipe friction factor, f, apply to the K factor calculation and that the K factor was intended to apply to the full range of flow regimes from laminar to full turbulence. Can you comment on this?

Quote (TP 410 FOREWORD):The fifteenth printing (1976 edition) presented a conceptual change regarding the values of EquivalentLength "L/D" and Resistance Coefficient "K" for valves and fittings relative to the friction factor in pipes. This change has relatively minor effect on most problems dealing with flow conditions that result in Reynolds numbers falling in the turbulent zone. However, for flow in the laminar zone, the change avoids a significant overstatement of pressure drop. Consistent with this conceptual revision, the resistance to flow through valves and fittings is now expressed in terms of resistance co-efficient

Page 268: Crane Fluid Flow Problems

pleckner (Chemical) 15 Dec 06 8:01

We are in agreement.

I put the reducers into the L/D equation only as a means for comparison. I agree with you (Katmar) onthat. But then again, I don't use the equivalent length method, ever.

Katmar, I'm one up on you, I keep CRANE on my desk, I'm too lazy to go into my file cabinet.

wfn217 (Chemical) 15 Dec 06 9:09

It should be noted that pleckner's article states that K for a fitting has little to do with friction, which answers my original question. I have seen someone try to scale the fT values in Crane from pipe to tubing based on roughness.

LeSabre (Petroleum) 15 Dec 06 10:07

pleckner,

Great article. I appreciate your logical presentation. I am curious, however, about your representation that in 1979 Crane “...discussed and used the two-friction factor method for calculating the total pressure drop in a piping system...(f for straight pipe and ft for valves and fittings)”. It is my understanding from reading the TP 410 Foreword (4th paragraph, quoted below) that Crane’s intent was to have the pipe friction factor, f, apply to the K factor calculation and that the K factor was intended to apply to the full range of flow regimes from laminar to full turbulence. Can you comment on this?

Quote (TP 410 FOREWORD):The fifteenth printing (1976 edition) presented a conceptual change regarding the values of EquivalentLength "L/D" and Resistance Coefficient "K" for valves and fittings relative to the friction factor in pipes. This change has relatively minor effect on most problems dealing with flow conditions that result in Reynolds numbers falling in the turbulent zone. However, for flow in the laminar zone, the change avoids a significant overstatement of pressure drop. Consistent with this conceptual revision, the resistance to flow through valves and fittings is now expressed in terms of resistance co-efficient

katmar (Chemical) 15 Dec 06 11:22

LeSabre,

The example in pleckner's article shows how the "old" (i.e. pre-1976) L/D method over-estimates the pressure drop in fittings for low Reynolds numbers. All my calcs agree with and confirm pleckner's result. Crane were quite correct to make this claim in the 1976 foreword.

It is true that using the “new” K values avoids the overstatement of the pressure drop in the laminar regime, but my example (See 5 Dec 5:15) shows how the Crane K values now understate the pressure drop by 90% at a Reynolds number of 100. If you were designing a new pipeline would you rather estimate the pressure drop as 40% too high or 90% too low?

Your query, and the latest post by wfn217, are typical examples of the confusion that is caused by the Crane method, and which lead to my rant near the start of this thread.

I have probably stretched everyone's patience to the limit by going on and on about this problem so I will leave it at this now. Katmar SoftwareEngineering & Risk Analysis Software

pleckner (Chemical) 15 Dec 06 12:49

To LaSabre:

Thanks.

To me that statement in the Foreword just means that they made a change on how they relate the new K value to pipe friction factor. The statement obviously doesn't give any specifics as to how to apply the two, that is left to the rest of the document. Indeed, everywhere K for a valve or fitting is calculatedwithin TP410 they are very careful to note the friction factor as fT and NOT f.

CRANE notes that the friction factors (f and fT) will essentially be the same in the zone of complete turbulence.

But you are correct in that it appears CRANE was intent on having K applied throughout all flow zones and that is where they got it wrong as we've been pointing out in these Postings.

ccfowler (Mechanical) 16 Dec 06 2:03

katmar,

Thanks for your comments and their effects on this discussion.

BigInch,You have pointed toward one of my pet peeves, the dreadful misunderstandings brought about by the ability of computers and calculators to thrash around 10 digit numbers. If the accuracy to which most parameters are known is only 1%, 5%, 10%, and sometimes even worse, most of those many digits presented by the mighty computer or calculator are really just so much drivel.  Unfortunately, there is never a shortage of people who want to believe that all of those digits are significant (and are willing to

Page 269: Crane Fluid Flow Problems

BigInch (Petroleum) 16 Dec 06 3:37

The discussion has been very informative, but there is a certain logic for Crane to just continuing to publish equivalent lengths with conservative roughness at turbulent flows... its conservative and that's exactly how a lookup table intended for general application to all hydraulic systems should be. Somewhere in Tips, I recall seeing a comment I liked questioning how many digits were actually needed before the answer became believable, or something to that effect. Guess we should have stayed with 8 bit computers. Even if all variables were known to 1%, it seems to me that most systems would spend an excessive amount of time operating outside the range where those accuracies were valid. Lastly, risking repeating myself, sooner or later any given system reaches capacity at one extreme end of operational range or another, so over the long term is using Eq.Len at max turbulence really a bad thing? BigInch-born in the trenches. LeSabre (Petroleum) 18 Dec 06 10:40

katmar, Thanks for directing my attention to your “rant”. I agree that the ft factor depends on geometry. Your j-factor theory, however, leads to the unlikely result that two different pipe I.D.s, say, 4” sch 40 (I.D. = 4.0260”) and 4” sch 160 (I.D. = 3.4380”) could have the same K-factor. How do you reconcile this situation? Also, how would you get the K-factor for a 36" XS L.R. Ell.? Thanks. sailoday28 (Mechanical) 18 Dec 06 12:11

And the L/d or K for a run or branch of a "T" is? Regards

BigInch (Petroleum) 18 Dec 06 12:28

You could have a look at these that Weldbend gives for fittings, including straight tees and they even give a method for assemblies as well, http://www.weldbend.com/Technical%20Data/Flow%20Resistance%20For%20Fittings/flowresistance.htm and click on <next> for the following page BigInch-born in the trenches. LeSabre (Petroleum) 18 Dec 06 12:44

BigInch, Great site, thanks! But I didn't see any info on K-factors or ft.

katmar (Chemical) 15 Dec 06 11:22

LeSabre,

The example in pleckner's article shows how the "old" (i.e. pre-1976) L/D method over-estimates the pressure drop in fittings for low Reynolds numbers. All my calcs agree with and confirm pleckner's result. Crane were quite correct to make this claim in the 1976 foreword.

It is true that using the “new” K values avoids the overstatement of the pressure drop in the laminar regime, but my example (See 5 Dec 5:15) shows how the Crane K values now understate the pressure drop by 90% at a Reynolds number of 100. If you were designing a new pipeline would you rather estimate the pressure drop as 40% too high or 90% too low?

Your query, and the latest post by wfn217, are typical examples of the confusion that is caused by the Crane method, and which lead to my rant near the start of this thread.

I have probably stretched everyone's patience to the limit by going on and on about this problem so I will leave it at this now. Katmar SoftwareEngineering & Risk Analysis Software

pleckner (Chemical) 15 Dec 06 12:49

To LaSabre:

Thanks.

To me that statement in the Foreword just means that they made a change on how they relate the new K value to pipe friction factor. The statement obviously doesn't give any specifics as to how to apply the two, that is left to the rest of the document. Indeed, everywhere K for a valve or fitting is calculatedwithin TP410 they are very careful to note the friction factor as fT and NOT f.

CRANE notes that the friction factors (f and fT) will essentially be the same in the zone of complete turbulence.

But you are correct in that it appears CRANE was intent on having K applied throughout all flow zones and that is where they got it wrong as we've been pointing out in these Postings.

ccfowler (Mechanical) 16 Dec 06 2:03

katmar,

Thanks for your comments and their effects on this discussion.

BigInch,You have pointed toward one of my pet peeves, the dreadful misunderstandings brought about by the ability of computers and calculators to thrash around 10 digit numbers. If the accuracy to which most parameters are known is only 1%, 5%, 10%, and sometimes even worse, most of those many digits presented by the mighty computer or calculator are really just so much drivel.  Unfortunately, there is never a shortage of people who want to believe that all of those digits are significant (and are willing to

Page 270: Crane Fluid Flow Problems

BigInch (Petroleum) 16 Dec 06 3:37

The discussion has been very informative, but there is a certain logic for Crane to just continuing to publish equivalent lengths with conservative roughness at turbulent flows... its conservative and that's exactly how a lookup table intended for general application to all hydraulic systems should be. Somewhere in Tips, I recall seeing a comment I liked questioning how many digits were actually needed before the answer became believable, or something to that effect. Guess we should have stayed with 8 bit computers. Even if all variables were known to 1%, it seems to me that most systems would spend an excessive amount of time operating outside the range where those accuracies were valid. Lastly, risking repeating myself, sooner or later any given system reaches capacity at one extreme end of operational range or another, so over the long term is using Eq.Len at max turbulence really a bad thing? BigInch-born in the trenches. LeSabre (Petroleum) 18 Dec 06 10:40

katmar, Thanks for directing my attention to your “rant”. I agree that the ft factor depends on geometry. Your j-factor theory, however, leads to the unlikely result that two different pipe I.D.s, say, 4” sch 40 (I.D. = 4.0260”) and 4” sch 160 (I.D. = 3.4380”) could have the same K-factor. How do you reconcile this situation? Also, how would you get the K-factor for a 36" XS L.R. Ell.? Thanks. sailoday28 (Mechanical) 18 Dec 06 12:11

And the L/d or K for a run or branch of a "T" is? Regards

BigInch (Petroleum) 18 Dec 06 12:28

You could have a look at these that Weldbend gives for fittings, including straight tees and they even give a method for assemblies as well, http://www.weldbend.com/Technical%20Data/Flow%20Resistance%20For%20Fittings/flowresistance.htm and click on <next> for the following page BigInch-born in the trenches. LeSabre (Petroleum) 18 Dec 06 12:44

BigInch, Great site, thanks! But I didn't see any info on K-factors or ft.

pleckner (Chemical) 18 Dec 06 13:03

Let's remember that CRANE TP410 doesn't publish equivalent lenghts for valves and fittings, it provides K values or the means to calculate K values from which we can then calculate the equivalent length using the appropriate friction factor at fully developed turbulent flow.

Let us also not forget that we can obtain various fT values from the graph on Page A-23. This graph allows us to choose the fT for the type of pipe being used (and this translates into a constant absolute roughness for that type of pipe) and the diameter of that pipe. So I don't agree that CRANE TP410 necessarily publishes conservative values of roughness. It all depends on how you want to manipulate the piping material you are using, e.g. For pharmaceutical grade highly polished SS pipe I might choose to use the roughness for Drawn Tubing (an absolute roughness of 0.000005 feet) rather than clean commercial steel pipe (0.00015 feet). Note that with this table, I can also try to interpolate and obtain fT for various pipe diameters!

Let us also not forget that the published fT values given in the table at the top of Page A-26 are strictly for CLEAN COMMERCIAL STEEL PIPE and for the schedule of pipe listed on Page 2-10. If one desires the the K value for another fitting of a different schedule pipe, they should adjust it using Equation 2-5 on that same page or go to the Graph on Page A-23.

One last thing for now, one can still use published equivalent lenghts as per the reference given by BigInch but just remember to calculate the pressure loss through that fitting using fT for that fitting rather than the pipe friction factor as I've shown in my paper and my post above.

BigInch (Petroleum) 18 Dec 06 13:12

on the <next> page, they give a method for dP, from which you can backcalculate Ks, right?

http://www.weldbend.com/Technical%20Data/Flow%20Resistance%20For%20Fittings/

Page 271: Crane Fluid Flow Problems

pleckner (Chemical) 18 Dec 06 13:03

Let's remember that CRANE TP410 doesn't publish equivalent lenghts for valves and fittings, it provides K values or the means to calculate K values from which we can then calculate the equivalent length using the appropriate friction factor at fully developed turbulent flow.

Let us also not forget that we can obtain various fT values from the graph on Page A-23. This graph allows us to choose the fT for the type of pipe being used (and this translates into a constant absolute roughness for that type of pipe) and the diameter of that pipe. So I don't agree that CRANE TP410 necessarily publishes conservative values of roughness. It all depends on how you want to manipulate the piping material you are using, e.g. For pharmaceutical grade highly polished SS pipe I might choose to use the roughness for Drawn Tubing (an absolute roughness of 0.000005 feet) rather than clean commercial steel pipe (0.00015 feet). Note that with this table, I can also try to interpolate and obtain fT for various pipe diameters!

Let us also not forget that the published fT values given in the table at the top of Page A-26 are strictly for CLEAN COMMERCIAL STEEL PIPE and for the schedule of pipe listed on Page 2-10. If one desires the the K value for another fitting of a different schedule pipe, they should adjust it using Equation 2-5 on that same page or go to the Graph on Page A-23.

One last thing for now, one can still use published equivalent lenghts as per the reference given by BigInch but just remember to calculate the pressure loss through that fitting using fT for that fitting rather than the pipe friction factor as I've shown in my paper and my post above.

BigInch (Petroleum) 18 Dec 06 13:12

on the <next> page, they give a method for dP, from which you can backcalculate Ks, right?

http://www.weldbend.com/Technical%20Data/Flow%20Resistance%20For%20Fittings/

katmar (Chemical) 18 Dec 06 15:29

@LeSabre,

Yes, indeed (assuming we are still talking LR bends) the Sch40 and Sch160 fittings would have the same K value using my J factor, or using the Crane method. The table at the top of page A-26 has a note "K is based on use of schedule pipe as listed on page 2-10". And page 2-10 seems to say that the K values apply to Schedules 40 to 160, but that the velocity that is used to calculate the velocity head must be based on the actual ID of the fitting. Makes sense to me. If you take a look at Figure 2-16 on page 2-13 of Crane 410 you will doubt every calculation you have ever made. This figure shows the variability in the experimental data on which the K values we use are based. A great deal of license has been used in getting to the "averages" we accept as gospel.

This question again highlights the reason I disagree with the Crane fT method. People want to start fiddling with the fT for their particular pipe, whereas Crane's intention was that if you have a 4" fitting you use an fT of 0.017 irrespective of the schedule or actual roughness of that pipe . That is why I suggested that we call it "J" and eliminate the false link to the friction factor that is confusing everybody. All the experimental work shows that the K value has almost no dependency on the roughness, and if you look at Fig 2-16 again you will see that there is no room for hair splitting here.

Using the Darby 3-K method to calculate K values for the Sch40 and Sch160 bends gives values on 0.28 and 0.29 respectively (at Re = 300,000). If I was doing a calculation that involved these fittings I would use these two different values for the two different schedules, but only for the sake of computational consistency and to allow anyone to later check my calcs using the same methods. In my heart I would know that in fact they are for all intents and purposes the same. Of course for the same flowrate the pressure drop is higher through the Sch160 bend because of the higher velocity, but not because of any real change in K value. To try to calculate the actual K value from the Crane method by interpolating fT between Sch40 and Sch160 is IMO like measuring the length of a football pitch with a micrometer.

For the 36" bend I would use 3-K and get a K value of about 0.18. The rate of decrease with size gets less as the sizes get bigger. You could use Crane fT of 0.0105 (interpolating from the figure on page A-24) because there is a substantial increment to 36" from the data on page A-26, but the fact that Crane neglected to give values on page A-26 for 36" pipe does not detract from my argument that theirprocedure is confusing.

@Sailoday28,Crane have neglected to give K values for welded or flanged Tee's. I have no idea why. As always I would use 3-K. A good reference for this type of data is the classic article by Larry Simpson and Martin Weirick (Chemical Engineering, April 3, 1978).

@pleckner,I am confused over what you are saying Phil. If we apply your example of polished SS with a roughness of 0.000005 inch to our 4" LR bend we would have to have a Reynolds number of over 100 million to get to full turbulence (See Crane A-24). Under these conditions you would get an fabout 0.007. This compares with an fT of 0.017 for a 4" fitting given on page A-26. Using the value of0.007 would make a 4" highly polished LR bend have a K value of 17x0.007 = 0.119 and not the 0.28 that I would calculate from Darby's 3-K. Is this what you are saying, or have I got the wrong end of the stick?

Page 272: Crane Fluid Flow Problems

katmar (Chemical) 18 Dec 06 15:29

@LeSabre,

Yes, indeed (assuming we are still talking LR bends) the Sch40 and Sch160 fittings would have the same K value using my J factor, or using the Crane method. The table at the top of page A-26 has a note "K is based on use of schedule pipe as listed on page 2-10". And page 2-10 seems to say that the K values apply to Schedules 40 to 160, but that the velocity that is used to calculate the velocity head must be based on the actual ID of the fitting. Makes sense to me. If you take a look at Figure 2-16 on page 2-13 of Crane 410 you will doubt every calculation you have ever made. This figure shows the variability in the experimental data on which the K values we use are based. A great deal of license has been used in getting to the "averages" we accept as gospel.

This question again highlights the reason I disagree with the Crane fT method. People want to start fiddling with the fT for their particular pipe, whereas Crane's intention was that if you have a 4" fitting you use an fT of 0.017 irrespective of the schedule or actual roughness of that pipe . That is why I suggested that we call it "J" and eliminate the false link to the friction factor that is confusing everybody. All the experimental work shows that the K value has almost no dependency on the roughness, and if you look at Fig 2-16 again you will see that there is no room for hair splitting here.

Using the Darby 3-K method to calculate K values for the Sch40 and Sch160 bends gives values on 0.28 and 0.29 respectively (at Re = 300,000). If I was doing a calculation that involved these fittings I would use these two different values for the two different schedules, but only for the sake of computational consistency and to allow anyone to later check my calcs using the same methods. In my heart I would know that in fact they are for all intents and purposes the same. Of course for the same flowrate the pressure drop is higher through the Sch160 bend because of the higher velocity, but not because of any real change in K value. To try to calculate the actual K value from the Crane method by interpolating fT between Sch40 and Sch160 is IMO like measuring the length of a football pitch with a micrometer.

For the 36" bend I would use 3-K and get a K value of about 0.18. The rate of decrease with size gets less as the sizes get bigger. You could use Crane fT of 0.0105 (interpolating from the figure on page A-24) because there is a substantial increment to 36" from the data on page A-26, but the fact that Crane neglected to give values on page A-26 for 36" pipe does not detract from my argument that theirprocedure is confusing.

@Sailoday28,Crane have neglected to give K values for welded or flanged Tee's. I have no idea why. As always I would use 3-K. A good reference for this type of data is the classic article by Larry Simpson and Martin Weirick (Chemical Engineering, April 3, 1978).

@pleckner,I am confused over what you are saying Phil. If we apply your example of polished SS with a roughness of 0.000005 inch to our 4" LR bend we would have to have a Reynolds number of over 100 million to get to full turbulence (See Crane A-24). Under these conditions you would get an fabout 0.007. This compares with an fT of 0.017 for a 4" fitting given on page A-26. Using the value of0.007 would make a 4" highly polished LR bend have a K value of 17x0.007 = 0.119 and not the 0.28 that I would calculate from Darby's 3-K. Is this what you are saying, or have I got the wrong end of the stick?

katmar (Chemical) 18 Dec 06 16:33

@pleckner,

I got confused between inches and feet for your roughness in my working of your example with the polished SS. The fT is more like 0.010, making the K value 0.17. The numbers are different from my earlier calc but the principle is the same. My question is, are you proposing that we use the calculated fT value of about 0.010 rather than Crane's 0.017 to calculate the K value of a highly polished LR bend?

Sorry for the calculation error - it’s nearly midnight here!

Harvey Katmar SoftwareEngineering & Risk Analysis Softwarehttp://katmarsoftware.com

Zapster (Electrical) 18 Dec 06 17:19

Have any of you looked at the “Handbook of Hydraulic Resistance” by I. E. Idelchik? It was my impression that this book was the ultimate reference for calculating flow resistance through fittings. Perhaps someone who studied this text might have some comments on how Idelchik handles these issues.

pleckner (Chemical) 18 Dec 06 19:55

Yes, CRANE TP410, page 2-10 says that the K values apply to Schedules 40 to 160 but they are not constant at all these schedules. Look again and you will see that Schedule 40 pipe only applies to Class300 and less; Schedule 80 pipe for Class 400 and 600 and so on. The way I interpret this is that you would have to adjust the K value using equation 2-5 for the different internal diameter if you were using a schedule 80 pipe in a Class 300 or less application. For example, 2" pipe, schedule 80 has an ID of 1.939" but that same pipe in schedule 40 has an ID of 2.067". If you were using schedule 80 pipein a Class 150 application, the K value would have to be adjusted accordingly because the K values arepublished for the schedule 40 Class 150 pipe, not the schedule 80 Class 150 pipe; different velocities.

@katmar:My example is to show how one can manipulate, or try to manipulate absolute roughness to suite the type of piping material they have rather than just blindly following the table on A-26 that most people do. And yes, for this instance, I don't see anything wrong with using a lower K value for polished stainless steel pipe (actually tubing for bio-pharm use) over clean commercial steel pipe. The frictionallosses will be significantly less for pharma pipe/tubing than for the standard chemical/petrochemical industry steel pipe.

BTW, I am doing a project for vegatable oil tank farm expansion and we are using a smaller diameter 304 SS pipe than I would normally choose for our flow rates (asked for by the client) because in their experience, there is essentially very little effective friction at all, the stuff just glides right down the pipe!

Page 273: Crane Fluid Flow Problems

katmar (Chemical) 18 Dec 06 16:33

@pleckner,

I got confused between inches and feet for your roughness in my working of your example with the polished SS. The fT is more like 0.010, making the K value 0.17. The numbers are different from my earlier calc but the principle is the same. My question is, are you proposing that we use the calculated fT value of about 0.010 rather than Crane's 0.017 to calculate the K value of a highly polished LR bend?

Sorry for the calculation error - it’s nearly midnight here!

Harvey Katmar SoftwareEngineering & Risk Analysis Softwarehttp://katmarsoftware.com

Zapster (Electrical) 18 Dec 06 17:19

Have any of you looked at the “Handbook of Hydraulic Resistance” by I. E. Idelchik? It was my impression that this book was the ultimate reference for calculating flow resistance through fittings. Perhaps someone who studied this text might have some comments on how Idelchik handles these issues.

pleckner (Chemical) 18 Dec 06 19:55

Yes, CRANE TP410, page 2-10 says that the K values apply to Schedules 40 to 160 but they are not constant at all these schedules. Look again and you will see that Schedule 40 pipe only applies to Class300 and less; Schedule 80 pipe for Class 400 and 600 and so on. The way I interpret this is that you would have to adjust the K value using equation 2-5 for the different internal diameter if you were using a schedule 80 pipe in a Class 300 or less application. For example, 2" pipe, schedule 80 has an ID of 1.939" but that same pipe in schedule 40 has an ID of 2.067". If you were using schedule 80 pipein a Class 150 application, the K value would have to be adjusted accordingly because the K values arepublished for the schedule 40 Class 150 pipe, not the schedule 80 Class 150 pipe; different velocities.

@katmar:My example is to show how one can manipulate, or try to manipulate absolute roughness to suite the type of piping material they have rather than just blindly following the table on A-26 that most people do. And yes, for this instance, I don't see anything wrong with using a lower K value for polished stainless steel pipe (actually tubing for bio-pharm use) over clean commercial steel pipe. The frictionallosses will be significantly less for pharma pipe/tubing than for the standard chemical/petrochemical industry steel pipe.

BTW, I am doing a project for vegatable oil tank farm expansion and we are using a smaller diameter 304 SS pipe than I would normally choose for our flow rates (asked for by the client) because in their experience, there is essentially very little effective friction at all, the stuff just glides right down the pipe!

vzeos (Mechanical) 22 Dec 06 11:49

There seems to be a good deal of confusion about the relationship and use of the friction factor and the K-factor. Inspection of equations 2-1, 2-2, 2-3 and 2-4 on page 2-8 of Crane TP 410 (see below) should clarify the issue.

Equation 2-1, hL = v2/2g, this is the velocity head of a flowing fluid.

Equation 2-2, hL = K v2/2g, this defines the K-factor as the number of velocity heads lost due to a valve or fitting.

Equation 2-3, hL = (f L/D) v2/2g, this is the Darcy equation.

Equation 2-4, K = (f L/D), this is the familiar K-factor equation.

It should be completely evident that the link between the friction factor and the K-factor is established by virtue of the Darcy equation and that f is the Darcy friction factor. The purpose for inventing a K-factor and doing this algebraic manipulation is to develop a dimensionless group to be used for model scaling and to generalize experimental findings based on a limited number of experimental results. It should be further noted that the friction factor, f, applies only to straight pipe; there is no friction factor associated with any valve or fitting.

The Darcy friction factor can be obtained using your favorite charts or equations. For the special case of fully developed turbulent flow, fT, which represents the maximum possible friction factor, the Karman Rough Pipe Law should be used, namely 1/√fT = 2Log (3.7D/k) or fT = 1/[2Log (3.7D/k)] where k is the pipe roughness. There is no special significance given to the fT values provided on page A-26.  Indeed, the first paragraph on page 2-10 states that these fT values are provided for “convenience.”

K-factor values for valves and fittings are determined experimentally by measuring the head lost due tothe valve or fitting during a flow test. Once the K-factor value is determined for a valve or fitting it can be equated to a hypothetical pipeline (having particular values for the parameters f, L and, D) by using equation 2-4. The values for the parameters of the hypothetical pipe are not set in stone.

For example:A flow test for a 2” valve produced a pressure loss equal to 3 velocity heads under fully developed turbulent flow. What is the length of 2.067” ID hypothetical pipe that would cause a 3 velocity head loss if the hypothetical pipe roughness were 0.0015”?

Using the rough pipe law, fT = 1/[2Log (3.7*2.067/0.0015)] 2 = 0.01819

Using Equation 2-4, LT = (3* 2.067)/0.01819 = 340.9” or 28.4 feetLT is the equivalent length of the valve under fully developed turbulent flow.

wfn217 (Chemical) 22 Dec 06 12:01

Page 274: Crane Fluid Flow Problems

vzeos (Mechanical) 22 Dec 06 11:49

There seems to be a good deal of confusion about the relationship and use of the friction factor and the K-factor. Inspection of equations 2-1, 2-2, 2-3 and 2-4 on page 2-8 of Crane TP 410 (see below) should clarify the issue.

Equation 2-1, hL = v2/2g, this is the velocity head of a flowing fluid.

Equation 2-2, hL = K v2/2g, this defines the K-factor as the number of velocity heads lost due to a valve or fitting.

Equation 2-3, hL = (f L/D) v2/2g, this is the Darcy equation.

Equation 2-4, K = (f L/D), this is the familiar K-factor equation.

It should be completely evident that the link between the friction factor and the K-factor is established by virtue of the Darcy equation and that f is the Darcy friction factor. The purpose for inventing a K-factor and doing this algebraic manipulation is to develop a dimensionless group to be used for model scaling and to generalize experimental findings based on a limited number of experimental results. It should be further noted that the friction factor, f, applies only to straight pipe; there is no friction factor associated with any valve or fitting.

The Darcy friction factor can be obtained using your favorite charts or equations. For the special case of fully developed turbulent flow, fT, which represents the maximum possible friction factor, the Karman Rough Pipe Law should be used, namely 1/√fT = 2Log (3.7D/k) or fT = 1/[2Log (3.7D/k)] where k is the pipe roughness. There is no special significance given to the fT values provided on page A-26.  Indeed, the first paragraph on page 2-10 states that these fT values are provided for “convenience.”

K-factor values for valves and fittings are determined experimentally by measuring the head lost due tothe valve or fitting during a flow test. Once the K-factor value is determined for a valve or fitting it can be equated to a hypothetical pipeline (having particular values for the parameters f, L and, D) by using equation 2-4. The values for the parameters of the hypothetical pipe are not set in stone.

For example:A flow test for a 2” valve produced a pressure loss equal to 3 velocity heads under fully developed turbulent flow. What is the length of 2.067” ID hypothetical pipe that would cause a 3 velocity head loss if the hypothetical pipe roughness were 0.0015”?

Using the rough pipe law, fT = 1/[2Log (3.7*2.067/0.0015)] 2 = 0.01819

Using Equation 2-4, LT = (3* 2.067)/0.01819 = 340.9” or 28.4 feetLT is the equivalent length of the valve under fully developed turbulent flow.

wfn217 (Chemical) 22 Dec 06 12:01

Page 275: Crane Fluid Flow Problems

Crane 410 fittingsthread378-173164

wfn217 (Chemical) 13 Dec 06 8:49

In Crane TP 410, K for a fitting is found by multiplying a number times f T. fT is called the friction factor. Is fT related to the roughness?

dtn6770 (Mechanical) 13 Dec 06 9:45

fT is related to roughness by way of the Moody Diagram and its use of relative roughness. Relative roughness is the materials absolute roughness divided by the inside diameter.

STYMIEDPIPER (Mechanical) 13 Dec 06 10:53

Crane 410 lists values for fT

wfn217 (Chemical) 13 Dec 06 10:57

I wanted to know whether the listed fT values are strictly due to geometry or also a function of roughness.

BigInch (Petroleum) 13 Dec 06 11:05

geometry

vzeos (Mechanical) 13 Dec 06 12:03

wfn217- In Crane TP 410 fT is the fully turbulent flow friction factor defined by the equation below. Dis the pipe I. D. and k is the pipe roughness.

1/√fT= 2Log{(3.7D/k)

Crane's equivalent length calculations assume fully developed turbulent flow. See Crane TP 410, Page26. The fT values provided by Crane imply a k value of about 0.00180".

BigInch (Petroleum) 13 Dec 06 12:16

vzeos,

You are totally correct. Seems I reversed the question. K is determined by geometry, but the equivaletlength is indeed based on 0.0018 roughness.

DLANDISSR (Mechanical) 13 Dec 06 14:45

fT is the friction factor in the turbulent region of flow. It is calculated from the Colebrook-White equation which is an iteration. The Moody Diagram is derived from the Colebrook-White equation.

katmar (Chemical) 13 Dec 06 15:00

BigInch nailed the answer with his first post, but this question highlights what I consider to be one of the weaker points of the Crane 410 manual so please forgive me a little rant here. I have seen Crane's treatment of the K value for pipe fittings cause so much confusion - it really is a great pity they chose to do it this way.

The Crane engineers noted that the K values for fittings generally decreased as the fitting size increased. But it all went wrong when they noticed that this rate of decrease was close to the same as the rate at which the friction factor for fully developed turbulent flow in commercial steel pipe decreased as the pipe size increased. The fatal mistake was to link the two. See Crane Fig 2-14 and associated commentary.

For example, on page A-29 the K value for a 90 degree butt-weld pipe bend with an r/d of 1.5 is given as 14fT. The values of fT are given at the top of page A-26 as a function of pipe size. The values may have been calculated using the function referenced by vzeos, but for the purposes of calculating K values they are constants for each pipe size.

This apparent link between the K value and the friction factor gives the impression that the K value is linked to the pipe roughness - but in fact it is not because fT is defined to be at a particular roughness. Even worse, it is possible to be misled into believing the Crane K values compensate for changes in Reynolds number because everyone knows that the friction factor is influenced by the Reynolds number. But again, it is not because fT is defined to be in a particular Reynolds regime (fully turbulent).

To use the example of the 90 degree bend I gave above, it would have been better for Crane to give theK value as 14J, where J is simply a fudge-factor and would still be given by the values in the table on Page A-26 but without any reference to the friction factor. (Note that I have selected J as my symbol simply because it has no prior definition in the Crane Nomenclature table.)

The upshot of all of this is that in Crane's treatment, the K value of a fitting is a function onlypipe size (or geometry to use the terms used by wfn217 and BigInch). This was an improvement over previous work where the K value had been assumed to be constant for all sizes of fittings, and at the time that Crane first published this method it was rightly acclaimed as an important advance but IMHOit was badly worded and newer editions of 410 have unfortunately done nothing to remove the confusion.

I have awarded a star to BigInch for his comment that if you want to convert the Crane K value to an equivalent length, you must use the fT value from Crane's table on page A-26 (which is based on a roughness of 0.0018") and NOT the actual friction factor of the pipe you are using. The Crane description of this on pages 2-8 to 2-11 is extremely confusing, and the example 4-7 is just plain wrong because the K values given in the 410 manual apply only to fully developed turbulent flow and should never be used for laminar flow.

If you are working with laminar flow it is much better to work with equivalent lengths than with fixed or even Crane K values. Resistance values for fittings increase rapidly at low Reynolds numbers, but so does the friction factor. This means that if you use fixed L/D values, which get multiplied by the friction factor in the Darcy-Weisbach equation, the high resistance values are automatically compensated for. Or even better, use the 2-K or 3-K methods proposed by Hooper and Darby.

Page 276: Crane Fluid Flow Problems

katmar (Chemical) 13 Dec 06 15:00

BigInch nailed the answer with his first post, but this question highlights what I consider to be one of the weaker points of the Crane 410 manual so please forgive me a little rant here. I have seen Crane's treatment of the K value for pipe fittings cause so much confusion - it really is a great pity they chose to do it this way.

The Crane engineers noted that the K values for fittings generally decreased as the fitting size increased. But it all went wrong when they noticed that this rate of decrease was close to the same as the rate at which the friction factor for fully developed turbulent flow in commercial steel pipe decreased as the pipe size increased. The fatal mistake was to link the two. See Crane Fig 2-14 and associated commentary.

For example, on page A-29 the K value for a 90 degree butt-weld pipe bend with an r/d of 1.5 is given as 14fT. The values of fT are given at the top of page A-26 as a function of pipe size. The values may have been calculated using the function referenced by vzeos, but for the purposes of calculating K values they are constants for each pipe size.

This apparent link between the K value and the friction factor gives the impression that the K value is linked to the pipe roughness - but in fact it is not because fT is defined to be at a particular roughness. Even worse, it is possible to be misled into believing the Crane K values compensate for changes in Reynolds number because everyone knows that the friction factor is influenced by the Reynolds number. But again, it is not because fT is defined to be in a particular Reynolds regime (fully turbulent).

To use the example of the 90 degree bend I gave above, it would have been better for Crane to give theK value as 14J, where J is simply a fudge-factor and would still be given by the values in the table on Page A-26 but without any reference to the friction factor. (Note that I have selected J as my symbol simply because it has no prior definition in the Crane Nomenclature table.)

The upshot of all of this is that in Crane's treatment, the K value of a fitting is a function onlypipe size (or geometry to use the terms used by wfn217 and BigInch). This was an improvement over previous work where the K value had been assumed to be constant for all sizes of fittings, and at the time that Crane first published this method it was rightly acclaimed as an important advance but IMHOit was badly worded and newer editions of 410 have unfortunately done nothing to remove the confusion.

I have awarded a star to BigInch for his comment that if you want to convert the Crane K value to an equivalent length, you must use the fT value from Crane's table on page A-26 (which is based on a roughness of 0.0018") and NOT the actual friction factor of the pipe you are using. The Crane description of this on pages 2-8 to 2-11 is extremely confusing, and the example 4-7 is just plain wrong because the K values given in the 410 manual apply only to fully developed turbulent flow and should never be used for laminar flow.

If you are working with laminar flow it is much better to work with equivalent lengths than with fixed or even Crane K values. Resistance values for fittings increase rapidly at low Reynolds numbers, but so does the friction factor. This means that if you use fixed L/D values, which get multiplied by the friction factor in the Darcy-Weisbach equation, the high resistance values are automatically compensated for. Or even better, use the 2-K or 3-K methods proposed by Hooper and Darby.

Page 277: Crane Fluid Flow Problems

katmar (Chemical) 13 Dec 06 15:00

BigInch nailed the answer with his first post, but this question highlights what I consider to be one of the weaker points of the Crane 410 manual so please forgive me a little rant here. I have seen Crane's treatment of the K value for pipe fittings cause so much confusion - it really is a great pity they chose to do it this way.

The Crane engineers noted that the K values for fittings generally decreased as the fitting size increased. But it all went wrong when they noticed that this rate of decrease was close to the same as the rate at which the friction factor for fully developed turbulent flow in commercial steel pipe decreased as the pipe size increased. The fatal mistake was to link the two. See Crane Fig 2-14 and associated commentary.

For example, on page A-29 the K value for a 90 degree butt-weld pipe bend with an r/d of 1.5 is given as 14fT. The values of fT are given at the top of page A-26 as a function of pipe size. The values may have been calculated using the function referenced by vzeos, but for the purposes of calculating K values they are constants for each pipe size.

This apparent link between the K value and the friction factor gives the impression that the K value is linked to the pipe roughness - but in fact it is not because fT is defined to be at a particular roughness. Even worse, it is possible to be misled into believing the Crane K values compensate for changes in Reynolds number because everyone knows that the friction factor is influenced by the Reynolds number. But again, it is not because fT is defined to be in a particular Reynolds regime (fully turbulent).

To use the example of the 90 degree bend I gave above, it would have been better for Crane to give theK value as 14J, where J is simply a fudge-factor and would still be given by the values in the table on Page A-26 but without any reference to the friction factor. (Note that I have selected J as my symbol simply because it has no prior definition in the Crane Nomenclature table.)

The upshot of all of this is that in Crane's treatment, the K value of a fitting is a function onlypipe size (or geometry to use the terms used by wfn217 and BigInch). This was an improvement over previous work where the K value had been assumed to be constant for all sizes of fittings, and at the time that Crane first published this method it was rightly acclaimed as an important advance but IMHOit was badly worded and newer editions of 410 have unfortunately done nothing to remove the confusion.

I have awarded a star to BigInch for his comment that if you want to convert the Crane K value to an equivalent length, you must use the fT value from Crane's table on page A-26 (which is based on a roughness of 0.0018") and NOT the actual friction factor of the pipe you are using. The Crane description of this on pages 2-8 to 2-11 is extremely confusing, and the example 4-7 is just plain wrong because the K values given in the 410 manual apply only to fully developed turbulent flow and should never be used for laminar flow.

If you are working with laminar flow it is much better to work with equivalent lengths than with fixed or even Crane K values. Resistance values for fittings increase rapidly at low Reynolds numbers, but so does the friction factor. This means that if you use fixed L/D values, which get multiplied by the friction factor in the Darcy-Weisbach equation, the high resistance values are automatically compensated for. Or even better, use the 2-K or 3-K methods proposed by Hooper and Darby.

Montemayor (Chemical) 13 Dec 06 18:59

And I select Harvey as the preferred Ranter of the day and worthy - as well - of recognition for bringing to everyone's attention the importance of really understanding and reading through what is putin front of our eyes. We, as professional engineers, are not being asked to believe or accept 100% of what we are offered or given - regardless of how “sacred” the Cow may seem. Everything in engineering is subject to scrutiny and improvements.

I have a lot of respect and gratitude for what has gone into putting together Crane's Tech Paper #410. However, everything Harvey has stated regarding the concept of their K values is not only valid, but 100% positive criticism that should be heard and applied. Major world-class engineering firms agree with what Harvey states - and so do some of the biggest chemical process companies. To quote one: “Until recently, the use of K coefficients for valves and fittings has been considered more accurate than the use of equivalent lengths of pipe, but recent research has disclosed that K coefficients are not constant for all sizes of any one type of valve or fitting; so the use of equivalent lengths, with some exceptions, is now preferred.” And this is in addition to the problems of understanding/interpreting what TP 410 is saying. We have a better option, as Harvey states, in the 2-K or 3-K methods.

Great comments and good engineering knowledge, Harvey!

wfn217 (Chemical) 14 Dec 06 11:39

The number that Crane multiplies by fT to obtain K is the same number listed as L/D in Cameron

katmar (Chemical) 14 Dec 06 13:45

wfn217,

the Darcy-Weisbach correlation for pressure drop is

?P = ( fL/D + K ) ?V2 / 2

So if you want to express the resistance of a fitting in terms of the equivalent length (i.e. L/D) instead of K then you have to calculate

L/D = K/f

and since Crane express their K's as (Constant) x fT you would get

L/D = (Constant) x fT / f

If f is evaluated at the same conditions as fT (which is what my rant above was all about!) then of course

L/D = (Constant)

which means that for commercial steel pipe in the fully turbulent regime the (Constant) used by Crane will indeed be the L/D value given by Cameron. You just have to remember that because Crane evaluated these (Constants) for commercial steel pipe in the fully turbulent regime, if you want to get back to the L/D values you must use fT and not the friction factor in your particular case.

Katmar SoftwareEngineering & Risk Analysis Softwarehttp://katmarsoftware.com

wfn217 (Chemical) 14 Dec 06 14:35

katmar,

Page 278: Crane Fluid Flow Problems

katmar (Chemical) 14 Dec 06 13:45

wfn217,

the Darcy-Weisbach correlation for pressure drop is

?P = ( fL/D + K ) ?V2 / 2

So if you want to express the resistance of a fitting in terms of the equivalent length (i.e. L/D) instead of K then you have to calculate

L/D = K/f

and since Crane express their K's as (Constant) x fT you would get

L/D = (Constant) x fT / f

If f is evaluated at the same conditions as fT (which is what my rant above was all about!) then of course

L/D = (Constant)

which means that for commercial steel pipe in the fully turbulent regime the (Constant) used by Crane will indeed be the L/D value given by Cameron. You just have to remember that because Crane evaluated these (Constants) for commercial steel pipe in the fully turbulent regime, if you want to get back to the L/D values you must use fT and not the friction factor in your particular case.

Katmar SoftwareEngineering & Risk Analysis Softwarehttp://katmarsoftware.com

wfn217 (Chemical) 14 Dec 06 14:35

katmar,

katmar (Chemical) 14 Dec 06 15:15

wfn217,

It has been found experimentally that the resistance factor (i.e. K value) for a fitting depends on both the fitting size and the Reynolds number. In the Darcy-Weisbach equation (in which I managed to get the wrong symbols before)

ΔP = ( fL/D + K ) ρV2 / 2

you can see that if you use a K value the pressure drop is not influenced by the fitting size or the Reynolds number. When you use Crane K values the value is corrected (via the table on page A-26) for fitting size before you insert the value into the D-W equation, but many of the older references gave single K values for all fitting sizes.

On the other hand, you can see that if you use equivalent lengths, then the value is multiplied by the actual friction factor for your application, and because the friction factor does depend on the fitting size and the Reynolds number it automatically corrects the calculation for both these factors. This makes the equivalent length method both easier to use, and more accurate than K values. It is easier to use because you only have to remember a single L/D value for a given type of fitting.

As Montemayor and I said before, the very best way is to use the 2-K or 3-K method but these are computationally much more involved. In my software I use 3-K because once it is programmed it makes no extra work to use it, but if I am doing a hand calc then I use the equivalent length method.

Hope this makes it clear

Harvey

tickle (Chemical) 14 Dec 06 18:17

Thank you Katmar for your wonderful explanation.

I have questioned Crane myself, but learnt to accept that its findings were as practical as required.

I think that younger engineers blindly use equations and computer programs - because they are there. They do not understand the applicable circumstances or the limitations. In fact whilst reading the post one of the junior engineers questioned me regarding recommended pipe diameters. They had sized thesteam piping for maximum flow and minimum pressure. They were blindly going to use a calculated diameter because it was less than or equal to the recommended velocity without considering the application and whether the worst case conditions could occur at the same time, (they can't and a smaller pipe diameter was my recommendation).

Page 279: Crane Fluid Flow Problems

katmar (Chemical) 14 Dec 06 15:15

wfn217,

It has been found experimentally that the resistance factor (i.e. K value) for a fitting depends on both the fitting size and the Reynolds number. In the Darcy-Weisbach equation (in which I managed to get the wrong symbols before)

ΔP = ( fL/D + K ) ρV2 / 2

you can see that if you use a K value the pressure drop is not influenced by the fitting size or the Reynolds number. When you use Crane K values the value is corrected (via the table on page A-26) for fitting size before you insert the value into the D-W equation, but many of the older references gave single K values for all fitting sizes.

On the other hand, you can see that if you use equivalent lengths, then the value is multiplied by the actual friction factor for your application, and because the friction factor does depend on the fitting size and the Reynolds number it automatically corrects the calculation for both these factors. This makes the equivalent length method both easier to use, and more accurate than K values. It is easier to use because you only have to remember a single L/D value for a given type of fitting.

As Montemayor and I said before, the very best way is to use the 2-K or 3-K method but these are computationally much more involved. In my software I use 3-K because once it is programmed it makes no extra work to use it, but if I am doing a hand calc then I use the equivalent length method.

Hope this makes it clear

Harvey

tickle (Chemical) 14 Dec 06 18:17

Thank you Katmar for your wonderful explanation.

I have questioned Crane myself, but learnt to accept that its findings were as practical as required.

I think that younger engineers blindly use equations and computer programs - because they are there. They do not understand the applicable circumstances or the limitations. In fact whilst reading the post one of the junior engineers questioned me regarding recommended pipe diameters. They had sized thesteam piping for maximum flow and minimum pressure. They were blindly going to use a calculated diameter because it was less than or equal to the recommended velocity without considering the application and whether the worst case conditions could occur at the same time, (they can't and a smaller pipe diameter was my recommendation).

pleckner (Chemical) 14 Dec 06 20:11

I invite everyone to read my article on this subject published at

http://www.cheresources.com/eqlength.shtml

I don't agree that using equivalent lengths is the proper way to perform a system hydraulcs calculation (my arguments are in the above mentioned article). You must not mix the friction factor for a fitting with the friction factor of a pipe because they are not the same, whether we are talking about CRANE'sfriction factor at fully developed turbulent flow or the two-K or three-K methods. The pressure loss of a fitting obtained from these methods is not the same nor nearly the same as the pressure loss of a fitting obtained from multiplying the pipe friction factor x the equivalent length of the fitting.

The most accurate way to perform the calculation is to use one of these methods (three-k perferred) and add the losses to those of the pipe, not to combine them all into an equivalent length of straight pipe and multiply by the pipe friction factor.

The two-K or three-K methods were developed to address the fact that fittings are indded somewhat dependent on Reynolds number, but this is still not the same as a pipe friction factor.

I will also argue that for fully developed turbulent flow, there is nothing wrong with CRANE's values.

katmar (Chemical) 15 Dec 06 5:15

pleckner,

There is a lot more that we agree on than on which we differ. It was never my intention to suggest that there is anything wrong with applying Crane's K values to fully developed turbulent flow. I have recommended MANY times here that people should get their hands on a copy of Crane 410. Probably 95% or more of our flow calcs are for fully developed turbulent flow, and Crane is ideal for this.

My main objection was to the confusion caused by Crane's wording and their linking of the K value to the turbulent friction factor. I believe the posts in this thread confirm that this confusion is widespread, and I have often seen engineers struggle to come to terms with it. Despite the shortcomings of Crane 410, my copy "lives" in the very front of the top drawer of the filing cabinet right next to my desk.

We all agree that the multi-K methods are better than the L/D method. However, I disagree with Crane's statement (which is echoed in your article) that “K is a constant under all flow conditions, including laminar flow”. In your example you give the K value for a long radius bend as 0.36. Applying the 3-K method at a Reynolds number of 100 in the same sized pipe gives a K value of 8.3. This means that a pressure drop calculation using the Crane value will be 90% understated, if we take 3-K as the benchmark. I accept that a similar calculation at Re = 100 using the L/D method will over-estimate the pressure drop but for most calculations this would be the conservative option.

I have one objection to the example in your article. 92% of the pressure drop is due to the reducer, but nobody would ever try to calculate the pressure drop through a reducer with the L/D method. Including the reducer exaggerates the negative aspects of the L/D method.

Neglecting the reducer, the calculated pressure drops using the various methods are

L/D method - 0.97 psi Crane K - 0.75 psi Darby 3-K - 0.87 psi

Who would put his neck on the block over which of these numbers is correct? The L/D and Crane answers are within 15% of the 3-K answer, and all three answers are probably adequate for practical purposes.Katmar SoftwareEngineering & Risk Analysis Software

BigInch (Petroleum) 15 Dec 06 6:12

That's my humble opinion also. With all the other inaccuracies inherent in hydraulics and more specifically how systems are usually operated at one or the other of the extreme ranges, if you design a system close enough so that you have to worry about the difference in pressure drops from laminar or turbulent flow in a few fittings, that's just plain tooooo close. If for some reason you need to examine an existing system, the actual data's there for the taking.

Page 280: Crane Fluid Flow Problems

katmar (Chemical) 15 Dec 06 5:15

pleckner,

There is a lot more that we agree on than on which we differ. It was never my intention to suggest that there is anything wrong with applying Crane's K values to fully developed turbulent flow. I have recommended MANY times here that people should get their hands on a copy of Crane 410. Probably 95% or more of our flow calcs are for fully developed turbulent flow, and Crane is ideal for this.

My main objection was to the confusion caused by Crane's wording and their linking of the K value to the turbulent friction factor. I believe the posts in this thread confirm that this confusion is widespread, and I have often seen engineers struggle to come to terms with it. Despite the shortcomings of Crane 410, my copy "lives" in the very front of the top drawer of the filing cabinet right next to my desk.

We all agree that the multi-K methods are better than the L/D method. However, I disagree with Crane's statement (which is echoed in your article) that “K is a constant under all flow conditions, including laminar flow”. In your example you give the K value for a long radius bend as 0.36. Applying the 3-K method at a Reynolds number of 100 in the same sized pipe gives a K value of 8.3. This means that a pressure drop calculation using the Crane value will be 90% understated, if we take 3-K as the benchmark. I accept that a similar calculation at Re = 100 using the L/D method will over-estimate the pressure drop but for most calculations this would be the conservative option.

I have one objection to the example in your article. 92% of the pressure drop is due to the reducer, but nobody would ever try to calculate the pressure drop through a reducer with the L/D method. Including the reducer exaggerates the negative aspects of the L/D method.

Neglecting the reducer, the calculated pressure drops using the various methods are

L/D method - 0.97 psi Crane K - 0.75 psi Darby 3-K - 0.87 psi

Who would put his neck on the block over which of these numbers is correct? The L/D and Crane answers are within 15% of the 3-K answer, and all three answers are probably adequate for practical purposes.Katmar SoftwareEngineering & Risk Analysis Software

BigInch (Petroleum) 15 Dec 06 6:12

That's my humble opinion also. With all the other inaccuracies inherent in hydraulics and more specifically how systems are usually operated at one or the other of the extreme ranges, if you design a system close enough so that you have to worry about the difference in pressure drops from laminar or turbulent flow in a few fittings, that's just plain tooooo close. If for some reason you need to examine an existing system, the actual data's there for the taking.

pleckner (Chemical) 15 Dec 06 8:01

We are in agreement.

I put the reducers into the L/D equation only as a means for comparison. I agree with you (Katmar) onthat. But then again, I don't use the equivalent length method, ever.

Katmar, I'm one up on you, I keep CRANE on my desk, I'm too lazy to go into my file cabinet.

wfn217 (Chemical) 15 Dec 06 9:09

It should be noted that pleckner's article states that K for a fitting has little to do with friction, which answers my original question. I have seen someone try to scale the fT values in Crane from pipe to tubing based on roughness.

LeSabre (Petroleum) 15 Dec 06 10:07

pleckner,

Great article. I appreciate your logical presentation. I am curious, however, about your representation that in 1979 Crane “...discussed and used the two-friction factor method for calculating the total pressure drop in a piping system...(f for straight pipe and ft for valves and fittings)”. It is my understanding from reading the TP 410 Foreword (4th paragraph, quoted below) that Crane’s intent was to have the pipe friction factor, f, apply to the K factor calculation and that the K factor was intended to apply to the full range of flow regimes from laminar to full turbulence. Can you comment on this?

Quote (TP 410 FOREWORD):The fifteenth printing (1976 edition) presented a conceptual change regarding the values of EquivalentLength "L/D" and Resistance Coefficient "K" for valves and fittings relative to the friction factor in pipes. This change has relatively minor effect on most problems dealing with flow conditions that result in Reynolds numbers falling in the turbulent zone. However, for flow in the laminar zone, the change avoids a significant overstatement of pressure drop. Consistent with this conceptual revision, the resistance to flow through valves and fittings is now expressed in terms of resistance co-efficient

Page 281: Crane Fluid Flow Problems

pleckner (Chemical) 15 Dec 06 8:01

We are in agreement.

I put the reducers into the L/D equation only as a means for comparison. I agree with you (Katmar) onthat. But then again, I don't use the equivalent length method, ever.

Katmar, I'm one up on you, I keep CRANE on my desk, I'm too lazy to go into my file cabinet.

wfn217 (Chemical) 15 Dec 06 9:09

It should be noted that pleckner's article states that K for a fitting has little to do with friction, which answers my original question. I have seen someone try to scale the fT values in Crane from pipe to tubing based on roughness.

LeSabre (Petroleum) 15 Dec 06 10:07

pleckner,

Great article. I appreciate your logical presentation. I am curious, however, about your representation that in 1979 Crane “...discussed and used the two-friction factor method for calculating the total pressure drop in a piping system...(f for straight pipe and ft for valves and fittings)”. It is my understanding from reading the TP 410 Foreword (4th paragraph, quoted below) that Crane’s intent was to have the pipe friction factor, f, apply to the K factor calculation and that the K factor was intended to apply to the full range of flow regimes from laminar to full turbulence. Can you comment on this?

Quote (TP 410 FOREWORD):The fifteenth printing (1976 edition) presented a conceptual change regarding the values of EquivalentLength "L/D" and Resistance Coefficient "K" for valves and fittings relative to the friction factor in pipes. This change has relatively minor effect on most problems dealing with flow conditions that result in Reynolds numbers falling in the turbulent zone. However, for flow in the laminar zone, the change avoids a significant overstatement of pressure drop. Consistent with this conceptual revision, the resistance to flow through valves and fittings is now expressed in terms of resistance co-efficient

katmar (Chemical) 15 Dec 06 11:22

LeSabre,

The example in pleckner's article shows how the "old" (i.e. pre-1976) L/D method over-estimates the pressure drop in fittings for low Reynolds numbers. All my calcs agree with and confirm pleckner's result. Crane were quite correct to make this claim in the 1976 foreword.

It is true that using the “new” K values avoids the overstatement of the pressure drop in the laminar regime, but my example (See 5 Dec 5:15) shows how the Crane K values now understate the pressure drop by 90% at a Reynolds number of 100. If you were designing a new pipeline would you rather estimate the pressure drop as 40% too high or 90% too low?

Your query, and the latest post by wfn217, are typical examples of the confusion that is caused by the Crane method, and which lead to my rant near the start of this thread.

I have probably stretched everyone's patience to the limit by going on and on about this problem so I will leave it at this now. Katmar SoftwareEngineering & Risk Analysis Software

pleckner (Chemical) 15 Dec 06 12:49

To LaSabre:

Thanks.

To me that statement in the Foreword just means that they made a change on how they relate the new K value to pipe friction factor. The statement obviously doesn't give any specifics as to how to apply the two, that is left to the rest of the document. Indeed, everywhere K for a valve or fitting is calculatedwithin TP410 they are very careful to note the friction factor as fT and NOT f.

CRANE notes that the friction factors (f and fT) will essentially be the same in the zone of complete turbulence.

But you are correct in that it appears CRANE was intent on having K applied throughout all flow zones and that is where they got it wrong as we've been pointing out in these Postings.

ccfowler (Mechanical) 16 Dec 06 2:03

katmar,

Thanks for your comments and their effects on this discussion.

BigInch,You have pointed toward one of my pet peeves, the dreadful misunderstandings brought about by the ability of computers and calculators to thrash around 10 digit numbers. If the accuracy to which most parameters are known is only 1%, 5%, 10%, and sometimes even worse, most of those many digits presented by the mighty computer or calculator are really just so much drivel.  Unfortunately, there is never a shortage of people who want to believe that all of those digits are significant (and are willing to

Page 282: Crane Fluid Flow Problems

BigInch (Petroleum) 16 Dec 06 3:37

The discussion has been very informative, but there is a certain logic for Crane to just continuing to publish equivalent lengths with conservative roughness at turbulent flows... its conservative and that's exactly how a lookup table intended for general application to all hydraulic systems should be. Somewhere in Tips, I recall seeing a comment I liked questioning how many digits were actually needed before the answer became believable, or something to that effect. Guess we should have stayed with 8 bit computers. Even if all variables were known to 1%, it seems to me that most systems would spend an excessive amount of time operating outside the range where those accuracies were valid. Lastly, risking repeating myself, sooner or later any given system reaches capacity at one extreme end of operational range or another, so over the long term is using Eq.Len at max turbulence really a bad thing? BigInch-born in the trenches. LeSabre (Petroleum) 18 Dec 06 10:40

katmar, Thanks for directing my attention to your “rant”. I agree that the ft factor depends on geometry. Your j-factor theory, however, leads to the unlikely result that two different pipe I.D.s, say, 4” sch 40 (I.D. = 4.0260”) and 4” sch 160 (I.D. = 3.4380”) could have the same K-factor. How do you reconcile this situation? Also, how would you get the K-factor for a 36" XS L.R. Ell.? Thanks. sailoday28 (Mechanical) 18 Dec 06 12:11

And the L/d or K for a run or branch of a "T" is? Regards

BigInch (Petroleum) 18 Dec 06 12:28

You could have a look at these that Weldbend gives for fittings, including straight tees and they even give a method for assemblies as well, http://www.weldbend.com/Technical%20Data/Flow%20Resistance%20For%20Fittings/flowresistance.htm and click on <next> for the following page BigInch-born in the trenches. LeSabre (Petroleum) 18 Dec 06 12:44

BigInch, Great site, thanks! But I didn't see any info on K-factors or ft.

katmar (Chemical) 15 Dec 06 11:22

LeSabre,

The example in pleckner's article shows how the "old" (i.e. pre-1976) L/D method over-estimates the pressure drop in fittings for low Reynolds numbers. All my calcs agree with and confirm pleckner's result. Crane were quite correct to make this claim in the 1976 foreword.

It is true that using the “new” K values avoids the overstatement of the pressure drop in the laminar regime, but my example (See 5 Dec 5:15) shows how the Crane K values now understate the pressure drop by 90% at a Reynolds number of 100. If you were designing a new pipeline would you rather estimate the pressure drop as 40% too high or 90% too low?

Your query, and the latest post by wfn217, are typical examples of the confusion that is caused by the Crane method, and which lead to my rant near the start of this thread.

I have probably stretched everyone's patience to the limit by going on and on about this problem so I will leave it at this now. Katmar SoftwareEngineering & Risk Analysis Software

pleckner (Chemical) 15 Dec 06 12:49

To LaSabre:

Thanks.

To me that statement in the Foreword just means that they made a change on how they relate the new K value to pipe friction factor. The statement obviously doesn't give any specifics as to how to apply the two, that is left to the rest of the document. Indeed, everywhere K for a valve or fitting is calculatedwithin TP410 they are very careful to note the friction factor as fT and NOT f.

CRANE notes that the friction factors (f and fT) will essentially be the same in the zone of complete turbulence.

But you are correct in that it appears CRANE was intent on having K applied throughout all flow zones and that is where they got it wrong as we've been pointing out in these Postings.

ccfowler (Mechanical) 16 Dec 06 2:03

katmar,

Thanks for your comments and their effects on this discussion.

BigInch,You have pointed toward one of my pet peeves, the dreadful misunderstandings brought about by the ability of computers and calculators to thrash around 10 digit numbers. If the accuracy to which most parameters are known is only 1%, 5%, 10%, and sometimes even worse, most of those many digits presented by the mighty computer or calculator are really just so much drivel.  Unfortunately, there is never a shortage of people who want to believe that all of those digits are significant (and are willing to

Page 283: Crane Fluid Flow Problems

BigInch (Petroleum) 16 Dec 06 3:37

The discussion has been very informative, but there is a certain logic for Crane to just continuing to publish equivalent lengths with conservative roughness at turbulent flows... its conservative and that's exactly how a lookup table intended for general application to all hydraulic systems should be. Somewhere in Tips, I recall seeing a comment I liked questioning how many digits were actually needed before the answer became believable, or something to that effect. Guess we should have stayed with 8 bit computers. Even if all variables were known to 1%, it seems to me that most systems would spend an excessive amount of time operating outside the range where those accuracies were valid. Lastly, risking repeating myself, sooner or later any given system reaches capacity at one extreme end of operational range or another, so over the long term is using Eq.Len at max turbulence really a bad thing? BigInch-born in the trenches. LeSabre (Petroleum) 18 Dec 06 10:40

katmar, Thanks for directing my attention to your “rant”. I agree that the ft factor depends on geometry. Your j-factor theory, however, leads to the unlikely result that two different pipe I.D.s, say, 4” sch 40 (I.D. = 4.0260”) and 4” sch 160 (I.D. = 3.4380”) could have the same K-factor. How do you reconcile this situation? Also, how would you get the K-factor for a 36" XS L.R. Ell.? Thanks. sailoday28 (Mechanical) 18 Dec 06 12:11

And the L/d or K for a run or branch of a "T" is? Regards

BigInch (Petroleum) 18 Dec 06 12:28

You could have a look at these that Weldbend gives for fittings, including straight tees and they even give a method for assemblies as well, http://www.weldbend.com/Technical%20Data/Flow%20Resistance%20For%20Fittings/flowresistance.htm and click on <next> for the following page BigInch-born in the trenches. LeSabre (Petroleum) 18 Dec 06 12:44

BigInch, Great site, thanks! But I didn't see any info on K-factors or ft.

pleckner (Chemical) 18 Dec 06 13:03

Let's remember that CRANE TP410 doesn't publish equivalent lenghts for valves and fittings, it provides K values or the means to calculate K values from which we can then calculate the equivalent length using the appropriate friction factor at fully developed turbulent flow.

Let us also not forget that we can obtain various fT values from the graph on Page A-23. This graph allows us to choose the fT for the type of pipe being used (and this translates into a constant absolute roughness for that type of pipe) and the diameter of that pipe. So I don't agree that CRANE TP410 necessarily publishes conservative values of roughness. It all depends on how you want to manipulate the piping material you are using, e.g. For pharmaceutical grade highly polished SS pipe I might choose to use the roughness for Drawn Tubing (an absolute roughness of 0.000005 feet) rather than clean commercial steel pipe (0.00015 feet). Note that with this table, I can also try to interpolate and obtain fT for various pipe diameters!

Let us also not forget that the published fT values given in the table at the top of Page A-26 are strictly for CLEAN COMMERCIAL STEEL PIPE and for the schedule of pipe listed on Page 2-10. If one desires the the K value for another fitting of a different schedule pipe, they should adjust it using Equation 2-5 on that same page or go to the Graph on Page A-23.

One last thing for now, one can still use published equivalent lenghts as per the reference given by BigInch but just remember to calculate the pressure loss through that fitting using fT for that fitting rather than the pipe friction factor as I've shown in my paper and my post above.

BigInch (Petroleum) 18 Dec 06 13:12

on the <next> page, they give a method for dP, from which you can backcalculate Ks, right?

http://www.weldbend.com/Technical%20Data/Flow%20Resistance%20For%20Fittings/

Page 284: Crane Fluid Flow Problems

pleckner (Chemical) 18 Dec 06 13:03

Let's remember that CRANE TP410 doesn't publish equivalent lenghts for valves and fittings, it provides K values or the means to calculate K values from which we can then calculate the equivalent length using the appropriate friction factor at fully developed turbulent flow.

Let us also not forget that we can obtain various fT values from the graph on Page A-23. This graph allows us to choose the fT for the type of pipe being used (and this translates into a constant absolute roughness for that type of pipe) and the diameter of that pipe. So I don't agree that CRANE TP410 necessarily publishes conservative values of roughness. It all depends on how you want to manipulate the piping material you are using, e.g. For pharmaceutical grade highly polished SS pipe I might choose to use the roughness for Drawn Tubing (an absolute roughness of 0.000005 feet) rather than clean commercial steel pipe (0.00015 feet). Note that with this table, I can also try to interpolate and obtain fT for various pipe diameters!

Let us also not forget that the published fT values given in the table at the top of Page A-26 are strictly for CLEAN COMMERCIAL STEEL PIPE and for the schedule of pipe listed on Page 2-10. If one desires the the K value for another fitting of a different schedule pipe, they should adjust it using Equation 2-5 on that same page or go to the Graph on Page A-23.

One last thing for now, one can still use published equivalent lenghts as per the reference given by BigInch but just remember to calculate the pressure loss through that fitting using fT for that fitting rather than the pipe friction factor as I've shown in my paper and my post above.

BigInch (Petroleum) 18 Dec 06 13:12

on the <next> page, they give a method for dP, from which you can backcalculate Ks, right?

http://www.weldbend.com/Technical%20Data/Flow%20Resistance%20For%20Fittings/

katmar (Chemical) 18 Dec 06 15:29

@LeSabre,

Yes, indeed (assuming we are still talking LR bends) the Sch40 and Sch160 fittings would have the same K value using my J factor, or using the Crane method. The table at the top of page A-26 has a note "K is based on use of schedule pipe as listed on page 2-10". And page 2-10 seems to say that the K values apply to Schedules 40 to 160, but that the velocity that is used to calculate the velocity head must be based on the actual ID of the fitting. Makes sense to me. If you take a look at Figure 2-16 on page 2-13 of Crane 410 you will doubt every calculation you have ever made. This figure shows the variability in the experimental data on which the K values we use are based. A great deal of license has been used in getting to the "averages" we accept as gospel.

This question again highlights the reason I disagree with the Crane fT method. People want to start fiddling with the fT for their particular pipe, whereas Crane's intention was that if you have a 4" fitting you use an fT of 0.017 irrespective of the schedule or actual roughness of that pipe . That is why I suggested that we call it "J" and eliminate the false link to the friction factor that is confusing everybody. All the experimental work shows that the K value has almost no dependency on the roughness, and if you look at Fig 2-16 again you will see that there is no room for hair splitting here.

Using the Darby 3-K method to calculate K values for the Sch40 and Sch160 bends gives values on 0.28 and 0.29 respectively (at Re = 300,000). If I was doing a calculation that involved these fittings I would use these two different values for the two different schedules, but only for the sake of computational consistency and to allow anyone to later check my calcs using the same methods. In my heart I would know that in fact they are for all intents and purposes the same. Of course for the same flowrate the pressure drop is higher through the Sch160 bend because of the higher velocity, but not because of any real change in K value. To try to calculate the actual K value from the Crane method by interpolating fT between Sch40 and Sch160 is IMO like measuring the length of a football pitch with a micrometer.

For the 36" bend I would use 3-K and get a K value of about 0.18. The rate of decrease with size gets less as the sizes get bigger. You could use Crane fT of 0.0105 (interpolating from the figure on page A-24) because there is a substantial increment to 36" from the data on page A-26, but the fact that Crane neglected to give values on page A-26 for 36" pipe does not detract from my argument that theirprocedure is confusing.

@Sailoday28,Crane have neglected to give K values for welded or flanged Tee's. I have no idea why. As always I would use 3-K. A good reference for this type of data is the classic article by Larry Simpson and Martin Weirick (Chemical Engineering, April 3, 1978).

@pleckner,I am confused over what you are saying Phil. If we apply your example of polished SS with a roughness of 0.000005 inch to our 4" LR bend we would have to have a Reynolds number of over 100 million to get to full turbulence (See Crane A-24). Under these conditions you would get an fabout 0.007. This compares with an fT of 0.017 for a 4" fitting given on page A-26. Using the value of0.007 would make a 4" highly polished LR bend have a K value of 17x0.007 = 0.119 and not the 0.28 that I would calculate from Darby's 3-K. Is this what you are saying, or have I got the wrong end of the stick?

Page 285: Crane Fluid Flow Problems

katmar (Chemical) 18 Dec 06 15:29

@LeSabre,

Yes, indeed (assuming we are still talking LR bends) the Sch40 and Sch160 fittings would have the same K value using my J factor, or using the Crane method. The table at the top of page A-26 has a note "K is based on use of schedule pipe as listed on page 2-10". And page 2-10 seems to say that the K values apply to Schedules 40 to 160, but that the velocity that is used to calculate the velocity head must be based on the actual ID of the fitting. Makes sense to me. If you take a look at Figure 2-16 on page 2-13 of Crane 410 you will doubt every calculation you have ever made. This figure shows the variability in the experimental data on which the K values we use are based. A great deal of license has been used in getting to the "averages" we accept as gospel.

This question again highlights the reason I disagree with the Crane fT method. People want to start fiddling with the fT for their particular pipe, whereas Crane's intention was that if you have a 4" fitting you use an fT of 0.017 irrespective of the schedule or actual roughness of that pipe . That is why I suggested that we call it "J" and eliminate the false link to the friction factor that is confusing everybody. All the experimental work shows that the K value has almost no dependency on the roughness, and if you look at Fig 2-16 again you will see that there is no room for hair splitting here.

Using the Darby 3-K method to calculate K values for the Sch40 and Sch160 bends gives values on 0.28 and 0.29 respectively (at Re = 300,000). If I was doing a calculation that involved these fittings I would use these two different values for the two different schedules, but only for the sake of computational consistency and to allow anyone to later check my calcs using the same methods. In my heart I would know that in fact they are for all intents and purposes the same. Of course for the same flowrate the pressure drop is higher through the Sch160 bend because of the higher velocity, but not because of any real change in K value. To try to calculate the actual K value from the Crane method by interpolating fT between Sch40 and Sch160 is IMO like measuring the length of a football pitch with a micrometer.

For the 36" bend I would use 3-K and get a K value of about 0.18. The rate of decrease with size gets less as the sizes get bigger. You could use Crane fT of 0.0105 (interpolating from the figure on page A-24) because there is a substantial increment to 36" from the data on page A-26, but the fact that Crane neglected to give values on page A-26 for 36" pipe does not detract from my argument that theirprocedure is confusing.

@Sailoday28,Crane have neglected to give K values for welded or flanged Tee's. I have no idea why. As always I would use 3-K. A good reference for this type of data is the classic article by Larry Simpson and Martin Weirick (Chemical Engineering, April 3, 1978).

@pleckner,I am confused over what you are saying Phil. If we apply your example of polished SS with a roughness of 0.000005 inch to our 4" LR bend we would have to have a Reynolds number of over 100 million to get to full turbulence (See Crane A-24). Under these conditions you would get an fabout 0.007. This compares with an fT of 0.017 for a 4" fitting given on page A-26. Using the value of0.007 would make a 4" highly polished LR bend have a K value of 17x0.007 = 0.119 and not the 0.28 that I would calculate from Darby's 3-K. Is this what you are saying, or have I got the wrong end of the stick?

katmar (Chemical) 18 Dec 06 16:33

@pleckner,

I got confused between inches and feet for your roughness in my working of your example with the polished SS. The fT is more like 0.010, making the K value 0.17. The numbers are different from my earlier calc but the principle is the same. My question is, are you proposing that we use the calculated fT value of about 0.010 rather than Crane's 0.017 to calculate the K value of a highly polished LR bend?

Sorry for the calculation error - it’s nearly midnight here!

Harvey Katmar SoftwareEngineering & Risk Analysis Softwarehttp://katmarsoftware.com

Zapster (Electrical) 18 Dec 06 17:19

Have any of you looked at the “Handbook of Hydraulic Resistance” by I. E. Idelchik? It was my impression that this book was the ultimate reference for calculating flow resistance through fittings. Perhaps someone who studied this text might have some comments on how Idelchik handles these issues.

pleckner (Chemical) 18 Dec 06 19:55

Yes, CRANE TP410, page 2-10 says that the K values apply to Schedules 40 to 160 but they are not constant at all these schedules. Look again and you will see that Schedule 40 pipe only applies to Class300 and less; Schedule 80 pipe for Class 400 and 600 and so on. The way I interpret this is that you would have to adjust the K value using equation 2-5 for the different internal diameter if you were using a schedule 80 pipe in a Class 300 or less application. For example, 2" pipe, schedule 80 has an ID of 1.939" but that same pipe in schedule 40 has an ID of 2.067". If you were using schedule 80 pipein a Class 150 application, the K value would have to be adjusted accordingly because the K values arepublished for the schedule 40 Class 150 pipe, not the schedule 80 Class 150 pipe; different velocities.

@katmar:My example is to show how one can manipulate, or try to manipulate absolute roughness to suite the type of piping material they have rather than just blindly following the table on A-26 that most people do. And yes, for this instance, I don't see anything wrong with using a lower K value for polished stainless steel pipe (actually tubing for bio-pharm use) over clean commercial steel pipe. The frictionallosses will be significantly less for pharma pipe/tubing than for the standard chemical/petrochemical industry steel pipe.

BTW, I am doing a project for vegatable oil tank farm expansion and we are using a smaller diameter 304 SS pipe than I would normally choose for our flow rates (asked for by the client) because in their experience, there is essentially very little effective friction at all, the stuff just glides right down the pipe!

Page 286: Crane Fluid Flow Problems

katmar (Chemical) 18 Dec 06 16:33

@pleckner,

I got confused between inches and feet for your roughness in my working of your example with the polished SS. The fT is more like 0.010, making the K value 0.17. The numbers are different from my earlier calc but the principle is the same. My question is, are you proposing that we use the calculated fT value of about 0.010 rather than Crane's 0.017 to calculate the K value of a highly polished LR bend?

Sorry for the calculation error - it’s nearly midnight here!

Harvey Katmar SoftwareEngineering & Risk Analysis Softwarehttp://katmarsoftware.com

Zapster (Electrical) 18 Dec 06 17:19

Have any of you looked at the “Handbook of Hydraulic Resistance” by I. E. Idelchik? It was my impression that this book was the ultimate reference for calculating flow resistance through fittings. Perhaps someone who studied this text might have some comments on how Idelchik handles these issues.

pleckner (Chemical) 18 Dec 06 19:55

Yes, CRANE TP410, page 2-10 says that the K values apply to Schedules 40 to 160 but they are not constant at all these schedules. Look again and you will see that Schedule 40 pipe only applies to Class300 and less; Schedule 80 pipe for Class 400 and 600 and so on. The way I interpret this is that you would have to adjust the K value using equation 2-5 for the different internal diameter if you were using a schedule 80 pipe in a Class 300 or less application. For example, 2" pipe, schedule 80 has an ID of 1.939" but that same pipe in schedule 40 has an ID of 2.067". If you were using schedule 80 pipein a Class 150 application, the K value would have to be adjusted accordingly because the K values arepublished for the schedule 40 Class 150 pipe, not the schedule 80 Class 150 pipe; different velocities.

@katmar:My example is to show how one can manipulate, or try to manipulate absolute roughness to suite the type of piping material they have rather than just blindly following the table on A-26 that most people do. And yes, for this instance, I don't see anything wrong with using a lower K value for polished stainless steel pipe (actually tubing for bio-pharm use) over clean commercial steel pipe. The frictionallosses will be significantly less for pharma pipe/tubing than for the standard chemical/petrochemical industry steel pipe.

BTW, I am doing a project for vegatable oil tank farm expansion and we are using a smaller diameter 304 SS pipe than I would normally choose for our flow rates (asked for by the client) because in their experience, there is essentially very little effective friction at all, the stuff just glides right down the pipe!

vzeos (Mechanical) 22 Dec 06 11:49

There seems to be a good deal of confusion about the relationship and use of the friction factor and the K-factor. Inspection of equations 2-1, 2-2, 2-3 and 2-4 on page 2-8 of Crane TP 410 (see below) should clarify the issue.

Equation 2-1, hL = v2/2g, this is the velocity head of a flowing fluid.

Equation 2-2, hL = K v2/2g, this defines the K-factor as the number of velocity heads lost due to a valve or fitting.

Equation 2-3, hL = (f L/D) v2/2g, this is the Darcy equation.

Equation 2-4, K = (f L/D), this is the familiar K-factor equation.

It should be completely evident that the link between the friction factor and the K-factor is established by virtue of the Darcy equation and that f is the Darcy friction factor. The purpose for inventing a K-factor and doing this algebraic manipulation is to develop a dimensionless group to be used for model scaling and to generalize experimental findings based on a limited number of experimental results. It should be further noted that the friction factor, f, applies only to straight pipe; there is no friction factor associated with any valve or fitting.

The Darcy friction factor can be obtained using your favorite charts or equations. For the special case of fully developed turbulent flow, fT, which represents the maximum possible friction factor, the Karman Rough Pipe Law should be used, namely 1/√fT = 2Log (3.7D/k) or fT = 1/[2Log (3.7D/k)] where k is the pipe roughness. There is no special significance given to the fT values provided on page A-26.  Indeed, the first paragraph on page 2-10 states that these fT values are provided for “convenience.”

K-factor values for valves and fittings are determined experimentally by measuring the head lost due tothe valve or fitting during a flow test. Once the K-factor value is determined for a valve or fitting it can be equated to a hypothetical pipeline (having particular values for the parameters f, L and, D) by using equation 2-4. The values for the parameters of the hypothetical pipe are not set in stone.

For example:A flow test for a 2” valve produced a pressure loss equal to 3 velocity heads under fully developed turbulent flow. What is the length of 2.067” ID hypothetical pipe that would cause a 3 velocity head loss if the hypothetical pipe roughness were 0.0015”?

Using the rough pipe law, fT = 1/[2Log (3.7*2.067/0.0015)] 2 = 0.01819

Using Equation 2-4, LT = (3* 2.067)/0.01819 = 340.9” or 28.4 feetLT is the equivalent length of the valve under fully developed turbulent flow.

wfn217 (Chemical) 22 Dec 06 12:01

Page 287: Crane Fluid Flow Problems

vzeos (Mechanical) 22 Dec 06 11:49

There seems to be a good deal of confusion about the relationship and use of the friction factor and the K-factor. Inspection of equations 2-1, 2-2, 2-3 and 2-4 on page 2-8 of Crane TP 410 (see below) should clarify the issue.

Equation 2-1, hL = v2/2g, this is the velocity head of a flowing fluid.

Equation 2-2, hL = K v2/2g, this defines the K-factor as the number of velocity heads lost due to a valve or fitting.

Equation 2-3, hL = (f L/D) v2/2g, this is the Darcy equation.

Equation 2-4, K = (f L/D), this is the familiar K-factor equation.

It should be completely evident that the link between the friction factor and the K-factor is established by virtue of the Darcy equation and that f is the Darcy friction factor. The purpose for inventing a K-factor and doing this algebraic manipulation is to develop a dimensionless group to be used for model scaling and to generalize experimental findings based on a limited number of experimental results. It should be further noted that the friction factor, f, applies only to straight pipe; there is no friction factor associated with any valve or fitting.

The Darcy friction factor can be obtained using your favorite charts or equations. For the special case of fully developed turbulent flow, fT, which represents the maximum possible friction factor, the Karman Rough Pipe Law should be used, namely 1/√fT = 2Log (3.7D/k) or fT = 1/[2Log (3.7D/k)] where k is the pipe roughness. There is no special significance given to the fT values provided on page A-26.  Indeed, the first paragraph on page 2-10 states that these fT values are provided for “convenience.”

K-factor values for valves and fittings are determined experimentally by measuring the head lost due tothe valve or fitting during a flow test. Once the K-factor value is determined for a valve or fitting it can be equated to a hypothetical pipeline (having particular values for the parameters f, L and, D) by using equation 2-4. The values for the parameters of the hypothetical pipe are not set in stone.

For example:A flow test for a 2” valve produced a pressure loss equal to 3 velocity heads under fully developed turbulent flow. What is the length of 2.067” ID hypothetical pipe that would cause a 3 velocity head loss if the hypothetical pipe roughness were 0.0015”?

Using the rough pipe law, fT = 1/[2Log (3.7*2.067/0.0015)] 2 = 0.01819

Using Equation 2-4, LT = (3* 2.067)/0.01819 = 340.9” or 28.4 feetLT is the equivalent length of the valve under fully developed turbulent flow.

wfn217 (Chemical) 22 Dec 06 12:01