Covering map theory for graphs - Osaka City University€¦ · (Lov´asz [10] ) G ¬ å Ñ q ` |n...

10
Covering map theory for graphs দԼ ߂(ژ) 1. Ίʹ άϥϑͱ߹ V ͱɼV × V ͷ෦߹ E Ͱɼʮҙͷ (x, y) V × V ʹରɺ(x, y) E (y,x) E ʯΛຬͷͷ (V,E) ͷͱΛɽຊߨԋʹΔ άϥϑͱɼඇ༗ͰɼϧʔϓΑɼೋͷͷʹΔઢଟ ҰͰΔΑͳͷΛɽάϥϑ G =(V,E) ʹରɼV Λ V (G) ͱॻ G ͷ߹ͱɼE Λ E(G) ͱॻɽάϥϑ G, H ʹରɼG Β H ͷάϥϑͷ ͱɼ߹ͷͷ f : V (G) V (H ) Ͱɼ(f × f )(E(G)) E(H ) ͳ ΔͷͷͱͰΔɽ ҎԼͷάϥϑཧʹݹయతʹߟΒΕͰΔɽ 1.1. ͷάϥϑ G, H ༩ΒΕͱɼG Β H ͷάϥϑͷଘ ΔͲௐΑɽ ߨԋͰɼ· 1.1 ʹରΔτϙϩδʔͷԠ༻ʹͷ·ࠓͰͷڀݚΛհ ɼͷͱߨԋͷϓϨϓϦϯτ [13]ɼ[14]ɼ[15] ͷཁΛड़Δɽ 2. ந୯ମෳମ ߨԋͰݱΕΔҐ૬ͷ΄ͱΜͲɼந୯ମෳମͷزԿతݱͱಘΒΕΔɽ Ͱຊઅʹந୯ମෳମͷఆͱΒΕΔͱΛɼຊߨԋʹඞཁͳғ ͰҰ௨Γड़Δɽɺ[9] ͳͲΛরɽ ந୯ମෳମʢҎԼɺ୯ମෳମʣͱɼ߹ V ͱɼV ͷ༗ݶ෦߹ͷ Ͱɼʮ ҙͷ σ ͱ τ 2 V ʹରɼτ σ ͳΒ τ ͰΔʯΑͼʮ v V ʹରɼ {v} ʯͱΛຬͷͷ (V, ) ͰΔɽV Λ (V, ) ͷ߹ͱɼ ͷݩΛ୯ମͱɽ V Λʮ୯ମෳମʯͳͲͱɽͷද ʹهɼ୯ମෳମ ͷ߹ V () ͱදɽ 1 ͱ 2 Λ୯ମෳମͱΔɽ1 Β 2 ͷ୯ମͱɼ߹ͷͷ f : V (1 ) V (2 ) Ͱɼ σ 1 ʹରɼf (σ) 2 ΓͷͷͱͰ Δɽ ߹ V ʹରɼ R (V ) ʹΑɼ V ͰੜΕΔ༝ R-Ճ܈ΛදͷͱΔɽ R (V ) ͷ ݶR-Ճ܈શମʹΑΔॱݶۃͷҐ૬ΛೖΕɼ R (V ) ΛҐ૬ͱΈͳɽ୯ମෳମ ͱ ͷ୯ମ σ ʹରɼσ ʹΑɼ{ vσ a v v R (V ) | a v 0,v σ, vσ a v =1} ͳΔ R (V ()) ͷ෦Ґ૬ΛදɽͷزԿతݱͱɼ σσ ͳΔ R (V ()) ͷ ෦Ґ૬ͷͱͰΔɽͷزԿతݱΛ || Ͱදɽ୯ମ f : 1 2 ʹ ରɼf ͷఆΔ R (V (1 )) R (V (2 )) ΛݶΔͱͰɼ࿈ଓ |f | : |1 | |1 | ఆͰΔɽ ॱং߹ͷͱΛϙηοτͱͱଟɽϙηοτ P ͷ෦߹ c P ͷνΣ ΠϯͰΔͱɼ x, y c ʹରɼx y · x y ΓͱΛɽϙηο ڀݚՊݚ(՝൪߸:254699) ͷॿΛडͷͰΔɻ ˟ 153-8914 ژ 3-8-1 ژେେӃཧՊڀݚՊ e-mail: [email protected] 第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学 11

Transcript of Covering map theory for graphs - Osaka City University€¦ · (Lov´asz [10] ) G ¬ å Ñ q ` |n...

  • Covering map theory for graphs

    ( )∗

    1.V V × V E (x, y) ∈ V × V (x, y) ∈

    E ⇒ (y, x) ∈ E (V,E)

    G = (V,E) V V (G) G

    E E(G) G,H G H

    f : V (G) → V (H) (f × f)(E(G)) ⊂ E(H)

    1.1. G,H G H

    1.1

    [13] [14] [15]

    2.

    [9]

    V V ∆

    σ ∈ ∆ τ ∈ 2V τ ⊂ σ τ ∈ ∆ v ∈ V{v} ∈ ∆ (V,∆) V (V,∆)∆ V ∆

    ∆ V (∆)

    ∆1 ∆2 ∆1 ∆2f : V (∆1) → V (∆2) σ ∈ ∆1 f(σ) ∈ ∆2

    V R(V ) V R- R(V )R- R(V )

    ∆ ∆ σ ∆σ {∑

    v∈σ avv ∈ R(V ) | av ≥ 0, v ∈ σ,∑

    v∈σ av = 1}R(V (∆)) ∆

    ⋃σ∈∆ ∆σ R(V (∆))

    ∆ |∆| f : ∆1 → ∆2f R(V (∆1)) → R(V (∆2)) |f | : |∆1| → |∆1|

    P c P

    x, y ∈ c x ≤ y x ≥ y

    ( :254699)∗ 153-8914 3-8-1e-mail: [email protected]

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    11

  • P P P

    ∆(P ) P |∆(P )| |P |∆ ∆ \ {∅} ∆

    F (∆) ∆ |F (∆)| |∆|

    f : ∆1 → ∆2f |f | : |∆1| → |∆2|

    3. Lovász Kneser1.1

    n n Kn V (Kn) = {1, · · · , n} E(Kn) = {(x, y) ∈V (Kn)2 | x ̸= y} G inf{n ≥ 0 | G Kn

    } G G χ(G) χ(G)(graph coloring problem)

    G

    Lovász Lovász [10]

    Kneser

    3.1. G G v N(v) = {w ∈ V (G) | (v, w) ∈ E(G)}G N (G) {v ∈ V (G) | N(v) ̸= ∅}

    N (G) = {σ ⊂ V (G) | ♯σ< +∞ G v σ ⊂ N(v) }

    Lovász

    3.2. (Lovász [10] ) G n (−1) N (G)n- 1 χ(G) ≥ n+ 3

    Lovász N (G) Z2- L(G) (Lovasz) G Km L(G)

    m Borsuk-Ulam 2

    Kneser n, k n ≥ 2k V (Kn,k) = {σ ⊂{1, · · · , n} | ♯σ = k} E(Kn,k) = {(σ,τ ) | σ∩τ = ∅} Kneser

    [8] Kneser χ(Kn,k) ≤ n−2k+2 χ(Kn,k) = n−2k+2

    1 (−1)-2Sn (n+ 1)

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    12

  • (Kneser ) Lovász N (Kn,k) (n− 2k− 1)-3.2 Kneser Kneser Bárány [1]

    Greene [7] Borsuk-Ulam

    Matoušek [12]

    Hom [2] [5] [9] [11] [17]

    [18]

    3.2 Hom

    G H 3 Hom(G,H) C2r+1 (2r+1)-

    5.1.(2)

    3.3. (Babson-Kozlov [3]) G n (−1) rHom(C2r+1, G) n- χ(G) ≥ n+ 4

    Hom Lovász Lovász

    [17]

    2000 Hom

    4.[13] [14] [15] r

    r- r- r-

    r- r-

    r-

    r-

    r- 5.5 r-

    1.1

    r Lovász r-

    1- r-

    (2r)- 7.1 r

    r- Z2-

    5. r- r-r r- r-

    r- r-

    G v ∈ V (G) i V (G) Ni(v)N1(v) = N(v) Ni+1(v) =

    ⋃w∈Ni(v) N(w)

    p : G → H r- v ∈ V (G) 1 ≤ i ≤ r ip : Ni(v) → Ni(p(v))

    3 [9] [6][13] [14]

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    13

  • 5.1. r-

    (1) G H G×H V (G×H) = V (G)×V (H) E(G×H) = {((x, y), (x′, y′)) | (x, x′) ∈ E(G), (y, y′) ∈ E(H) G

    K2 ×G → G r r- Gχ(G) ≥ 3 K2 ×G

    (2) n n- Cn V (Cn) = Z/nZ E(Cn) = {(x, x±1) | x ∈ Z/nZ} n ≥ 3 Cn n

    K3 ∼= C3n 3 k p : Cnk → Cn (x mod.nk) &→ x mod.n

    (i) n k = 1, 2 r

    p r- n K2 ×Cn ∼= C2nk ≥ 3 k = 0 p (n− 1)- n-

    (ii) n k = 1 r p

    r- p (n/2) − 1-(n/2)-

    (G, v) r- πr1(G, v)

    5.2. n Ln V (Ln) = {0, 1, · · · , n} E(Ln) = {(x, y) | |x−y| = 1} (G, v) Ln G ϕϕ(0) = ϕ(n) = v (G, v) n (G, v)

    L(G, v) ϕ,ψ ∈ L(G, v) (1),(2)r

    (1) ϕ n ψ (n+2) x ∈ {0, 1, · · · , n}ϕ(i) = ψ(i) (i ≤ x) ϕ(i) = ψ(i+ 2)

    (2)r ϕ ψ n x ∈ {0, 1, · · · , n}i ̸∈{ x, x+ 1, · · · , x+ r − 2} ϕ(i) = ψ(i)

    (1) (2)r L(G, v) ≃r L(G, v)/ ≃r πr1(G, v)(G, v) r-

    5.3. r-

    (1) r = 1 (2)r ϕ = ψ G4 π11(G, v) G 1 CW

    4 v ∈ V (G) (v, v) ∈ E(G)

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    14

  • (2) ϕ l(ϕ) ϕ πr1(G, v) → Z/2Z,[ϕ] "→ (l(ϕ) mod.2) well-defined πr1(G, v)ev

    πr1(G, v) α ∈ πr1(G, v) α ∈ πr1(G, v)ev α

    r-

    (3) r ≥ s ϕ ≃s ψ ⇒ ϕ ≃r ψ πs1(G, v) →πr1(G, v)

    (4) α ∈ πr1(G, v) l(α) = inf{l(ϕ) | ϕ ∈ α} α,β ∈ πr1(G, v)dr(α,β ) = l(α−1β) dr πr1(G, v)

    f : (G, v) → (H,w) dr(f∗α, f∗β) ≤ dr(α,β )dr(f∗α, f∗β) = dr(α,β ) (mod.2) α,β ∈ πr1(G, v)

    5.4. r-

    (1) n 3 πr1(Cn) r < n Z r ≥ nπr1(Cn) ∼= Z/2Z n 4 r < (n/2) πr1(Cn) ∼= Z

    r ≥ (n/2) πr1(Cn)

    (2) (1) π21(K3) ∼= Z 4 n π21(Kn) ∼= Z/2Z

    r- r-

    5.5. (G, v)

    Xr : (G, v) r- (G, v)

    Yr : πr1(G, v) πr1(G, v)

    Xr → Yr, (p : (H,w) → (G, v)) "→ Im(πr1(p))

    (1) r- p : (H,w) → (G, v) πr1(p) : πr1(H,w) → πr1(G, v)

    (2) pi : (Hi, wi) → (G, v) (i = 1, 2) r- Hif : (H1, w1) → (H2, w2) p2 ◦ f = p1

    Im(πr1(p1)) ⊂ Im(πr1(p2)) f

    (3) πr1(G, v) Γ r- pΓ : (GΓ, vΓ) → (G, v) GΓIm(πr1(pΓ)) =Γ

    5.6.

    (1) (G, v) G χ(G) ≥ 3 K2 ×G(K2×G, (1, v)) → (G, v) r r-

    r- πr1(G, v) πr1(G, v)ev

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    15

  • (2) n 3 r < n πr1(Cn) ∼= ZkZ ⊂ Z r- Cnk → Cn, (x mod.nk) $→ (x mod.n)

    (3) Kn n ≥ 4 π21(Kn) ∼= Z/2Z n ≥ 4 Kn2- Kn K2 ×Kn

    6. r-r-

    6.1. n 3 r n G G

    Cn α ∈ πr1(G)l(αk) ≥ kn (l(α) 4.3(2) ) kπr1(G) χ(G) ≥ 3 πr1(G)

    Proof. α ∈ πr1(G) f∗α ∈ πr1(Cn)l(f∗α) ≥ n πr1(Cn) ∼= Z l(f∗(α)k) = l(f∗(α))k

    l(αn) ≥ l(f∗(α)k) ≥ nk

    n = 3 C3 ∼= K36.2. G χ(G) = 3 π21(G)

    6.3. 6.1

    (1) G g0(G) = inf{2n+1 | n ≥ 0 C2n+1 G} g0(G) G g0(G) = sup{2n+1 | n ≥ 0

    G C2n+1 } n,mn > m Cn Cm Cm Cn

    g0(G) ≥ g0(G) g0(G)g0(G)

    6.1 n,m n ≥ mGn,m g0(G) = n g0(Gn,m)

    G g0(G) = 7 g0(G) = 5

    (2) n Gn V (Gn) = {(i.j) ∈ Z2 | 0 ≤ i, j ≤ n}E(Gn) = {((i, j)(i′, j′)) | |i− i′| + |j − j′| = 1} Xnj ∈ {0, 1, · · · , n} (j, 0) (n, j) (n− j, n) (0, n− j) Gn

    n χ(Xn) = 2 n Cn Xnχ(Xn) ≥ 3 π21(X3) ∼= Z/2Z n ≥ 5

    n π21(Xn) ∼= Z/4Z n χ(Xn) ≥ 4

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    16

  • ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !

    1

    4 χ(Xn) = 4

    n 5 G χ(G) > 2 π21(G) ∼= Z/2ZG Km (m ≥ 4) m ≥ 2k+ 2

    m, k Kneser Km,k Kneser SKm,k7.6 G Xn

    2- G Xnf : G → Xn α ∈ π21(G) ∼= Z/2Zf∗α π21(Xn) ≃ Z/4Z f∗(α)2 = 1

    π21(Xn)

    (3) Kneser K2k+1,k 3 K2k+1,k C3(∼= K3)K2k+1,k C5

    g0(K2k+1,k) = 2k+1 K2k+1,k 2k+1 π31(Kn,k)

    2 5

    (4) G Cnr < n πr1(G)

    l(αk) ≥ nk

    n 5 Xn (2) π21(Xn) ∼=Z/4Z Xn 2- X̃n X̃n Z/4Z

    Z/4Z τ : X̃n → X̃nỸn V (Ỹn) = V (X̃n)× Z E(Ỹn) = {((x, i), (y, j)) | (i = j (x, y) ∈ E(G))

    (x = y |i− j| = 1) } Ỹn ZZ (x, i) (→ (τ(x), i + 2)

    Ỹn π21(Yn) ∼= Zα l(α) = n+ 2 l(α4) = 8 < 3 · 4 Yn K3

    5π31(K2k+1,k) ∼= Z/2Z

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    17

  • χ(Yn) > 3 Yn 4

    χ(Yn) = 4

    7. r-[15] r- Lovász

    r- (2r)-

    7.1. G r- (r-neighborhood complex)

    Nr(G) = {σ ⊂ V (G) | ♯σ< ∞ v ∈ V (G) σ ⊂ Nr(v) }

    1- Lovász N (G)

    7.2. r (G, v) N(v) ̸= ∅ π2r1 (G, v)ev ∼=π1(Nr(G), v)

    7.3. G χ(G) > 2 n 3 G

    Cn H1(N(n−1)/2(G);Z) Z

    G Cn f πn−11 (G) →

    πn−11 (Cn) ∼= Z χ(G) > 2 πn−11 (G)πn−11 (f) π

    n−11 (G)ev π

    n−11 (G) 2 π

    n−11 (G)ev

    Z πn−11 (G)ev Z6.2

    7.4. p : G → H (2r)- Nr(p) : Nr(G) → Nr(H)

    6.2 r- (2r)-

    7.5. r (G, v) G N(v) ̸= ∅

    (1) χ(G) = 2 (Nr(G), v)(G, v)

    (2r)-

    (2) χ(G) ≥ 3 (Nr(G), v)(K2 × G, (1, v))

    (2r)-

    7.6. 6.2

    (1) G G+

    V (G+) = V (G) *{∗} E(G+) = E(G) ∪ (V (G)×{∗} ) ∪ ({∗}× V (G))

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    18

  • N (G+) N (G)[5] χ(G) ≥ 3 G N (G)

    N (G) π21(G) ∼= Z/2ZG+ 2- G+ K2 ×G+

    (2) Lovász Kn,k n ≥ 2k N (Kn,k) (n− 2k − 1)-Kneser SKn,k

    V (SKn,k) = {σ ⊂ {1, · · · , n} | ♯σ = k i ∈ σ i+ 1 ̸∈ σ }

    E(SKn,k) = {(σ,τ ) | σ ∩ τ = ∅}

    Schriver N (SKn,k) (n − 2k − 1)- 6

    χ(SKn,k) = n − 2k + 2 n ≥ 2k + 2 Kn,kSKn,k 2- Z/2Z 2-

    K2 ×Kn,k K2 × SKn,k

    r Lovász r-

    7.7. r G Br(G)

    {(σ,τ ) | σ,τ V (G) v ∈ σ τ ⊂ Nr(v)}

    (σ,τ ) ≤ (σ′, τ ′) ⇔ σ ⊂ σ′ τ ⊂ τ ′

    ∆ F∆ 2

    7.8. G Br(G) → FN (G), (σ,τ ) -→ σBr(G) Nr(G)

    r g0(G) > r Br(G) Z2- G Hg0(G), g0(H) > r Br(G) Br(H) Stiefel-Whitney

    0 G H

    7.9. n, k, r n > 2k (n − 2k)r = k − 1v ∈ V (Kn,k) N2r−1(v) = V (Kn,k) − {v}

    g0(Kn,k) = 2r+ 1 N2r−1(Kn,k) (♯V (Kn,k)− 2) = ((nk

    )− 2)

    7.10. n, k, r n > 2k (n− 2k)r = k − 1(2r+1) G ♯V (G) <

    (nk

    )Kn,k

    G

    r-

    6 Björner Longueville [4] N (SKn,k) Sn−2k

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    19

  • [1] I. Barany, A short proof of Kneser’s conjecture, J. Combin. Ser. A 25 (3) 325-326, (1978)

    [2] E. Babson, D. Kozlov, Complexes of graph homomorphisms, Israel J. Math. 152, 285-312(2006)

    [3] E. Babson, D. Kozlov, Proof of the Lovász conjecture, Ann. Math. 165 (3) 965-1007(2007)

    [4] A. Björner, M. Longueville, Neighborhood complexes of stable Kneser graphs, Combina-torica, 23 (1):23-34, 2003.

    [5] P. Csorba, Homotopy types of box complexes. Combinatorica 27 (2007) (6):669-682.

    [6] A. Dochtermann, Hom complexes and homotopy theory in the category of graphs, Euro-pean J. Combin. 30 (2) 490-509 (2009)

    [7] J. Greene, A new short proof of Kneser’s conjecture, Amer. Math. Monthly 109 (2002),no. 10, pp. 918-920.

    [8] M. Kneser, Aufgabe 360, Jber. Deutsch. Math.-Verein. 58, (1955/56), 2 Abt., 27

    [9] D.N. Kozlov Combinatorial algebraic topology, Algorithms and Computation in Mathe-matics 21, Springer, Berlin, 2008

    [10] L. Lovász, Kneser’s conjecture, chromatic number and homotopy, J. Comb. Theory, Ser.A, 25 (1978), 319-324

    [11] J. Matoušek, G. Ziegler, Topological lower bounds for the chromatic number, Jahres-bericht der DMV 106, 71-90, 2004

    [12] J. Matoušek, A combinatorial proof of Kneser’s conjecture, Combinatorica 24 (2004),no. 1, pp. 163-170

    [13] T. Matsushita, Fundamental groups of neighborhood complexes, arXiv:1210.2803

    [14] T. Matsushita, Generalized covering map theory of graphs, arXiv:1301.7217

    [15] T. Matsushita, Generalization of neighborhood complexes, arXiv:1305.2503

    [16] A. Schriver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wisk. III, Ser.,26:454-461, 1978

    [17] C. Schultz, Graph colourings, spaces of edges and spaces of circuits, Adv. Math. 221(6):1733-1756, 2009

    [18] R. Živaljević, WI-posets, graph complexes and Z2-equivalences, J. Combin. Theory Ser.A 111 (2005), no. 2, pp. 204-223

    第60回トポロジーシンポジウム講演集 2013年8月 於 大阪市立大学

    20