COURSE SUMMARY - s3.studentvip.com.au

28
COURSE SUMMARY MATH2067: Differential Equations and Vector Calculus for Engineers Shane Leviton [Abstract]

Transcript of COURSE SUMMARY - s3.studentvip.com.au

COURSE SUMMARY

MATH2067: Differential Equations and Vector

Calculus for Engineers

Shane Leviton [Abstract]

1

Contents Ordinary Differential Equations .............................................................................................................. 7

Revision of first year (From MATH1903): ........................................................................................... 7

Exponential growth: ........................................................................................................................ 7

Logistic equation: ............................................................................................................................ 7

First order ODEs .............................................................................................................................. 7

First order linear differential equations: ......................................................................................... 8

Second order ODEs ......................................................................................................................... 9

First order systems: ....................................................................................................................... 12

Second Year ODEs: ............................................................................................................................ 13

First order linear differentiable equation: .................................................................................... 13

2nd order constant coefficient ODE’s ............................................................................................ 13

Non-Homogeneous case: .............................................................................................................. 14

Principle of superposition: ............................................................................................................ 14

Guessing functions: ....................................................................................................................... 14

Variation or Parameters: ................................................................................................................... 15

Functions needed to calculate ...................................................................................................... 15

Wronksian and fundamental solution .............................................................................................. 16

Notes on Wronksian function: ...................................................................................................... 16

Reduction of order: ........................................................................................................................... 16

Euler-Cauchy Equations: ................................................................................................................... 17

Most commonly: ........................................................................................................................... 17

Series Solutions of ODE’s: ................................................................................................................. 18

Techicality: .................................................................................................................................... 18

Notes: ............................................................................................................................................ 20

Method of Frobenius (regular singular points): ................................................................................ 21

Some definitions for Method of Frobenius: ................................................................................. 21

Notes on Frobenius compared to taylor series: ........................................................................... 22

Bessel’s Equation and Bessel Functions: ........................................................................................... 23

Bessel functions: ........................................................................................................................... 23

Radius of convergence: ..................................................................................................................... 24

Partial Differential Equations ................................................................................................................ 25

Boundary-Value Problems and Fourier Series Separation of varaibles for heat equation ............... 25

1 D heat equation: ........................................................................................................................ 25

Solving 1D heat equation: Separation of variables ....................................................................... 26

Fourier Series: (page 34 of notes) ..................................................................................................... 29

2

Complete set of orthogonality relations of sin/cos: ..................................................................... 29

Heat equation with heat flow out of π‘₯ = 𝐿: ..................................................................................... 31

Case 1: π‘˜ = πœ†2: ............................................................................................................................. 31

Case 2: π‘˜ = 0 ................................................................................................................................ 31

Case 3: π‘˜ = βˆ’πœ†2: .......................................................................................................................... 31

Gibbs Phenomenon ........................................................................................................................... 32

Complex Fourier Series: .................................................................................................................... 34

Complex Fourier series for 𝑓(π‘₯) ................................................................................................... 34

Sturm-Liouville Eigenvalue problems: .............................................................................................. 35

Regular Sturm Liouville Egienvalue Problems ............................................................................... 36

Sturm Liouville eigenvalue theorems: .......................................................................................... 36

Sturm Liouville theorems: ............................................................................................................. 36

Orthogonality of eigenvlaues: ....................................................................................................... 37

2D heat equation (heat conduction in a plate): ................................................................................ 39

Rectangular plate: ......................................................................................................................... 39

Circular plate: ................................................................................................................................ 39

Inhomogenoeous heat equation: ..................................................................................................... 41

Inhomogeneous boundary conditions: ......................................................................................... 41

+ heat source: ............................................................................................................................... 42

Inhomogeneous example 2:.......................................................................................................... 45

Application of heat equation: Daily and seasonal temperature variations in the earth .................. 46

transforms: ............................................................................................................................................ 48

Rookie example: ................................................................................................................................ 48

Finding inverse Laplace transforms .............................................................................................. 49

Overall picture to solve with Laplace Transforms: ........................................................................... 50

Suddenly heated half space: Solution by Laplace Transforms:......................................................... 50

Error function: ............................................................................................................................... 51

Properties of Laplace transforms: ..................................................................................................... 52

Shift theorem: ............................................................................................................................... 52

Convolution Theorem for Laplace Transforms: ............................................................................ 53

Laplace’s equation: ............................................................................................................................... 57

Comparison of Laplace’s equation to heat equation: ................................................................... 57

Laplaces (2D rectangular domain) .................................................................................................... 57

Laplaces for a circular disk (homogeneous): ..................................................................................... 60

Solving by separation of variables: ............................................................................................... 60

Revision of fluid flow: ....................................................................................................................... 62

3

Conservation of mass (continuity equation):................................................................................ 62

Fourier Transform solution to heat equation: ...................................................................................... 64

Heat equation on infinite domain: .................................................................................................... 64

Fourier integral identity: ............................................................................................................... 66

Dirac delta function: ..................................................................................................................... 67

THE WAVE EQUATION ........................................................................................................................... 68

1D: ..................................................................................................................................................... 68

Solution: ........................................................................................................................................ 68

Vibrations in a non-uniform string .................................................................................................... 69

With function og 𝑐 ........................................................................................................................ 70

Spherical geometry and the wave equation: .................................................................................... 72

Let’s use separation of variables: π‘’π‘Ÿ, πœƒ, πœ™, 𝑑 = π‘€π‘Ÿ, πœƒ, πœ™β„Žπ‘‘ ........................................................... 73

Spherically symmetric waves in 3D ....................................................................................................... 77

VECTOR CALCULUS ................................................................................................................................ 78

Functions of many variables: ............................................................................................................ 78

Vector addition: ............................................................................................................................ 78

Scalar product: .............................................................................................................................. 78

Zero vector: ................................................................................................................................... 78

Basis vectors: ................................................................................................................................. 78

Scalar vector product .................................................................................................................... 78

Norm of vector: ................................................................................................................................. 79

Cauchy-Schwartz inequality: ............................................................................................................. 79

Angle between vectors: .................................................................................................................... 79

Projection vector: .............................................................................................................................. 79

Orthogonal vectors: .......................................................................................................................... 79

Area of parallelogram: .......................................................................................................................... 79

Jacobian matri: .................................................................................................................................. 79

Vector product (volume of parallelepiped) ...................................................................................... 80

Limits and continuity ............................................................................................................................. 80

Sequnces of vectors .......................................................................................................................... 80

Limit laws: ......................................................................................................................................... 80

Open and closed sets: ........................................................................................................................... 81

Interior point ..................................................................................................................................... 81

OPEN N-Ball: ...................................................................................................................................... 81

Open set: ........................................................................................................................................... 81

Functions of several variables ............................................................................................................... 81

4

Function limit rules: ...................................................................................................................... 81

Continuous functions: ....................................................................................................................... 82

Partial derivatives ................................................................................................................................. 82

Tangents to curves: ........................................................................................................................... 83

Tangent surfaces: .............................................................................................................................. 83

General product rules of differentiation: ............................................................................................. 83

Chain rule: ............................................................................................................................................. 83

Level sets : ............................................................................................................................................. 83

Gradient is perpendicular to level set: .................................................................................................. 84

Higher partial derivateies: .................................................................................................................... 84

Hessian matrix of 𝑓 at 𝒂: ....................................................................................................................... 84

Taylor polynomials: ............................................................................................................................... 84

Taylor’s theorem of the second order: ................................................................................................. 85

Jacobian matrix: .................................................................................................................................... 85

Differentiable functions ........................................................................................................................ 85

Maxima and minima ............................................................................................................................. 85

Global max min: ............................................................................................................................ 87

Mutltiple integrals ................................................................................................................................. 88

To calculate: ...................................................................................................................................... 88

Fubini’s therorem:................................................................................................................................. 88

Change of variables ............................................................................................................................... 88

Application: polar coordinates π‘₯, 𝑦 = π‘Ÿπ‘π‘œπ‘ πœƒ, π‘Ÿπ‘ π‘–π‘›πœƒ ............................................................................ 89

Triple integrals ...................................................................................................................................... 89

Transformation formula .................................................................................................................... 90

Application: spherical coordinates.................................................................................................... 90

Cylindrical coordinates:..................................................................................................................... 90

Line integrals ......................................................................................................................................... 91

Notation: ........................................................................................................................................... 91

Unit tangent: ..................................................................................................................................... 91

Arc length .......................................................................................................................................... 91

Line integrals of scalar functions ...................................................................................................... 92

Integrals of vector fields ................................................................................................................... 92

Vector fields ...................................................................................................................................... 93

Potential of 𝑓 .................................................................................................................................... 93

Closed vector field: ........................................................................................................................... 94

Curl .................................................................................................................................................... 94

5

Curl in ℝ2: ......................................................................................................................................... 95

Path independence: .......................................................................................................................... 95

Theorem: ........................................................................................................................................... 95

Theorem ............................................................................................................................................ 97

Integral theorems in 2D ........................................................................................................................ 98

Domain and boundary: ..................................................................................................................... 98

Orientation: ....................................................................................................................................... 98

Green’s theorem ............................................................................................................................... 98

Application of green’s theorem: area of domain .......................................................................... 99

Application of green’s theorem: conservative vector fields ......................................................... 99

Stoke’s theorem in ℝ2 in the plane .................................................................................................. 99

circulation:’ ................................................................................................................................... 99

Flux .................................................................................................................................................... 99

Divergence of a function: .................................................................................................................... 100

Triple integrals .................................................................................................................................... 100

Fubini’s theorem for triple integrals: .................................................................................................. 100

Volume: ....................................................................................................................................... 100

Transformation formula in 3D: ....................................................................................................... 101

Eg cylindrical coordinates ............................................................................................................... 101

Eg 2 spherical coordinates: ............................................................................................................. 102

Surface integrals ................................................................................................................................. 103

Definition of surface ....................................................................................................................... 103

Orientation of surfaces and unit normal to surface ....................................................................... 103

6

Unit normal to implicity given surface: ........................................................................................... 104

Special vase of explicit surface: ...................................................................................................... 104

Unit normal to parametric surface ................................................................................................. 104

Calculation of surface integrals: ..................................................................................................... 104

Surface area of domain: .................................................................................................................. 105

Flux across surface: ............................................................................................................................. 105

Flux across graph: ........................................................................................................................... 106

Implicit representation of surfaces ................................................................................................. 106

Integral theorems in 3D: ..................................................................................................................... 106

Simple domain: ............................................................................................................................... 106

Divergence theorem: ...................................................................................................................... 106

Laplace operator: ................................................................................................................................ 107

Product rule: ................................................................................................................................... 107

Green’s first identity ........................................................................................................................... 107

Green’s second identity: ..................................................................................................................... 107

Stokes theorem for surfaces: .............................................................................................................. 107

Application: conservative vector fields in space ............................................................................. 108

7

Ordinary Differential Equations

Revision of first year (From MATH1903): ODE: has an unknown function of one variable and the derivatives of this function

Order= highest derivate

Exponential growth: 𝑑𝑁

𝑑𝑑= π‘˜π‘

𝑁(𝑑) = 𝑁0π‘’π‘˜π‘‘

Logistic equation: 𝑑𝑁

𝑑𝑑= π‘˜π‘(𝑑)(𝑀 βˆ’ 𝑁(𝑑)) (π‘€π‘–π‘‘β„Ž max π‘π‘œπ‘ 𝑀)

First order ODEs

Direction fields: (eg: logistic equation)

π‘’π‘žπ‘’π‘–π‘™π‘–π‘π‘Ÿπ‘–π‘Ž 𝑖𝑓𝑑𝑦

𝑑π‘₯= 𝑓(π‘₯) = 0

Separable differential equations:

Are in the form:

𝑑𝑦(π‘₯)

𝑑π‘₯= 𝑓(π‘₯)

∴ 𝑦 = 𝐹(π‘₯) + 𝐢 (π‘”π‘’π‘›π‘’π‘Ÿπ‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›)

If given particular conditions: eg, (π‘₯1, 𝑦1)

βˆ«π‘¦

𝑦1

𝑑𝑦 = ∫ 𝑓(π‘₯)π‘₯

π‘₯1

𝑑π‘₯

𝑦 = 𝐹(π‘₯) + 𝑦1 βˆ’ 𝐹(π‘₯1)

𝑒𝑔:𝑑𝑦

𝑑π‘₯= ln π‘₯ , π‘Žπ‘›π‘‘ (2,4)𝑖𝑠 π‘œπ‘› π‘‘β„Žπ‘’ π‘”π‘Ÿπ‘Žπ‘β„Ž

8

∫ 𝑑𝑦𝑦

4

Autonomous first order ode 𝑑𝑦

𝑑π‘₯= 𝑔(𝑦)

βˆ΄π‘‘π‘₯

𝑑𝑦=

1

𝑔(𝑦) (π‘Žπ‘ π‘ π‘’π‘šπ‘–π‘›π‘” 𝑔(𝑦) β‰  0)

π‘₯ = ∫1

𝑔(𝑦)𝑑𝑦 (π‘Žπ‘›π‘‘ π‘‘β„Žπ‘’π‘› 𝑔𝑒𝑑 𝑖𝑛 π‘‘π‘’π‘Ÿπ‘šπ‘  π‘œπ‘“ 𝑦(π‘₯) = 𝑓(π‘₯) 𝑖𝑓 π‘π‘œπ‘ π‘ π‘–π‘π‘™π‘’)

Separable ODE: 𝑑𝑦

𝑑π‘₯= 𝑓(π‘₯)𝑔(𝑦)

βˆ«π‘‘π‘¦

𝑔(𝑦)= ∫ 𝑓(π‘₯)𝑑π‘₯

π‘‘β„Žπ‘’π‘› 𝐻(𝑦) = 𝑓(π‘₯) + 𝐢, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝐻(𝑦) =1

𝐺(𝑦)

First order linear differential equations: 𝑑𝑦

𝑑π‘₯= π‘Ž(π‘₯) + 𝑏(π‘₯)𝑦

Change into: 𝑑𝑦

𝑑π‘₯+ 𝑃(π‘₯)𝑦 = 𝑄(π‘₯)

Multiply by an integrating factor: which has property that 𝑑𝐼

𝑑π‘₯= 𝐼(π‘₯)𝑃(π‘₯)

: 𝐼(π‘₯) = π‘’βˆ« 𝑃(π‘₯)𝑑π‘₯

∴𝐼(π‘₯)𝑑𝑦

𝑑π‘₯+ 𝑃(π‘₯)𝑦 𝐼(π‘₯) = 𝑄(π‘₯)𝐼(π‘₯)

βˆ΄π‘‘π‘¦

𝑑π‘₯𝐼(π‘₯) + 𝑦

𝑑𝐼(π‘₯)

𝑑π‘₯= 𝑄(π‘₯)𝐼(π‘₯)

βˆ΄π‘‘

𝑑π‘₯(𝑦𝐼(π‘₯)) = 𝑄(π‘₯)𝐼(π‘₯)

𝑦 =1

𝐼(π‘₯)∫ 𝑄(π‘₯)𝐼(π‘₯)𝑑π‘₯

𝑒𝑔:𝑑𝑦

𝑑π‘₯+

2𝑦

π‘₯=

1

π‘₯𝑒π‘₯2

𝐼(π‘₯) = π‘’βˆ« (

2π‘₯

)𝑑π‘₯= 𝑒2 ln π‘₯ = π‘₯2

∴π‘₯2𝑑𝑦

𝑑π‘₯+ 2π‘₯𝑦 = π‘₯𝑒π‘₯2

𝑑

𝑑π‘₯(π‘₯2𝑦) = π‘₯𝑒π‘₯2

9

π‘₯2𝑦 =1

2𝑒π‘₯2

+ 𝐢

𝑦 =1

2π‘₯2𝑒π‘₯2

+𝐢

π‘₯2

Classifications of ODEs:

- Separable

- Linear

- Separable and linear

- Neither

If neither separable and linear:

Multiply by a transformation variable:

𝑒𝑔 𝑦𝑑𝑦

𝑑π‘₯= π‘’βˆ’π‘₯ βˆ’ 𝑦2 (π‘›π‘’π‘–π‘‘β„Žπ‘’π‘Ÿ π‘ π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘π‘™π‘’ π‘œπ‘Ÿ π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ)

𝑙𝑒𝑑 𝑧 = 𝑦2 ∴ 𝑑𝑧 = 2𝑦 𝑑𝑦

∴ 𝑦(

𝑑𝑧2𝑦)

𝑑π‘₯= π‘’βˆ’π‘₯ βˆ’ 𝑧

1

2

𝑑𝑧

𝑑π‘₯= π‘’βˆ’π‘₯ βˆ’ 𝑧

𝑑𝑧

𝑑π‘₯+ 2𝑧 = 2π‘’βˆ’π‘₯

𝑑

𝑑π‘₯(𝑒2π‘₯𝑧) = 2∫ 𝑒π‘₯ 𝑑π‘₯

𝑒2π‘₯𝑧 = 2𝑒π‘₯ + 𝐢

𝑧 = 2π‘’βˆ’π‘₯ + πΆπ‘’βˆ’2π‘₯

∴ 𝑦 = Β±βˆšπ‘’βˆ’π‘₯(2 + πΆπ‘’βˆ’π‘₯)

π‘œπ‘‘β„Žπ‘’π‘Ÿ π‘ π‘’π‘π‘ π‘‘π‘–π‘‘π‘’π‘‘π‘–π‘œπ‘›π‘’π‘ : 𝑣 =𝑦

π‘₯ π‘œπ‘Ÿ 𝑀 = π‘₯ + 𝑦

Second order ODEs

Form π‘Žπ‘¦β€²β€² + 𝑏𝑦′ + 𝑐𝑦 = 𝑑

Homogeneous:

𝑃(π‘₯)𝑦′′ + 𝑄(π‘₯)𝑦′ + 𝑅(π‘₯)𝑦 = 0

2nd order linear homologous equations with constant coefficients

π‘Žπ‘¦β€²β€² + 𝑏𝑦′ + 𝑐𝑦 = 0

π’š = 𝒆𝒓𝒙

Eg:

10

𝑦′′ βˆ’ 𝑦′ βˆ’ 6𝑦 = 0

∴ π‘Žπ‘’π‘₯π‘–π‘™π‘™π‘Žπ‘Ÿπ‘¦ π‘’π‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘›:

π‘Ÿ2 βˆ’ π‘Ÿ βˆ’ 6 = (π‘Ÿ βˆ’ 3)(π‘Ÿ + 2) = 0 π‘Ÿ = βˆ’3, 2

∴ 𝑦 = π΄π‘’βˆ’2π‘₯ + 𝐡𝑒2π‘₯

If auxiliary equation has 2 real distinct roots:

All fine

- If 2 complex roots:

- Eg: 𝑦′′ + 16𝑦 = 0

∴ π‘Ÿ2 + 16 = 0 π‘Ÿ = Β±4𝑖

𝑦 = 𝐴𝑒4𝑖π‘₯ + π΅π‘’βˆ’4𝑖π‘₯

𝑏𝑒𝑑: 𝑒𝑠𝑖𝑛𝑔 π‘‘β„Žπ‘Žπ‘‘ π‘’π‘–πœƒ = π‘π‘–π‘ πœƒ ∴

∴ 𝑦 = π΄π‘π‘œπ‘ (4π‘₯) + 𝐡𝑠𝑖𝑛(4π‘₯)

Eg 2: 𝑦′′ βˆ’ 2𝑦′ + 5𝑦 = 0

∴ π‘Ÿ2 βˆ’ 2π‘Ÿ + 5 = 0

π‘Ÿ = 1 Β± 2𝑖

∴ 𝑦(π‘₯) = 𝑒π‘₯(π΄π‘π‘œπ‘ (2π‘₯) + 𝐡𝑠𝑖𝑛(2π‘₯))

1 root:

𝑒𝑔: 𝑦′′ βˆ’ 6𝑦′ + 9𝑦 = 0

∴ π‘Ÿ2 βˆ’ 6π‘Ÿ + 9 = 0 (π‘Ÿ βˆ’ 3)2 = 0 π‘Ÿ = 3

∴ 𝑦(π‘₯) = 𝐴𝑒3π‘₯ + 𝐡π‘₯𝑒3π‘₯

2nd order linear non-homogenous differential equations with constant coefficients

Are: π‘Žπ‘¦β€²β€² + 𝑏𝑦′ + 𝑐𝑦 = 𝐺(π‘₯)

Step 1: find homologous solution of

π‘Žπ‘¦β€²β€² + 𝑏𝑦′ + 𝑐𝑦 = 0, 𝑒𝑠𝑖𝑛𝑔 𝑦 = π‘’π‘Ÿπ‘₯ π‘šπ‘’π‘‘β„Žπ‘œπ‘‘ π‘Žπ‘π‘œπ‘£π‘’

Step 2: (particular solution)

- If polynomial 𝐺(π‘₯) = 𝑔0 + β‹― + 𝑔𝑛π‘₯𝑛: use a general polynomial of same degree

- If exponential G(x) = 𝑒𝛼π‘₯: use an expoenential of form

𝐾𝑒𝛼π‘₯ (π‘€β„Žπ‘’π‘Ÿπ‘’ 𝛼 𝑖𝑠 π‘ π‘Žπ‘šπ‘’ π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘œπ‘“ π‘₯ 𝑖𝑛 𝑒π‘₯π‘π‘œπ‘’π‘›π‘‘π‘›π‘‘π‘–π‘Žπ‘™), if alpha was the solution to a

homologous solution, use 𝐾π‘₯𝛼π‘₯

- If G(x) = cos π‘œπ‘Ÿ sin πœ”π‘‘ is trigonometrix (sin or cos): use 𝑦 = 𝐴𝑠𝑖𝑛(πœ”π‘‘) + 𝐡𝑠𝑖𝑛(πœ”π‘‘)

11

POLYNOMIAL:

𝑦′′ + 2𝑦′ βˆ’ 3𝑦 = π‘₯2

π»π‘‚π‘€π‘‚πΏπ‘‚πΊπ‘‚π‘ˆπ‘† π‘†π‘‚πΏπ‘ˆπ‘‡πΌπ‘‚π‘: (π‘Žπ‘π‘œπ‘£π‘’ π‘šπ‘’π‘‘β„Žπ‘œπ‘‘): π‘¦β„Ž = 𝐴𝑒π‘₯ + π΅π‘’βˆ’3π‘₯

π‘ƒπ΄π‘…π‘‡πΌπΆπ‘ˆπΏπ΄π‘…: 𝑦𝑝 = 𝐴π‘₯2 + 𝐡π‘₯ + 𝐢

∴ 2π‘Ž + 2(2𝐴π‘₯ + 𝐡) βˆ’ 3(𝐴π‘₯2 + 𝐡π‘₯ + 𝐢) = π‘₯2

∴ βˆ’3𝐴π‘₯2 + (4𝐴 βˆ’ 3𝐡)π‘₯ + (2𝐴 + 2𝐡 βˆ’ 3𝐢) = π‘₯2

𝐴 = βˆ’1

3; 𝐡 = βˆ’

4

9; 𝐢 = βˆ’

14

27

∴ 𝑦 = π‘¦β„Ž + 𝑦𝑝

𝑦(π‘₯) = βˆ’1

3π‘₯2 βˆ’

4

9π‘₯ βˆ’

14

27+ 𝐴𝑒π‘₯ + π΅π‘’βˆ’3π‘₯

EXPONENTIAL:

𝑦′′ + 4𝑦 = 𝑒3𝑑

∴ π‘Ÿ2 + 4 = 0; π‘Ÿ = Β±2𝑖 ∴ π‘¦β„Ž = 𝐴𝑠𝑖𝑛(2𝑑) + π΅π‘π‘œπ‘ (2𝑑)

𝑦𝑝 = 𝐾𝑒3𝑑

∴ 𝑒3𝑑(9𝐾 + 4π‘˜) = 𝑒3𝑑; 𝐾 =1

13

∴ 𝑦(𝑑) =1

13𝑒3𝑑 + π΄π‘π‘œπ‘ (2𝑑) + 𝐡𝑠𝑖𝑛(2𝑑)

EXPONENTIAL 2:

𝑦′′ βˆ’ 5𝑦′ + 6𝑦 = 𝑒2π‘₯

β„Žπ‘œπ‘šπ‘œπ‘™π‘œπ‘”π‘œπ‘’π‘ : π‘Ÿ2 βˆ’ 5π‘Ÿ + 6 = (π‘Ÿ βˆ’ 3)(π‘Ÿ βˆ’ 2) = 0

π‘Ÿ = 2; 3

∴ π‘¦β„Ž = 𝐴𝑒2π‘₯ + 𝐡𝑒3π‘₯

𝑁𝑂𝑇𝐸: 𝑀𝑒 π‘π‘Žπ‘›π‘›π‘œπ‘‘ 𝑒𝑠𝑒 𝑦𝑝 = 𝐾𝑒2π‘₯π‘›π‘œπ‘€, π‘Žπ‘  𝑖𝑑 𝑖𝑠 𝑖𝑛𝑐𝑙𝑒𝑑𝑒𝑑 𝑖𝑛 π‘‘β„Žπ‘’ β„Žπ‘œπ‘šπ‘œπ‘™π‘œπ‘”π‘œπ‘’π‘ , 𝑀𝑒 𝑛𝑒𝑒𝑑 π‘‘π‘œ 𝑒𝑠𝑒

𝑦𝑝 = 𝐾π‘₯𝑒2π‘˜

𝑦′𝑝 = 𝐾(𝑒2π‘₯ + 2π‘₯𝑒2π‘₯); 𝑦𝑝′′ = 𝐾(𝑒2π‘₯ + 2(𝑒2π‘₯ + 2π‘₯𝑒2π‘₯)) = 𝐾(3𝑒2π‘₯ + 4π‘₯𝑒2π‘₯)

∴ 𝐾(3𝑒2π‘₯ + 4π‘₯𝑒2π‘₯) βˆ’ 5𝐾(𝑒2π‘₯ + 2π‘₯𝑒2π‘₯) + 6𝐾π‘₯𝑒3π‘₯ = 𝑒2π‘₯

3𝐾 βˆ’ 5𝐾 = 1; 𝐾 = βˆ’1

∴ 𝑦(π‘₯) = 𝐴𝑒2π‘₯ + 𝐡𝑒3π‘₯ βˆ’ π‘₯𝑒2π‘₯

If there is only 1 root of homologous: use 𝑦𝑝 = 𝐾π‘₯2𝑒𝛼π‘₯

TRIGONOMETRIC:

π‘₯β€²β€²(𝑑) + 9π‘₯(𝑑) = cos(𝛼𝑑)

π‘₯𝑝(𝑑) = π΄π‘π‘œπ‘ (𝛼𝑑) + 𝐡𝑠𝑖𝑛(𝛼𝑑)

∴ π‘₯β€²β€² + 9π‘₯ = βˆ’(𝐴𝛼2 cos(𝛼𝑑) + 𝐡𝛼2 sin(𝛼𝑑)) + 9(π΄π‘π‘œπ‘ (𝛼𝑑) + 𝐡𝑠𝑖𝑛(𝛼𝑑)) βˆ’ cos 𝛼𝑑

∴ 𝐴 =1

9 βˆ’ 𝛼2; 𝐡 = 0

∴ π‘₯ = π΄π‘π‘œπ‘ (3𝑑) + 𝐡𝑠𝑖𝑛(3𝑑 +1

9 βˆ’ 𝛼2cos(𝛼𝑑)

12

First order systems: 𝑑π‘₯

𝑑𝑑= 𝑓(π‘₯, 𝑦);

𝑑𝑦

𝑑𝑑= 𝑔(π‘₯, 𝑦) (𝑒𝑔 π‘π‘Ÿπ‘’π‘‘π‘Žπ‘‘π‘œπ‘Ÿ π‘π‘Ÿπ‘’π‘¦ π‘ π‘¦π‘ π‘‘π‘’π‘š)

With constant coefficients: 𝑑π‘₯

𝑑𝑑= π‘Žπ‘₯ + 𝑏𝑦

𝑑𝑦

𝑑𝑑= 𝑐π‘₯ + 𝑏𝑦

Step 1: differentiate 1 with respect to t

Use simultaneous equations to substitute in π‘₯β€²π‘œπ‘Ÿ 𝑦′ and π‘₯ π‘œπ‘Ÿ 𝑦

Integrate

differentiate 1st solution

substitute

Eg: π‘₯β€²(𝑑) = 3π‘₯ + 𝑦; 𝑦′(𝑑) = 2π‘₯ βˆ’ 4𝑦

∴ π‘₯β€²β€²(𝑑) = 3π‘₯β€²(𝑑) + 𝑦′(𝑑); = 3π‘₯β€² + 2π‘₯ βˆ’ 4𝑦

∴ π‘₯β€²β€²(𝑑) βˆ’ 3π‘₯β€²(𝑑) βˆ’ 2π‘₯(𝑑) = βˆ’4𝑦

∴ π‘₯β€²β€²(𝑑) βˆ’ 3π‘₯β€² βˆ’ 2π‘₯ = βˆ’4(π‘₯β€² βˆ’ 3π‘₯)

π‘₯β€²β€²(𝑑) + π‘₯β€²(𝑑) + 10π‘₯ = 0

∴ π‘Ÿ2 + π‘Ÿ + 10 = 0

π‘Ÿ = 𝑒𝑐𝑑

∴ π‘₯ = π΄π‘’π‘Ÿ1𝑑 + π΅π‘’π‘Ÿ2𝑑

∴ π‘₯β€² = π΄π‘Ÿ1π‘’π‘Ÿ1𝑑 + π΅π‘Ÿ2π‘’π‘Ÿ2𝑑 = 3π΄π‘’π‘Ÿ1𝑑 + 3π΅π‘’π‘Ÿ2𝑑 + 𝑦

𝑦 = 𝐴(π‘Ÿ1 βˆ’ 3)π‘’π‘Ÿ1𝑑 + 𝐡(π‘Ÿ2 βˆ’ 3)π‘’π‘Ÿ2𝑑

∴ [π‘₯(𝑑)

𝑦(𝑑)] =

13

Second Year ODEs:

First order linear differentiable equation: 𝑑𝑦

𝑑π‘₯+ 𝑃(π‘₯)𝑦 = 𝑄(π‘₯)

Integrating factor:

𝐼(π‘₯) = π‘’βˆ« 𝑃(π‘₯)𝑑π‘₯:

Eg:

𝑑𝑦

𝑑π‘₯+

2

π‘₯𝑦 =

1

π‘₯𝑒π‘₯2

∴ 𝐼(π‘₯) = π‘’βˆ« (

2π‘₯

)𝑑π‘₯ = 𝑒2 ln π‘₯ = π‘₯2

∴ π‘₯2𝑑𝑦

𝑑π‘₯+ 2π‘₯𝑦 = π‘₯𝑒π‘₯2

𝑑

𝑑π‘₯(π‘₯2𝑦) = π‘₯𝑒π‘₯2

∴ π‘₯2𝑦 =1

2𝑒π‘₯2

+ 𝐢

𝑦(π‘₯) =1

π‘₯2(

1

2𝑒π‘₯2

+ 𝐢)

2nd order constant coefficient ODE’s 𝑑2𝑦

𝑑π‘₯2+ π‘Ž

𝑑𝑦

𝑑π‘₯+ 𝑏𝑦 = 0 (β„Žπ‘œπ‘šπ‘œπ‘”π‘’π‘›π‘’π‘œπ‘’π‘ )

π‘‘π‘Ÿπ‘¦: 𝑦 = πΆπ‘’πœ†π‘₯

∴ 𝐢𝑒π‘₯(πœ†2 + π‘Žπœ† + 𝑏) = 0

∴ πœ† = πœ†1, πœ†2

General solution depends on lambda:

Real and distinct lambda:

πœ†1,2 ∈ ℝ (π‘›π‘œπ‘‘ π‘’π‘žπ‘’π‘Žπ‘™)

𝑦 = π΄π‘’πœ†1π‘₯ + π΅π‘’πœ†2π‘₯

Real non-distinct lambda

𝑦 = (𝐴 + 𝐡π‘₯)π‘’πœ†2π‘₯

Complex lambda

πœ†1,2 = 𝛼 Β± 𝑖𝛽

𝑦 = 𝑒𝛼π‘₯(𝐴 cos(𝛽π‘₯) + 𝐡 sin(𝛽π‘₯))

(𝐴, 𝐡 ∈ β„‚)

14

Non-Homogeneous case:

β€œMethod of undetermined coefficients”: (guesswork)

𝑑2𝑦

𝑑π‘₯2+ 3

𝑑𝑦

𝑑π‘₯+ 2𝑦 = 6π‘₯2 + 8:

Homogeneous case:

πœ†1 = βˆ’1; πœ†2 = βˆ’2:

π‘¦β„Ž = π΄π‘’βˆ’π‘₯ + π΅π‘’βˆ’2π‘₯

Particular case:

π‘‘π‘Ÿπ‘¦ 𝑦 = 𝐴π‘₯2 + 𝐡π‘₯ + 𝐢

∴ (2𝐴) + 3(2𝐴π‘₯ + 𝐡) + +2(𝐴π‘₯2 + 𝐡𝑋 + 𝐢) = 6π‘₯2 + 8

∴ 𝐴 = 3; 𝐡 = βˆ’9; 𝐢 =29

2

General solution:

𝑦 = π΄π‘’βˆ’π‘₯ + π΅π‘’βˆ’2π‘₯ + 3π‘₯2 βˆ’ 9π‘₯ +29

2

Principle of superposition:

Constant:

𝑑2𝑦

𝑑π‘₯2+ 𝐴(π‘₯)

𝑑𝑦

𝑑π‘₯+ 𝐡(π‘₯)𝑦 = 0

If 𝑦1, 𝑦2 π‘Žπ‘Ÿπ‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘ 

𝑦 = 𝐢1𝑦1 + 𝐢2𝑦2

Is also a solution

Function:

𝑑2𝑦

𝑑π‘₯2+ 𝐴(π‘₯)

𝑑𝑦

𝑑π‘₯+ 𝐡(π‘₯)𝑦 = 𝐢(π‘₯)

If 𝑦1 satisfies homogeneous equation (from above), and 𝑦2 satisfies inhomogenous: then

Consider:

οΏ½Μ‚οΏ½ = 𝐢𝑦1 + 𝑦2

∴ (𝐢𝑑2𝑦1

𝑑π‘₯2+

𝑑2𝑦2

𝑑π‘₯2 ) + 𝐴(π‘₯) (𝐢𝑑𝑦1

𝑑π‘₯+

𝑑𝑦2

𝑑π‘₯) + 𝐡(π‘₯)(𝐢𝑦1 + 𝑦2) = 0

∴ 𝐢 (𝑑2𝑦1

𝑑π‘₯2+

𝐴(π‘₯)𝑑𝑦1

𝑑π‘₯+ 𝐡(π‘₯)𝑦1) +

𝑑2𝑦2

𝑑π‘₯2+ 𝐴(π‘₯)

𝑑𝑦2

𝑑π‘₯+ 𝐡(π‘₯)𝑦2 = 𝐢(π‘₯)

Guessing functions: - If polynomial 𝐺(π‘₯) = 𝑔0 + β‹― + 𝑔𝑛π‘₯𝑛: use a general polynomial of same degree

15

- If exponential 𝐺(π‘₯) = 𝑒𝛼π‘₯: use an expoenential of form

𝐾𝑒𝛼π‘₯ (π‘€β„Žπ‘’π‘Ÿπ‘’ 𝛼 𝑖𝑠 π‘ π‘Žπ‘šπ‘’ π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘œπ‘“ π‘₯ 𝑖𝑛 𝑒π‘₯π‘π‘œπ‘’π‘›π‘‘π‘›π‘‘π‘–π‘Žπ‘™), if alpha was the solution to a

homologous solution, use 𝐾π‘₯𝛼π‘₯

- If 𝐺(π‘₯) = π‘π‘œπ‘  π‘œπ‘Ÿ 𝑠𝑖𝑛 πœ”π‘‘ is trigonometrix (sin or cos): use 𝑦 = 𝐴𝑠𝑖𝑛(πœ”π‘‘) + 𝐡𝑠𝑖𝑛(πœ”π‘‘)

Variation or Parameters: - Takes the β€˜guesswork’ out, but it takes a while.

For:

𝑑2𝑦

𝑑π‘₯2+ 𝐴(π‘₯)

𝑑𝑦

𝑑π‘₯+ 𝐡(π‘₯) 𝑦 = 𝑓(π‘₯)

If 𝑦1 and 𝑦2 are satisfy the homogenous ODE:

Eg:

𝑦 = 𝐢1(π‘₯)𝑦1(π‘₯) + 𝐢2(π‘₯)𝑦2(π‘₯)

Deriving and simplifying by subbing into 𝑑2𝑦

𝑑π‘₯2 + 𝐴(π‘₯)𝑑𝑦

𝑑π‘₯+ 𝐡(π‘₯) 𝑦 = 𝑓(π‘₯)

We get: 𝐢1′𝑦1

β€² + 𝐢2β€² 𝑦2

β€² = 𝑓(π‘₯)

Try:

𝐢1′𝑦1 + 𝐢2

β€² 𝑦2 = 0

∴ 𝑀𝑒 𝑛𝑒𝑒𝑑 π‘‘π‘œ π‘ π‘œπ‘™π‘£π‘’ π‘“π‘œπ‘Ÿ: 𝐢1′𝑦1 + 𝐢2

β€² 𝑦2 = 0

And

Functions needed to calculate

∴ 𝐢1β€² = βˆ’

𝑓(π‘₯)𝑦2

𝑦1𝑦2β€² βˆ’ 𝑦2𝑦1

β€² π‘Žπ‘›π‘‘ 𝐢2β€² =

𝑓(π‘₯)𝑦1

𝑦1𝑦2β€² βˆ’ 𝑦2𝑦1

β€²

𝑦1𝑦2β€² βˆ’ 𝑦2𝑦1

β€² 𝑖𝑠 π‘π‘Žπ‘™π‘™π‘’π‘‘ π‘‘β„Žπ‘’ π‘Šπ‘Ÿπ‘œπ‘›π‘ π‘˜π‘’π‘–π‘›: π‘Š(π‘₯)

∴ 𝐢1β€² = βˆ’

𝑓(π‘₯)𝑦1

π‘Š(π‘₯) ; 𝐢2

β€² =𝑓(π‘₯)𝑦1

π‘Š(π‘₯)

Example:

Eg:

𝑑2𝑦

𝑑π‘₯2+ 3

𝑑𝑦

𝑑π‘₯+ 2𝑦 = 6π‘₯2 + 8:

Homogenous: πœ†2 + 3πœ† + 2 = 0:

∴ πœ† = βˆ’1, βˆ’2

∴ 𝑦1 = π‘’βˆ’π‘₯; 𝑦2 = π‘’βˆ’2π‘₯

∴ π‘Š(π‘₯) = 𝑦1𝑦2β€² βˆ’ 𝑦2𝑦1

β€² = βˆ’π‘’βˆ’3π‘₯

16

∴ 𝐢1β€² =

(6π‘₯2 + 8)π‘’βˆ’2π‘₯

βˆ’π‘’βˆ’3π‘₯; 𝐢2

β€² = βˆ’(6π‘₯2 + 8)π‘’βˆ’π‘₯

βˆ’π‘’βˆ’3π‘₯

…

∴ 𝑦 = 3π‘₯2 βˆ’ 9π‘₯ +29

2+ π΄π‘’βˆ’π‘₯ + π΅π‘’βˆ’2π‘₯

Variation of parameters works for all:

𝑑(𝑛)𝑦

𝑑π‘₯(𝑛)+ βˆ‘ 𝐴𝑖(π‘₯)

π‘›βˆ’1

𝑖=0

𝑑(𝑖)𝑦

𝑑π‘₯(𝑖)= 𝑓(π‘₯)

Wronksian and fundamental solution For any

𝑦′′ + 𝑝(𝑑)𝑦′ + π‘ž(𝑑)𝑦 = 𝑔(𝑑)

Then:

(𝑦1(𝑑0) 𝑦2(𝑑0)

𝑦1β€² (𝑑0) 𝑦2

β€² (𝑑0)) (

𝐢1

𝐢2) = (

𝑦0

𝑦0)

Which has solutions if: det ((𝑦1(𝑑0) 𝑦2(𝑑0)

𝑦1β€² (𝑑0) 𝑦2

β€² (𝑑0))) β‰  0

Notes on Wronksian function: - If π‘Š(π‘₯) β‰  0, then 𝑦1 π‘Žπ‘›π‘‘ 𝑦2 are linearly independent

- If 𝑦1, 𝑦2 are linearly dependent, then π‘Š(π‘₯) = 0

- BUT: this DOES NOT mean that if 𝑦1 π‘Žπ‘›π‘‘ 𝑦2 are linearly independent, then π‘Š(π‘₯) β‰  0

necessarily happens

Reduction of order: Looking to solve variable coefficient linear equations of the form:

𝑑2𝑦

𝑑π‘₯2+ π‘Ž(π‘₯)

𝑑𝑦

𝑑π‘₯+ 𝑏(π‘₯)𝑦 = {

0 (β„Žπ‘œπ‘šπ‘œπ‘”π‘’π‘›π‘’π‘œπ‘’π‘ )

𝑓(π‘₯) (π‘–π‘›β„Žπ‘œπ‘šπ‘œπ‘”π‘’π‘›π‘’π‘œπ‘’π‘ )

Now that we have variation of parameters, we can just look at the homogeneous case, and then

apply variation of parameters to find the inhomogeneous

EG: if the function 𝑒(π‘₯) is a solution to 𝑑2𝑦

𝑑π‘₯2 + π‘Ž(π‘₯)𝑑𝑦

𝑑π‘₯+ 𝑏(π‘₯)𝑦 = 0; try the function

𝑦 = 𝑒(π‘₯)𝑣(π‘₯)

∴ 𝑦′ = 𝑒𝑣′ + 𝑣′𝑒

𝑦′′ = 𝑒𝑣′′ + 2𝑒′𝑣′ + 𝑣𝑒′′

17

∴ (𝑒𝑣′′ + 2𝑒′𝑣′ + 𝑣𝑒′′) + π‘Ž(π‘₯)(𝑒𝑣′ + 𝑣′𝑒) + 𝑏(π‘₯)(𝑒𝑣) = 0

𝑣(𝑒′′ + π‘Žπ‘’β€² + 𝑏𝑒) + 𝑒𝑣′′ + (2𝑒′ + π‘Žπ‘’)𝑣′ = 0

π‘Žπ‘  𝑒 π‘ π‘œπ‘™π‘£π‘’π‘  π‘‘β„Žπ‘’ 𝑂𝐷𝐸: 𝑒′′ + π‘Žπ‘’β€² + 𝑏𝑒 = 0 ∴ π‘‘β„Žπ‘–π‘  π‘ π‘–π‘šπ‘π‘™π‘–π‘“π‘–π‘’π‘  π‘‘π‘œ:

βˆ΄π‘£β€²β€²

𝑣′= βˆ’ (π‘Ž +

2𝑒′

𝑒)

Then integrate: exponentiate ect

Eg: reduction of order

solve (1 + π‘₯)𝑦′′ + π‘₯𝑦′ βˆ’ 𝑦 = 0; given 𝑦 = π‘₯ is a solution:

π‘‡π‘Ÿπ‘¦ 𝑦 = π‘₯𝑣(π‘₯)

∴ 𝑦′ = π‘₯𝑣′ + 𝑣

𝑦′′ = π‘₯𝑣′′ + 2𝑣′

∴ (1 + π‘₯)(π‘₯𝑣′′ + 2𝑣′) + π‘₯(π‘₯𝑣′ + 𝑣) βˆ’ π‘₯𝑣 = 𝑣′′(π‘₯ + π‘₯2) + 𝑣′(2 + 2π‘₯ + π‘₯2) = 0

𝑣′′

𝑣′= βˆ’ (

π‘₯2 + 2π‘₯ + 2

π‘₯2 + π‘₯) = βˆ’ (1 +

π‘₯ + 2

π‘₯2 + π‘₯) = (βˆ’1 βˆ’

2

π‘₯+

1

1 + π‘₯)

∴ ln 𝑣′ = βˆ’π‘₯ βˆ’ 2 ln π‘₯ + ln(1 + π‘₯) + οΏ½Μ‚οΏ½

= ln (𝐢̅(1 + π‘₯)π‘’βˆ’π‘₯

π‘₯2 )

𝑣′ =𝐢̅(1 + π‘₯)π‘’βˆ’π‘₯

π‘₯2

∴ 𝑣 = ∫ 𝐢̅𝑑

𝑑π‘₯(

π‘’βˆ’π‘₯

π‘₯)

𝑣 =πΆπ‘’βˆ’π‘₯

π‘₯+ 𝐷

∴ πΊπ‘’π‘›π‘’π‘Ÿπ‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›: 𝑦 = π‘₯𝑣 = πΆπ‘’βˆ’π‘₯ + 𝐷π‘₯

Euler-Cauchy Equations: Are of the form:

βˆ‘ π‘Žπ‘π‘₯𝑝𝑑(𝑝)𝑦

𝑑π‘₯(𝑝)

𝑛

𝑝=0

= {0

𝑓(π‘₯)

Most commonly:

π‘₯2𝑑2𝑦

𝑑π‘₯2+ π‘Žπ‘₯

𝑑𝑦

𝑑π‘₯+ 𝑏𝑦 = 0

(can solve = 𝑓(π‘₯) with variation of parameters)

Try:

𝑦 = π‘˜π‘₯πœ†

∴ π‘₯2(π‘˜πœ†(πœ† βˆ’ 1)π‘₯πœ†βˆ’2) + π‘Žπ‘₯(πœ†π‘˜π‘₯πœ†βˆ’1) + 𝑏(π‘˜π‘₯πœ†) = 0

π΄π‘ π‘ π‘’π‘šπ‘–π‘›π‘” 𝑙 β‰  0; π‘₯ β‰  0 (π‘‘π‘Ÿπ‘–π‘£π‘–π‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›)

πœ†(πœ† βˆ’ 1) + π‘Žπœ† + 𝑏 = πœ†2 + (π‘Ž βˆ’ 1)πœ† + 𝑏 = 0

18

∴ πœ†1,2 =(1 βˆ’ π‘Ž Β± √(π‘Ž βˆ’ 1)2 βˆ’ 4𝑏)

2

Real, distinct lambda:

If πœ†1, πœ†2 𝑑𝑖𝑠𝑑𝑖𝑛𝑐𝑑 𝑖𝑛 ℝ:

𝑦 = 𝐴π‘₯πœ†1 + 𝐡π‘₯πœ†2

Distinct, complex lambda:

πœ†1 β‰  πœ†2 ∈ ℝ

∴ πœ† = 𝛼 Β± 𝑖𝛽

∴ 𝑦 = 𝐴π‘₯𝛼+𝑖𝛽 + 𝐡π‘₯π›Όβˆ’π‘–π›½ = π‘₯𝛼 (𝐴(𝑒ln π‘₯)𝑖𝛽

+ 𝐡(𝑒ln π‘₯)βˆ’π‘–π›½

)

𝑦 = π‘₯𝛼(𝐴 cos(ln 𝛽π‘₯) + 𝐡 sin(ln 𝛽π‘₯))

(where 𝐴, 𝐡 ∈ β„‚)

Equal roots:

If πœ†1 = πœ†2 = πœ†

𝑦 = 𝐴π‘₯πœ† + 𝐡π‘₯πœ† ln π‘₯

Example of E-C equation:

Solve π‘₯2 𝑑2𝑦

𝑑π‘₯2 βˆ’ 5π‘₯𝑑𝑦

𝑑π‘₯+ 10 𝑦 = 0

π‘‡π‘Ÿπ‘¦ 𝑦 = π‘˜π‘₯πœ†

∴ πœ†(πœ† βˆ’ 1) βˆ’ 5πœ† + 10 = πœ†2 βˆ’ 6πœ† + 10 = 0

∴ πœ† =6 Β± √36 βˆ’ 40

2= 3 Β± 𝑖

∴ π‘†π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› 𝑖𝑠: 𝑦 = π‘₯3(𝐴 cos(ln π‘₯) + 𝐡 sin(ln π‘₯))

Series Solutions of ODE’s: Uses the Tayloer series:

𝑦 = βˆ‘ 𝑐𝑛π‘₯𝑛

∞

𝑛=0

(π‘‡π‘Žπ‘¦π‘™π‘œπ‘Ÿ π‘†π‘’π‘Ÿπ‘–π‘’π‘  π‘Žπ‘π‘œπ‘’π‘‘ π‘œπ‘Ÿπ‘–π‘”π‘–π‘›, π‘ π‘œπ‘šπ‘’π‘‘π‘–π‘šπ‘’π‘  π‘ π‘œπ‘šπ‘’π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑒𝑙𝑠𝑒)

Techicality: If the series converges uniformly, the series can be differentiated term by term. (This will be

assumed in this course).

Eg:

19

Find the general solution of:

𝑦′′ + π‘₯𝑦′ + 𝑦 = 0:

Let:

𝑦 = βˆ‘ 𝑐𝑛π‘₯𝑛

∞

𝑛=0

𝑦′ = βˆ‘ 𝑛 𝑐𝑛π‘₯π‘›βˆ’1

∞

𝑛=0

= βˆ‘ 𝑛 𝑐𝑛π‘₯π‘›βˆ’1

∞

𝑛=1

𝑦′′ = βˆ‘ 𝑛(𝑛 βˆ’ 1)𝑐𝑛π‘₯π‘›βˆ’2

∞

𝑛=0

= βˆ‘ 𝑛(𝑛 βˆ’ 1)𝑐𝑛π‘₯π‘›βˆ’2

∞

𝑛=2

∴ βˆ‘ 𝑛(𝑛 βˆ’ 1)𝑐𝑛π‘₯π‘›βˆ’2

∞

𝑛=2

+ π‘₯ βˆ‘ 𝑛 𝑐𝑛π‘₯π‘›βˆ’1

∞

𝑛=1

+ βˆ‘ 𝑐𝑛π‘₯𝑛

∞

𝑛=0

= 0

Shifting indicies, so we can equate powers of π‘₯:

∴ βˆ‘(𝑛 + 2)(𝑛 + 1)𝑐𝑛+2π‘₯𝑛

∞

𝑛=0

+ βˆ‘ 𝑛 𝑐𝑛π‘₯π‘›βˆ’1

∞

𝑛=1

+ βˆ‘ 𝑐𝑛π‘₯𝑛

∞

𝑛=0

= 0

β†’ 2𝑐2 + 𝑐0 + βˆ‘((𝑛 + 2)(𝑛 + 1)𝑐𝑛+2 + (𝑛 + 1)𝑐𝑛)π‘₯𝑛

∞

𝑛=1

= 0

(π‘‘β„Žπ‘’ 2𝑐2 π‘Žπ‘›π‘‘ 𝑐0 π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘‘π‘’π‘Ÿπ‘šπ‘  π‘“π‘Ÿπ‘œπ‘š π‘‘β„Žπ‘’ π‘ π‘’π‘šβ€²π‘  π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘Žπ‘‘ 𝑛 = 0)

∴ π‘Žπ‘  π‘’π‘Žπ‘β„Ž π‘π‘œπ‘€π‘’π‘Ÿ π‘œπ‘“ π‘₯ π‘šπ‘’π‘ π‘‘ = 0:

2𝑐2 + 𝑐0 = 0 ⟹ 𝑐2 = βˆ’π‘0

2

π‘Žπ‘›π‘‘ πΆπ‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘₯𝑛 = 0:

𝑐𝑛+2 = βˆ’(𝑛 + 1)𝑐𝑛

(𝑛 + 2)(𝑛 + 1)= βˆ’

𝑐𝑛

𝑛 + 2

∴ 𝑐0 π‘Žπ‘›π‘‘ 𝑐1 π‘Žπ‘Ÿπ‘’ π‘Žπ‘Ÿπ‘π‘–π‘‘π‘Ÿπ‘Žπ‘Ÿπ‘¦; π‘ π‘œ π‘œπ‘‘π‘‘ 𝑑𝑒𝑝𝑒𝑛𝑑 π‘œπ‘› 𝑐1, 𝑒𝑣𝑒𝑛 π‘œπ‘› 𝑐0

∴ 𝑦 = βˆ‘ 𝑐𝑛π‘₯𝑛

∞

𝑛=0

= 𝑐0 + 𝑐1π‘₯ + 𝑐2π‘₯2 + β‹―

𝑐2 = βˆ’π‘0

2; 𝑐4 = βˆ’

𝑐2

4=

𝑐0

8…

𝑐3 = βˆ’π‘1

3; 𝑐5 = βˆ’

𝑐3

5=

𝑐1

15…

𝑦(0) = 𝑐0; 𝑦′(0) = 𝑐1

Hence:

𝑦 = 𝑐0 (1 βˆ’π‘₯2

2+

1

8π‘₯4 βˆ’ β‹― ) + 𝑐1 (π‘₯ βˆ’

1

3π‘₯3 + β‹― )

20

= 𝑦(0) (1 βˆ’π‘₯2

2+

1

8π‘₯4 βˆ’ β‹― ) + 𝑦′(0) (π‘₯ βˆ’

1

3π‘₯3 + β‹― )

π‘›π‘œπ‘‘π‘’: (1 βˆ’π‘₯2

2+

1

8π‘₯4 βˆ’ β‹― ) = π‘’βˆ’

π‘₯2

2

Now we use reduction of order to find what (π‘₯ βˆ’1

3π‘₯3 + β‹― )

∴ 𝑙𝑒𝑑 𝑦 = π‘’βˆ’π‘₯2

2 𝑣(π‘₯) β†’ 𝑦′ = π‘’βˆ’π‘₯2

2 (𝑣′ βˆ’ 𝑣π‘₯)

∴ π‘†πΌπ‘šπ‘π‘™π‘–π‘“π‘¦π‘–π‘›π‘” π‘Žπ‘›π‘‘ 𝑠𝑒𝑏𝑏𝑖𝑛𝑔 π‘Žπ‘›π‘‘ π‘‘β„Žπ‘–π‘›π‘”π‘ :

𝑣′′ βˆ’ π‘₯𝑣′ = 0

𝑣′′

𝑣′= π‘₯

ln 𝑣′ =π‘₯2

2+ 𝐴1

𝑣′ = 𝐴2π‘’βˆ’π‘₯2

2

𝑣 = 𝐴2 ∫ π‘’βˆ’π‘₯2

2 𝑑π‘₯

∴ 2𝑛𝑑 π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘šπ‘’π‘Žπ‘›π‘  π‘‘β„Žπ‘Žπ‘‘ (π‘₯ βˆ’1

3π‘₯3 + β‹― ) = π‘’βˆ’

π‘₯2

2 ∫ π‘’βˆ’π‘₯2

2 𝑑π‘₯

∴ 𝑦 = π΄π‘’βˆ’π‘₯2

2 (π‘’βˆ’π‘₯2

2 ∫ π‘’βˆ’π‘₯2

2 𝑑π‘₯) = π΄π‘’βˆ’π‘₯2∫ π‘’βˆ’

π‘₯2

2 𝑑π‘₯

Notes: - You want the series to converge to truly consider it a representation of the solution.

(divergent in another course)

Ratio test for convergence:

π‘“π‘œπ‘Ÿ 𝑦 = βˆ‘ 𝑐𝑛𝑑𝑛

∞

𝑛=0

:

𝐿 = limπ‘›β†’βˆž

|𝑐𝑛+1𝑑𝑛+1

𝑐𝑛𝑑𝑛| = lim

π‘›β†’βˆž|𝑐𝑛+1

𝑐𝑛| |𝑑|

𝑖𝑓 𝐿 < 1: π‘π‘œπ‘›π‘£π‘’π‘Ÿπ‘”π‘’π‘ 

𝐿 > 1: π‘‘π‘–π‘£π‘’π‘Ÿπ‘”π‘’π‘ 

𝐿 = 1: π‘›π‘œπ‘‘ π‘’π‘›π‘œπ‘’π‘”β„Ž π‘–π‘›π‘“π‘œ

21

This technique will work for any π‘Ž(π‘₯)π‘Žπ‘›π‘‘ 𝑏(π‘₯) themselves admit converging Taylor series

expansions at π‘₯ = 0; convergent with some radius |π‘₯| < 𝑅

Method of Frobenius (regular singular points):

Some definitions for Method of Frobenius: If 𝑦′′ + 𝑃(π‘₯)𝑦′ + 𝑄(π‘₯)𝑦 = 0:

- If 𝑃(π‘₯)π‘Žπ‘›π‘‘ 𝑄(π‘₯) remain finite at π‘₯ = π‘₯0, π‘₯0 is called an ordinary point

- If either 𝑃(π‘₯) or 𝑄(𝑋) divereges as π‘₯ β†’ π‘₯0, then π‘₯0 is called a singular point

- If either 𝑃(π‘₯) or 𝑄(π‘₯) diverges as π‘₯ β†’ π‘₯0, but (π‘₯ βˆ’ π‘₯0)𝑃(π‘₯) and (π‘₯ βˆ’ π‘₯0)2𝑄(π‘₯) remains

finite as π‘₯ β†’ π‘₯0, π‘₯ = π‘₯0 is a regular singular point

Consider (note: singularity at π‘₯ = 0) :

𝑦′′ +𝛼(π‘₯)

π‘₯𝑦′ +

𝛽(π‘₯)

π‘₯2𝑦 = 0

∴ π‘‘π‘–π‘šπ‘’π‘  𝑏𝑦 π‘₯2

(π‘₯ = 0 is a regular singular point)

NOW: seek solutions of the form:

𝑦 = π‘₯π‘Ÿ βˆ‘ 𝑐𝑛π‘₯𝑛

∞

𝑛=0

= βˆ‘ 𝑐𝑛π‘₯𝑛+π‘Ÿ

∞

𝑛=0

𝑒π‘₯π‘Žπ‘šπ‘π‘™π‘’:

2π‘₯2𝑦′′ βˆ’ π‘₯𝑦′ + (1 + π‘₯)𝑦 = 0

𝑐0 β‰  0; π‘₯ > 0

β†’ 𝑦′ = βˆ‘(𝑛 + π‘Ÿ)𝑐𝑛π‘₯𝑛+π‘Ÿβˆ’1

∞

𝑛=0

; 𝑦′′ = βˆ‘(𝑛 + π‘Ÿ)(𝑛 + π‘Ÿ βˆ’ 1)𝑐𝑛π‘₯𝑛+π‘Ÿβˆ’2

∞

𝑛=0

∴ 2 βˆ‘ 𝑐𝑛(𝑛 + π‘Ÿ)(𝑛 + π‘Ÿ βˆ’ 1)π‘₯𝑛+π‘Ÿ

∞

𝑛=0

βˆ’ βˆ‘ 𝑐𝑛(𝑛 + π‘Ÿ)π‘₯𝑛+π‘Ÿ

∞

𝑛=0

+ (1 + π‘₯) βˆ‘ 𝑐𝑛π‘₯𝑛+π‘Ÿ

∞

𝑛=0

= 0

∴ βˆ‘ 𝑐𝑛[(2𝑛 + 2π‘Ÿ βˆ’ 1)(𝑛 + π‘Ÿ βˆ’ 1)]π‘₯𝑛+π‘Ÿ

∞

𝑛=0

+ βˆ‘ 𝑐𝑛π‘₯𝑛+π‘Ÿ+1

∞

𝑛=0

= 0

∴ π‘₯π‘Ÿ {(2π‘Ÿ βˆ’ 1)(π‘Ÿ βˆ’ 1)𝑐0 + βˆ‘(𝑐𝑛(2𝑛 + 2π‘Ÿ βˆ’ 1)(𝑛 + π‘Ÿ βˆ’ 1) + π‘π‘›βˆ’1)π‘₯𝑛)

∞

𝑛=1

} = 0

Radius of convergence

The lowest power is π‘₯π‘Ÿ, which gives a solution of π‘Ÿ =1

2, 1

22

∴ 𝑐𝑛(2𝑛 + 2π‘Ÿ βˆ’ 1)(𝑛 + π‘Ÿ βˆ’ 1) + π‘π‘›βˆ’1 = 0

∴ 𝑐𝑛 = βˆ’π‘π‘›βˆ’1

(𝑛 + π‘Ÿ βˆ’ 1)(2𝑛 + 2π‘Ÿ βˆ’ 1)

For π‘Ÿ = 1:

𝑐𝑛 = βˆ’π‘π‘›βˆ’1

𝑛(2𝑛 + 1)

∴ 𝑦1 = 𝑐0π‘₯(1 βˆ’1

1 Γ— 3π‘₯ +

1

2 Γ— 3 Γ— 5π‘₯3 βˆ’ (

1

1 Γ— 2 Γ— 3 Γ— 5 Γ— 7) π‘₯3 + β‹― )

For π‘Ÿ =1

2:

𝑐𝑛 = βˆ’π‘π‘›βˆ’1

𝑛(2𝑛 βˆ’ 1)

∴ 𝑐1 = βˆ’π‘0; 𝑐2 = βˆ’π‘1

3 βˆ™ 2=

𝑐0

2 Γ— 3;

∴ 𝑦2 = 𝑐0π‘₯12 (1 βˆ’ π‘₯ +

1

6π‘₯2 + β‹― )

∴ πΊπ‘’π‘›π‘’π‘Ÿπ‘Žπ‘™ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› π‘‘π‘œ 2π‘₯2𝑦′′ βˆ’ π‘₯𝑦′ + (1 + π‘₯)𝑦 = 0 𝑖𝑠:

𝑦 = 𝐴π‘₯ (1 βˆ’1

1 βˆ™ 3π‘₯ + β‹― ) + 𝐡π‘₯

12(1 βˆ’ π‘₯ + β‹― )

Radius of convergence:

For π‘Ÿ = 1: 𝑐𝑛 = βˆ’π‘π‘›βˆ’1

𝑛(2𝑛+1)

∴ limπ‘›β†’βˆž

|𝑐𝑛π‘₯𝑛

π‘π‘›βˆ’1π‘₯π‘›βˆ’1| = limπ‘›β†’βˆž

(|βˆ’π‘π‘›βˆ’1

𝑛(2𝑛 + 1)π‘π‘›βˆ’1| |π‘₯|)

= limπ‘›β†’βˆž

(|βˆ’1

2𝑛2 + 𝑛| |π‘₯|) β†’ 0 < 1

∴ 𝑅 β†’ ∞

For π‘Ÿ =1

2: 𝑐𝑛 = βˆ’

π‘π‘›βˆ’1

𝑛(2π‘›βˆ’1)

∴ limπ‘›β†’βˆž

|𝑐𝑛π‘₯𝑛

π‘π‘›βˆ’1π‘₯π‘›βˆ’1| = limπ‘›β†’βˆž

(|βˆ’π‘π‘›βˆ’1

𝑛(2𝑛 βˆ’ 1)π‘π‘›βˆ’1| |π‘₯|)

= limπ‘›β†’βˆž

(|βˆ’1

2𝑛2 βˆ’ 1| |π‘₯|) β†’ 0 < 1

∴ 𝑅 β†’ ∞

Notes on Frobenius compared to taylor series: Not: for frobenius, as 𝑦 = βˆ‘ 𝑐𝑛π‘₯𝑛+π‘Ÿβˆž

𝑛=0 , the terms WILL NOT disappear when derived (unlike taylor

series), because of the extra π‘₯π‘Ÿ term

- If π‘Ÿβ€²π‘  differ by an integer, use the higher value of π‘Ÿ, and then use reduction of order: 𝑦 = 𝑒𝑣

23

Bessel’s Equation and Bessel Functions: Another famous equation that pops up everywhere.

Consider:

𝑦′′ +1

π‘₯𝑦′ + (1 βˆ’

𝑝2

π‘₯2) 𝑦 = 0

𝑝 is the ORDER of the Bessel equation. It doesn’t have to be an integer, but it usually is.

π‘₯ = 0 is a regular singular point and so the equation is a candidate for a frobenius series expansion

Try:

𝑦 = βˆ‘ 𝑐𝑛π‘₯𝑛+π‘Ÿ

∞

𝑛=0

𝑠𝑒𝑏 π‘–π‘›π‘‘π‘œ π‘₯2𝑦′′ + π‘₯𝑦′ + (π‘₯2 βˆ’ 𝑝2)𝑦 = 0

∴ βˆ‘ 𝑐𝑛(𝑛 + π‘Ÿ)(𝑛 + π‘Ÿ βˆ’ 1)π‘₯𝑛+π‘Ÿ

∞

𝑛=0

+ βˆ‘ 𝑐𝑛π‘₯𝑛+π‘Ÿ+2

∞

𝑛=0

+ βˆ‘ 𝑐𝑛(𝑛 + π‘Ÿ)π‘₯𝑛+π‘Ÿ

∞

𝑛=0

βˆ’ 𝑝2 βˆ‘ 𝑐𝑛π‘₯𝑛+π‘Ÿ

∞

𝑛=0

= 0

∴ βˆ‘ 𝑐𝑛(𝑛 + π‘Ÿ)(𝑛 + π‘Ÿ βˆ’ 1)π‘₯𝑛+π‘Ÿ

∞

𝑛=0

+ βˆ‘ π‘π‘›βˆ’2π‘₯𝑛+π‘Ÿ

∞

𝑛=2

βˆ’ 𝑝2 βˆ‘ 𝑐𝑛π‘₯𝑛+π‘Ÿ

∞

𝑛=0

= 0

β†’ : 𝑐0(π‘Ÿ2 βˆ’ π‘Ÿ + π‘Ÿ βˆ’ 𝑝2)π‘₯π‘Ÿ + 𝑐1(π‘Ÿ2 + π‘Ÿ + π‘Ÿ + 1 βˆ’ 𝑝2)π‘₯π‘Ÿ+1

+ βˆ‘(𝑐𝑛(𝑛 + π‘Ÿ)(𝑛 + π‘Ÿ βˆ’ 1) + 𝑐𝑛(𝑛 + π‘Ÿ) + π‘π‘›βˆ’2 βˆ’ 𝑝2𝑐𝑛)π‘₯𝑛+π‘Ÿ

∞

𝑛=2

= 0

𝑐0: ∴ π‘Ÿ = ±𝑝

𝑐1: π‘Ÿ = βˆ’1

2

π‘₯: [(𝑛 + π‘Ÿ)(𝑛 + π‘Ÿ βˆ’ 1 + 1) βˆ’ 𝑝2]𝑐𝑛 = π‘π‘›βˆ’2

𝑐𝑛 = βˆ’π‘π‘›βˆ’2

(𝑛 + π‘Ÿ)2 βˆ’ 𝑝2

∴ π‘Ÿ = 𝑝: 𝑐𝑛 = βˆ’π‘π‘›βˆ’2

𝑛(𝑛 + 2𝑝)

π‘‘β„Žπ‘–π‘  π‘ π‘œπ‘™π‘£π‘’π‘  π‘‘π‘œ 𝑏𝑒:

Bessel functions:

𝑦 = π‘₯𝑝𝐢0 (1 + βˆ‘(βˆ’1)π‘šπ‘₯2π‘š

π‘š! 22π‘š(1 + 𝑝)(2 + 𝑝) … (π‘š + 𝑝)

∞

π‘š=1

)

24

Radius of convergence:

limπ‘›β†’βˆž

|𝑐𝑛π‘₯𝑛

π‘π‘›βˆ’2π‘₯π‘›βˆ’2| = limπ‘›β†’βˆž

|π‘π‘›βˆ’2

π‘π‘›βˆ’2((𝑛 βˆ’ 𝑝)2 βˆ’ 𝑝2)| |π‘₯2|

∴ 𝑅 β†’ ∞

Normalisation of Bessel function (with gamma function)

Ξ“(𝑝) = ∫ π‘‘π‘βˆ’1π‘’βˆ’π‘‘π‘‘π‘‘βˆž

0

, 𝑝 > 0 (π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿπ‘–π‘ π‘Žπ‘‘π‘–π‘œπ‘› π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™π‘–π‘ π‘Žπ‘‘π‘–π‘œπ‘›)

β†’ Ξ“(𝑝) = (𝑝 βˆ’ 1)Ξ“(𝑝 βˆ’ 1)

Ξ“ (1

2) = βˆšπœ‹ = (βˆ’

1

2) !

∴ 𝐢0 =1

2𝑝Γ(𝑝 + 1) (π‘”π‘œπ‘–π‘›π‘” π‘π‘Žπ‘π‘˜ π‘‘π‘œπ‘’ 𝐡𝑒𝑠𝑠𝑒𝑙 π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›)

∴ 𝑦 = π‘₯𝑝1

2𝑝Γ(𝑝 + 1)(1 + βˆ‘

(βˆ’1)π‘šπ‘₯2π‘š

π‘š! 22π‘š(1 + 𝑝)(2 + 𝑝) … (π‘š + 𝑝)

∞

π‘š=1

)

= π‘₯𝑝(1

2𝑝Γ(𝑝 + 1)(1 + βˆ‘

(βˆ’1)π‘šπ‘₯2π‘š

π‘š! Ξ“(𝑝 + π‘š + 1)

∞

π‘š=1

)

𝐡𝑒𝑠𝑠𝑒𝑙 π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ 𝑝 = (π‘₯

2)

𝑝

(βˆ‘(βˆ’1)𝑛 (

π‘₯2)

2𝑛

𝑛! Ξ“(𝑝 + 𝑛 + 1)

∞

𝑛=0

) = 𝐽𝑝(π‘₯)

Replacing 𝑝 by βˆ’π‘ (as π‘Ÿ = ±𝑝) , yields the 2nd solution:

π½βˆ’π‘(π‘₯) = (2

π‘₯)

𝑝

(βˆ‘(βˆ’1)𝑛 (

π‘₯2)

2𝑛

𝑛! Ξ“(βˆ’π‘ + 𝑛 + 1)

∞

𝑛=0

)

But:

Ξ“(𝑝) = (𝑝 βˆ’ 1)Ξ“(𝑝 βˆ’ 1)

∴ Ξ“(1) = 0Ξ“(0) = 0! βˆ΄β†’ Ξ“(0) = ∞ β†’ (βˆ’π‘›)! = ∞ (π‘“π‘œπ‘Ÿ 𝑛 ∈ β„• exluding {0})

So: if 𝑝 is an integer:

π½βˆ’π‘(π‘₯) = (2

π‘₯)

𝑝

(βˆ‘(βˆ’1)𝑛 (

π‘₯2)

2𝑛

𝑛! Ξ“(βˆ’π‘ + 𝑛 + 1)

∞

𝑛=𝑝

)

25

Let π‘š = 𝑛 βˆ’ 𝑝

= (2

π‘₯)

𝑝

βˆ‘(βˆ’1)π‘š+𝑝 (

π‘₯2

)2𝑛+2𝑝

(π‘š + 𝑝)! Ξ“(π‘š + 1)

∞

π‘š=0

= (βˆ’1)𝑝 (π‘₯

2)

2𝑝

(2

π‘₯)

𝑝

βˆ‘(βˆ’1)π‘š (

π‘₯2

)2π‘š

π‘š! Ξ“(π‘š + 𝑝 + 1)

∞

π‘š=0

= (βˆ’1)𝑝 𝐽𝑝(π‘₯)

Therefore if 𝑝 is an integer: then the 2 solutions ARE NOT linearly independent independent, so we’d

only have 1 solution.

In which case:

π‘Œπ‘(π‘₯) =cos(πœ‹π‘) 𝐽𝑝(π‘₯) βˆ’ π½βˆ’π‘(π‘₯)

sin(πœ‹π‘)

Partial Differential Equations

Boundary-Value Problems and Fourier Series Separation of varaibles for heat equation - Consider the problem of heat conduction in a 1 dimensional bar. With a given initial

temperature distribution and temperature held constant at each end.

- Let 𝑒(π‘₯, 𝑑) be the temperature difference between the actual temperature and the constant

at the end, then for all 𝑑 β‰₯ 0:

1 D heat equation: πœ•π‘’

πœ•π‘‘= πœ…

πœ•2𝑒

πœ•π‘₯2

(πœ… = π‘‘β„Žπ‘’π‘Ÿπ‘šπ‘Žπ‘™ 𝑑𝑖𝑓𝑓𝑒𝑠𝑖𝑣𝑖𝑑𝑦)

Notes on heat equation:

In higher dimensions, the equation is:

πœ•π‘’

πœ•π‘‘= πœ… βˆ‡2𝑒

Have β€œcorrect” amount of Initial conditions and boundary conditions

π‘₯ = 0; 𝑒 = 0

π‘₯ = 0; 𝑒 = 0 π‘₯ = 𝐿; 𝑒 = 0

26

Solving 1D heat equation: Separation of variables Separations of variables usually requires linear and homogeneous PDE with linear and homogeneous

Boundary conditions

Using separation of variables:

Let

𝑒 = 𝑋(π‘₯)𝑇(𝑑)

βˆ΄πœ•π‘’

πœ•π‘‘= πœ…

πœ•2𝑒

πœ•π‘₯2

⟹ 𝑋𝑇′ = πœ…π‘‹π‘‡β€²β€²

βˆ΄π‘‡β€²

πœ…π‘‡=

𝑋′′

𝑋= π‘˜

(π‘ π‘œπ‘šπ‘’ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘, π‘Žπ‘  π‘‘β„Žπ‘’ π‘œπ‘›π‘™π‘¦ π‘€π‘Žπ‘¦ π‘Ž π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝑖𝑛 𝑑 π‘π‘Žπ‘› π‘’π‘žπ‘’π‘Žπ‘™ π‘Ž π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝑖𝑛 π‘₯ 𝑖𝑠 𝑖𝑓 π‘‘β„Žπ‘’π‘¦ π‘Žπ‘Ÿπ‘’ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘)

π‘˜ π‘π‘Žπ‘› 𝑏𝑒 π‘’π‘–π‘‘β„Žπ‘’π‘Ÿ + ,0 π‘œπ‘Ÿ βˆ’

Positive k: (trivial soluiton)

If π‘˜ is positive

π‘˜ = πœ†2 (πœ† > 0)

∴ 𝑋′′ = πœ†2𝑋

𝑋 = π΄π‘’πœ†π‘₯ + π΅π‘’βˆ’πœ†π‘₯

Boundary conditions:

𝑒 = 0, π‘Žπ‘‘ π‘₯ = 0, 𝐿

π‘₯ = 0: 𝑒(0, 𝑑) = 𝑋(0)𝑇(𝑑) = 0 β†’ 𝑋(0) = 0

π‘₯ = 𝑙: 𝑒(𝐿, 𝑑) = 𝑋(𝐿)𝑇(𝑑) = 0 β†’ 𝑋(𝐿) = 0

∴ 𝑋(0) = 0; β†’ 𝐴 + 𝐡 = 0;

𝑋(𝐿) = 0: π΄π‘’πœ†πΏ βˆ’ π΄π‘’βˆ’πœ†πΏ = 0

∴ 𝐴 = 𝐡 = 0

Trivial solution.

∴ boring 0 solution

π‘˜ = 0 trivial Solution:

𝑋′′ = 0

β†’ 𝑋 = 𝐴π‘₯ + 𝐡

𝑋(0) = 0 β†’ 𝐡 = 0

𝑋(𝐿) = 0 β†’ 𝐴 = 0

27

π‘˜ < 0 Solution:

π‘˜ = βˆ’πœ†2 (π‘“π‘œπ‘Ÿ π‘ π‘œπ‘šπ‘’πœ† > 0)

∴ 𝑋′′ + πœ†2𝑋 = 0 𝑋 = 𝐴 cos(πœ†π‘₯) + 𝐡 sin(πœ†π‘₯)

𝑋(0) = 0 β†’ 𝐴 = 0

𝑋(𝐿) = 0 β†’ 𝐡 = 0 π‘œπ‘Ÿ sin(πœ†πΏ) = 0

∴ πœ† =π‘›πœ‹

𝐿 (π‘“π‘œπ‘Ÿ 𝑛 = 1,2,3 … ) (π‘œπ‘›π‘™π‘¦ π‘‘π‘Žπ‘˜π‘’ 𝑛 ∈ β„€+ π‘Žπ‘  πœ†, 𝐿 > 0)

βˆ΄βŸΉπ‘‡β€²

πœ…π‘‡= π‘˜ = βˆ’πœ†2 = βˆ’

𝑛2πœ‹2

𝐿2

∴ 𝑇′ = βˆ’π‘›2πœ‹2

𝐿2 πœ…π‘‡

(i.e. exponential decay)

∴ 𝑇 = 𝐢𝑛 π‘’βˆ’

𝑛2πœ‹2

𝐿2 πœ…π‘‘

(𝐢𝑛 as constant term will be detirmed by your 𝑛 eigenvalue values)

𝑒 = 𝑋𝑇 = 𝐴𝑛 sin (π‘›πœ‹

𝐿π‘₯) 𝑒

βˆ’π‘›2πœ‹2

𝐿2 πœ…π‘‘ (π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ 𝑛)

The heat equation is linear, and so by the method of superposition, the most general solution, where

all positible terms as a linaer combination is:

𝑒(π‘₯, 𝑑) = βˆ‘ 𝐴𝑛 sin (π‘›πœ‹

𝐿π‘₯) 𝑒

βˆ’π‘›2πœ‹2

𝐿2 πœ…π‘‘

∞

𝑛=1

The Initial conditions: 𝑒(π‘₯, 0) = 𝑓(π‘₯)

⟹ βˆ‘ 𝐴𝑛 sin (π‘›πœ‹

𝐿π‘₯)

∞

𝑛=1

= 𝑓(π‘₯)