Coupling Solar Simulations with Space Weather: Code...

20
Coupling Solar Simulations with Space Weather: Code Comparison in SWIFF Consortium Vyacheslav Olshevsky 1 Center for Plasma Astrophysics, Mathematics Department, KU Leuven 2 Main Astronomical Observatory, Kyiv, Ukraine [email protected] Co-authors: Anna Lisa Restante 1 , Giovanni Lapenta 1 and Rony Keppens 1

Transcript of Coupling Solar Simulations with Space Weather: Code...

  • Coupling Solar Simulations with Space Weather: Code Comparison in SWIFF Consortium

    Vyacheslav Olshevsky

    1Center for Plasma Astrophysics, Mathematics Department, KU Leuven 2Main Astronomical Observatory, Kyiv, Ukraine [email protected] Co-authors: Anna Lisa Restante1, Giovanni Lapenta1 and Rony Keppens1

    mailto:[email protected]

  • Introduction

    20.06.2012 First results of SWIFF 2

    SWIFF – Space Weather Integrated Forecasting Framework. The principal goal of SWIFF is development of mathematical models and computational methods to handle multiple physics and multiple scales of space weather.

  • Multi-physics in space weather

    20.06.2012 First results of SWIFF 3

  • Multi-scale in space weather

    20.06.2012 First results of SWIFF 4

  • Participants

    20.06.2012 First results of SWIFF 5

    5 scientific and 1 management work packages (WPs):

    • WP1. Coordination: Giovanni Lapenta, Katholieke Universiteit Leuven (KU Leuven, Belgium)

    • WP2. Multiscale-Multiphysics Modelling: Rony Keppens, Katholieke Universiteit Leuven (KU Leuven, Belgium)

    • WP3. Coupling at the Sun: Åke Nordlund, University of Copenhagen (UCPH, Denmark)

    • WP4. Coupling in space: Francesco Califano, Università di Pisa (UNIPISA, Italy)

    • WP5. Coupling at the Earth: Viviene Pierrard, Belgian Institute for Space Aeronomy (BISA, Belgium)

  • 20.06.2012 First results of SWIFF 6

  • Numerical Codes

    20.06.2012 First results of SWIFF 7

    • FlipMHD – viscous resistive MHD code (Brackbill, 1991)

    • MPI-AMRVAC – MPI implementation of the Versatile Advection Code with adaptive Mesh Refinement (Keppens et al 2012)

    • iPic3D (KU Leuven) • Stagger (UCPH, Denmark) • UNIPI two-fluid code • ASI hybrid PIC code

  • Benchmarks

    20.06.2012 First results of SWIFF 8

    • Transition to turbulent reconnection (2D)

    • Longcope-Strauss problem (2D)

    • Magnetopause challenge (2D)

    • CME initiation challenge (3D)

  • Flux Rope Emergence Setup

    20.06.2012 First results of SWIFF 9

    𝑩 = 𝜵 ×𝐴 𝑟, 𝜃𝑟 sin𝜃

    𝜑� + 𝐵𝜑 𝑟,𝜃 𝜑� ,

    A 𝑟,𝜃 = 12𝑞𝑎2𝐵𝑡exp −

    𝜔�2 𝑟,𝜃𝑎2

    ,

    𝐵𝜑 𝑟,𝜃 =𝑎𝐵𝑡𝑟 sin𝜃

    exp −𝜔�2 𝑟,𝜃𝑎2

    .

    Semi-circular rope (Fan & Gibson 2004)

    Embedded to the background sheared arcade (Aschwanden 2004)

    𝐵𝑥 = 𝐵𝑥0 sin 𝑘𝑘 exp −𝑙𝑙 , 𝐵𝑦 = 𝐵𝑦0 sin 𝑘𝑘 exp −𝑙𝑙 , 𝐵𝑧 = 𝐵𝑧0 cos 𝑘𝑘 −𝑙𝑙 ,

    𝐵𝑥0 =𝑙𝑘𝐵0,𝐵𝑦0 =

    𝛼𝑘𝐵0, 𝑘2 − 𝑙2 − 𝛼2 = 0.

  • Setup Parameters

    20.06.2012 First results of SWIFF 10

    𝐵0 = 𝑝0 = 𝜌0 = 1, 𝑢0 = 0, 𝐵𝑡 = 9𝐵0, 𝑅 = 0.375, 𝑞 = −1, 𝑎 = 0.1, 𝐿𝑥 = 1.5, 𝐿𝑦 = 1, 𝐿𝑧 = 1.25, 𝑛𝑥 = 30,𝑛𝑦 = 20,𝑛𝑧 = 25.

    Boundary conditions: X – open Y – periodic Top – open Bottom – constant Bz

  • Results: FlipMHD

    20.06.2012 First results of SWIFF 11

    Viscous No viscosity

    Blue represent magnetic field lines; red contour is at constant density 0.8; The grayscale on the bottom is Bz. Note the destruction of density “tube” in the second case!

  • FlipMHD vs MPI-AMRVAC

    20.06.2012 First results of SWIFF 12

    FlipMHD (no viscosity) MPI-AMRVAC

    Blue represent magnetic field lines; red contour is at constant density 0.8; The grayscale on the bottom is Bz. In both cases, the tube is destroyed. The behavior of field lines is very similar.

  • Density Variation in XZ Plane

    20.06.2012 First results of SWIFF 13

  • Results: rise of the rope

    20.06.2012 First results of SWIFF 14

  • Conclusions

    20.06.2012 First results of SWIFF 15

    The initial configuration leads to immediate emergence of the flux rope, and is handy for comparison of numerical codes The overall behavior is qualitatively the same in FlipMHD and MPI-AMRVAC simulations Rise and rotation of the flux rope is faster in the simulations of MPI-AMRVAC

  • Future? Particle-in-cell (PIC)

    20.06.2012 First results of SWIFF 16

  • Equations of implicit moment PIC

    20.06.2012 First results of SWIFF 17

    Equations of motion (moments of Vlasov)

    Interpolation of fields to particles

    Coupling of fields and particles is nonlinear:

    Markidis, Lapenta, Rizwan-uddin (2010), Lapenta (2012)

  • iPic3D code

    20.06.2012 First results of SWIFF 18

    • Implicit time-stepping (“implicit moment method”) • Generalized Minimal Residual (GMRes) solver for the coupled

    equations of motion – Maxwell system • Divergence cleaning (Conjugate Gradient) – charge density

    continuation assurance

    Applications • Reconnection on the Sun; magnetosphere; anywhere • Experiments in plasma devices • Ionization of spacecrafts • PIC – hybrid and PIC – fluid coupling • Mass loss in “hot jupiters”?

  • http://www.swiff.eu

    20.06.2012 First results of SWIFF 19

    http://www.swiff.eu/

  • Annex 1. Timeline of the SWIFF project

    20.06.2012 First results of SWIFF 20

    Coupling Solar Simulations with Space Weather: Code Comparison in SWIFF ConsortiumIntroductionMulti-physics in space weatherMulti-scale in space weatherParticipantsSlide Number 6Numerical CodesBenchmarksFlux Rope Emergence SetupSetup ParametersResults: FlipMHDFlipMHD vs MPI-AMRVACDensity Variation in XZ PlaneResults: rise of the ropeConclusionsFuture? Particle-in-cell (PIC)Equations of implicit moment PICiPic3D codehttp://www.swiff.euAnnex 1. Timeline of the SWIFF project