Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater...

40
Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources The Almádena-Odeáxere Aquifer Case Study (Algarve-Portugal) J. MARTINS & J. P. MONTEIRO Algarve University Geo-Systems Centre UALG/CVRM Marine and Environmental Sciences Faculty, Campus de Gambelas, 8005-139 Faro, Portugal [email protected]

Transcript of Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater...

Page 1: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Coupling Monitoring Networks and Regional Scale Flow Models for the

Management of Groundwater Resources

The Almádena-Odeáxere Aquifer Case

Study (Algarve-Portugal)J. MARTINS & J. P. MONTEIROAlgarve University Geo-Systems Centre UALG/CVRMMarine and Environmental Sciences Faculty,Campus de Gambelas, 8005-139 Faro, [email protected]

Page 2: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

PortugalStudy Area

Algarve Region

Almádena-Odeáxere Aquifer System

Area = 63,5 km2

Karst Aquifer

Page 3: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Algarve Region

Studied Aquifers - Project “POCTI/AMB/57432/2004”

Groundwater Flow Modelling and Optimisation of Groundwater Modelling Networks at the regional scale in Coastal Aquifers – The Algarve Study

Page 4: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources
Page 5: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources
Page 6: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Conceptual Model

- Geometry of the flow domain

- Water budget- Definition of

Boundary Conditions

- Temporal evolution and spatial distribution of state variables

- Hydraulic parameters

Page 7: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Conceptual Model

- Geometry of the flow domain

- Water budget- Definition of

Boundary Conditions

- Temporal evolution and spatial distribution of state variables

- Hydraulic parameters

Page 8: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Conceptual ModelPrecipitation / Recharge- Geometry of the

flow domain- Water budget- Definition of

Boundary Conditions

- Temporal evolution and spatial distribution of state variables

- Hydraulic parameters

Page 9: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Conceptual Model

- Geometry of the flow domain

- Water budget- Definition of

Boundary Conditions

- Temporal evolution and spatial distribution of state variables

- Hydraulic parameters

Page 10: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

- Geometry of the flow domain

- Water budget- Definition of

Boundary Conditions

- Temporal evolution and spatial distribution of state variables

- Hydraulic parameters

Conceptual Model

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

0123456789

1011121314151617181920212223

Hidr

aulic

Hea

d (m

)

Hydraulic Head

Page 11: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Conceptual ModelTransmissivity

8784

30381427

318167

193

1176

791 753264

2789

7164

0 2000 4000 6000 8000 m

- Geometry of the flow domain

- Water budget- Definition of

Boundary Conditions

- Temporal evolution and spatial distribution of state variables

- Hydraulic parameters

Page 12: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Early Simulations• Homogeneus T throughout the whole flow

domain• “Croissant look”

Page 13: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Hydraulic head analysis

High degree of dependence between the terrain’s morphology and piezometric data

Regional control of the flow pattern by conduits

Page 14: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Hydraulic head analysis

Unexpected System Outputs

High degree of dependence between the terrain’s morphology and piezometric data

Regional control of the flow pattern by conduits

Page 15: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Almeida et al (2000)

Impermeable Formations

Page 16: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Hydraulic head analysis

Unexpected Outputs

Insufficient data to provide a consistent

estimate of the hydraulic

behaviour of the aquifer

Page 17: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Hydraulic head analysis

Unexpected Outputs

Insufficient data to provide a consistent

estimate of the hydraulic

behaviour of the aquifer

Need to obtain data at more points

Page 18: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources
Page 19: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

8-A

pr-0

710

-Apr

-07

12-A

pr-0

714

-Apr

-07

16-A

pr-0

718

-Apr

-07

20-A

pr-0

722

-Apr

-07

24-A

pr-0

726

-Apr

-07

28-A

pr-0

730

-Apr

-07

2-M

ay-0

74-

May

-07

6-M

ay-0

78-

May

-07

10-M

ay-0

712

-May

-07

14-M

ay-0

716

-May

-07

18-M

ay-0

720

-May

-07

22-M

ay-0

724

-May

-07

26-M

ay-0

728

-May

-07

30-M

ay-0

71-

Jun-

073-

Jun-

075-

Jun-

077-

Jun-

079-

Jun-

0711

-Jun

-07

13-J

un-0

715

-Jun

-07

17-J

un-0

719

-Jun

-07

21-J

un-0

723

-Jun

-07

25-J

un-0

727

-Jun

-07

29-J

un-0

71-

Jul-0

73-

Jul-0

75-

Jul-0

77-

Jul-0

79-

Jul-0

711

-Jul

-07

13-J

ul-0

715

-Jul

-07

17-J

ul-0

7

4.8

4.9

5

5.1

5.2

5.3

Pote

ncia

l Hid

rául

ico

(m)

18-M

ay-0

7

20-M

ay-0

7

22-M

ay-0

7

24-M

ay-0

7

26-M

ay-0

7

28-M

ay-0

7

30-M

ay-0

7

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Pote

ncia

l Hid

rául

ico

(m)

3-M

ay-0

75-

May

-07

7-M

ay-0

79-

May

-07

11-M

ay-0

713

-May

-07

15-M

ay-0

717

-May

-07

19-M

ay-0

721

-May

-07

23-M

ay-0

725

-May

-07

27-M

ay-0

729

-May

-07

31-M

ay-0

72-

Jun-

074-

Jun-

076-

Jun-

078-

Jun-

0710

-Jun

-07

12-J

un-0

714

-Jun

-07

16-J

un-0

718

-Jun

-07

20-J

un-0

722

-Jun

-07

24-J

un-0

726

-Jun

-07

28-J

un-0

730

-Jun

-07

2-Ju

l-07

4-Ju

l-07

6-Ju

l-07

8-Ju

l-07

10-J

ul-0

712

-Jul

-07

14-J

ul-0

716

-Jul

-07

18-J

ul-0

7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

Pote

ncia

l Hid

rául

ico

(m)

8-A

pr-0

710

-Apr

-07

12-A

pr-0

714

-Apr

-07

16-A

pr-0

718

-Apr

-07

20-A

pr-0

722

-Apr

-07

24-A

pr-0

726

-Apr

-07

28-A

pr-0

730

-Apr

-07

2-M

ay-0

74-

May

-07

6-M

ay-0

78-

May

-07

10-M

ay-0

712

-May

-07

14-M

ay-0

716

-May

-07

18-M

ay-0

720

-May

-07

22-M

ay-0

724

-May

-07

26-M

ay-0

728

-May

-07

30-M

ay-0

71-

Jun-

073-

Jun-

075-

Jun-

077-

Jun-

079-

Jun-

0711

-Jun

-07

13-J

un-0

715

-Jun

-07

17-J

un-0

719

-Jun

-07

21-J

un-0

723

-Jun

-07

25-J

un-0

727

-Jun

-07

29-J

un-0

71-

Jul-0

73-

Jul-0

75-

Jul-0

77-

Jul-0

79-

Jul-0

711

-Jul

-07

13-J

ul-0

715

-Jul

-07

17-J

ul-0

7

5.2

5.25

5.3

5.35

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

Pote

ncia

l Hid

rául

ico

(m)

14-M

ar-0

716

-Mar

-07

18-M

ar-0

720

-Mar

-07

22-M

ar-0

724

-Mar

-07

26-M

ar-0

728

-Mar

-07

30-M

ar-0

71-

Apr

-07

3-A

pr-0

75-

Apr

-07

7-A

pr-0

79-

Apr

-07

11-A

pr-0

713

-Apr

-07

15-A

pr-0

717

-Apr

-07

19-A

pr-0

721

-Apr

-07

23-A

pr-0

725

-Apr

-07

27-A

pr-0

729

-Apr

-07

1-M

ay-0

73-

May

-07

5-M

ay-0

77-

May

-07

9-M

ay-0

711

-May

-07

13-M

ay-0

715

-May

-07

17-M

ay-0

719

-May

-07

21-M

ay-0

723

-May

-07

25-M

ay-0

727

-May

-07

29-M

ay-0

731

-May

-07

2-Ju

n-07

4-Ju

n-07

6-Ju

n-07

8-Ju

n-07

10-J

un-0

712

-Jun

-07

14-J

un-0

716

-Jun

-07

18-J

un-0

720

-Jun

-07

22-J

un-0

724

-Jun

-07

26-J

un-0

728

-Jun

-07

30-J

un-0

72-

Jul-0

74-

Jul-0

76-

Jul-0

78-

Jul-0

710

-Jul

-07

12-J

ul-0

714

-Jul

-07

16-J

ul-0

718

-Jul

-07

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

Pote

ncia

l Hid

rául

ico

(m)

8-A

pr-0

710

-Apr

-07

12-A

pr-0

714

-Apr

-07

16-A

pr-0

718

-Apr

-07

20-A

pr-0

722

-Apr

-07

24-A

pr-0

726

-Apr

-07

28-A

pr-0

730

-Apr

-07

2-M

ay-0

74-

May

-07

6-M

ay-0

78-

May

-07

10-M

ay-0

712

-May

-07

14-M

ay-0

716

-May

-07

18-M

ay-0

720

-May

-07

22-M

ay-0

724

-May

-07

26-M

ay-0

728

-May

-07

30-M

ay-0

71-

Jun-

073-

Jun-

075-

Jun-

077-

Jun-

079-

Jun-

0711

-Jun

-07

13-J

un-0

715

-Jun

-07

17-J

un-0

719

-Jun

-07

21-J

un-0

723

-Jun

-07

25-J

un-0

727

-Jun

-07

29-J

un-0

71-

Jul-0

73-

Jul-0

75-

Jul-0

77-

Jul-0

79-

Jul-0

711

-Jul

-07

13-J

ul-0

715

-Jul

-07

17-J

ul-0

7

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

Pote

ncia

l Hid

rául

ico

(m)

20-A

pr-0

721

-Apr

-07

22-A

pr-0

723

-Apr

-07

24-A

pr-0

725

-Apr

-07

26-A

pr-0

727

-Apr

-07

28-A

pr-0

729

-Apr

-07

30-A

pr-0

71-

May

-07

2-M

ay-0

73-

May

-07

4-M

ay-0

75-

May

-07

6-M

ay-0

77-

May

-07

8-M

ay-0

79-

May

-07

10-M

ay-0

711

-May

-07

12-M

ay-0

713

-May

-07

14-M

ay-0

715

-May

-07

16-M

ay-0

717

-May

-07

18-M

ay-0

719

-May

-07

20-M

ay-0

721

-May

-07

22-M

ay-0

723

-May

-07

24-M

ay-0

725

-May

-07

26-M

ay-0

727

-May

-07

28-M

ay-0

729

-May

-07

30-M

ay-0

731

-May

-07

5.5

5.6

5.7

5.8

5.9

6

6.1

Pote

ncia

l Hid

rául

ico

(m)

8-A

pr-0

710

-Apr

-07

12-A

pr-0

714

-Apr

-07

16-A

pr-0

718

-Apr

-07

20-A

pr-0

722

-Apr

-07

24-A

pr-0

726

-Apr

-07

28-A

pr-0

730

-Apr

-07

2-M

ay-0

74-

May

-07

6-M

ay-0

78-

May

-07

10-M

ay-0

712

-May

-07

14-M

ay-0

716

-May

-07

18-M

ay-0

720

-May

-07

22-M

ay-0

724

-May

-07

26-M

ay-0

728

-May

-07

30-M

ay-0

71-

Jun-

073-

Jun-

075-

Jun-

077-

Jun-

079-

Jun-

0711

-Jun

-07

13-J

un-0

715

-Jun

-07

17-J

un-0

719

-Jun

-07

21-J

un-0

723

-Jun

-07

25-J

un-0

727

-Jun

-07

29-J

un-0

71-

Jul-0

73-

Jul-0

75-

Jul-0

77-

Jul-0

79-

Jul-0

711

-Jul

-07

13-J

ul-0

715

-Jul

-07

17-J

ul-0

7

0.45

0.475

0.5

0.525

0.55

0.575

0.6

0.625

0.65

0.675

0.7

0.725

0.75

0.775

0.8

Pote

ncia

l Hid

rául

ico

(m)

3-M

ay-0

75-

May

-07

7-M

ay-0

79-

May

-07

11-M

ay-0

713

-May

-07

15-M

ay-0

717

-May

-07

19-M

ay-0

721

-May

-07

23-M

ay-0

725

-May

-07

27-M

ay-0

729

-May

-07

31-M

ay-0

72-

Jun-

074-

Jun-

076-

Jun-

078-

Jun-

0710

-Jun

-07

12-J

un-0

714

-Jun

-07

16-J

un-0

718

-Jun

-07

20-J

un-0

722

-Jun

-07

24-J

un-0

726

-Jun

-07

28-J

un-0

730

-Jun

-07

2-Ju

l-07

4-Ju

l-07

6-Ju

l-07

8-Ju

l-07

10-J

ul-0

712

-Jul

-07

14-J

ul-0

716

-Jul

-07

18-J

ul-0

7

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95

4

Pote

ncia

l Hid

rául

ico

(m)

Page 20: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

AO -08

AO -09

AO -17

AO -19

AO -20

AO -21

AO -22 AO -23

602/78

602/4602/5

602/6602/8

602/9602/10

593/5

594/400

602/32602/36

602/43

602/76602/178 602/187

602/242602/311

603/38

0 2000 4000 6000 8000 m

Page 21: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

0 2000 4000 6000 8000 m

Page 22: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources
Page 23: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Use of obtained data in the ModelFinite Element

Network

Monteiro et al. (2005)

Page 24: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

0 2000 4000 6000 8000 m

Introduction of additional “real”

field data points for the model to

converge

Zones divided on the basis of the character

of piezometric contours

Page 25: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

MInputs i

Outputso

x describes the system’s configuration

Modelling process

o = M (x,p,i)

Parameters (p)

Page 26: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

MInputs i

Field Dataq

Parameters (p)

x describes the system’s configuration

The inverse problem

p, i = M-1 (x,q)

Page 27: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

MInputs i

Field Dataq

Parameters (p)

The inverse problem

p = M-1 (x,i,q)

x describes the system’s configuration

Page 28: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

H yd ra u lic he ad co m p u te d fro m m e a su rem e n ts,in m e te rs a b o ve se a leve l

0123456789

10111213141516171819202122232425

Sim

ulat

ed h

ydra

ulic

hea

d,

in m

eter

s ab

out s

ea le

vel

Fict2F ict3

F ict5F ict1

F ict4F ict6

F ict7F ict8

AO -16,15 F ict9F ict10

AO -08AO -06F ict11AO -02

602/242F ict12

F ict14

Fict16

AO -14,13

Fict18

AO -01

Fict20

602/187AO -10

Fict17

593/5

F ict15

F ict21

Fict22

Fict19

Fict13603/38

Objective Function, Φ v5 v5.

1v5.2

5,93

4,56

5,12Corr. Coeficient, R

0,9 < 0,9967

Calibrated Model

Gauss-Marquardt-Levenberg algorithm

Page 29: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

0 2000 4000 6000 8000 m

Good fit between measured and

simulated values

Page 30: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

T (m2/day)

Page 31: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Zones having smoother piezometric surfaces(Faster flow)

T (m2/day)

Porous media used “artificially”

Page 32: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Scale effect was observed, when comparing K values:

Hydraulic Conductivity – variation with scale

(Assuming that the aquifer’s thickness, b, is 1000 m and K=T/b)

local scale values<regional scale values

Page 33: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources
Page 34: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Until the present work, the context of application of the AO flow model was merely the evaluation of the coherence between it’s results, existing conceptual models and historical field data.

Model Outputs

Borehole Scale Estimates

Homogeneous distribution of parameters

Page 35: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Until the present work, the context of application of the AO flow model was merely the evaluation of the coherence between it’s results, existing conceptual models and historical field data.

Distinguish the hydraulic behaviour of different statigraphic units

Model Outputs

Borehole Scale Estimates

Homogeneous distribution of parameters

Page 36: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Until the present work, the context of application of the AO flow model was merely the evaluation of the coherence between it’s results, existing conceptual models and historical field data.

First estimates of hydraulic parameters at the regional level (values ranged from 86 m2/day to 8158 m2/day

Distinguish the hydraulic behaviour of different statigraphic units

Model Outputs

Borehole Scale Estimates

Homogeneous distribution of parameters

Page 37: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Future Model Uses

Reliability pays off:

Page 38: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

•Improved confidence on future simulations of spatial distribution and temporal evolution of state variables

•Basis for the development of different scenarios of the aquifer’s hydraulic behaviour by assuming different water withdrawal regimes or changes on climate conditions

Future Model Uses

Reliability pays off:

Page 39: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

cvrm.ualg.pt

Page 40: Coupling Monitoring Networks and Regional Scale Flow Models for the Management of Groundwater Resources

Thank You