Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled...

38
Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References Coupled Magnetomechanical Modeling of Magnetostrictive Materials with Application to Transducer Design Manik Kumar, Sajan Wahi, Dr. Sushma Santapuri Department of Applied Mechanics Indian Institute of Technology Delhi Manik Kumar, Sajan Wahi, Dr. Sushma Santapuri Coupled Magnetomechanical Modeling of Magnetostrictive Materials 1 / 31

Transcript of Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled...

Page 1: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Coupled Magnetomechanical Modeling ofMagnetostrictive Materials with Application to

Transducer Design

Manik Kumar, Sajan Wahi, Dr. Sushma Santapuri

Department of Applied MechanicsIndian Institute of Technology Delhi

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 1 / 31

Page 2: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Outline

1 Introduction

2 Literature Review

3 Objectives

4 Mathematical Modeling

5 Applications of Transducer Design

6 Rod Actuator Characteristics

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 2 / 31

Page 3: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Outline

1 Introduction

2 Literature Review

3 Objectives

4 Mathematical Modeling

5 Applications of Transducer Design

6 Rod Actuator Characteristics

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 2 / 31

Page 4: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Introduction

Figure 1: Phenomenon of magnetostrictive materials

Magnetostrictive Materials are a class of smart materials thatexhibits coupling between magnetic and mechanical domains.

They undergo change in shape when subjected to externalmagnetic field.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 3 / 31

Page 5: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Why their is need for Rare Earth Materials

� Ferromagnets.

Low magnetostriction ∼100 ppm.

� Rare earth materials(Terbium, Dysprosium).

Low curie point at room temperature.

� Rare earth alloysTerfenol-D (TbxDy1−xFe2)

Maximum magnetostriction ∼1250 ppm.Brittle in nature.

Galfenol (FexGa1−x)

Maximum magnetostriction ∼250 ppm.High tensile strength.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 4 / 31

Page 6: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Potential Applications of Magnetostrictive Material

Figure 2: Applications of magnetostrictive material [Source: Olabi and Grunwald(2008)]

and many more applications . . .

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 5 / 31

Page 7: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Outline

1 Introduction

2 Literature Review

3 Objectives

4 Mathematical Modeling

5 Applications of Transducer Design

6 Rod Actuator Characteristics

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 5 / 31

Page 8: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Magnetostrictive bending actuator

1 Mudivarthi et al. (2008)

Developed 3D Bidirectional Magnetoelastic Model (BCMEM).Computationally expensive model.

2 Graham et al. (2009)

Developed 2D Bidirectional Magnetoelastic Model (BCMEM).Compuatationally efficient as compared to Mudivarthi et al.(2008).

3 Cao et al. (2015)

Incorporates nonlinear magnetomechanical model.Computationally expensive model.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 6 / 31

Page 9: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Outline

1 Introduction

2 Literature Review

3 Objectives

4 Mathematical Modeling

5 Applications of Transducer Design

6 Rod Actuator Characteristics

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 6 / 31

Page 10: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Objectives

a Computationally efficient modeling of magnetostrictive material.

b Design of magnetostrictive actuator.

Computational framework of 2D magnetostrictive rod actuator.

Finite element framework for 1D unimoprh bending actuator.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 7 / 31

Page 11: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Outline

1 Introduction

2 Literature Review

3 Objectives

4 Mathematical Modeling

5 Applications of Transducer Design

6 Rod Actuator Characteristics

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 7 / 31

Page 12: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Energies in Magnetostrictive material

ψ(ε,m) = ψanisotropy + ψmagnetoelastic + ψzeeman

where m, ε are the magnetic moment and elastic strain.

Figure 3: Magnetic domains

ψ(ε,mk, ξk) = Σkξk(ψk

anisotropy + ψkelastic + ψk

zeeman)

where ξk is domain volume fraction given byexp(−ψk

ω)

r∑k=1

exp(−ψkω

).

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 8 / 31

Page 13: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Locally Linearized Constitutive Model

Constrained Locally Linearized Constitutive Model:In nonlinear model, a single energy expression is used for anyparticle orientation whereas in this case a local energy expression isanalytically calculated about each easy axis ck = [c1, c2, c3],

ψcons(m1,m2,m3, L) =ψanisotropy + ψzeeman + ψmagnetoelastic+

L(m21 +m2

2 +m23 − 1)

Using Taylor series expansion upto second order differential.

∂ψkcons∂mk

i

=∂ψkcons∂mk

i

∣∣∣ck

+∂2ψkcons∂mk

imkj

∣∣∣ck(mk

j − ckj ) = 0

[Kk][mk − ck] = [Bk]

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 9 / 31

Page 14: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Locally Linearized Constitutive Model (cont.)

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 10 / 31

Page 15: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Effect of prestress (σ) on nature of B-H curves

Figure 4: Comparison of magnetic induction (B) vs magnetic field (H) between thenonlinear and locally linearized model along [100] at various prestress values.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 11 / 31

Page 16: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Effect of prestress (σ) on nature of λ-H curves

Figure 5: Comparison of magnetostriction (λ) vs magnetic field (H) between thenonlinear and locally linearized model along [100] at various prestress values.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 12 / 31

Page 17: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Effect of magnetic field (H) on nature of B-σ curves

Figure 6: Magnetic Induction (B) vs stress (σ) along [1 0 0] at variousprestress values

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 13 / 31

Page 18: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Effect of magnetic field (H) on nature of ε-σ curves

Figure 7: Strain (ε) vs stress (σ) along [1 0 0] at various prestress values

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 14 / 31

Page 19: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Effect of stress

Figure 8: Effect of stress (σ) on magnetization and magnetostriction

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 15 / 31

Page 20: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

3D Magnetomechanical Governing Equations

General constitutive modelling of magnetostrictive materialsinvolves coupling between the magnetic and mechanical BVPs.

Navier’s equation in weak form is given by∫V

[T · δ S + ρ

∂2u

∂t2· δu + c

∂u

∂t· δu

]dV =∫

∂Vt · δu d∂V +

∫V

fB · δu dV

Also, the magnetostatic governing equation in weak form valid inthe magnetic material medium and the surrounding free space isgiven by ∫

Egradδφ · B dV = 0 (1)

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31

Page 21: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Outline

1 Introduction

2 Literature Review

3 Objectives

4 Mathematical Modeling

5 Applications of Transducer Design

6 Rod Actuator Characteristics

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31

Page 22: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Applications of Transducer Design

� Applications of transducer

1 2D axisymmetric rod actuator.

2 Composite unimorph bending actuator.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 17 / 31

Page 23: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

2D Axisymmetric Transducer Design

Schematic view of Galfenol rod actuator

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 18 / 31

Page 24: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Outline

1 Introduction

2 Literature Review

3 Objectives

4 Mathematical Modeling

5 Applications of Transducer Design

6 Rod Actuator Characteristics

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 18 / 31

Page 25: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Rod Actuator Characteristics

A. Magnetic Flux Distribution

Figure 9: 3D of the norm of magnetic flux density

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 19 / 31

Page 26: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Rod Actuator Characteristics (cont.)

B. Strain Distribution

Figure 10: Axial strain distribution at various prestress values in Galfenolrod (a) 0 MPa, (b) 15 MPa, (c) 30 MPa, (d) 45 MPa, (e) 60 MPa

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 20 / 31

Page 27: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Rod Actuator Characteristics (cont.)

1. Magnetostriction (λ)-Current Density (J0)

-9000 -6000 -3000 0 3000 6000 90000

50

100

150

200

250

Mag

neto

stric

tion

(ppm

)

Current Density (kA/m2)

-J

Figure 11: Magnetostriction (λ) vs current density (J0) for anhystereticmodel at various pre-stress values.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 21 / 31

Page 28: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Rod Actuator Characteristics (cont.)

2. Magnetic Induction (B)-Current Density (J0)

Figure 12: Magnetic induction (B) vs current density (J0) for anhystereticmodel at various pre-stress values.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 22 / 31

Page 29: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Composite Unimorph Transducer

Figure 13: Cantilevered composite magnetostrictive unimorph

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 23 / 31

Page 30: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Composite Unimorph Transducer (cont.)

Figure 14: Beam cross-section

Weak form expression of 1D Euler-Bernoulli Beam∫ L

0(duxdx

N +du2

y

dx2M)dx = 0

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 24 / 31

Page 31: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Composite Unimorph Transducer (cont.)

{NM

}=

[EeffectiveAeffective b(Eal

t222 − Eg

t212 )

b(Ealt222 − Eg

t212 ) EeffectiveIeffective

]{ε0

κ

}+

{−EgAgλEgb

t212 λ

}

Eeffective =(EgAg+EalAal)

(Ag+Aal),

Ieffective = Ig + Ial +Ag(t12 )

2 +Aal(t22 )

2, and Aeffective = Ag +Aal

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 25 / 31

Page 32: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Bending Actuator Characteristics

Figure 15: Tip displacement of cantilevered Galfenol-Aluminium unimorph

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 26 / 31

Page 33: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Bending Actuator Characteristics (cont.)

Figure 16: Free strain (εxx) on Galfenol surface

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 27 / 31

Page 34: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Bending Actuator Characteristics (cont.)

Figure 17: Free strain (εxx) on aluminum surface

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 28 / 31

Page 35: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

Bending Actuator Characteristics (cont.)

Thickness Ratio (tr)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

No

rma

lize

dT

ipD

isp

lace

men

t

100

110

120

130

140

150

160

170

Our Model

Datta Model

Figure 18: Comparison of normalized tip displacement as predicted by ourmodel and Datta et al. (2008)

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 29 / 31

Page 36: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

References

Armstrong, W. D. (1997). Burst magnetostriction in tb 0.3 dy 0.7 fe 1.9.Journal of applied physics, 81(8):3548–3554.

Atulasimha, J. and Flatau, A. B. (2011). A review of magnetostrictiveiron–gallium alloys. Smart Materials and Structures, 20(4):043001.

Cao, Q., Chen, D., Lu, Q., Tang, G., Yan, J., Zhu, Z., Xu, B., Zhao, R.,and Zhang, X. (2015). Modeling and experiments of a laminatedmagnetostrictive cantilever beam. Advances in MechanicalEngineering, 7(4):1687814015573761.

Datta, S., Atulasimha, J., Mudivarthi, C., and Flatau, A. (2008). Themodeling of magnetomechanical sensors in laminated structures.Smart Materials and Structures, 17(2):025010.

Evans, P. and Dapino, M. (2010). Efficient magnetic hysteresis model forfield and stress application in magnetostrictive galfenol. Journal ofapplied physics, 107(6):063906.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 29 / 31

Page 37: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

References (cont.)

Graham, F., Mudivarthi, C., Datta, S., and Flatau, A. (2009). Modelingof a galfenol transducer using the bidirectionally coupledmagnetoelastic model. Smart Materials and Structures, 18(10):104013.

Mudivarthi, C., Datta, S., Atulasimha, J., and Flatau, A. (2008). Abidirectionally coupled magnetoelastic model and its validation using agalfenol unimorph sensor. Smart Materials and Structures,17(3):035005.

Olabi, A.-G. and Grunwald, A. (2008). Design and application ofmagnetostrictive materials. Materials & Design, 29(2):469–483.

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 30 / 31

Page 38: Coupled Magnetomechanical Modeling of …...Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 16 / 31 OutlineIntroductionLiterature

Outline Introduction Literature Review Objectives Mathematical Modeling Transducer Design Actuator Results References

THANK YOU FOR YOUR PATIENCEQUESTIONS ?

Manik Kumar, Sajan Wahi, Dr. Sushma SantapuriCoupled Magnetomechanical Modeling of Magnetostrictive Materials 31 / 31