COUNTRY REPORT PERU - Chiba Uares.tu.chiba-u.jp/peru/pdf/meeting/140307/2014Sympo_03Peru.pdf ·...

25
COUNTRY REPORT PERU Dr. Carlos ZAVALA Dr. Miguel ESTRADA Dr. Zenon AGUILAR – Eng. Alberto BISBAL CISMIDFICUNI Science and Technology Research Partnership for Sustainable Development : SATREPS DHN IGP INDECI UNMSM CON UPT CONIDA National System for Disaster Risk Management (SINAGERD): A new strategic decision model to reduce the disaster risk (LAW 29664 ) Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres CENEPRED SECTORS, REGIONAL & LOCAL GVMTs Strategic level Political level Financial Management on DRM National Development Plan with DRR approach at the 3 government levels CEPLAN

Transcript of COUNTRY REPORT PERU - Chiba Uares.tu.chiba-u.jp/peru/pdf/meeting/140307/2014Sympo_03Peru.pdf ·...

COUNTRY REPORTPERU

Dr. Carlos ZAVALA

Dr. Miguel ESTRADA ‐ Dr. Zenon AGUILAR – Eng. Alberto BISBAL

CISMID‐FIC‐UNI

Science and Technology Research Partnership

for Sustainable Development : SATREPS

DHN IGP  INDECI UNMSM CON  UPTCONIDA

National System for Disaster Risk Management (SINAGERD): A new strategic decision model to reduce the disaster risk 

(LAW 29664 )

Centro Nacional de  Estimación, Prevención y Reducción del Riesgo de Desastres  ‐ CENEPRED

SECTORS, REGIONAL & LOCAL GVMTs

Strategic level

Political level

Financial Management on DRM

National Development Plan with DRR approach at the 3 

government levels ‐ CEPLAN

TECHNICAL TOOLS FOR PLANNING AND MANAGEMENT THE RISK (SOURCE: CENEPRED)

RISK REDUCTION PLAN BY SECTORFOR EXAMPLE: EDUCATION

RISK REDUCTION PLAN BY SECTORFOR EXAMPLE: HOUSING ANDCONSTRUCTION

RISK REDUCTION PLAN FOR DRAIN SYSTEMS AND WATER

SUPPLY

RISK REDUCTION PLAN  OFTRANSPORTATION SYSTEM AND   HIGWAYS AND BRIDGES

NATIONAL PLAN OF RISK  REDUCTION

ACTIONS TAKEN BY CISMID‐FIC‐UNI AFTER PISCO EARTHQUAKE  15/8/2007

THE PISCO QUAKE AUGUST 15TH 2007Geophysical Institute of Peru (IGP) reports the following parameters (2007)

Depth : 26 kmMagnitude : 7.0 ML (Richter)

7.9Mw (moment magnitude)

Epicenter at 74 km on West direction fromPisco. La circle represents a focal inverse mechanism (Tavera, et al 2007)

Time : 18 hrs, 40 min, 53.6 sec.Location : Latitude -13.49°Longitude : -76.85°

ZON

A 2

ZON

A 3

ECUADOR

COLOMBIA

BRASIL

BO

LIV

IA

CHILE

ZONA 1

EXPLORATION OF SOILS

AFTER QUAKE MICROZONING MAP ‐ PISCO

Zone I: with load capacity between 2.0 kg/cm2 to 3.5 kg/cm2 and natural periods less than 0.1 sec.

Zone II: with load capacity between 1.5 kg/cm2 to 2.0 kg/cm2and natural periods less than 0.1 sec.

Zone III: with load capacity between  0.8  kg/cm2 to 1.0 kg/cm2and natural periods between 0.1 sec to  0.16 sec.

Zone IV‐A: conformed of soils of debris and wet mud, Zone IV‐B: wet, loose sand with high liquefaction potential

PROGRESS AND IMPLEMENTATION OF RESULTSOF SATREPS PROJECT

ACTIVITIES DEVELOPED G1 ‐ Seismology

• Seismic monitoring by the cismid ground motion network at lima city

• Ground response analysis for lima city

• Ground motion accelerograph instalation in tacna city

• Ground response analysis for tacna city

• Updating of the ground motion network monitoring center

• Advice to SENCICO for improvement of the peruvianseismic code

CISMID’S STRONG GROUND MOTION NETWORK AT LIMA CITY

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500

DEPT

H (m

)

SHEAR WAVE VELOCITY (m/s)

EMO

0

50

100

150

200

250

0 500 1000 1500 2000

DEPT

H (m

)

SHEAR WAVE VELOCITY (m/s)

MOL

0

50

100

150

200

250

0 500 1000 1500 2000

DEPT

H(m)

SHEAR WAVE VELOCITY (m/s)

CSM

0

50

100

150

200

250

0 500 1000 1500 2000

DEPT

H (m

)

SHEAR WAVE VELOCITY (m/s)

PPI

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000 3500

DEPT

H (m

)

SHEAR VELOCITY (m/s)

CMA

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000 3500

DEPT

H (m

)

SHEAR WAVE VELOCITY (m/s)

VSV

GPS ANTENNA

ACCELEROGRAPH INSTALLATION AT UPT STATION ‐ TACNA CITY

PROFILES DISTRICT

TAC1, TAC3, TAC5 CIUDAD NUEVA

TAC6 TACNA

TAC2, TAC4 POCOLLAY

GROUND RESPONSE ANALYSIS FOR TACNA CITY

REAL TIME MONITORING OF GROUND MOTION ACCELEROGRAPHS ‐ REDACIS

IMPROVEMENT OF SEISMIC NEW STANDARDS WITH SATREPS OUTPUTS TARGET RESPONSE SPECTRA FOR SEISMIC ZONE 3 IN PERU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

AC

EL

ER

AC

IÓN

ES

PE

CT

RA

L (

g)

PERIODO (s)

COMPARACIÓN DE ESPECTROS DE DISEÑO - E-030 - IBC - EPU - TR=475 AÑOS

Norma E030 Suelo Tipo 1

Norma E030 Suelo Tipo 2

Norma E030 Suelo Tipo 3

IBC Suelo Tipo B

IBC Suelo Tipo C

IBC Suelo Tipo D

Espectro Peligro Uniforme Suelo Tipo B

Espectro Peligro uniforme Suelo Tipo C

Espectro Peligro Uniforme Suelo Tipo D

IMPLEMENTACION DE LA REDSSAT - IGP

ACTIVITIES DEVELOPED G2 ‐ Tsunami

• Elaborate tsunami scenarios using the seismic source.

• To develop propagation and inundation models

• Evaluate the probable impact over the buildings.

• Propose countermeasures to reduce the impact.

TSUNAMI SIMULATION  FOR EACH EARTHQUAKE SCENARIO

Propagation and Inundation modeling for the 4th Scenario

ReGiD, IRIDeS, Tohoku University

ReGiD, IRIDeS, Tohoku University

TSUNAMI SIMULATION  FOR EACH EARTHQUAKE SCENARIO

Model_01

Max. = 6.87

Model_02

Max. = 7.82

Model_03

Max. = 6.46

Model_04

Max. = 7.98

Model_05

Max. = 6.09

Model_06

Max. = 7.55

Model_07

Max. = 6.93

0 1 2 3 4 5 6 7 8 9 10

Inund. depth (m)

Model_08

Max. = 6.21

0 1 2 3 4 5 6 7 8 9 10

Inund. depth (m)

Model_09

Max. = 7.00

0 1 2 3 4 5 6 7 8 9 10

Inund. depth (m)

Model_10

Max. = 6.15

0 1 2 3 4 5 6 7 8 9 10

Inund. depth (m)

Model_11

Max. = 7.86

0 1 2 3 4 5 6 7 8 9 10

Inund. depth (m)

Model_12

Max. = 6.59

0 1 2 3 4 5 6 7 8 9 10

Inund. depth (m)

DAMAGE ESTIMATION – La Punta 

B. Adriano, E. Mas, S. Koshimura, Y. Fujii (2013). Proceedings of International Sessions in Coastal Engineering, JSCE, Vol.4, 2013, JAPAN

Applying fragility curve (FC) for a probabilistic estimation

Low Medium High

RC 54 32 0

Masonry 35 399 113

Wood 3 9 126

Total 92 440 239

Suppasri et al, 2012 Nat Hazards

Avrg. S.D. Max Avrg. S.D. Max Avrg. S.D. MaxKids 38 2 42 4 1 7 4 1 7Teens 29 3 34 4 1 7 4 1 8Adult 28 1 30 4 0 5 4 0 5Elder 47 1 50 4 1 6 4 1 6Car 32 34 87 - - - 34 35 100

Total (pers.) 271 - - 16 - - 153 - -

Horizontal Vertical Horiz. & VerticalType

(*) Unit: person / vehicle

Casualty Estimation Results

SIMULATION OF HORIZONTAL – VERTICALEVACUATION AND CASUALTIES ASSESTMENT

ACTIVITIES DEVELOPED G3 ‐ Buildings

• Implementation of seismic monitoring building network

• Verification of materials for masonry buildings

• Implementation of data base for masonry & concrete walls

• Test of walls considering perpendicular wall contribution

NATIONAL UNIVERSITY OF ENGINEERINGFACULTY OF CIVIL ENGINEERING

JAPAN-PERU CENTER FOR EARTHQUAKEENGINEERING RESEARCH ANDDISASTER MITIGATION - CISMID

ITK1‐00x (CentUNI)ITK2‐00x (G2‐FIC)

ITK3‐00x  (HOSP)3 Buildings in Lima 

ITK Sensor Building Monitoring Network

Material conventional. Widely used for housing• Low cost• Good sound and heat insulation• Easy availability of materials and 

skilled labour

MASONRY BUILDINGS

TEST PROGRAM

Direct shear specimen(48 specimens)

Wallets(48 specimens)

Prism(48 specimens)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150

E (kg/cm

2)

Compresion Stress (kg/cm2)

Artesanal

Industrial

E= 500 f´m Current value of NTE‐070 Standards should be modified

E = 439f'm

EXPERIMENTAL DATABASE

OF MASONRYWALLS TEST

Typical Wall

WS-SATREPS March, 2014 @ Tokyo, Japan

QUAD-LINEAR MODEL

• 4 Linear segments

• Craking Point

• Yielding Point

• Maximun Point

• Ultimate Point

Cyclic Load Test Plane and H – Masonry and Low Ductility Concrete Wall

‐15

‐10

‐5

0

5

10

15

1

201

401

601

801

1,001

1,201

1,401

1,601

1,801

2,001

2,201

2,401

2,601

2,801

3,001

3,201

3,401

3,601

3,801

4,001

4,201

4,401

4,601

4,801

5,001

5,201

5,401

5,601

5,801

6,001

6,201

6,401

6,601

6,801

7,001

7,201

7,401

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

-0.015 -0.012 -0.009 -0.006 -0.003 0 0.003 0.006 0.009 0.012 0.015S

tres

s (k

g/c

m2)

Drift

CISMID/FIC/UNI - SATREPS Confined Masonry Wall TestsInfluence of Brick type use- Thickness 15 cm

Comparison with Plane and H wall

SolidHandmade

SolidFactory

TubularFactory

ACTIVITIES DEVELOPED G4 – Damage Assessment

• Geo‐spatial dataset construction from satellite imagery (PRISM,Landsat, IKONOS, WV‐2, etc.)

• Building inventory construction and vulnerability assessmentusing spatial information such as satellite image and censusdata

• Building damage estimation for scenario earthquake based oninventory data

• Development of damage detection methodologies usingremotely sensed data

Damage Assessment of Scenario Earthquake

Scenario Earthquake

Building Inventory• Field survey• GIS and Remote sensing data

Ground Motion

Fragility Curve

Building Damage Distribution

Flow of Building Damage Assessment

(Tokyo Tech., Chiba Univ. and CISMID)

Building Damage Ratio

INEI Census Data

CISMID Field Survey Data・Building  Stories, Structure, Use typeof typical block.

Lima 11 districts (5500 blocks)(2007~)

Stories:16FStructure:RCUse:Apartment

Satellite Data・Digital surface model(DSM) by Stereo images to estimate building height

whole Lima  (66000blocks)(2006~2008)

+ ⇒

Block

EstimatedHeight ofblock

Field Survey Data・Number of buildings, Stories, Household, and Use type

Lima 8 districts (50 block )(2010~2013)

Block

+

+

+

Block

Whole Lima (75000blocks)(2007)

Social Class1~5 (Low~high)

EstimatedHeight(m)

Total number of households in Lima: 1,840,000

‐ Adobe etc: 290,000   (A)

‐ Low earthquake‐resistant masonry: 370,000   (M1+M2)

‐ High earthquake‐resistant masonry: 1,100,000   (M3+M4)

‐ RC building: 80,000   (M5+M6)

Ratio of Low Earthquake‐resistant Building ( A + M1 + M2 ) / ALL

Distribution of Vulnerable Buildings

Adobe etc.(Low-rise)

Non‐engineered masonry (Low-rise)

Reinforced or confined masonry with flexible slabs (Low-rise)

Reinforced or confined masonry with rigid slabs(Low-rise) (Mid-rise)

Reinforced concrete frames(Mid-rise) (High-rise)

M1

M2

M3 M4

M5 M6

ABuilding Construction TypeA

12 broadband slip models

9 possible starting points considering  of rupture for each slip model

Scenario Earthquake

Pulido (2013) estimated PGA maps of 108 (12 x 9) scenario earthquakes, their average, and standard deviation

Mw 8.9 Gigantic Earthquake

MAX : 684gal

5km

MAX : 1036gal

Average + one s.d.

5km

Average

PGA(cm/s2)PGA(cm/s2)

Ground Motion (PGA Map)

Development of fragility function for RC buildings

Numerical model

0

5

10

15

20

25

30

35

40

0

100

200

300

400

500

600

700

800

PGA (cm/s2)

Cou

nt

No damage Light Moderate Severe Collapse

Number of occurrences of each damage state

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800PGA (cm/s2)

P[D

S >

DS

i, P

GA

]

DS > L

DS > M

DS > S

DS = C

Fragility function

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200

Pro

bab

ility

of

Dam

age (%)

(1)(2)

(3)(4)

(5)

(1) & (3): Matsuzaki et al(2013)(4) & (5): Quiroz and Maruyama (2014)(2): Estimated from (1)&(3)

Classification of visual interpretation:

By EMS1998

Classification of field survey:

By CISMID

Grade1 Fall of small piecesonly

SIN DAÑO(No damage)

Grade2 Moderate non-structural damage

LEVE (Slight damage)

Grade3 Large cracks, non-structural damage

SEVERO (moderately-

Severe)

Grade4 Serious failure of walls, partial failure of roofs and floors

GRAVE(Serious)

Grade5 Total collapse

Fragility Curve (Serious Damage)Probability

PGA (cm/s/s)

(

(

(

(

(

(1) Adobe etc. (A)

(2) Low quake‐resistant masonry (M1+M2)

(3) High quake‐resistant masonry (M3+M4)

(4) RC mid‐rise building (M5)

(5) RC high‐rise building (M6)

Damage EstimationTotal Number of Serious Damage Households : 430,000

PGA (Average + one s.d.)

Ratio of Low Earthquake‐resistant 

Building ( A + M1 + M2 ) / ALL

Ground Motion Map (PGA)

Synthetic Aperture Radar (SAR) Observation for Earthquake Damage Detection

ALOS/PALSAR Images

(a) 2007/7/12 [before Earthq.]       (b)  2007/8/27 [after Earthq.]

Schematic Figure of Backscattering Characteristics of Buildings

ACTIVITIES DEVELOPED G5 – Disaster Mitigation Planning

1. Formulate Land-use Policies for Disaster Mitigation

2. Develop Local Disaster Mitigation Plans for the Study Areas

3. Awareness Raising and Dissemination Activities

• POPULATION RESETTLEMENT ACT FOR AREAS WITH VERYHIGH RISK CAN NOT BE MITIGATED.

Law 29869. Regulated on October 23, 2013 by SupremeDecree No. 115-2013-PCM

Local governments will submitted to Ministry of Housing andSanitation, the feasibility of the resettlement plan. Otherwise,suggest measures to reduce damage to any disaster.

1. Formulate Land-use Policies for DisasterMitigation

On going Activities:

• Standard for Construction Earthquake Resistant (in adoption).National Building Regulations. Ministry of Housing

• Guidelines for mapping seismic hazard. CENEPRED

• Technical guidance for the post-disaster damage assessment usinggeoespacial information. INDECI-CISMID

• GUIDELINES FOR IMPLEMENTATION TSUNAMIDRILLS FOR NATIONWIDEDIRECTIVE Nº 001-2014-INDECI/10.3 (formulation)This directive regulates the steps for the development of drillsTsunami Evacuation in coastal areas. It also includesguidelines for vertical evacuation in coastal urban areas withbuildings over 3 floors.

2. Develop Local Disaster Mitigation Plansfor the Study Areas

New macrozonation

• Includes work developed by researches fromSATREPS Project.

• Changes in acceleration values. (Proposed by G1)

2. Develop Local Disaster Mitigation Plansfor the Study Areas

• 2 AWARENESS CENTER IN PERU

• Lima Awareness Center in CISMID• Arequipa Awareness Center in INDECI

Installation Place: CISMID Awareness Center Hall

INDECI Arequipa Public Awareness Center

Schedule: Procurement- June and July, 2013Delivery- in February, 2014

INDECI ArequipaCISMID

3. Awareness Raising and Dissemination Activities

EWBS PROJECT

DHN

IGP

COENControl

PC

WL LAN

Internet

EWBSServer

DigitalTV

UP Link

IRD

INDECICOEN IRTP

COE• Activación• Código de Área• Mensaje de Texto

MTC - IRTP

Receptor

TRANSMISSION STATIONS

Cerro Azul

Atico

Caleta Grau

La Planchada

TIDE GAGES

Lima

Trujillo

Yungay

Cañete

Pisco

Arequipa

Camaná

Ilo

La Cruz

Bayovar

Huarmey

Huacho

Land use: Location of Schools, Hospitals, Recreational

Technical Tools for planning and managementthe risk  in Peru Using SATREPS OUTPUTS

RISK REDUCTION PLAN BY SECTOR FOR EXAMPLE: LOCAL GOVERNMENT

NATIONAL PLA

N OF RISK  

RED

UCTION

G1: Superficial Movement   Microzoning Map

G2: Superficial Movement   Tsunami Propagation Map

G3: Geoespacial Data Base   Capacity & Behavior ofBuilding =  Vulnerability

G4: Damage Evaluation & Detection   Risk Map

G5: Disaster Mitigation Plan   Stakeholder Plan

Vertical and Horizontal Evacuation Routes and countermeasures

Vulnerability of Buildings – Retrofit policiesLimit of Story Height – Recommendations for New buildings 

Identification of Risk zones – Plans for Relocations Identification of number of casualties prior event 

Plans for countermeasures for disaster attentionEmergency budget for restoration‐ Emergency action plan

Final Remarks

• The goals has been achieved on SATREPS project.

• The develop of methodologies and rules for the evaluation of theearthquake and tsunami risk under SATREPS project, has beenadopted for the National Government by the Program PREVAEDPP‐068 and assure sustainability on time for the project.

• The dissemination of the achievements of SATREPS project must beconducted to promote a disaster risk reduction culture amongdecision makers and also general public for safe and sustainable cities

GraciasThank Youありがとう

VISIT PERU

Machu Picchu ‐ Cuzco Santa Catalina ‐ Arequipa

San IsidroLima