Cosmic Ray Anisotropy

33
Cosmic Ray Cosmic Ray Anisotropy Brian Kolterman Brian Kolterman LANL December 2006 LANL December 2006

description

Cosmic Ray Anisotropy. Brian Kolterman LANL December 2006. The Hill. Trigger Rate. Dec. H.A. Time Binning. Sidereal: coordinates fixed with respect to background stars Universal: solar time, displays day-night effects as well as Compton-Getting effect - PowerPoint PPT Presentation

Transcript of Cosmic Ray Anisotropy

Page 1: Cosmic Ray  Anisotropy

Cosmic RayCosmic Ray Anisotropy

Brian KoltermanBrian Kolterman

LANL December 2006LANL December 2006

Page 2: Cosmic Ray  Anisotropy

The Hill

H.A.

Dec.

TriggerRate

Page 3: Cosmic Ray  Anisotropy

Time Binning

• Sidereal: coordinates fixed with respect to background stars

• Universal: solar time, displays day-night effects as well as Compton-Getting effect

• Anti-Sidereal: non-physical, added for test of “sidebands”

Page 4: Cosmic Ray  Anisotropy

Forward Backward Asymmetry

FBn =Rn(F )−Rn(B)Rn(F ) + Rn(B)

FB

An (θ) =γn cosn(θ −φn)Rn(θ) =γn cosn(θ −φn) +1

Rn(F ) =γn cosn(θ −φn +α) +1Rn(B) =γn cosn(θ −φn −α)+1

θ = Right Ascention

A(θ) = An(θ)n=1

3

Page 5: Cosmic Ray  Anisotropy

Forward Backward Asymmetry

FBn =−γnsinnα sinn(θ '−φn)

1+γn cosnα cosn(θ '−φn)≈−γnsinnα sinn(θ '−φn)

for γn = 1

θ ' = Hour Angle = Local Sidereal Time(degrees) - θ

Fit FBn to Cn cosnθ '+ Dnsinnθ '

Define An =−γnsinnα

then Cn =−Ansinnφn and Dn =An cosnφn

Cn2 + Dn

2 =An2 =γn

2 sin2 nα

tan−1(−Cn

Dn

) =φn

Page 6: Cosmic Ray  Anisotropy

Determining the Fourier components of the Sky Anisotropy

Page 7: Cosmic Ray  Anisotropy

Sidereal Sky Map (Six Years)

Page 8: Cosmic Ray  Anisotropy

Sidereal Sky Profiles (Six Years)

Page 9: Cosmic Ray  Anisotropy

Sidereal Sky Profiles (Six Years)

Page 10: Cosmic Ray  Anisotropy

Sidereal Sky (1st & 2nd 3 Years)

Page 11: Cosmic Ray  Anisotropy

Sid. Profiles (1st & 2nd 3 Years)

Page 12: Cosmic Ray  Anisotropy

Central Valley Position

Page 13: Cosmic Ray  Anisotropy

Central Valley Depth

Page 14: Cosmic Ray  Anisotropy

Central Valley Depth

Page 15: Cosmic Ray  Anisotropy

Fit Parameters

Page 16: Cosmic Ray  Anisotropy

Energy Dependence

E =EΦ(E)

θ ,E∑ A(θ,E)

Φ(E)θ ,E∑ A(θ,E)

Φ E( ) ∝ E−2.7

A θ,E( ) = Effective Area

For θ = 0° −25° E =2.3 TeV

For θ = 25° −50° E =4.0 TeV

Page 17: Cosmic Ray  Anisotropy

Energy Dependence

2.3 TeV 4.0 TeV

Page 18: Cosmic Ray  Anisotropy

Energy Dependence

Page 19: Cosmic Ray  Anisotropy

Systematic Checks

• Valley Position in UT & Anti-ST

• UT Compton-Getting effect

• Anti-Sidereal Analysis

• Seasonal Effects

• Stability of Fitting Procedure

• Monte Carlo

• Coronal Mass Ejections

Page 20: Cosmic Ray  Anisotropy

Valley Position in UT & Anti-ST

Page 21: Cosmic Ray  Anisotropy

UT Compton-Getting Effect (1935)

EARTHSUN12 UT

0 UT

CR Excess6 UT

CR Deficit18 UT

Δα(θ )

α= [(2 + γ )(v0 / c)]cosθ

Δα (θ )

α= fractional asymmetry ≈ 10−3 −10−4

v0 = velocity of detector relative to isotropic frame

γ = CR spectral index = 2.7

θ = CR angle relative to v0

v0 ≈30 km/s

Page 22: Cosmic Ray  Anisotropy

Universal Time Sky Map

Page 23: Cosmic Ray  Anisotropy

Universal Time Profiles

Page 24: Cosmic Ray  Anisotropy

Anti-Sidereal Sky Map

Page 25: Cosmic Ray  Anisotropy

Seasonal Sky Maps

Winter-Spring = Nov. - Apr.

Spring-Summer = Apr. - Jul.

Summer-Fall = Jul. - Nov.

Page 26: Cosmic Ray  Anisotropy

Stability of Fitting Procedure

Yr 1 Yr 6

Page 27: Cosmic Ray  Anisotropy

Monte Carlo Checks

• No Anisotropy

• Reproduction of Observed Sky (w/scaling)

• Square Hole Input (ST & UT)

• Galactic Ridge

• Sidereal Sky With Inner Galaxy Removed

• UT Modulation (Seasonal Effects)

Page 28: Cosmic Ray  Anisotropy

Monte Carlo Checks

Page 29: Cosmic Ray  Anisotropy

Monte Carlo Checks

Page 30: Cosmic Ray  Anisotropy

Monte Carlo Checks

Page 31: Cosmic Ray  Anisotropy

Monte Carlo Checks

Input Output

Page 32: Cosmic Ray  Anisotropy

Sidereal Sky Map

Page 33: Cosmic Ray  Anisotropy

Coronal Mass EjectionsApr. 12 2001

Before After