Corresponding Person: Dr. Yuh-Jing Hwang Phone: 886-2-33652200, Fax: 886-2-23677849 March 2008

1
Corresponding Person: Dr. Yuh-Jing Hwang Phone: 886-2-33652200, Fax: 886-2-23677849 March 2008 ALMA Band-1 Front-End Development Chau-Ching Chiong , Yuh-Jing Hwang , Hon-Yeh Chang*, Yo-Shen Lin* Su-Wei Chang , Tashun Wei , Wei-Ting Wo ng , Huei-Wang ‡† and Ming-Tang Chen ‡: Academia Sinica Institute of Astronomy & Astrophysics, Taipei, Taiwan, R.O.C. *: Department of Electrical Engineering, National Central University, Chung-Li, Taiwan, R.O.C. †: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. Introduction A series of metamorphic high-electron-mobility transistor (MHEMT) mon olithic microwave integrated circuits (MMICs) for Acatama Large Millim eter Array Band-1 Receiver have been developed under collaboration wit h NTUEE and NCUEE. The circuit include the 31.3-45.0GHz low-noise a mplifiers, Q-band balanced diode mixer, and 4-12GHz IF amplifiers. The MMIC chips are packaged in ASIAA Receiver laboratory to form circuit modules. Cryogenic testing will be performed for the circuit modules. Related waveguide devices, such as bandpass filters are also developed under collaboration with NCUEE. Fig. 1. MMIC chips for ALMA Band-1 receivers, (a) 30-50GHz three-stage low noise amplifier design by NCUEE, (b) 35-55GHz three stage low-noise amplifier designed by NCUEE, (c) Q-band diode balanced mixer for RF frequency 31.3- 45GHz, LO frequency 27.3-33GHz and 4-12GHz IF frequency designed by NTUEE. (d) 4-12GHz shunt-feedback low-noise amplifier designed by NTUEE. Table I. Room Temperature performance of the MMICs measured by pro be station. Fig. 4. Measured results of MMIC chips (a) 31.3-45GHz 3-stage LNA gain at room temperature (b) 31.3-45GHz 3-stage LNA noise figure at room temperature . (c) Conversion gain and isolations of the balanced diode mixer.. Fig. 2. Waveguide bandpass filter design and mechanical layout. Chip LNA 07 LNA09 Mixer057 IF amp f RF (GHz) 30~50 30~47 31.3~45.0 - f LO (GHz) - - 27.3~33.0 - f IF (GHz) - - 4.0~12.0 4.0-12.0 Gain (dB) 25~30 20~25 -10~-13 30 Noise Figure (dB) 2.8~4.0 4.5~7.0 - 3~4 Return Loss (dB) -3.0~-9.0 -3.0-12.0 <-10 Size (mm xm m) 2.0 x 1.0 1.5x 1.0 1.5x 1.0 2.0x1.0 DC Power (m W) 140 112 - 140 Vd (V) 2.0 2.0 - 2.0 Vg (V) -0.4 -0.2 - -0.4 Id(mA) 70 56 - 70 P LO (dBm) - - 11.0 (a) (b) (c) (d) L1 L2 L3 L4 L5 L6 L7 L8 L9 WR22 INPUT WR22 OUTPUT W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 Resonator L1&L9 L2&L8 L3&L7 L4&L6 L5 Length 2.2mm 2.6mm 2.7mm 2.8mm 2.7mm Opening W1&W10 W2&W9 W3&W8 W4&W7 W5&W6 Width 5.1mm 4.7mm 4.5mm 4.4mm 4.4mm Size of WR22 : 5.7*2.8*5 mm (W*H*L) *9th-order BPF Design: 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 -2 0 -1 5 -1 0 -5 0 5 10 15 20 25 30 35 40 In sersion L oss (d B ) F req u en cy (G H z) m easu re_ch ip 1 d B (S21) m easu re_ch ip 2 d B (S21) sim u la tio n dB (S21) 0 1 2 3 4 5 6 20 25 30 35 40 45 50 Freq.(G H z) N oise Figure (dB) LN A 2006 M easured LN A 2006 sim ulation LN A 2007 m easured LN A 2007 sim ulation LO = 33 G H z -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 0 2 4 6 8 10 12 14 16 IF Frequency (G H z) CL and ISO (dB CL ISO(LO) ISO(RF) Fig. 3. Cryogenic Testing effort on the devices (left) interior structure of a packaged Q-band LNA (right) configuration of the LNA for gain testing in 20K close cycle refrigerator chamber. (a) (b) (c)

description

WR22 INPUT. WR22 OUTPUT. W1 W2 W3 W4 W5 W6 W7 W8 W9 W10. L1 L2 L3 L4 L5 L6 L7 L8 L9. ALMA Band-1 Front-End Development - PowerPoint PPT Presentation

Transcript of Corresponding Person: Dr. Yuh-Jing Hwang Phone: 886-2-33652200, Fax: 886-2-23677849 March 2008

Page 1: Corresponding Person:   Dr. Yuh-Jing Hwang Phone: 886-2-33652200,  Fax: 886-2-23677849 March 2008

Corresponding Person: Dr. Yuh-Jing HwangPhone: 886-2-33652200, Fax: 886-2-23677849

March 2008

ALMA Band-1 Front-End DevelopmentChau-Ching Chiong ‡, Yuh-Jing Hwang ‡, Hon-Yeh Chang*, Yo-Shen Lin* Su-Wei Chang ‡, Tashun Wei ‡, Wei-Ting

Wong ‡, Huei-Wang ‡† and Ming-Tang Chen‡ ‡: Academia Sinica Institute of Astronomy & Astrophysics, Taipei, Taiwan, R.O.C.

*: Department of Electrical Engineering, National Central University, Chung-Li, Taiwan, R.O.C.†: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.

IntroductionA series of metamorphic high-electron-mobility transistor (MHEMT) monolithic microwave integrated circuits (MMICs) for Acatama Large Millimeter Array Band-1 Receiver have been developed under collaboration with NTUEE and NCUEE. The circuit include the 31.3-45.0GHz low-noise amplifiers, Q-band balanced diode mixer, and 4-12GHz IF amplifiers. The MMIC chips are packaged in ASIAA Receiver laboratory to form circuit modules. Cryogenic testing will be performed for the circuit modules. Related waveguide devices, such as bandpass filters are also developed under collaboration with NCUEE.

Fig. 1. MMIC chips for ALMA Band-1 receivers, (a) 30-50GHz three-stage low noise amplifier design by NCUEE, (b) 35-55GHz three stage low-noise amplifier designed by NCUEE, (c) Q-band diode balanced mixer for RF frequency 31.3-45GHz, LO frequency 27.3-33GHz and 4-12GHz IF frequency designed by NTUEE. (d) 4-12GHz shunt-feedback low-noise amplifier designed by NTUEE.

Table I. Room Temperature performance of the MMICs measured by probe station.

Fig. 4. Measured results of MMIC chips (a) 31.3-45GHz 3-stage LNA gain at room temperature (b) 31.3-45GHz 3-stage LNA noise figure at room temperature . (c) Conversion gain and isolations of the balanced diode mixer..

Fig. 2. Waveguide bandpass filter design and mechanical layout.

Chip LNA 07 LNA09 Mixer057 IF amp

fRF(GHz) 30~50 30~47 31.3~45.0 -

fLO(GHz) - - 27.3~33.0 -

fIF(GHz) - - 4.0~12.0 4.0-12.0

Gain (dB) 25~30 20~25 -10~-13 30

Noise Figure (dB) 2.8~4.0 4.5~7.0 - 3~4

Return Loss (dB) -3.0~-9.0 -3.0-12.0 <-10

Size (mm xmm) 2.0 x 1.0 1.5x 1.0 1.5x 1.0 2.0x1.0

DC Power (mW) 140 112 - 140

Vd (V) 2.0 2.0 - 2.0

Vg (V) -0.4 -0.2 - -0.4

Id(mA) 70 56 - 70

PLO(dBm) - - 11.0

(a) (b)

(c) (d)

L1 L2 L3 L4 L5 L6 L7 L8 L9

WR22 INPUT

WR22 OUTPUT

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

Resonator L1&L9 L2&L8 L3&L7 L4&L6 L5

Length 2.2mm 2.6mm 2.7mm 2.8mm 2.7mm

Opening W1&W10 W2&W9 W3&W8 W4&W7 W5&W6

Width 5.1mm 4.7mm 4.5mm 4.4mm 4.4mm

Size of WR22 :

5.7*2.8*5 mm

(W*H*L)

*9th-order BPF Design:

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

Inse

rsio

n L

oss

(dB

)

Frequency (GHz)

measure_chip1 dB(S21) measure_chip2 dB(S21) simulation dB(S21)

0

1

2

3

4

5

6

20 25 30 35 40 45 50

Freq. (GHz)

Noi

se F

igur

e (d

B)

LNA 2006 MeasuredLNA 2006 simulationLNA 2007 measuredLNA 2007 simulation

LO = 33 GHz

-50-45-40-35-30-25-20-15-10-50

0 2 4 6 8 10 12 14 16

IF Frequency (GHz)

CL and

ISO

(dB

)

CLISO(LO)ISO(RF)

Fig. 3. Cryogenic Testing effort on the devices (left) interior structure of a packaged Q-band LNA (right) configuration of the LNA for gain testing in 20K close cycle refrigerator chamber.

(a)

(b)

(c)