Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo...

93
Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black holes and cosmology) Gonzalo J. Olmo Alba Thesis advisor: José Navarro Salas Universidad de Valencia

Transcript of Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo...

Page 1: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Gonzalo J. Olmo

Correcciones cuánticas de agujeros negrosy

cosmología

(or Quantum correlations, black holes and cosmology)

Gonzalo J. Olmo Alba

Thesis advisor: José Navarro Salas

Universidad de Valencia

Page 2: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 2/26

Outline

Page 3: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 2/26

Outline

Part I:Quantum correlations and black holes Subject: New approach for radiation problems in curved space. Structure:

Black hole evaporation following the standard formalism. Difficult application of the standard approach when

backreaction effects are considered. New approach to solve the problems: correlation functions.

Page 4: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 2/26

Outline

Part I:Quantum correlations and black holes Subject: New approach for radiation problems in curved space. Structure:

Black hole evaporation following the standard formalism. Difficult application of the standard approach when

backreaction effects are considered. New approach to solve the problems: correlation functions.

Part II:Cosmology Subject: Cosmic speed-up due to new gravitational dynamics? Structure:

Observational evidence for the cosmic accelerated expansion. Possible explanations: dark energy, modified dynamics, . . . Modified dynamics:f (R) gravities. Analyze the solar system constraints on these theories.

Page 5: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 3/26

Part I:Quantum correlations

andblack holes

Page 6: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Page 7: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Consider a scalar field

φ(x) = ∑[aiui(x)+a†i u∗i (x)]

Page 8: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Consider a scalar field

“IN” expansion:

φ(x) = ∑i[aini uin

i (x)+aini

†uini∗(x)]

Vacuum state:aini |0〉in = 0

Page 9: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Consider a scalar field

“IN” expansion:

φ(x) = ∑i[aini uin

i (x)+aini

†uini∗(x)]

Vacuum state:aini |0〉in = 0

“OUT” expansion:

φ(x) = φH +φI+

φH = ∑ j [aHj uH

j (x)+aHj

†uH

j∗(x)]

φI+ = ∑ j [aoutj uout

j (x)+aoutj

†uoutj∗(x)]

Vacuum state:aouti |0〉out = 0

Page 10: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 4/26

Gravitational collapse and quantization

Consider a scalar field

“IN” expansion:

φ(x) = ∑i[aini uin

i (x)+aini

†uini∗(x)]

Vacuum state:aini |0〉in = 0

“OUT” expansion:

φ(x) = φH +φI+

φH = ∑ j [aHj uH

j (x)+aHj

†uH

j∗(x)]

φI+ = ∑ j [aoutj uout

j (x)+aoutj

†uoutj∗(x)]

Vacuum state:aouti |0〉out = 0

In general|0〉in 6= |0〉out

Page 11: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficientsFUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Page 12: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Page 13: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Outside the Black Hole:

uoutj = ∑i [α ji uin

i +β ji uin∗i ]

aouti = ∑ j [α∗i j ain

j −β∗i j ainj

†]

α ji = (uoutj ,uin

i ) , β ji =−(uoutj ,uin∗

i )

Page 14: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Outside the Black Hole:

uoutj = ∑i [α ji uin

i +β ji uin∗i ]

aouti = ∑ j [α∗i j ain

j −β∗i j ainj

†]

α ji = (uoutj ,uin

i ) , β ji =−(uoutj ,uin∗

i )

At the horizon:

uHj = ∑i [γ ji uin

i +η ji uin∗i ]

aHi = ∑ j [γ∗i j ain

j −η∗i j ainj

†]

γ ji = (uHj ,uin

i ) , η ji =−(uHj ,uin∗

i )

Page 15: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Vacuum state:|0〉in = S|0〉out

S= S(α,β,γ,η)

Outside the Black Hole:

uoutj = ∑i [α ji uin

i +β ji uin∗i ]

aouti = ∑ j [α∗i j ain

j −β∗i j ainj

†]

α ji = (uoutj ,uin

i ) , β ji =−(uoutj ,uin∗

i )

At the horizon:

uHj = ∑i [γ ji uin

i +η ji uin∗i ]

aHi = ∑ j [γ∗i j ain

j −η∗i j ainj

†]

γ ji = (uHj ,uin

i ) , η ji =−(uHj ,uin∗

i )

Page 16: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 5/26

Bogolubov coefficients

FUTURE = "OUT" region

I−

I+

Incomingmatter

Flat geometry

BH geometry

Singularity

Event H

orizo

n

Outside the BH

= "IN" regionPAST

Future

Vacuum state:|0〉in = S|0〉out

S= S(α,β,γ,η)

Outside the Black Hole:

uoutj = ∑i [α ji uin

i +β ji uin∗i ]

aouti = ∑ j [α∗i j ain

j −β∗i j ainj

†]

α ji = (uoutj ,uin

i ) , β ji =−(uoutj ,uin∗

i )

At the horizon:

uHj = ∑i [γ ji uin

i +η ji uin∗i ]

aHi = ∑ j [γ∗i j ain

j −η∗i j ainj

†]

γ ji = (uHj ,uin

i ) , η ji =−(uHj ,uin∗

i )

Number of particles:

in〈0|Nouti |0〉in = ∑k |βik|2

Page 17: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 6/26

Black Holes evaporate

Number of particles detected atI+ (Hawking 1974):

in〈0|Nouti |0〉in = ∑k |βik|2 = 1

e8πMωi−1

⇒ Planckian spectrum atT = ~

8πκBM

Page 18: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 6/26

Black Holes evaporate

Number of particles detected atI+ (Hawking 1974):

in〈0|Nouti |0〉in = ∑k |βik|2 = 1

e8πMωi−1

⇒ Planckian spectrum atT = ~

8πκBM

Uncorrelated outgoing radiation→ THERMAL state

(Parker 1975),(Wald 1975)

Page 19: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 6/26

Black Holes evaporate

Number of particles detected atI+ (Hawking 1974):

in〈0|Nouti |0〉in = ∑k |βik|2 = 1

e8πMωi−1

⇒ Planckian spectrum atT = ~

8πκBM

Uncorrelated outgoing radiation→ THERMAL state

(Parker 1975),(Wald 1975)

BIG PROBLEM : quantum information not radiated (Hawking 1976)

Apparent conflict betweenQM andGR:

Non-unitary evolution of quantum states

(Information Loss Problem)

Page 20: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 7/26

Evaporation with backreaction

The outgoing radiation modifies the geometry. Thiseffect (backreaction) could restore the correlations.

Page 21: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 7/26

Evaporation with backreaction

The outgoing radiation modifies the geometry. Thiseffect (backreaction) could restore the correlations.

Charged black holes represent good toy models.A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Strong correlations appear in the outgoing radiation:

Crel =Cwbr(x1,x2)Cnbr(x1,x2)

∼ e2κ|x1−x2|

|x1−x2|4 whereC(x1,x2)≡ in〈0|φ(x1)φ(x2)|0〉in

Page 22: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 7/26

Evaporation with backreaction

The outgoing radiation modifies the geometry. Thiseffect (backreaction) could restore the correlations.

Charged black holes represent good toy models.A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Strong correlations appear in the outgoing radiation:

Crel =Cwbr(x1,x2)Cnbr(x1,x2)

∼ e2κ|x1−x2|

|x1−x2|4 whereC(x1,x2)≡ in〈0|φ(x1)φ(x2)|0〉in

Involved computation ofα andβ:

Unknownin〈0|Nouti |0〉in = ?

Unknown density matrix,|0〉in→ ?

Page 23: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 7/26

Evaporation with backreaction

The outgoing radiation modifies the geometry. Thiseffect (backreaction) could restore the correlations.

Charged black holes represent good toy models.A.Fabbri, D.Navarro, J.Navarro-Salas and G.J.O. , Phys.Rev.D (2003)

Strong correlations appear in the outgoing radiation:

Crel =Cwbr(x1,x2)Cnbr(x1,x2)

∼ e2κ|x1−x2|

|x1−x2|4 whereC(x1,x2)≡ in〈0|φ(x1)φ(x2)|0〉in

Involved computation ofα andβ:

Unknownin〈0|Nouti |0〉in = ?

Unknown density matrix,|0〉in→ ?

Moving-mirror model physically equivalent but . . . Unclear computation ofα andβ. Unclear relation between particles and energy fluxes.

Page 24: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 8/26

Bogolubov -Vs- Correlator

The Bogolubov coefficientsα andβ allow toconstruct magnitudes such asin〈0|Nout

i |0〉in .

Page 25: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 8/26

Bogolubov -Vs- Correlator

The Bogolubov coefficientsα andβ allow toconstruct magnitudes such asin〈0|Nout

i |0〉in .

The two-point correlator allows to "see" thecorrelations among the outgoing particles.

Page 26: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 8/26

Bogolubov -Vs- Correlator

The Bogolubov coefficientsα andβ allow toconstruct magnitudes such asin〈0|Nout

i |0〉in .

The two-point correlator allows to "see" thecorrelations among the outgoing particles.

Can we determinein〈0|Nouti |0〉in directly from

in〈0|φ(x1)φ(x2)|0〉in ?

Page 27: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 8/26

Bogolubov -Vs- Correlator

The Bogolubov coefficientsα andβ allow toconstruct magnitudes such asin〈0|Nout

i |0〉in .

The two-point correlator allows to "see" thecorrelations among the outgoing particles.

Can we determinein〈0|Nouti |0〉in directly from

in〈0|φ(x1)φ(x2)|0〉in ?

YES!

⇒We can bypass the computation ofα andβ !!!

Page 28: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 9/26

New approach

With the decomposition

φI+ = ∑[aoutj uout

j (x)+aoutj

†uoutj∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

Page 29: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 9/26

New approach

With the decomposition

φI+ = ∑[aoutj uout

j (x)+aoutj

†uoutj∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

Using the scalar product( f1| f2) =−i dΣµ f1←→∂ µ f ∗2

Page 30: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 9/26

New approach

With the decomposition

φI+ = ∑[aoutj uout

j (x)+aoutj

†uoutj∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

Using the scalar product( f1| f2) =−i dΣµ f1←→∂ µ f ∗2

Product of operators:

aout†i aout

j = (uouti (x1)|(uout∗

j (x2)|: φ(x1)φ(x2) :))

Page 31: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 9/26

New approach

With the decomposition

φI+ = ∑[aoutj uout

j (x)+aoutj

†uoutj∗(x)]

We construct the normal-ordered operator

: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

Using the scalar product( f1| f2) =−i dΣµ f1←→∂ µ f ∗2

Product of operators:

aout†i aout

j = (uouti (x1)|(uout∗

j (x2)|: φ(x1)φ(x2) :))

Number of particles:

in〈0|Nouti |0〉in = 1

~dΣµ

1dΣν2[u

outi (x1)

←→∂ µ][uout∗

i (x2)←→∂ ν] in〈0|: φ(x1)φ(x2) :|0〉in

Page 32: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 10/26

Example: Conformal Invariance

In d-dimensional Minkowski space, a conformallyinvariant field theory satisfies:

in〈0|φ(y1)φ(y2)|0〉in =C

|y1−y2|2∆

in〈0|φ(y1)φ(y2)|0〉in =

∂x∂y

∆/d

x1

∂x∂y

∆/d

x2

in〈0|φ(x1)φ(x2)|0〉in

Page 33: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 10/26

Example: Conformal Invariance

In d-dimensional Minkowski space, a conformallyinvariant field theory satisfies:

in〈0|φ(y1)φ(y2)|0〉in =C

|y1−y2|2∆

in〈0|φ(y1)φ(y2)|0〉in =

∂x∂y

∆/d

x1

∂x∂y

∆/d

x2

in〈0|φ(x1)φ(x2)|0〉in

Normal-ordered two-point function: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

in〈0|: φ(x1)φ(x2) :|0〉in ≡∣

∂y∂x

∆/d

x1

∂y∂x

∆/d

2

C|y(x1)−y(x2)|2∆ − C

|x1−x2|2∆

It vanishes for Conformal Transf.⇒ in〈0|Nouti |0〉in = 0.

Page 34: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 10/26

Example: Conformal Invariance

In d-dimensional Minkowski space, a conformallyinvariant field theory satisfies:

in〈0|φ(y1)φ(y2)|0〉in =C

|y1−y2|2∆

in〈0|φ(y1)φ(y2)|0〉in =

∂x∂y

∆/d

x1

∂x∂y

∆/d

x2

in〈0|φ(x1)φ(x2)|0〉in

Normal-ordered two-point function: φ(x1)φ(x2) : ≡ φ(x1)φ(x2)− out〈0|φ(x1)φ(x2)|0〉out

in〈0|: φ(x1)φ(x2) :|0〉in ≡∣

∂y∂x

∆/d

x1

∂y∂x

∆/d

2

C|y(x1)−y(x2)|2∆ − C

|x1−x2|2∆

It vanishes for Conformal Transf.⇒ in〈0|Nouti |0〉in = 0.

βi j should vanish for all Conformal Transf.

Page 35: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Page 36: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Page 37: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Page 38: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Page 39: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Page 40: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Page 41: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Birrell-Davies, [Cambridge Univ.Press(1982)]

⇒ steady flux of particles alongx > 0

Page 42: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Birrell-Davies, [Cambridge Univ.Press(1982)]

⇒ steady flux of particles alongx > 0

No particles forx1×x2 > 0

Page 43: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Birrell-Davies, [Cambridge Univ.Press(1982)]

⇒ steady flux of particles alongx > 0

No particles forx1×x2 > 0

Particles localized aboutx≈ 0

Page 44: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 11/26

Moving-mirrors and black holes

x

R+I L

+

I L−

I R

y0

MirrorTrajectory

y(x)

y

I

Flux to I+R :

in〈0|Toutxx (x)|0〉in =

=− ~

24π

[

y′′′(x)y′(x) −

32

(

y′′(x)y′(x)

)2]

Number of particles:in〈0|Nout

k |0〉in =− 1π

∞−∞ dx1dx2uk(x1)u∗k(x2)×

×[

y′(x1)y′(x2)[y(x1)−y(x2)]2

− 1(x1−x2)2

]

Exponential trajectory (NBR):y(x) = y0− 1

Ce−Cx ⇒ THERMAL

Hyperbolic trajectory (WBR):

y(x) =

x x≤ 0x

1+a2xx≥ 0

Birrell-Davies, [Cambridge Univ.Press(1982)]

⇒ steady flux of particles alongx > 0

No particles forx1×x2 > 0

Particles localized aboutx≈ 0

Thunderbolt localized aty = y0

Page 45: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 12/26

Beyond the number of particles

The coefficientsαik,β jk never appear alone:

in〈0|aouti aout

j |0〉in =−~(β∗α†)i j in 〈0|aouti

†aoutj |0〉in = +~(ββ†)i j

in〈0|aouti aout

j†|0〉in = +~(αα†) ji in 〈0|aout

i†aout

j†|0〉in =−~(αβT)i j

Page 46: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 12/26

Beyond the number of particles

The coefficientsαik,β jk never appear alone:

in〈0|aouti aout

j |0〉in =−~(β∗α†)i j in 〈0|aouti

†aoutj |0〉in = +~(ββ†)i j

in〈0|aouti aout

j†|0〉in = +~(αα†) ji in 〈0|aout

i†aout

j†|0〉in =−~(αβT)i j

In expectation values only the "OUT" indices arefree. The "IN" indices are always summed over.

Page 47: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 12/26

Beyond the number of particles

The coefficientsαik,β jk never appear alone:

in〈0|aouti aout

j |0〉in =−~(β∗α†)i j in 〈0|aouti

†aoutj |0〉in = +~(ββ†)i j

in〈0|aouti aout

j†|0〉in = +~(αα†) ji in 〈0|aout

i†aout

j†|0〉in =−~(αβT)i j

In expectation values only the "OUT" indices arefree. The "IN" indices are always summed over.

Instead ofαik,β jk we can use

Ci j = ~−1

in〈0|aouti aout

j |0〉in = (β∗α†)i j

Ni j = ~−1

in〈0|aouti

†aoutj |0〉in = (ββ†)i j

Page 48: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 12/26

Beyond the number of particles

The coefficientsαik,β jk never appear alone:

in〈0|aouti aout

j |0〉in =−~(β∗α†)i j in 〈0|aouti

†aoutj |0〉in = +~(ββ†)i j

in〈0|aouti aout

j†|0〉in = +~(αα†) ji in 〈0|aout

i†aout

j†|0〉in =−~(αβT)i j

In expectation values only the "OUT" indices arefree. The "IN" indices are always summed over.

Instead ofαik,β jk we can use

Ci j = ~−1

in〈0|aouti aout

j |0〉in = (β∗α†)i j

Ni j = ~−1

in〈0|aouti

†aoutj |0〉in = (ββ†)i j

We are free to choose between two representations:α,β N,C

"IN" and "OUT" indices "OUT" indices

Page 49: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Page 50: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Clear visualization of particle production:particles are produced when the correlator deviates from its

vacuum value.

Page 51: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Clear visualization of particle production:particles are produced when the correlator deviates from its

vacuum value. Technically more accessible and intuitive.

Page 52: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Clear visualization of particle production:particles are produced when the correlator deviates from its

vacuum value. Technically more accessible and intuitive.

Clarifies an apparent tension between particlecreation and energy fluxes in curved space.

Page 53: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Gravitational collapse

Bogolubov coefficients

Black Holes evaporate

Evaporation with backreaction

Bogolubov -Vs- Correlator

New approach

Example: Conformal Invariance

Moving-mirrors and BH

Beyond N

Summary and Conclusions

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 13/26

Summary and Conclusions

Alternative approach to study radiation problems:

α,β - Vs - N,Cin terms of correlation functions:in〈0|: φ(x1)φ(x2) :|0〉in

Clear visualization of particle production:particles are produced when the correlator deviates from its

vacuum value. Technically more accessible and intuitive.

Clarifies an apparent tension between particlecreation and energy fluxes in curved space.

Allows to detect localized thunderbolts.

Page 54: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 14/26

Part II:Cosmology

Page 55: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

Page 56: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)[

dr2

1−kr2 + r2dΩ2]

Page 57: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)[

dr2

1−kr2 + r2dΩ2]

Second assumption⇒ dynamics ofa(t) .

Page 58: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)[

dr2

1−kr2 + r2dΩ2]

Second assumption⇒ dynamics ofa(t) .

Observations tell us about the geometry of theuniverse:k≈ 0, a(t0) > 0.

Page 59: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 15/26

Standard cosmologies

Two basic assumptions:

Cosmological principle:isotropy and homogeneity.

Large scale dynamics governed by gravity.

First assumption⇒ kinematics:

ds2 =−dt2 +a2(t)[

dr2

1−kr2 + r2dΩ2]

Second assumption⇒ dynamics ofa(t) .

Observations tell us about the geometry of theuniverse:k≈ 0, a(t0) > 0.

a(t0) > 0 was unexpected only 10 years ago.

Page 60: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 16/26

Accelerating Universe

Empty ModelFlat Dark Energy ModelClosed Dark Energy ModelDecelerating ModelDusty Decelerating Model

Binned Data

Closed Matter Only Modelde Sitter ModelEvolving Supernovae

0.0 0.5 1.0 1.5 2.0-1

0

1

Redshift

∆DM

fain

tbr

ight

Ned Wright - 8 Jul 2003

Big dots represent type-Ia supernovae.

The expansion began to accelerate some 5000 million years ago.

Page 61: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 17/26

Mechanism for the acceleration

Dark energy: some stuff with negative pressure.

In GR⇒ aa =−4πG

3 (ρtot +3Ptot)

Matter ρm∼ 1/a3 , Pm = 0

Radiation ρr ∼ 1/a4 , Pr = ρr/3

Cosmological constantρΛ = constant=−PΛ

Page 62: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 17/26

Mechanism for the acceleration

Dark energy: some stuff with negative pressure.

In GR⇒ aa =−4πG

3 (ρtot +3Ptot)

Matter ρm∼ 1/a3 , Pm = 0

Radiation ρr ∼ 1/a4 , Pr = ρr/3

Cosmological constantρΛ = constant=−PΛ

Modified dynamics:aa =??

Page 63: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 17/26

Mechanism for the acceleration

Dark energy: some stuff with negative pressure.

In GR⇒ aa =−4πG

3 (ρtot +3Ptot)

Matter ρm∼ 1/a3 , Pm = 0

Radiation ρr ∼ 1/a4 , Pr = ρr/3

Cosmological constantρΛ = constant=−PΛ

Modified dynamics:aa =??

Others

Page 64: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 18/26

f(R) gravities: motivation and examples

" f (R) gravities" stands for:

S= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

GR is the casef (R) = R GR + cosmological constant isf (R) = R−2Λ

Page 65: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 18/26

f(R) gravities: motivation and examples

" f (R) gravities" stands for:

S= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

GR is the casef (R) = R GR + cosmological constant isf (R) = R−2Λ

Starobinsky model(1980): f (R) = R+ R2

M⇒ Leads to early-time inflation

Page 66: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 18/26

f(R) gravities: motivation and examples

" f (R) gravities" stands for:

S= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

GR is the casef (R) = R GR + cosmological constant isf (R) = R−2Λ

Starobinsky model(1980): f (R) = R+ R2

M⇒ Leads to early-time inflation

Carroll et al. model(2004): f (R) = R− µ4

R⇒ Leads to late-time acceleration

Page 67: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 18/26

f(R) gravities: motivation and examples

" f (R) gravities" stands for:

S= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

GR is the casef (R) = R GR + cosmological constant isf (R) = R−2Λ

Starobinsky model(1980): f (R) = R+ R2

M⇒ Leads to early-time inflation

Carroll et al. model(2004): f (R) = R− µ4

R⇒ Leads to late-time acceleration

GR could just be a good approximation atintermediate curvatures.

Page 68: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

Page 69: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

In Metric formalism:Γαβγ = gαλ

2

(

∂gλγ∂xα +

∂gλβ∂xγ − ∂gβγ

∂xλ

)

Page 70: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

In Metric formalism:Γαβγ = gαλ

2

(

∂gλγ∂xα +

∂gλβ∂xγ − ∂gβγ

∂xλ

)

In Palatiniformalism:Γαβγ is independent ofgµν.

Page 71: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

In Metric formalism:Γαβγ = gαλ

2

(

∂gλγ∂xα +

∂gλβ∂xγ − ∂gβγ

∂xλ

)

In Palatiniformalism:Γαβγ is independent ofgµν.

Only for f (R) = a+bR the two formalism lead tothe same equations of motion.

Page 72: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 19/26

Metric and Palatini formalisms

Scalar curvature and Ricci tensor:

R = gµνRµν

Rµν = −∂µΓλλν +∂λΓλ

µν +ΓλµνΓρ

ρλ−ΓλνρΓρ

µλ

In Metric formalism:Γαβγ = gαλ

2

(

∂gλγ∂xα +

∂gλβ∂xγ − ∂gβγ

∂xλ

)

In Palatiniformalism:Γαβγ is independent ofgµν.

Only for f (R) = a+bR the two formalism lead tothe same equations of motion.

Observations should help to determine bothf (R)and the right formalism.

Page 73: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 20/26

Search for a suitable f (R)

By trial and error:(very common method)

R− µ4

R R− µ4

R +bR2 R−alogR cRn R− 6asinhR

Page 74: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 20/26

Search for a suitable f (R)

By trial and error:(very common method)

R− µ4

R R− µ4

R +bR2 R−alogR cRn R− 6asinhR

As part of effective actions:(more involved method)

From quantum effects in curved space From low-energy limits of string/M theory

Page 75: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 20/26

Search for a suitable f (R)

By trial and error:(very common method)

R− µ4

R R− µ4

R +bR2 R−alogR cRn R− 6asinhR

As part of effective actions:(more involved method)

From quantum effects in curved space From low-energy limits of string/M theory

Ask Nature about the admissiblef (R) functions.(Method of this Thesis)

Page 76: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 21/26

Constraining the gravity lagrangian

Take a clean scenario to test gravity.

Cosmology is not a clean laboratory. The solar system is more appropriate.

Page 77: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 21/26

Constraining the gravity lagrangian

Take a clean scenario to test gravity.

Cosmology is not a clean laboratory. The solar system is more appropriate.

Compute the predictions of the theory in thatregime: post-Newtonian limit .

Page 78: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 21/26

Constraining the gravity lagrangian

Take a clean scenario to test gravity.

Cosmology is not a clean laboratory. The solar system is more appropriate.

Compute the predictions of the theory in thatregime: post-Newtonian limit .

Confront predictions with experimental data.

Page 79: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 21/26

Constraining the gravity lagrangian

Take a clean scenario to test gravity.

Cosmology is not a clean laboratory. The solar system is more appropriate.

Compute the predictions of the theory in thatregime: post-Newtonian limit .

Confront predictions with experimental data.

Determine the observational constraints onf (R).

Page 80: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 22/26

PN limit I: Scalar-Tensor representation

The original actionS= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

can be rewritten as follows:

S= 12κ2 d4x

√−g[

φR(g)− ωφ (∂µφ∂µφ)−V(φ)

]

+Sm

where φ≡ d fdR and V(φ) = R f′(R)− f (R)

E.O.M. (3+2ω)φ+2V−φ dVdφ = k2T

Metric ⇒ ω = 0 ⇒ dynamical. Palatini⇒ ω =−3/2 ⇒ non-dynamical.

Page 81: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 22/26

PN limit I: Scalar-Tensor representation

The original actionS= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

can be rewritten as follows:

S= 12κ2 d4x

√−g[

φR(g)− ωφ (∂µφ∂µφ)−V(φ)

]

+Sm

where φ≡ d fdR and V(φ) = R f′(R)− f (R)

E.O.M. (3+2ω)φ+2V−φ dVdφ = k2T

Metric ⇒ ω = 0 ⇒ dynamical. Palatini⇒ ω =−3/2 ⇒ non-dynamical.

This is more than aBrans-Dicketheory. In B-D V(φ) = 0 (or near an extremum) and

ω is determined by observations(ωobs> 40.000).

Now ω is fixed andV(φ) is to be determined.

Page 82: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 22/26

PN limit I: Scalar-Tensor representation

The original actionS= 12k2 d4x

√−g f(R)+Sm(gµν,ψ)

can be rewritten as follows:

S= 12κ2 d4x

√−g[

φR(g)− ωφ (∂µφ∂µφ)−V(φ)

]

+Sm

where φ≡ d fdR and V(φ) = R f′(R)− f (R)

E.O.M. (3+2ω)φ+2V−φ dVdφ = k2T

Metric ⇒ ω = 0 ⇒ dynamical. Palatini⇒ ω =−3/2 ⇒ non-dynamical.

This is more than aBrans-Dicketheory. In B-D V(φ) = 0 (or near an extremum) and

ω is determined by observations(ωobs> 40.000).

Now ω is fixed andV(φ) is to be determined. We want to constraint the form ofV(φ)⇔ f (R).

Page 83: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 23/26

PN limit II: Metric formalism or ω = 0

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 G = k2

8πφ0

[

1+ e−mϕr

3

]

Gexp= const.

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2]

δi j γ = 3−e−mϕr

3+e−mϕr γexp≈ 1

with mϕ2≡ φ0V ′′0 −V ′0

3 = R0

[

f ′(R0)R0 f ′′(R0) −1

]

.

Page 84: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 23/26

PN limit II: Metric formalism or ω = 0

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 G = k2

8πφ0

[

1+ e−mϕr

3

]

Gexp= const.

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2]

δi j γ = 3−e−mϕr

3+e−mϕr γexp≈ 1

with mϕ2≡ φ0V ′′0 −V ′0

3 = R0

[

f ′(R0)R0 f ′′(R0) −1

]

.

Fundamental constraint:R0

[

f ′(R0)R0 f ′′(R0)

−1]

L2S≫ 1

LS is a relatively short lengthscale.

Page 85: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 23/26

PN limit II: Metric formalism or ω = 0

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 G = k2

8πφ0

[

1+ e−mϕr

3

]

Gexp= const.

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2]

δi j γ = 3−e−mϕr

3+e−mϕr γexp≈ 1

with mϕ2≡ φ0V ′′0 −V ′0

3 = R0

[

f ′(R0)R0 f ′′(R0) −1

]

.

Fundamental constraint:R0

[

f ′(R0)R0 f ′′(R0)

−1]

L2S≫ 1

LS is a relatively short lengthscale.

Conclusion:

−2Λ≤ f (R)≤ R−2Λ+ l2R2

2

l2≪ L2S is a bound to the current range of the scalar interaction

Page 86: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 24/26

PN limit III: Palatini formalism or ω =−3/2

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 + log(

φ(ρ)φ0

)

G = κ2

8πφ0

(

1+ MVM⊙

)

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2− log(

φ(ρ)φ0

)]

δi j γ = M⊙−MVM⊙+MV

with M⊙ ≡ d3x′ρ(t,x′)/φ , MV ≡ k−2 d3x′[V0−V(φ)/φ].

Page 87: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 24/26

PN limit III: Palatini formalism or ω =−3/2

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 + log(

φ(ρ)φ0

)

G = κ2

8πφ0

(

1+ MVM⊙

)

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2− log(

φ(ρ)φ0

)]

δi j γ = M⊙−MVM⊙+MV

with M⊙ ≡ d3x′ρ(t,x′)/φ , MV ≡ k−2 d3x′[V0−V(φ)/φ].

Fundamental constraint:R f′(R)∣

f ′(R)R f′′(R) −1

∣L2(ρ)≫ 1

whereL2(ρ)≡ (k2ρc/φ0)−1

Page 88: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 24/26

PN limit III: Palatini formalism or ω =−3/2

The metricgµν ≈ ηµν +hµν:

h(2)00 ≈ 2GM⊙

r + V06φ0

r2 + log(

φ(ρ)φ0

)

G = κ2

8πφ0

(

1+ MVM⊙

)

h(2)i j ≈

[

2γGM⊙r −

V06φ0

r2− log(

φ(ρ)φ0

)]

δi j γ = M⊙−MVM⊙+MV

with M⊙ ≡ d3x′ρ(t,x′)/φ , MV ≡ k−2 d3x′[V0−V(φ)/φ].

Fundamental constraint:R f′(R)∣

f ′(R)R f′′(R) −1

∣L2(ρ)≫ 1

whereL2(ρ)≡ (k2ρc/φ0)−1

Conclusion:

f (R)≤ α+ l2R2

2 + R2

1+(l2R)2 + 12l2

log[l2R+√

1+(l2R)2]

f (R)≥ α− l2R2

2 + R2

1+(l2R)2 + 12l2

log[l2R+√

1+(l2R)2]

Expanding inl2Rwe get:

α+R− l2R2

2 ≤ f (R)≤ α+R+ l2R2

2

Page 89: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 25/26

Summary and Conclusions

Is the cosmic speed-up driven byf (R) gravities?

Page 90: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 25/26

Summary and Conclusions

Is the cosmic speed-up driven byf (R) gravities?

Solar system experiments impose severeconstraints on the lagrangianf (R).

Page 91: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 25/26

Summary and Conclusions

Is the cosmic speed-up driven byf (R) gravities?

Solar system experiments impose severeconstraints on the lagrangianf (R).

Non-linear contributions dominant at lowcurvatures(1/R, logR, . . . ) are ruled out byobservations.

Page 92: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

Standard cosmologies

Accelerating Universe

Mechanism for the acceleration

f(R) gravities

Metric and Palatini formalisms

Constraining the lagrangian

PN limit I: Scalar-Tensor

PN limit II: Metric

PN limit III: Palatini

Summary and Conclusions

The end

Gonzalo J. Olmo July 5th, 2005 - p. 25/26

Summary and Conclusions

Is the cosmic speed-up driven byf (R) gravities?

Solar system experiments impose severeconstraints on the lagrangianf (R).

Non-linear contributions dominant at lowcurvatures(1/R, logR, . . . ) are ruled out byobservations.

Viable models are almost equivalent toR−2Λ intheir late-time cosmological predictions.

Page 93: Correcciones cuánticas de agujeros negros y cosmología · 2010. 12. 29. · Gonzalo J. Olmo Correcciones cuánticas de agujeros negros y cosmología (or Quantum correlations, black

Outline

Quantum Correlations and BH

Cosmology

The end

Gonzalo J. Olmo July 5th, 2005 - p. 26/26

Thanks!¡Gracias!