Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014...

55
Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6

Transcript of Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014...

Page 1: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

1

AOSC 620Cloud Nucleation

Russell Dickerson2014

Rogers and Yau, Chapt. 6

Page 2: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

2

Page 3: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

3

Questions on the Effects of Aerosols on Clouds and Precipitation

● Why do many people think aerosols inhibit deep convective cloud formation?

Page 4: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

4

Opposing Effects of Aerosols on Clouds and Precipitation

● How do radiative and micro-physical effects of aerosols compete?

How does suppression of precp change buoyancy?

How does freezing change buoyancy?

Page 5: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

5

Opposing Effects of Aerosols on Clouds and Precipitation

● How do radiative and micro-physical effects of aerosols compete?

How does suppression of precp change buoyancy?

negative impact.

How does freezing change buoyancy?

a) if normal precp then freezing enhances buoyancy.

b) If suppressed precp (too many ccn) then freezing generates even more buoyancy.

Page 6: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Liquid Water Cloud VDR Yorks et al., 2011

Page 7: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

7

Opposing Effects of aerosols on Clouds and Precipitation

(Rosenfeld et al., Science 2008)Radiative Effects:

● Aerosols aloft shield the Earth’s surface from radiation and stabilize the atmosphere wrt convection and the moisture is advected away. (Park et al., JGR, 2001; Ramanathan et al., Science, 2001)

● Increased numbers of CCN slow the conversion of droplets into raindrops and inhibit precipitation, but ingestion of large particles such as sea salt appears to enhance precip. (Radke et al.,

Science, 1989; Rosenfeld et al., Science, 2002)

● Total water vapor is conserved so suppression of precip here means more rain there.

Page 8: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

8

The Rain according to Rosenfeld (microphysical effects)

● The extra CCN in hazy air make for more, smaller droplets in the early stages of a convective cloud.

● The smaller droplets travel higher and more reach colder levels where they are more likely to release latent heat of freezing and increase buoyancy – haze means more instability for the same amount of rain.

● Even though aerosols slow the conversion of cloud droplets into rain drops, convection is eventually invigorated.

● With cold-based clouds (< 0 oC) most of the water is frozen already and there is no enhancement of precip.

Page 9: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Published by AAAS

D. Rosenfeld et al., Science 321, 1309 -1313 (2008)

Fig. 2. Evolution of deep convective clouds developing in the pristine (top) and polluted (bottom) atmosphere

Page 10: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Wet (Pseudo-Adiabatic) Parcel Theory (no mixing).

● If all the water in excess of the saturation vapor pressure immediately condenses and precipitates out, then buoyancy is zero all the way up; this is the reference for CAPE calculations.

● If all the water is held in the cloud, then buoyancy becomes more negative with altitude.

● If all the water in excess of the saturation vapor pressure immediately condenses and freezes at T < – 4oC then buoyancy is enhanced.

● If precip is suppressed until the parcel reaches T = – 4oC then buoyancy is enhanced further.

The following figure shows an example with the LCL at 960 hPa and 22oC.

Page 11: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Published by AAAS

D. Rosenfeld et al., Science 321, 1309 -1313 (2008)

Fig. 3. The buoyancy of an unmixed adiabatically raising air parcel

Energy released in J kg-1.

←Cloud base

no precp.

suppressed precp.

All precp frozen

Page 12: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

12

Who wins – radiation or microphysics?

Particles in the accumulation mode with a diameter around 500 nm are most effective at increasing AOT, but CCN can be almost any size – it is the number that matters.

Does CCN correlate with AOT?

Page 13: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Published by AAAS D. Rosenfeld et al., Science 321, 1309 -1313 (2008)

Fig. 1. Relations between observed aerosol optical thickness at 500 nm and CCN concentrations at supersaturation of 0.4% from studies where these variables have

been measured simultaneously, or where data from nearby sites at comparable times were available

Page 14: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Who wins – radiation or microphysics?

● From this empirical relationship we can estimate the number of CCN as a function of AOT.

● If the count of CCN is 104 cm-3 then AOT ~ 1.0 and radiation reaching the Earth’s surface is reduced by an e-folding.

● CAPE reaches a maximum at CCN ~ 1200 cm-3 (AOT ~ 0.25) ;

adding more aerosols will inhibit convection.

Bell (GSFC) et al., (JGR, 2008; “Why do tornados and hailstorms rest on weekends?” 2011) showed a weekday/weekend effect.

Page 15: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Published by AAAS

D. Rosenfeld et al., Science 321, 1309 -1313 (2008)

Fig. 4. Illustration of the relations between the aerosol microphysical and radiative effects

Page 16: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Who wins – radiation or microphysics?

● From this empirical relationship we can estimate the number of CCN as a function of AOT.

● If the count of CCN is 104 cm-3 then AOT ~ 1.0 and radiation reaching the Earth’s surface is reduced by an e-folding.

● CAPE reaches a maximum at CCN ~ 1200 cm-3 (AOT ~ 0.25) ; adding more aerosols will inhibit convection.

Bell (GSFC) et al., (JGR, 2008) showed a weekday/weekend effect.

Page 17: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.
Page 18: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

From Rosenfeld and Bell, 2011

Page 19: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li 19

Let’s get quantitative; Rogers & Yau, Chapt 6.

Page 20: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

20

Phase Change &Nucleation Process

(inhibited by surface tension)

LiquidCondensation

VaporEvaporation

SolidDeposition

SublimationVapor

SolidFreezing

MeltingLiquid

Page 21: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

21

Condensation

• In theory, a cloud droplet may not be formed until pure water vapor is over saturated by a few hundreds per cent.

• In nature, super-saturation rate rarely exceeds a few tenths per cent.

• The reason lies in the presence of plentiful of water cloud nuclei.

Page 22: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

22

Deposition

• In theory, a cloud droplet may be frozen at a temperature at 0oC.

• In nature, super-cooled water droplets of temperature well below the freezing point are often observed.

• The reason lies in the lack of ice water cloud nuclei.

Page 23: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

23

The coverage of this lecture

• Derivation of equilibrium water vapor pressure for a small droplet of pure water vs pure bulk water;-Homogenous nucleation

• Derivation of equilibrium water vapor pressure for a small droplet of solution water vs pure water.-Heterogeneous nucleation

• Aerosol and CCN

Page 24: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

24

Questions to be addressed:

1. How is an embryonic cloud droplet formed and maintained?

2. Why do cloud droplets have a rather narrow range in size?

3. How can a cloud exist for certain period of time?

Page 25: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

25

* Surface tension = work required to increase surface area by one unit.

* Store potential energy.

* Volume of liquid tends to assume minimum area-to-volume.

* Small masses Spherical droplets.

For a droplet to form by condensation from the vapor, the surface tension, , must be overcome by a strong gradient of vapor pressure.

The Clausius-Claperon equation describes the equilibrium condition for bulk water and its vapor, which does not apply to small droplet.

Homogeneous Nucleation

Page 26: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li26

Page 27: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

27

Page 28: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2014 R. R. Dickerson & Z.Q. Li

28

Surface tension causes internal pressure

The surface tensions for a solute is lower than that of pure water by up to one-third, which was attributed to dissolved organics or ions.

Page 29: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

29

•Surface energy associated with curved surface has impact on equilibrium vapor pressure and rate of evaporation.

•Let equilibrium vapor pressure over a flat surface be es.

•And over a curved surface be esr.

•Consider droplet in equilibrium with environment, temperature = T and vapor pressure = ec

Derivation of the Kelvin (1870) Equation- Curvature effect on saturation

Page 30: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

30

Page 31: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

31

3322

333222

32

2222

radius ofdroplet a for But

phase in change isothermal an consideNow

2u i.e.

mequilibriu inNow

2

r

2 Note

dg g dg gg

dr r

TeuT)r

(e

g g

T)r

(e U g

p

cc

c

i

Page 32: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

32

Rem

embe

rdq

= d

u +

pdv

Page 33: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

33

223

2

2223

322

33

3

2

1

But

2)or

2

Here

gives for analysisSimilar

r

dr)de (

drr

de(

dedr)r

(de

deαdg

g

c

c

cc

c

Page 34: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

34

2

3

23

2

3

2

as and

2

becomesformula Hence

droplet, angreater th much

is vapor of volumespecific general, In

r

dr

TRe

de

e

TRα

r

drσdeα

vc

c

c

V

c

Page 35: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

35

)rTρR

σ(T)ee

rTρR

σ(T)ee

r

r

dr

TρR

σe

e e

de

)e r (e

(T)) e, e(r

ωVsrs

ωVs

sr

ωV

sr

sc

c

src

sc

2exp(

2ln

2

radius ofdroplet a To

plateflat a fromequation integrate Now

)(

2

Kelvin’s Equation, R&Y Eq 6.1

Page 36: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

36

The relative humidity and supersaturation (both with respect

to a plane surface of pure water) for pure water droplets.

Page 37: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

37

STRr

wvc ln

2

An embryonic cloud droplet (molecular cluster) can be formed by collision of water vapor molecules. Once it exists, it may grow or decay depending on ambient water vapor pressure.

S = e/es(∞).e>esr, the droplet tends to grow, e<esr, the droplet tends to decay. So, the droplet must be big enough for it to endure.We will show that the critical radius (S is supersaturation) is:

Page 38: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

38

Köhler curve

S* - critical saturation ratio

r* - critical radius

Haze ←

→ Activated nucleus

Kelvin Curve

Page 39: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Fair Weather CumulusFair weather cumulus

1 pm EST July 7, 2007,

a smoggy day

Page 40: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

1.0

0.5

0.0

Page 41: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

41

Page 42: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

42

clouds? see wedoWhy then

form. wouldcloudsmany Not

100%)an greater thmuch humidity (relative

atedsupersatur bemust t environmen gsurroundin the

of pressure vapor then theevaporatenot doesdroplet theIf

Page 43: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

43

surface. water

plane pureover pressure vapor mequilibriu

water.pure ofdroplet spherical a

over pressure vapor mequilibriu theas

solution. thisofdroplet spherical a

over pressure vapor mequilibriu theas

substance. dissolved

some and water of consistingdroplet aConsider

droplet. a ofgrowth at look usLet in water. souble

– particles chygroscopi are nucleiefficient Most

Nucleation ousHeterogene

s

sr

hr

e

e

e

Köhler Equation -

Page 44: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

44density

dropletsolution of tension surface

droplet solution afor Likewise,

shown that have weNow

solution. of surface plane afor pressure vapor mequilibriu Where

can write we

2

2

ρ

σ

ee

e

ee

e

e

e

e

e

e

e

e

TrRρ

σ

h

hr

TrRρ

σ

s

sr

h

h

hr

s

h

s

hr

V

V

Page 45: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

45

Page 46: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

46

1* )1( •

:law sRaoult’

pressure. vapor mequilibriulower –

down go tosurface escaping molecules

water ofnumber expect wouldely weQualitativ•

n

n

nn

nM

e

e

ee

s

h

sh

M* Mole fraction of water in the solution

Page 47: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

47

inn

eM

en

n

e

e

e

e

e

e

TrR

TrR

h

hr

s

h

s

hr

V

V

by replaced bemust •

ions into dissociate solute of molecules ifWhat

)1(

havenow we

2

*

2

1

Page 48: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

48

number soAvogadr

mass molecules

mass

Note•

1 •

moleculeper ions ngdissociati of #

1

o

w

wo

s

so

*

N

m

M

m

MNn

m

MNn

)n

in( M

i

Page 49: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

49

w

ws

TrR

s

w

s

s

s

hr

s

w

s

s

sw

s

w

w

s

MM

em

m

Mr

iM

e

e

m

m

Mr

iM

n

in

MrMBut

m

m

M

Mi

n

inHence

Vw

solution dilute aIn

)

43

1(

)

43

1()1(

3

4

)(

2

1

3

1

3

3

Page 50: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

50

13

5

2

3

3

3

1*

3.4)(4

3

)103.3

(2

)1(

1

)(4

31

1)1(

molecmm

Mi

m

miMb

cmkTTR

aWhere

er

b

e

eand

r

b

m

m

r

iMn

in

n

inMHence

s

s

s

w

w

s

o

Vw

TrR

s

hr

s

ws

Vw

Page 51: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

51

43

3

2

5

7

3

1

)1)(1(

1

101

1.0101.0

101300

)1(

r

ab

r

a

r

b

r

a

r

b

e

e

Thenr

ae

r

a

mr

cmaKTFor

er

b

e

e

s

hr

r

a

o

r

a

s

hr

Page 52: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

52

Kelvin CurveKöhler Curve

Page 53: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

53

0

where)3

(

asgiven valuecritical a has

11 Define

ationSupersatur

6.6Equation See

1

*2

1*

3

*

3

dr

ds

a

br

rr

b

r

a

e

eSS

r

b

r

a

e

e

s

hr

s

hr

Page 54: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

55

Next lecture will show where these trends come from.

Page 55: Copyright © 2010 R. R. Dickerson & Z.Q. Li 1 AOSC 620 Cloud Nucleation Russell Dickerson 2014 Rogers and Yau, Chapt. 6.

Copyright © 2010 R. R. Dickerson & Z.Q. Li

56