Coping with the Collapse: A Stock-Flow Consistent ... · Coping with the Collapse: A Stock-Flow...

79
0/77 Coping with the Collapse: A Stock-Flow Consistent, Monetary Macro-dynamics of Global Warming June 23, 2016 Gaël Giraud Florent Mc Isaac Emmanuel Bovari Ekaterina Zatsepina AFD - Agence Française de Développement; Chair Energy and Prosperity; CES - Centre d’Economie de la Sorbonne

Transcript of Coping with the Collapse: A Stock-Flow Consistent ... · Coping with the Collapse: A Stock-Flow...

  • 0/77

    Coping with the Collapse: A Stock-Flow Consistent, MonetaryMacro-dynamics of Global Warming

    June 23, 2016

    Gaël Giraud Florent Mc Isaac Emmanuel Bovari Ekaterina ZatsepinaAFD - Agence Française de Développement; Chair Energy and Prosperity; CES - Centre d’Economie de la

    Sorbonne

  • 1/77

    � Outlines

    1 Introduction

    2 The Keen (1995) Model

    3 Macroeconomic model for climate change

    4 Climate Module

    5 Public Policy Module

    6 Numerical Simulations

    7 Further Work

  • 2/77

    � Introduction

    � The Limits to Growth was published (Meadows et al., 1972 andMeadows et al., 1974).

    � Turner (2008, 2012, 2014) and Hall and Day (2009) tend toconfirm the LtG standard run scenarios.

  • 3/77

    � IntroductionSustainable path or collapse?

  • 4/77

    � Introduction

    � Consistent with increasing capital costs and net energy (thedecline of energy returned on energy invested, EROI).

    � Growing scarcity of natural resources (energy, minerals, water...),while climate change plays little role, if any. (Caveat: Pollution).

    � The question of whether global warming might per se induce asimilar breakdown of the world economy (cf. COP 21).

  • 5/77

    � IntroductionPaper’s framework

    � We explicitly model the financial side of the world economy inorder to assess the possible negative feedback of debt on theability of the world economy to cope with the collapse.

    � Pivotal role of private debt.� Losses due to environmental damages force the global

    productive sector to invest a growing part of its wealth inrestoring and maintaining capital.

    � The persistent level of debt may endanger the world economicengine itself as it is based on the promise of future wealthcreation.

  • 6/77

    � IntroductionPaper’s framework

    � Depending upon the speed at which labor productivity increasescompared to the severity of global warming, the shrink ofinvestment induced by the burden of private debt may preventthe world economy from further adapting to the climate turmoil,leading ultimately to a collapse around the end of the twenty-firstcentury.

    � The global collapse captured in this paper can be interpreted asthe result of a debt-deflation depression in the sense given to thisconcept by Irving Fisher (1933).

    � That part of the world economy might be on the verge of fallinginto a liquidity trap is illustrated, today, by the two “lost decades”of Japan, of course, but also the recessionary state of theSouthern part of the Eurozone, obstinately negative long-terminterest rates on international financial markets and, last but notleast, the brutal contraction of the world nominal GDP in 2015(-6%, IMF (2016)).

  • 7/77

    � IntroductionPaper’s framework

    � These paradoxes may be viewed as signals of the translation ofa secular decline induced by biophysical constraints into thefinancial sphere.

  • 8/77

    � GEMMES

    GEMMESGEneral Monetary Multisectoral Macrodynamics for the Ecological

    Shifts

  • 9/77

    � GEMMES

    Goodwin Goodwin-Keen Prices

    Banks

    Inventories

    Government

    SpeculationInequalities

    Multisectoral

    Climate backloop

    Open economy

    Resources

  • 10/77

    � Outlines

    1 Introduction

    2 The Keen (1995) Model

    3 Macroeconomic model for climate change

    4 Climate Module

    5 Public Policy Module

    6 Numerical Simulations

    7 Further Work

  • 11/77

    � The Keen (1995) ModelOverview

    1. Since the financial crisis of 2007-2009, the ideas of HymanMinsky around the intrinsic instability of a monetary marketeconomy have experienced a significant revival.

    2. Goodwin (1967): Lotka-Volterra logic of the wage share and theemployment rate.

    3. Keen (1995): ’Black Swan’ event, or a Minsky moment can occur.4. Investment financed by endogenous money creation.

  • 12/77

    � The Keen (1995) ModelPrivate debt matters

  • 13/77

    � The Keen (1995) ModelStock and Flow consistent model

    Balance Sheet Households Firms Banks Government SumCapital stock K KLoan −D DSum (net worth) X f X b XTransactions current capitalConsumption −C CInvestment I −IGovernment spend. G −GMemo [GDP] [GDP]Wages W −WInterests on debt −rD rDFirms’ net profit −Π ΠFinancial Balances −Ḋ Πb

    Flow of fundsInvestment I IChange in Loans −Ḋ ḊColumn sum Π Ḋ IChange in Net worth Ẋ f = Π + (ṗ − δp)K Ẋ b = Πb Ẋ

    Table: Stock-Flow Table

  • 14/77

    � The Keen (1995) ModelThe model

    λ: the employment rate.

    λ :=LN.

    L: the labor force, and N: the total population.

    ṄN

    = β.

    a: the labor productivity.ȧa

    = α.

    w : the wage per worker, W = wL: the total wage, ω: the wage sharead Y : the production.

    ω =WY

    =wLaL

    =wa

  • 15/77

    � The Keen (1995) ModelThe model

    K : the stock of capital.K̇ = I − δK .

    The Leontief production function

    Y = min(

    Kν,aL)

    =Kν

    = aL.

  • 16/77

    � The Keen (1995) ModelThe model

    D: the aggregate debt.Ḋ = I − Π.

    withΠ := Y − W − rD: the real profit of the firm, and r : the interestrate.π: the profit-to-production ratio.

    π =Π

    Y.

    d : the debt-production ratio.

    d =DY.

  • 17/77

    � The Keen (1995) ModelAggregate behaviours

    � The Short-term Phillips Curve (Mankiw, 2010).

    ẇw

    = φ(λ).

    � The Investment Function : it evolves positively with the profitshare.

    IY

    = κ (π) .

  • 18/77

    � The Keen (1995) ModelThe three-dimensional system

    One can retrieve the following set of equations:

    ω̇ = ω [φ(λ) − α]

    λ̇ = λ

    [κ(π)

    ν− δ − α− β

    ]ḋ = d

    [r − κ(π)

    ν+ δ

    ]+ κ(π) − (1 − ω)

  • 19/77

    � The Keen (1995) ModelAggregate behaviours

    � Phenomenological approach: φ(.) and κ(.) are empiricallyestimated.

    � Sonnenschein-Mantel-Debreu (1975): anything can happen.� Agent-based model.

  • 20/77

    � The Keen (1995) ModelEquilibria analysis

    Three long run equilibria exist:� An unstable equilibrium at (0,0,d0)� A good equilibrium locally stable� A bad equilibrium locally stable

  • 21/77

    � Simulations - good equilibrium with finite debt

  • 22/77

    � Simulations - bad equilibrium with infinite debt

  • 23/77

    � Basin of Attraction

  • 24/77

    � The Keen (1995) ModelPossible outcome induced by climate change

    � Depending upon the basin of attraction where the state of theeconomy is driven by climate damages, the ultimate breakdownmay occur as the inescapable consequence of the business asusual trajectory.

  • 25/77

    � Outlines

    1 Introduction

    2 The Keen (1995) Model

    3 Macroeconomic model for climate change

    4 Climate Module

    5 Public Policy Module

    6 Numerical Simulations

    7 Further Work

  • 26/77

    � Macroeconomic model for climate change

    � Modelling:� The macroeconomics is borrowed from Keen (1995).

    � Stock-Flow consistent.� Phenomenological functions.

    � The climate feed-back loop is in line with Nordhaus’ DICE model(2013).

    � Estimation� Calibration of the climate and public policy modules in line with

    Norhdaus’ DICE model (2013).� Macroeconomic module estimation in progress: panel analysis to

    benefit wider volatility.

  • 27/77

    � Macroeconomic model for climate changeProduction, capital and debt accumulation

    The real output

    Y = (1 − D)Kν.

    The investment function with abatement cost

    I = (κ(π) − µG)Y .

    Population grows according to a UN scenario,

    ṄN

    = q(1 − N

    M).

  • 28/77

    � Macroeconomic model for climate changeMonetary economy

    The wage dynamic evolves according to a short-term Phillips curve

    ẇw

    = Φ(λ) + γi .

    The price dynamics,

    i =ṗp,

    = ηp(mω − 1) + iLT .

  • 29/77

    � Macroeconomic model for climate changeImpact of climate change

    As an example, for deterministic exponential scenario, climatechange positively impact the share of wages

    ω̇

    ω=

    ẇw

    − ȧa

    +Ḋ

    1 − D− i

    = φ(λ) − α + Ḋ1 − D

    − (1 − γ)i .

  • 30/77

    � Macroeconomic model for climate change

    Households Firms Banks SumBalance SheetCapital stock +pt Kt +pt KtLoan −Dt +DtSum (net worth) X ft X

    bt Xt

    Transactions current capitalConsumption −pt Ct +pt CtInvestment +pt It −pt ItAccounting memo [GDP] [pt Yt (1 − Dt )]Wages +Wt −WtInterests on debt −rDt +rDtFirms’ net profit −Πt +ΠtDividends +Dit −DitFinancial Balances −Ḋt +ΠbtFlow of fundsGFCF +pt It +pt ItChange in Loans −Ḋt +ḊtColumn sum Πt − Dit Ḋt pt ItChange in Net worth Ẋ ft = Πt − Dit + (ṗt − δpt )Kt Ẋ bt = Π

    bt Ẋt

    Table: Balance sheet, transactions, and flow of funds for a three-sectoreconomy.

  • 31/77

    � Macroeconomic model for climate changeProductivity

    � The Business as usual Scenario

    ȧa

    = α

    � The Burke et al.(2015) Scenario

    ȧa

    = α1Tα + α2T 2α

    � The Kaldor-Verdoorn (2002) Scenario

    ȧa

    = α + ηg

    � The Gordon (2014) Scenario - productivity growth is 1,3%

  • 32/77

    � Outlines

    1 Introduction

    2 The Keen (1995) Model

    3 Macroeconomic model for climate change

    4 Climate Module

    5 Public Policy Module

    6 Numerical Simulations

    7 Further Work

  • 33/77

    � Climate ModuleCO2 EmissionsGlobal emissions are the sum of industrial and land-use emissions

    E := Eind + Eland ,

    where industrial emissions depend on output,

    Eind := Yσ(1 − n),

    with,

    σ̇

    σ= −gσ

    ġσgσ

    = δgσ with δgsigma < 0

    and the land-use emissions,

    ĖlandEland

    = δE with δE < 0

  • 34/77

    � Climate ModuleCO2 Accumulation

    The CO2 evolves according to a three-layer model, the atmosphere(AT), the upper ocean (UP) and the lower ocean (LO),

    ˙CO2AT

    ˙CO2UP

    ˙CO2LO

    =E0

    0

    +−φ12 φ12

    CATeqCUPeq

    0

    φ12 −φ12CATeqCUPeq

    − φ23 φ23CUPeqCLOeq

    0 φ23 −φ23CUPeqCLOeq

    COAT2COUP2

    COLO2

    .

  • 35/77

    � Climate ModuleRadiative Forcing

    Radiative forcing is the sum of the radiative forcing due to CO2 andother gases,

    F := Find + Fexo,

    with,

    Find (t) =F2×CO2log(2)

    log

    (CCO2(t)CCO2(t0)

    ),

    Ḟexo = δFexo Fexo

    (1 − Fexo

    F maxexo

    ).

  • 36/77

    � Climate ModuleTemperature Increase

    The temperature dynamics is a two-layer model, with T being themean atmospheric temperature deviation with respect to its value in1900 and T0 represents the deep-ocean temperature deviation.

    CṪ = F − (RF )T − γ∗(T − T0)C0Ṫ0 = γ∗(T − T0)

  • 37/77

    � Climate ModuleDamage Function (1/2)

    � The Nordhaus’s Damage function (2013),

    D = 1 − 11 + π1T + π2T 2

    � The Weitzman’s (2010) and Dietz-Stern’s (2015) Damagefunctions,

    D = 1 − 11 + π1T + π2T 2 + π3T 6.754

    � In Weitzman (2010), π3 is calibrated so that D = 50% wheneverT = 6.

    � In Dietz-Stern (2015), π3 is calibrated so that D = 50% wheneverT = 4.

  • 38/77

    � Climate ModuleDamage Function (2/2)

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    0 1 2 3 4 5 6

    Da

    ma

    ge

    s (

    fra

    ctio

    n o

    f o

    utp

    ut)

    Temperature increase (°C)

    Nordhaus Weitzman Dietz and Stern

    Figure: Comparison of the proposed Damage functions as percentage ofoutput.

  • 39/77

    � Outlines

    1 Introduction

    2 The Keen (1995) Model

    3 Macroeconomic model for climate change

    4 Climate Module

    5 Public Policy Module

    6 Numerical Simulations

    7 Further Work

  • 40/77

    � Public Policy ModuleAbatement Costs

    The abatement costG := θ1nθ2

    with θ1 and θ2 borrowed from Nordhaus (2013). n, the reduction rateof emissions implied by the abatement cost evolves according to,

    n = min

    {(pc

    pBS

    ) 1θ2−1

    ; 1

    }.

    Prices are exogenously given so that,

    ˙pBSpBS

    = δpBS , with δpBS < 0

    ṗCpC

    = δpC , with δpC > 0

  • 41/77

    � Outlines

    1 Introduction

    2 The Keen (1995) Model

    3 Macroeconomic model for climate change

    4 Climate Module

    5 Public Policy Module

    6 Numerical Simulations

    7 Further Work

  • 42/77

    � Numerical SimulationsScenarios - Baseline Calibration

    Parameter ValueYinit 64.4565Ninit 4.5510ωinit 0.5849λinit 0.6910dinit 1.4393pinit 1ηp 0.0819

    markup 1.610Monetary illusion -

    δ 0.0625ν 2.8956r 0.0303

    dfi 0.1672α 0.0226

  • 43/77

    � Numerical SimulationsThe BAU Scenario

    0,00

    0,01

    0,02

    0,03

    0,04

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2050 2100 2150 2200 2250 2300

    Employment Rate Inflation Rate (right axis)0,0

    0,5

    1,0

    1,5

    2,0

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100 2150 2200 2250 2300

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    1

    6

    11

    16

    21

    0

    10 000

    20 000

    30 000

    40 000

    50 000

    60 000

    70 000

    2000 2050 2100 2150 2200 2250 2300

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    2000 2050 2100 2150 2200 2250 2300

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in the BAU case.

  • 44/77

    � Numerical SimulationsThe BAU Scenario

    0,68

    0,69

    0,7

    0,71

    0,72

    0,73

    0,74

    0,75

    0,76

    0,52 0,54 0,56 0,58 0,6 0,62 0,64 0,66

    Em

    plo

    ym

    ent

    Rate

    Wage Share

    Figure: Trajectories of the main simulation outputs in the BAU case.

  • 45/77

    � Numerical SimulationsThe BAU Scenario

    Employment

    Rate

    Debt to

    Nominal GDP

    Ratio

    Wage

    Share

    0,68

    0,7

    0,72

    0,74

    0,54

    0,57

    0,6

    0,63

    1,26

    1,35

    1,44

    1,53

    1,62

    Figure: Trajectories of the main simulation outputs in the BAU case.

  • 46/77

    � Numerical SimulationsThe BAU Scenario - Values

    GDP Real Growth 2100 (wrt 2010) 1053%t CO2 per capita (2050) 7.72Temperature change in 2100 +3.94 ◦CCO2 concentration 2100 968.98 ppm

    Table: Key values of the world economy by 2100 — the exogenous case.

  • 47/77

    � Numerical SimulationsThe Kaldor-Verdoorn Scenario

    0,00

    0,01

    0,02

    0,03

    0,04

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2050 2100 2150 2200 2250 2300

    Employment Rate Inflation Rate (right axis)-1,0

    0,0

    1,0

    2,0

    3,0

    4,0

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100 2150 2200 2250 2300

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    1

    2

    3

    4

    5

    6

    7

    8

    0

    20

    40

    60

    80

    100

    120

    2000 2050 2100 2150 2200 2250 2300

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    2000 2050 2100 2150 2200 2250 2300

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in the Kaldor-Verdoorncase.

  • 48/77

    � Numerical SimulationsThe Kaldor-Verdoorn Scenario

    0,67

    0,68

    0,69

    0,70

    0,71

    0,72

    0,73

    0,74

    0,75

    0,76

    0,77

    0,54 0,59 0,64 0,69 0,74

    Em

    plo

    ym

    ent

    rate

    Wage share

    Figure: Trajectories of the main simulation outputs in the Kaldor-Verdoorncase.

  • 49/77

    � Numerical SimulationsThe Kaldor-Verdoorn Scenario - Values

    GDP Real Growth 2100 (wrt 2010) 53%t CO2 per capita (2050) 3.17Temperature change in 2100 +2.63 ◦CCO2 concentration 2100 521.09 ppm

    Table: Key values of the world economy by 2100 — the Kaldor-Verdoorncase.

  • 50/77

    � Numerical SimulationsThe Burke et al. (2015) Scenario

    0,00

    0,01

    0,02

    0,03

    0,04

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2050 2100 2150 2200 2250 2300

    Employment Rate Inflation Rate (right axis)-1,0

    0,0

    1,0

    2,0

    3,0

    4,0

    5,0

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100 2150 2200 2250 2300

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    1

    2

    3

    4

    5

    6

    7

    8

    0

    50

    100

    150

    200

    250

    300

    350

    400

    2000 2050 2100 2150 2200 2250 2300

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    2000 2050 2100 2150 2200 2250 2300

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in the Burke et al. (2015)case.

  • 51/77

    � Numerical SimulationsThe Burke et al. (2015) Scenario

    0,68

    0,69

    0,70

    0,71

    0,72

    0,73

    0,74

    0,75

    0,76

    0,54 0,59 0,64 0,69

    Em

    plo

    ym

    ent

    rate

    Wage share

    Figure: Trajectories of the main simulation outputs in the Burke et al. (2015)case.

  • 52/77

    � Numerical SimulationsThe Burke et al. (2015) Scenario - Values

    GDP Real Growth 2100 (wrt 2010) 397%t CO2 per capita (2050) 6.29Temperature change in 2100 +3.48 ◦CCO2 concentration 2100 744.49 ppm

    Table: Key values of the world economy by 2100 — The Burke et al. (2015)case.

  • 53/77

    � Numerical SimulationsThe Weitzman Scenario

    -0,07

    -0,05

    -0,03

    -0,01

    0,01

    0,03

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2050 2100 2150 2200 2250

    Employment Rate Inflation Rate (right axis)-5

    -3

    -1

    1

    3

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100 2150 2200 2250

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    0

    5

    10

    15

    20

    25

    0

    1 000

    2 000

    3 000

    4 000

    5 000

    6 000

    7 000

    2000 2050 2100 2150 2200 2250

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    2000 2050 2100 2150 2200 2250

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in the Weitzman case.

  • 54/77

    � Numerical SimulationsThe Weitzman Scenario

    0,30

    0,35

    0,40

    0,45

    0,50

    0,55

    0,60

    0,65

    0,70

    0,75

    0,80

    0,00 0,10 0,20 0,30 0,40 0,50 0,60

    Em

    plo

    ym

    ent

    rate

    Wage share

    Figure: Trajectories of the main simulation outputs in the Weitzman case.

  • 55/77

    � Numerical SimulationsThe Weitzman Scenario - Values

    GDP Real Growth 2100 (wrt 2010) 987%t CO2 per capita (2050) 7.72Temperature change in 2100 +3.93 ◦CCO2 concentration 2100 958.17 ppm

    Table: Key values of the world economy by 2100 — the Weitzman case.

  • 56/77

    � Numerical SimulationsThe Dietz-Stern Scenario

    -0,07

    -0,05

    -0,03

    -0,01

    0,01

    0,03

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2050 2100 2150

    Employment Rate Inflation Rate (right axis)-4,0

    1,0

    6,0

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100 2150

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    1

    6

    11

    16

    0

    100

    200

    300

    400

    500

    2000 2050 2100 2150

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    2000 2050 2100 2150

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in the Dietz-Stern case.

  • 57/77

    � Numerical SimulationsThe Dietz-Stern Scenario

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70

    Em

    plo

    ym

    ent

    rate

    Wage share

    Figure: Trajectories of the main simulation outputs in the Dietz-Stern case.

  • 58/77

    � Numerical SimulationsThe Dietz-Stern Scenario - Values

    GDP Real Growth 2100 (wrt 2010) 495%t CO2 per capita (2050) 7.72Temperature change in 2100 +3.84 ◦CCO2 concentration 2100 860.53 ppm

    Table: Key values of the world economy by 2100 — the Dietz-Stern case.

  • 59/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern Scenario

    -0,07

    -0,05

    -0,03

    -0,01

    0,01

    0,03

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2050 2100 2150 2200

    Employment Rate Inflation Rate (right axis)-75,0

    -25,0

    25,0

    75,0

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100 2150 2200

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    1

    2

    3

    4

    5

    6

    7

    8

    0

    100

    200

    300

    400

    500

    600

    2000 2050 2100 2150 2200

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    2000 2050 2100 2150 2200

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in the Combined Burke etal. and Dietz-Stern case.

  • 60/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern Scenario

    0,00

    0,10

    0,20

    0,30

    0,40

    0,50

    0,60

    0,70

    0,80

    0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70

    Em

    plo

    ym

    ent

    rate

    Wage share

    Figure: Phase portrait in the Combined Burke et al. and Dietz-Stern case

  • 61/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Values

    GDP Real Growth 2100 (wrt 2010) 265%t CO2 per capita (2050) 6.23Temperature change in 2100 +3.41 ◦CCO2 concentration 2100 708.98 ppm

    Table: Key values of the world economy by 2100 — The Combined Burke etal. and Dietz-Stern case.

  • 62/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Demographic

    4

    4,5

    5

    5,5

    6

    6,5

    7

    7,5

    2000 2050 2100 2150 2200 2250

    Bill

    ion

    of w

    ork

    ers

    Calibrated speed of convergence Slower speed of convergence

    Figure: Trajectories of the main simulation outputs in the Combined Burke etal. and Dietz-Stern - Demographic.

  • 63/77

    � Numerical SimulationsThe Combined Burke-Dietz Scenario - Demographic

    -0,07

    -0,05

    -0,03

    -0,01

    0,01

    0,03

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2050 2100 2150 2200 2250

    Employment Rate Inflation Rate (right axis)-10,0

    -5,0

    0,0

    5,0

    10,0

    15,0

    20,0

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100 2150 2200 2250

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    1

    2

    3

    4

    5

    6

    7

    8

    0

    50

    100

    150

    200

    250

    300

    2000 2050 2100 2150 2200 2250

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    2000 2050 2100 2150 2200 2250

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in the Combined Burke etal. and Dietz-Stern - Demographic.

  • 64/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Demographic - Values

    GDP Real Growth 2100 (wrt 2010) 244%t CO2 per capita (2050) 5.21Temperature change in 2100 +3.20 ◦CCO2 concentration 2100 660.37 ppm

    Table: Key values of the world economy by 2100 — the Combined Burke etal. and Dietz-Stern - Demographic.

  • 65/77

    � Numerical SimulationsPrice of Carbon

    � we find the initial condition in 2010 that the growth rate thatmatch with the 2015 and 2055 values (2005 $US 12 and 29t/CO2 respectively)

  • 66/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Carbon Price

    0,00

    0,01

    0,02

    0,03

    0,04

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2050 2100 2150 2200 2250

    Employment Rate Inflation Rate (right axis)-1,0

    0,0

    1,0

    2,0

    3,0

    4,0

    5,0

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100 2150 2200 2250

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    1

    2

    3

    4

    5

    6

    7

    8

    0

    100

    200

    300

    400

    500

    600

    2000 2050 2100 2150 2200 2250

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    2000 2050 2100 2150 2200 2250

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in rhe Combined Burke etal. and Dietz-Stern - Carbon Price.

  • 67/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Carbon Price

    0,68

    0,69

    0,70

    0,71

    0,72

    0,73

    0,74

    0,75

    0,76

    0,47 0,52 0,57 0,62 0,67 0,72

    Em

    plo

    ym

    ent

    rate

    Wage share

    Figure: Trajectories of the main simulation outputs in the Combined Burke etal. and Dietz-Stern - Carbon Price.

  • 68/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Carbon Price- Values

    GDP Real Growth 2100 (wrt 2010) 3.17%t CO2 per capita (2050) 5.54Temperature change in 2100 +3.22 ◦CCO2 concentration 2100 643.77 ppm

    Table: Key values of the world economy by 2100 — the Combined Burke etal. and Dietz-Stern- Carbon Price.

  • 69/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Carbon Price - Sensitivity of

    6

    -0,07

    -0,05

    -0,03

    -0,01

    0,01

    0,03

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2020 2040 2060 2080 2100

    Employment Rate Inflation Rate (right axis)-5

    0

    5

    10

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    1

    2

    3

    4

    5

    6

    7

    8

    0

    50

    100

    150

    200

    2000 2020 2040 2060 2080 2100

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    2000 2050 2100

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in the CombinedBurke-Dietz Scenario - Carbon Price case.

  • 70/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Carbon Price- Values

    GDP Real Growth 2100 (wrt 2010) −9.1%t CO2 per capita (2050) 5.00Temperature change in 2100 +4.4552◦CCO2 concentration 2100 549.78 ppm

    Table: Key values of the world economy by 2100 — the Combined Burke etal. and Dietz-Stern - Carbon Price.

  • 71/77

    � Numerical SimulationsPrice of Carbon 2

    � we find the initial condition in 2010 that the growth rate thatmatch with the 2015 and 2055 values (2005 $US 74 and 306t/CO2 respectively)

  • 72/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Carbon Price 2 - Sensitivity

    of 6

    0,00

    0,01

    0,02

    0,03

    0,04

    0,05

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    2000 2050 2100 2150 2200 2250 2300

    Employment Rate Inflation Rate (right axis)-5

    -3

    -1

    1

    3

    -0,04

    -0,02

    0,01

    0,03

    0,05

    2000 2050 2100 2150 2200 2250 2300

    Real Ouput Growth

    Labor Productivity Growth

    Population Growth

    Debt to Nominal GDP Ratio (right axis)

    0

    1

    2

    3

    4

    5

    0

    100

    200

    300

    400

    500

    600

    2000 2050 2100 2150 2200 2250 2300

    Real Output in $ 2010

    Emissions per Capita in tCO2 (right axis)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    0

    1

    2

    3

    4

    5

    6

    7

    2000 2050 2100 2150 2200 2250 2300

    Atmospheric Temperature Change in °CDamage to Real Output Ratio (right axis)

    Figure: Trajectories of the main simulation outputs in the Combined Burke etal. and Dietz-Stern - Carbon Price 2 - Sensitivity of 6 case.

  • 73/77

    � Numerical SimulationsThe Combined Burke et al. and Dietz-Stern - Carbon Price- Values

    GDP Real Growth 2100 (wrt 2010) 272%t CO2 per capita (2050) 0.49Temperature change in 2100 +3.2293◦CCO2 concentration 2100 397.98 ppm

    Table: Key values of the world economy by 2100 — the Combined Burke etal. and Dietz-Stern - Carbon Price.

  • 74/77

    � Numerical SimulationsObjective 1.5

    � According to the 2015 climate meeting, held in Paris, theuniversal agreement’s main goal is to stay, in this century, withinthe + 2 C of temperature anomaly and to drive efforts to limiteven further to + 1.5C above pre-industrial levels.

  • 75/77

    � Numerical SimulationsObjective + 1.5◦ C

    Sensitivity of 1.5 Sensitivity of 2.9Init price of 15 Init price of 80 Init price of 15 Init price of 80

    Price in 2015 18.58 86.27 65.50 144.32Price in 2020 23.00 93.04 286.02 260.35Price in 2050 82.93 146.35 xxx xxx

    Table: Price in order to prevent the temperature anomaly to reach the + 1.5◦

    ceiling in 2100, prices are in 2005 US$/t CO2.

  • 76/77

    � Outlines

    1 Introduction

    2 The Keen (1995) Model

    3 Macroeconomic model for climate change

    4 Climate Module

    5 Public Policy Module

    6 Numerical Simulations

    7 Further Work

  • 77/77

    � Further WorkFurther work

    � To model non-renewable energy, natural resource scarcity.� To introduce the public sector.� To refine the statistical framework.� To distinguish the agricultural from the industrial production.� To precise the determination of the damage functions.

  • 77/77

    Thank you for your attention.

    IntroductionThe Keen (1995) ModelMacroeconomic model for climate changeClimate ModulePublic Policy ModuleNumerical SimulationsFurther Work