Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

42
Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young

Transcript of Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Page 1: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Cooperativity in Asymmetric Bimetallic

Catalysis05/20/2015

Presented By Michael C. Young

Page 2: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Strategies for Bimetallic Catalysis•There are numerous intramolecular and intermolecular methods to achieve bi-metallic catalysis:

Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.

Page 3: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Pioneering Work•Allylation of activated methylene compounds had originally been difficult to achieve good ee with chiral phosphine ligands.

Hayashi, T.; Kanehira, K.; Tsuchiya, H.; Kumada, M. Chem. Commun., 1982, 2586.

i) NaH/THF; ii) allylacetate/[(allyl)PdCl]2 / -30 ºC

80%, 45% ee (S) 64%, 31% ee (S) 86%, 15% ee (S)

Page 4: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Improved Allylation Protocol (I)•Kumada group investigated improving the ee with a new class of chiral phosphine.

Hayashi, T.; Kanehira, K.; Hagihara, T.; Kumada, M. J. Org. Chem., 1988, 113.

Fe

PPh2

PPh2

R

R=

NOH

NH

OH

NOH

OH

NOH

OH

O ONaH

THF THF

OAc

[(allyl)PdCl]2

O O

-50 ºC

N

73% (S)

62% (S)

62% (S)

53% (S)

69% (S)

HO2C

OH

Fe

PPh2

PPh2

N

O ONaH

THF THF

OAc

[(allyl)PdCl]2

O O

OHL

L

OO OO OO

O O O O

H

O

Ph

O

OEt

O

OMe

OO

86%, < 5 % ee 75%, ee nd 86%, 58% ee

74%, 55% ee 93%, 51% ee

88%, 47% ee (R) 70%, 22% ee 82%, 3% ee (R)

Page 5: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Improved Allylation Protocol (II)•Replacing H-bonding with metal chelation changes solvent preference as well as stereoselectivity.

Sawamura, M.; Nagata, H.; Sakamoto, H.; Ito, Y. J. Am. Chem. Soc., 1992, 194, 2586.

OO

86%, < 5 % ee

Fe

PPh2

PPh2

N

NaH

THF THF

OAc

[(allyl)PdCl]2

OHL

L

OO

Fe

PPh2

PPh2

N

O

OO

ONO

Fe

PPh2

PPh2

N

O

ON

ONO

L1 L2

Mesitylene

OAc

Pd2dba3 · CHCl3

L / KF

O O

-25 ºC / 40 h

O O

L1: 92%, 60% ee (R)L2: 90%, 70% ee (R)

Page 6: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Bifunctional Asymmetric Nitro Allylation•Ito and coworkers hoped that they could better understand their catalyst in another transformation.

Sawamura, M.; Nakayama, Y.; Tang, W.-M.; Ito, Y. J. Org. Chem., 1996, 61, 9090.

OAc

Pd2dba3 · CHCl3

L1 / MF

O2N

O

-25 ºC / 40 h

O2N

O

Base Solvent Conc. Yield (%) ee %

KF Mesitylene 1.0 M 40 14 (R)

KF Toluene 1.0 M 47 19 (R)

KF THF 1.0 M 66 25 (R)

KF CH2Cl2 1.0 M 33 25 (R)

RbF THF 1.0 M 50 29 (R)

RbF CH2Cl2 1.0 M 57 38 (R)

RbF CH2Cl2 0.5 M 28 42 (R)

CsF CH2Cl2 1.0 M 31 31 (R)

Fe

PPh2

PPh2

N

O

OO

ONO

L1

OAc

Pd2dba3 · CHCl3

L1 / MF

O2NOR

O

-25 ºC / 40 h

O2NOR

O

Base R-Group Add. Yield (%) ee %

KF Me N/A 43 23 (R)

KF Et N/A 44 37 (R)

KF t-Bu N/A 95 51 (R)

RbF t-Bu N/A 95 60 (R)

CsF t-Bu N/A 91 34 (R)

RbF t-Bu RbClO4 98 69 (R)

RbF t-Bu RbClO4* 92 80 (R)

Page 7: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Trost Ligand as a Bifunctional Ligand

Trost, B. M.; Radinov, R. J. Am. Chem. Soc., 1997, 199, 2586.

HNNHO O

PAr2 Ar2P

OAc

0.25%

NaO2SPh

H2O / DCM

2 h / 0 ºCO2SPh

0.25% [(allyl)PdCl]2

91 % (98% ee)

Ar =O

O O

5% [(allyl)PdCl]2

HNNHO O

PPh2 Ph2P

OAc

5%

NaO2SPh

H2O / DCM / Bu4NBr

18 h (yield/ee not discussed)

O2SPh

0.13% [(allyl)PdCl]2

HNNHO O

PPh2 Ar2P

OAc

0.3 %

MO2SPh

H2O / DCM / 0 ºC O2SPh

Page 8: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Asymmetric Carbonyl Alkylation (I)

Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc., 1986, 108, 6072.

R CHO

NMe2

OH2%

1.2 eq R'2Zn

R

R' OH

H

Aldehyde Zinc Solvent Time (h) Yield (%) ee (%) – (S)

C6H5 (C2H5)2Zn PhMe 6 97 98

C6H5 (C2H5)2Zn Hexanes-PhMe 6 94 98

C6H5 (C2H5)2Zn Et2O-PhMe 6 98 99

C6H5 (C2H5)2Zn THF-PhMe 64 44 91

C6H5 (CH3)2Zn PhMe 70 59 91

P-ClC6H4 (C2H5)2Zn PhMe 12 86 93

(E)-C6H5CHCH (C2H5)2Zn PhMe 6 81 96

C6H5CH2CH2 (C2H5)2Zn PhMe 12 80 90

N-C6H13 (C2H5)2Zn PhMe 24 81 61

Page 9: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Asymmetric Carbonyl Alkylation (II)

Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.DiMauro, E. F.; Kozlowski, M. C. Org. Lett., 2001, 3, 3053.

Page 10: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Asymmetric Carbonyl Alkylation (III)

Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.Funabashi, K.; Jachmann, M.; Kanai, M.; Shibasaki, M. Angew. Chem., Int. Ed., 2003, 42, 5489.

Page 11: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Shibasaki-BINOL Chemistry

Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.Shibasaki, M.; Kanai, M.; Matsunaga, S.; Kumagai, N. Acc. Chem. Res., 2009, 42, 1117.Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc., 1992, 114, 4418.Arai, T.; Sasai, H.; Aoe, K.-I.; Okamura, K.; Date, T.; Shibasaki, M. Angew. Chem., Int. Ed., 1996, 35, 104.

Page 12: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Asymmetric Strecker-Type Reactions

Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.Masumoto, S.; Usuda, H.; Suzuki, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc., 2003, 125, 5634.Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett, 2005, 1491.Kato, N. et al. J. Am. Chem. Soc., 2006, 128, 16438.

Page 13: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Catalytic Asymmetric Aldol Reactions

Trost, B. M.; Ito, H. J. Am. Chem. Soc., 2000, 122, 12003.

Page 14: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Diol Desymmetrization

Trost, B. M.; Mino, T. J. Am. Chem. Soc., 2003, 125, 2410.

Page 15: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

1,2-Alkynylation of Aldehydes

Trost, B. M.; Weiss, A. H.; von Wangelin, A. J. J. Am. Chem. Soc., 2006, 128, 8.

Page 16: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Tetrametallic Catalysis

Endo, K.; Ogawa, M.; Shibata, T. Angew. Chem., Int. Ed., 2010, 49, 2410.

Page 17: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Bimetallic Salen Complexes (I)

Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931. Keller, F.; Rippert, A. J. Helv. Chim. Acta, 1999, 82, 125.DiMauro, E. F>; Kozlowski, M. C. Org. Lett., 2001, 3, 1641.Chen, Z.; Furutachi, M.; Kato, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc., 2008, 130, 2170.Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc., 2007, 129, 4900.

Page 18: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Bimetallic Salen Complexes (II)

Handa, S.; Nagawa, K.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed., 2008, 47, 3230.

Page 19: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Bimetallic Catalysis for BINOL Synthesis

Gao, J.; Reibenspies, J. H.; Martell, A. E. Angew. Chem., Int Ed., 2003, 42, 6008.

R

N N

N N

R

O

OCu Cu

R

N N

N N

R

O

OCu Cu

H

H

H

H

R: 1a = H 1b = Me 1c = tBu

R: 3a = H 3b = Me 3c = tBu

R

N N

N N

R

Ph

PhPh

Ph

O

OCu Cu

R

N N

N N

R

Ph

PhPh

Ph

O

OCu Cu

H

H

H

H

1d 3d

Page 20: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Bimetallic Hetereogeneous Catalyst

Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.Nitabaru, T.; Kumagai, N.; Shibasaki, M. Tetrahedron Lett., 2008, 49, 272.Nitabaru, T.; Nojiri, A.; Kobayashi, M.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc., 2009, 131, 13860.

Page 21: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

“Robot-like” Bimetallic Pd Catalyst

Jauntze, S.; Peters, R. Angew. Chem., Int Ed., 2008, 47, 9284.Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.

Page 22: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Separate Metal Centers

Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc., 1996, 118, 3309.

Page 23: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Jacobsen Catalyst (I)

Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.Martìnez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem. Soc., 1995, 117, 5897.

Page 24: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Jacobsen Catalyst (II)

Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science, 1997, 277, 936.Nielsen, L. P. C.; Stevenson, C. P.; Jacobsen, E. N. J. Am. Chem. Soc., 2004, 126, 1360.Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.

Page 25: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Jacobsen Catalyst (III)

Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc., 2003, 125, 4442.Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc., 2004, 126, 9928.

Page 26: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Bimetallic Epoxide Fluoridation

Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc., 2010, 132, 3268.Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc., 2011, 133, 16001.Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.

Page 27: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Bridged Bimetallic Catalysts

Belekon’, Y. N.; et al. J. Am. Chem. Soc., 1999, 121, 3968.Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.

Page 28: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

CO2 Activation With Bimetallic Complexes

Clegg, W.; Harrington, R. W.; North, M.; Pasquale, R. Chem. Eur. J., 2010, 16, 6828.North, M.; Quek, S. C. Z.; Pridmore, N. E.; Whitwood, A. C.; Wu, X. ACS Cat., 2015, 5, 3398.

Page 29: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Zr-Epoxide Azidination

Nugent, W. A. J. Am. Chem. Soc., 1992, 114, 2768.Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.

Page 30: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Tethered Bimetallic Catalysis

Konsler, R. G.; Karl, J.; Jacobsen, E. N. J. Am. Chem. Soc, 1998, 120, 10780.

The Winner!

Page 31: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Al Together

Mazet, C.; Jacobsen, E. N. Angew. Chem., Int. Ed., 2008, 47, 1762.

Page 32: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Resolution/Polymerization

Thomas, R. M.; et al. J. Am. Chem. Soc., 2010, 132, 16520.

Page 33: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Vanadium Oxidation of Naphthol

Guo, Q.-X.; Gong, L.-Z.; et al. J. Am. Chem. Soc., 2007, 129, 13927.

Page 34: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Tethered and Bridged Ti-Salen

Zhang, Z.; Wang, Z.; Zhang, R.; Ding, K. Angew. Chem., Int. Ed., 2010, 49, 6746.

Page 35: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Oligomeric/Polymeric Scaffolds

Breinbauer, R.; Jacobsen, E. N. Angew. Chem., Int. Ed., 2000, 39, 3604.Annis, D. A.; Jacobsen, E. N. J. Am. Chem. Soc., 1999, 121, 4147.Rossbach, B. M.; Leopold, K.; Weberskirch, R. Angew. Chem., Int. Ed., 2006, 45, 1309.Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.

Page 36: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Coordination Tethered/Controlled Catalyst

Gianneschi, N. C.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C. A>; Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc., 2003, 125, 10508.

Page 37: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Hydrogen Bond Tethered Catalysts

Park, J.; Lang, K.; Abboud, K. A.; Hong, S. Chem.-Eur. J., 2011, 17, 2236.Park, J.; Lang, K.; Abboud, K. A.; Hong, S. J. Am. Chem. Soc., 2008, 130, 16484.Park, J. Hong, S. Chem. Soc. Rev., 2012, 41, 6931.

Page 38: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Nanocage Embedded Catalysts

Yang, H.; Zhang, L.; Zhong, L.; Yang, Q.; Li, C. Angew. Chem., Int. Ed., 2007, 46, 6861.

OOH

OHO

Page 39: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Thank you for your attention!

http://debbieohi.com/blather2009/?currentPage=6, Accessed 05/20/2015.

Page 40: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Question 1

Endo, K.; Ogawa, M.; Shibata, T. Angew. Chem., Int. Ed., 2010, 49, 2410.

•Catalyst L1 is effective in asymmetric alkylation of enones in the presence of Cu(II) and Zn(II), while L2 shows very low reactivity and enantioinduction. Provide two structures that are likely obtained in equilibrium upon treatment of L2 with Cu(II) and Zn(II) that would explain the poor selectivity (Hint, think about the solubility).

Page 41: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Question 2

Handa, S.; Nagawa, K.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed., 2008, 47, 3230.

•Shibasaki showed that a Cu:Sm complex with tetrahydroxy Salen 1 gave syn products from a nitro Mannich reaction, while most Henry reactions catalyzed prefer to give anti products. For example, the same ligand complexed with Pd and La was found to give anti products with good selectivity. Contrast the transition states to explain this difference in selectivity.

Cu/Sm/1

Page 42: Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.

Question 3

Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc., 1996, 118, 3309.

•Ito and coworkers demonstrated that a mixture of Pd(S,S)-(R,R)-TRAP and Rh(S,S)-(R,R)-TRAP gave good enantioselectivity for the asymmetric allylation of α-cyanoesters. Although the reaction did not proceed without palladium, in the presence of only Pd(S,S)-(R,R)-TRAP the reaction gave a comparable yield, albeit with no enantioselectivity. Draw the mechanism of the reaction without Rh (remember that the Pd intermediate is cationic).