Conversion Factors for Environmental Engineers978-1-59259-996-7/1.pdf · Conversion Factors for...

73
Appendix Conversion Factors for Environmental Engineers Lawrence K. Wang CONTENTS CONSTANTS AND CONVERSION F ACTORS BASIC AND SUPPLEMENTARY UNITS DERIVED UNITS AND QUANTITIES PHYSICAL CONSTANTS PROPERTIES OF W ATER PERIODIC T ABLE OF THE ELEMENTS ABSTRACT With the current trend toward metrication, the question of using a consistent system of units has been a problem. Wherever possible, the authors of this Handbook of Environmental Engineering series have used the British system (fps) along with the metric equivalent (mks, cgs, or SIU) or vice versa. For the convenience of the readers around the world, this book provides a 55-page detailed Conversion Factors for Environmental Engineers. In addition, the basic and supplementary units, the derived units and quantities, important physical constants, the properties of water, and the Periodic Table of the Elements, are also presented in this document. Key Words: Conversion factors, British units, metric units, physical constants, water properties, periodic table of the elements, environmental engineers, Lenox Institute of Water Technology. 747

Transcript of Conversion Factors for Environmental Engineers978-1-59259-996-7/1.pdf · Conversion Factors for...

AppendixConversion Factors for Environmental Engineers

Lawrence K. Wang

CONTENTS

CONSTANTS AND CONVERSION FACTORS

BASIC AND SUPPLEMENTARY UNITS

DERIVED UNITS AND QUANTITIES

PHYSICAL CONSTANTS

PROPERTIES OF WATER

PERIODIC TABLE OF THE ELEMENTS

ABSTRACT

With the current trend toward metrication, the question of using a consistent systemof units has been a problem. Wherever possible, the authors of this Handbook ofEnvironmental Engineering series have used the British system (fps) along with themetric equivalent (mks, cgs, or SIU) or vice versa. For the convenience of the readersaround the world, this book provides a 55-page detailed Conversion Factors forEnvironmental Engineers. In addition, the basic and supplementary units, the derivedunits and quantities, important physical constants, the properties of water, and thePeriodic Table of the Elements, are also presented in this document.

Key Words: Conversion factors, British units, metric units, physical constants, waterproperties, periodic table of the elements, environmental engineers, Lenox Institute ofWater Technology.

747

Appendix 7/19/07 11:12 AM Page 747

Conversion Factors 749

Appendix 7/19/07 11:12 AM Page 749

750 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 750

Conversion Factors 751

Appendix 7/19/07 11:12 AM Page 751

752 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 752

Conversion Factors 753

Appendix 7/19/07 11:12 AM Page 753

754 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 754

Conversion Factors 755

Appendix 7/19/07 11:12 AM Page 755

756 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 756

Conversion Factors 757

Appendix 7/19/07 11:12 AM Page 757

758 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 758

Conversion Factors 759

Appendix 7/19/07 11:12 AM Page 759

760 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 760

Conversion Factors 761

Appendix 7/19/07 11:12 AM Page 761

762 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 762

Conversion Factors 763

Appendix 7/19/07 11:12 AM Page 763

764 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 764

Conversion Factors 765

Appendix 7/19/07 11:12 AM Page 765

766 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 766

Conversion Factors 767

Appendix 7/19/07 11:12 AM Page 767

768 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 768

Conversion Factors 769

Appendix 7/19/07 11:12 AM Page 769

770 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 770

Conversion Factors 771

Appendix 7/19/07 11:12 AM Page 771

772 Lawrence K. Wang

Appendix 7/19/07 11:12 AM Page 772

Conversion Factors 773

Appendix 7/19/07 11:12 AM Page 773

774 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 774

Conversion Factors 775

Appendix 7/19/07 11:13 AM Page 775

776 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 776

Conversion Factors 777

Appendix 7/19/07 11:13 AM Page 777

778 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 778

Conversion Factors 779

Appendix 7/19/07 11:13 AM Page 779

780 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 780

Conversion Factors 781

Appendix 7/19/07 11:13 AM Page 781

782 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 782

Conversion Factors 783

Appendix 7/19/07 11:13 AM Page 783

784 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 784

Conversion Factors 785

Appendix 7/19/07 11:13 AM Page 785

786 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 786

Conversion Factors 787

Appendix 7/19/07 11:13 AM Page 787

788 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 788

Conversion Factors 789

Appendix 7/19/07 11:13 AM Page 789

790 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 790

Conversion Factors 791

Appendix 7/19/07 11:13 AM Page 791

792 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 792

Conversion Factors 793

Appendix 7/19/07 11:13 AM Page 793

794 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 794

Conversion Factors 795

Appendix 7/19/07 11:13 AM Page 795

796 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 796

Conversion Factors 797

Appendix 7/19/07 11:13 AM Page 797

798 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 798

Conversion Factors 799

Appendix 7/19/07 11:13 AM Page 799

800 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 800

Conversion Factors 801

Appendix 7/19/07 11:13 AM Page 801

802 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 802

Conversion Factors 803

Appendix 7/19/07 11:13 AM Page 803

804 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 804

Conversion Factors 805

Appendix 7/19/07 11:13 AM Page 805

806 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 806

Conversion Factors 807

Appendix 7/19/07 11:13 AM Page 807

808 Lawrence K. Wang

Appendix 7/19/07 11:13 AM Page 808

Conversion Factors 809

Appendix 7/19/07 11:13 AM Page 809

810

VI.

PE

RIO

DIC

TA

BL

EO

FT

HE

EL

EM

EN

TS

Appendix 7/19/07 11:13 AM Page 810

Index 811

Index

811

AAcid

-forming bacteria, 137phase, 137

Activated sludge, 10–22production, 10–13

Adsorber, 287Aerated static pile

bulking agents, 667energy requirements, 667–668environmental impact, 668–669oxygen supply, 666–667process, 664–670

description, 664Aerobic digestion, 177–205, 456–463

advantages, 178air requirement, 195autothermal thermophilic, 179–180

using oxygen, 181capital costs, 189–191continuous operation, 179design, 186–189

considerations, 181–185dewatering, 194–195mixing, 194oxygen requirements, 183–184pH reduction, 194solids reduction, 182–183temperature, 181–182

input–output data, 186–189parameters, 186–188performance

supernatant quality, 185–186volatile solids reduction, 185volatile solids loading, 194

design procedure, 186-189digester volume, 193-194, 196-197disadvantages, 178-179microbiology, 178O & M costs, 190–191oxygen requirement, 194–195, 196

performance, 185–186power requirement, 197process

description, 178–179variations, 179–181

semibatch operation, 179sludge

age, 196quantity, 193wasting schedule, 194

solids retention time, 194volatile solids reduction, 196

Agitated in-vessel composting bioreactor,671

Airand oxygen requirements, complete

combustion, 618compression, 265drying, 265filtration, 265preparation, ozone, 265saturation, flotation, 86-to-solids ratio, 81, 89, 90, 92, 93

Alkaline stabilization, 207advantages and disadvantages, 212biosolids

chemical characteristics, 220environmental impacts, 213deodorization, 217equipment, 216facility for biosolids, design factors,

216process performance, 217

chemical compounds in biosolids, 221,222

process design, 223lime handling facilities, 223

Anaerobicbiological reactions, 136contact

Wang_v6_Index_Final 7/23/07, 7:34 AM811

812 Index

column schematic, 150process study procedures, 146schematic. 140

decomposition, 135digester

capital and operating costs, 162cost estimate, 162, 163covers, 150design examples, 163

using modified anaerobic contactprocess, 167

using standards design, 163performance criteria, 162

reactor configuration. 139external heat exchanger, 157gas

collection, storage, and distribution,158

piping schematic, 159utilization, 159

heating system, 154heat losses,156maintenance of reactor stability, 161mixing devices, 151sludge and supernatant withdrawal,

161sludge pumping and piping

considerations, 160system equipment and appurtenances,

150tank construction and system

components,149turbine-type mixing system, 155

digestion, 135, 457, 484, 487effect of solid detention time, 142effect of temperature, 142gas production and utilization, 142management, 160management, control of sludge feed,

160nutrient requirements, 142organic loading

parameters, 140rate, 141

reactor configurations, 138anaerobic contact process with

sludge recycle. 138anaerobic filter, 138single-stage, unmixed, 138two-stage, mixed primary. 138

solid waste, 135time and temperature relationships,

141wastewater sludges, 135

lagoons, 431, 432applications, 432application examples, 443construction cost, 440design criteria, 437design

examples, 443data gathering and compilation,

437energy

consumption, 440costs, 440

limitations, 432minimum top width, embankments,

439minimum treatment volume, 433operation and maintenance cost,

440process

design, 433performance, 432reliability, 432

sludge volume, 436volumes and depth requirement, 434waste volume for treatment period,

434volume requirement, 436with recycle system, 439

process, 136biochemistry, 137metabolic pathways, 139microbiology, 137recent development, 168performance data 171

reactor design and sizing, 146treatability studies, design practice, 144treatment process, 136

advantages, 136trickling filter, 140

Ancillary facilities, landfill, 724Animal wastes

anaerobic lagoons, 431treatment, 431

Annual evaporation data, 600Anoxic gas flotation, AGF, 492Ash, 357

Wang_v6_Index_Final 7/23/07, 7:34 AM812

Index 813

ATAD, autothermal thermophilic aerobicdigester, 452, 456-463, 488

–air, 191–193, 452, 456, 460–oxygen, 191–193, 452, 456, 462–463

Attached-suspended growth biosolids,26–27

Average evaporation data in US, 438

BBacteria, 334–335Basket centrifuge, 103–104

achievable solids concentration, 103costs, 109–110

construction, 113O&M, 114

cycle time, 103energy requirements, 109–110feed rate, 103performance, 109–110, 118

Belt press, 255–258, 466Belt filter presses, 519–539

advantages, 521–522applications, 522cake thickness, 534capital cost, 530costs, 530–532design criteria, 523–527

pressures, 526–527disadvantages, 522energy requirements, 533-534O & M, 528–530

beltrate travel, 530tracking, 529

biosolids conditioning, 529compression, 530costs, 530-532inspection, 529loading rate, 530sampling and analysis, 529solids, 529spray adjustment, 529

odor control, 527-528performance, 522-523pressing capacity, 533pressures, 534principles, 520-–21weight of water in cake, 534

Biofiltration, 451, 453, 464, 466–470, 481applications, 468

costs, 469design considerations, 468process description, 467

Biologicalbiosolids, 10–27

characteristics, 10flotation, 72

Biosolidsand site conditions, 720anaerobic

digestion, 135anaerobic lagoon, 432

bacteria, 219centrifugation, 101–134, 466characteristics and quantity, 1–44characterization, 28–35, 717chlorine stabilization, 376–383class A, 707class B, 707codisposal with refuse, 716combustion, 614–618composting, 645–687

applicability, 647-649calculation of composting area

requirements, 681–682calculation of bulking agent to

biosolids ratio, 679calculation of the ratio of new to

recycled bulking agent, 679–681costs, 674–675

capital, 674–675design criteria, 654–659environmental impact, 647–649O & M, 675process description, 651–654

compressibility, 33–34conditioning cost, 364–368

capital, 364-365electricity means, 375O &M cost, 365-368

dewaterability, 29-31dewatering processes, 465digestion and stabilization, 454disposal on land (landfill), 712elutriation, 389evaporation, 583fixed solids, 34flotation, 71, 451heavy metals, 34–35high temperature thermal processes, 613

Wang_v6_Index_Final 7/23/07, 7:34 AM813

814 Index

incineration, 620-627land application program, elements,

712landfill methods, 713

area fill layer, 715area fill mound, 715biosolis-only area fill, 714biosolids-only trench fill, 713dike containment, 715narrow trenches, 713wide trenches, 714

–lime mixing tankdesign, 228mixing, 230sizing, 229

low temperature thermal processes, 299management, 4oxyozosynthesis, 244pH, 34polymer conditioning, 389pressurized ozonation, 243production, 2, 737property, exceptional quality, 707septicity, 34sludge drying beds, 403slurries, mechanical mixer specifica-

tions, 231specific gravity, 28–29specific resistance, 33stabilization, 375–376

lime dose requirement, 214, 215storage with lime addition, pH change,

216temperature, 34thickening, 30-31, 71trace elements, 34–45vermicomposting, 689vertical shaft digestion, 451volatile solids, 34wasting methods, 20bridging model, destabilization of

colloids by polymers, 397Buchner funnel test, 362–364

CCapillary suction time (CST), 364

testing, 549–550Capital cost, codisposal by combustion,

starved air combustion (SAC),629

Carver–Greenfield dehydration system,591

Cationic polyelectrolyte in solution,configuration, 396

Cement kiln dust, 357Centrifugation, 101–134, 466

advantages, 124clarification and thickening, 101–134cannery waste sludge, 122coal and refuse, 114–121disadvantages, 124electroplating waste, 112–114metallurgical refinery sludge, 121–122paper sludges, 110–112potato wastes, 122principles, 102pulp sludges, 110-112

Centrifugesconstruction material, 124design, 122–126

applications, 128criteria, 125procedure, 125–126

effects of parameters, 125manufacturers, 123–124operation and maintenance, 126–128performance, 109–122selection, 122types, 103

Chemical biosolids, 27–28conditioning of, 354

Chemisorbed water, 102–103Chlorine, 272

stabilization, 376-383advantages, 379-380characteristics of stabilized biosolids,

380–381chlorine requirements, 379–380cost, 381–383disadvantages, 380process description, 376–378subnatant quality, 381supernatant quality, 381

Clarification, centrifugation, 101–134Class A biosolids, 209Class B biosolids, 209Classical pollutant removal

flotation, 256ozonation, 250, 289

Closed-loop ozonation, 288

Wang_v6_Index_Final 7/23/07, 7:34 AM814

Index 815

Coal, 357Codisposal by combustion, 627

applications, 628design basis for costs, 629design parameters, 628energy requirements, 629environmental impact, 629performance, 628reliability, 628starved air combustion (SAC), 628

operating cost, 630Codisposal, biosolids/refuse mixture, 716Codisposal, biosolids/soil mixture, 716Coil spring-belt type vacuum filter, 500Colloidally bound water, 102–103Combustion, 614-–18

calculations, molal basis, 639chemical reactions, 616

Comparison, approximate and theoreticalcalculation, 641

Complete mix digester design, mean cellresidence times, 148

Completely mixed biological wastetreatment process, steady-staterelationships, 148

Composition of primary biosolids, 9–10Compost, 338, 464, 650–653

class A, 650class B, 650Exception Quality (EQ), 650metal concentration, 650processes

with external bulking agent, 658–659

without external bulking agent,656–658

quality, 649–651temperature, 650

Composted sludge, gamma irradiation, 345Composting, 338, 646

moisture, 651–653nutrient concentration, 653oxygen supply, 653pH, 653temperature, 653

Concurrent elutriation in multiple tanks, 393Conditioning

and stabilization, 353–388chemical, 359-364dosage, 357-358

Conduction drying, 306Continued leachate and gas control, landfill,

735Continuous

flow system, 695slaking, 228

Convection drying, 305Conventional digester, 138Cost

biosolids disposal on land (landfill), 735flotation, 86hauling of biosolids,738heat

conditioning, 303drying, 308

of recycling, land application, 712supplemental heat, lime addition and

electricity, 232sludge drying bed, 420VSD, 486, 488

Countercurrent elutriation, 390Cryogenic air separation, 285–286Cryophilic aerobic digestion, 192CT, concentration-time, 276Cyanide removal, ozonation, 291

DDAF (see also Dissolved air flotation)

concrete or steel construction, 76dissolved air flotation, 71, 251–255, 453hydraulic loading, 79, 82pollutants removal, 256rectangular or circular shape, 76, 78solids loading, 80thickener, 71–99, 463

design criteria, 73no recycle, 89, 91process description, 74process design, 88with recycle, 90, 93performance, 85

Decay coefficient, 14, 16, 17Deep-shaft bioreactor (VSB), 452Denitrification biosolids, 27Design criteria

for area fill layer, 716for area fill mound, 716for diked containment landfill, 716narrow trench landfill, 714wide trench landfill, 714

Wang_v6_Index_Final 7/23/07, 7:34 AM815

816 Index

Designparameters, hauling of biosolids, 736procedure, hauling of biosolids, 736

Diffuser contactor for water and waste-water treatment, 267–268

Digestergas holder cover, 152heat transfer coefficients, 156

Digestion, 451–489Dilution-to-threshold, D/T, 481Direct

drying, 305–indirect rotary dryer, 320–321

Disinfectionchemical, 336chlorine, 337electron irradiation, 339gamma irradiation, 343–349heat drying, 327high temperature thermal process,

338lime, 337long-term storage, 336low temperature thermal process, 337ozonation, 251, 276ozone, 274–276, 337quaternary ammonium compounds,

337solid substances, 336

Disk centrifuge, 107–108advantages, 108disadvantages, 108performance, 109

Dispersed air flotation, 71Dissolved air flotation (DAF), 71, 251–

255, 453double cell, 253single cell, 252

Dissolved gas flotation (DGF), 247–252DO, dissolved oxygen, 15Draft tube-type mixer, 154Dried sludge, gamma irradiation, 345Dry

feeders, 227powder cationic polyelectrolytes, 395solids heating values, effect on

autogenous combustion, 621solids heating values, effect on

supplemental fuel consumption,622

Dryingbeds, 403–430, 466lagoons, 585–590conduction, 306convection, 305

Dual digestion, 484, 485

EE. foetida, 691Earthworm

conversion process, process designconsiderations, 698criteria, 700limitations, 700operation, 699troubleshooting, 699

process diagram, 691Efficiencies, biosolids dewatering

processes, 737Electroflotation, 72Electron beam

facility, 340scanner, 341

Electron irradiation, 339–343design considerations, 341performance, 342process description, 340

Elutriation, 373, 36, 389chemical conditioning, soluble ionic

organic polymers(polyelectrolytes), 394

chemical conditioning, solublenonionic organic polymers,394

design examples, 399elutriate disposal considerations, 391process

benefit, 392design

considerations, 390new technology considerations,

391procedures, 392

reactor design considerations, 390Energy requirements, hauling of bio-

solids,738Environmental

control, landfill, 733, 734impact, DAF, 87problems, landfill, 734

Wang_v6_Index_Final 7/23/07, 7:34 AM816

Index 817

Equipmentlandfill, 732performance characteristics, landfill,

729, 730selection and maintenance, landfill,

731Eudrilus eugeniae, 691Evaporation

data, USA, 600lagoons, 584–590process reactor, 584, 602

Evaporative efficiency, 313Evaporator, 590–604

applications and limitations, 592design considerations, 593heat transfer coefficients, 594multiple-effect, 596, 598process description, 590single-effect, 595solar, 603steam, 602triple-effect, 592vertical short-tube, 591

Examples, land application, 741Excess air

effect on supplemental fuel require-ment, 618

temperature, effect on supplementalfuel requirement, 618

Extended aerated piles, 666

FF/M ratio, 13, 17, 19Facility design, landfill, 722Factors affecting

biosolids conditioning, 354–356solids removal, 7–9the heat balance, 617that influence the production of WAS,

13–16FBF, fluidized furnace, 620–623Feed

composition, 15pattern, 16pump, 54

Ferric chloride, 356–357Fiber-cloth-belt type vacuum filter,

500Film layer purifying chamber contactor

for water, 266, 267

Filterleaf testing, 360–362media, 505–506process control

cake drying, 508chemical conditioning, 508efficiency, 508filter cake qualityheat treated biosolids, 508inspection, 509odor, 509optimum operation, 508production, 508-–09sampling and analysis, 509tank agitation, 508yield, 508

Filtration dewateringbasic theory, 495filter aids, 495–496pressure drop, 495 system, 495-497

Fixed digester cover, 151Fixed-volume recessed plate filter press,

542, 545Flash dryer system, 315Flash drying process, 316Flexibility, performance, and environ-

mental impacts, landfill, 728Float concentration, 82Floating digester cover, 152Flotation, 71–99, 251–255, 451, 462

cost, 86heavy metal removal, 256organic chemical removal, 256thickener, 462, 487

fluidized bed furnace, FBF, 620–623applications, 623design basis for cost, 624design criteria, 623energy requirements, 624environmental impact, 624operation data, 624performance, 623

Food pasteurization, 337Free water, 102–103Freeze–thaw, 373–374Fuel energy consumption rates,

construction equipment, 738Fungi, 336Furnace combustion, comparison,

Wang_v6_Index_Final 7/23/07, 7:34 AM817

818 Index

approximate and theoreticalcalculation, 641

GGamma irradiation, 343–349

design considerations, 346dried or composted sludge, 345facility, 344labor requirements, 347–348operational considerations, 348power requirement, 345

Gas-phase biofiltration, 451, 453, 464,466–470, 481

GLUMRB Standards, 146Grading at completion of filling, landfill,

735Gravity thickeners, 47–55

advantages, 47, 48capital cost, 55compression and storage zone, 53cost, 55-56design, 56–61

considerations, 49input data, 57, 58output data, 61parameters, 58procedure, 59

floor slope, 54free board, 53hydraulic loading, 50maintenance materials cost, 56, 57minimum surface area, 49–51O & M cost, 55-57overflow rates, 52polymer addition, 54power consumption, 56settling zone, 53

HHauling of biosolids, 736

example, 741Heating values, sludges, 616High rate (mixed) digester, 141High temperature

operationsprinciples, 614

combustion factors, 614sludge fuel values, 614

processes, 613basic elements, 615

example, 619technology review, 620

thermal processes, 613advantages, 614

High-rate digestionsystems, 138VS reduction, 143

Hydrogen sulfide/sulfide equilibrium, pHeffect, 218

IIncineration

design example, 632of sludge FBF, 621

Inorganic polymer conditioning process,thickening and dewatering, 399

Input data, hauling of biosolids, 736

LLand application

advantages, 708of biosolids, 705

description, 706introduction, 705maximum metal concentrations,

708preliminary planning, 717

design criteria, 709disadvantages, 708performance, 710site suitability, 709

Landfillburial, lime stabilized biosolids, 211design criteria, 725equipment, 728method, selection, 719type and design, 724

Landfilling of screenings, grit, and ash,717

Landscaping, landfill, 735Leachate quality from biosolids only

landfill, 727Lime

addition, biosolids, dewatering andsettling characteristics, 219

bulk density, 227characteristics, 223, 224delivery and storage, 225feeding, 227-only and supplemental heating

Wang_v6_Index_Final 7/23/07, 7:34 AM818

Index 819

pasteurization, 234capital and operating costs, 235cost comparison, 235

reactionhydrated lime, 225quick lime, 225

stabilization, 207current status and regulations, 208design, 237

component sizing, 237criteria, 213example, 235loading, 235, 236objective, 213

full-scale lime stabilization facility,208

history, 208of biosolids, applicability, 211operation, flow diagram, 210pathogen reduction, 218process description, 208systems

capital and operating costs, 232cost and energy usage, 232theory, 212

storage and feed equipment, 226Liquid

cationic polyelectrolytes, 396sludge vermistabilization (LSVS)

process, 692LSVS reactors, 692

MManagement and reporting, landfill, 731Maximum allowable pollutant concentra-

tions, biosolids, landfill, 723Mesophilic digestion, 141Methane

Fermentation Phase, 138formation

bacteria, 137step, 138

production equation, 144Minimum anaerobic digester capacities,

146Multiple

elutriation, 390in a single tank, 392hearth furnace

applications, 625

design basis for costs, 627design criteria, 626energy requirements, 626environmental impact, 626operations data, 627performance, 626

OObligate anaerobes, 137Operating schedule, landfill, 731Operation and maintenance

biosolids landfill, 728costs

area landfill, 740narrow and wide trench landfill,

739Operations plan, landfill, 731Organic wastes, nature, 136Output data, hauling of biosolids, 737Oxygen requirements, complete combustion,

617

PPart 503 Rule, 209, 707PFRP treatment, 231Pilot digester

schematic, 145study procedures, 145

Polyacrylamide molecule, 395Polyelectrolyte

additions for various sludges, 399conditioning process

dewatering, 398sludge thickening, 396

determination, 399process control, 399

Polymer conditioning, 389Process to Further Reduce Pathogens

(PFRP) Requirements, 694Progress in vermicomposting, outside US

696PSRP treatment, 230

RRaw sludge VS reduction, 143Recycling of biosolids, land application,

706Reduction in volatile matter by digestion,

141Regulations and standards, landfill, 722

Wang_v6_Index_Final 7/23/07, 7:34 AM819

820 Index

SSAC, approximate combustion calcula-

tion, supplemental fuel require-ments, 637

Safety, landfill, 733Saprophytic bacteria, 137Sick digesters. 137Site and equipment costs

area landfill, 740narrow and wide trench landfill, 739

Site closure, landfill, 735Site selection methodology, landfill, 721Site selection, landfilling method, 719Sludge

heating system schematic, 155heating value, experimental methods,

616incineration

fluidized bed furnace, 623multiple hearth furnace (MHF), 624,

625regulatory matters, 642

moistureeffect on autogenous combustion,

621effect on supplemental fuel

consumption, 622washing (elutriation), 390

Standard rate (unmixed) digester, 141starved air combustion (SAC)

applications and limitations, 631approximate calculation method, 633capital cost, 633design basis for costs, 632design criteria, 632energy requirements, 632operating cost, 633performance, 631sludge, 629. 630theoretical calculation method, 638

Suitability of biosolids for landfill, 718

TThermophilic digestion, 141TPAD process, performance parameter,

173Two-stage anaerobic process, 137Typical biosolids application

rate scenario, example, 741scenarios, 711

Typical digester section, 149

UUltimate use, landfill, 735US EPA 40 CFR Part 503, 209, 707, 722

VVermicomposting process, 689

future development and direction,701

problems, 694process

application examples, 701description, 690

technologybreakthrough, 694development, 690

Vermiconversion System, 695Vermistabilization process

biosolids, 691current status, 697pioneers, 697resources, 697

Volatile solid loading factors, 147hydraulic detention time effect, 147sludge concentration effect, 147

Waste storage ponds, 441cross-section, 442layout, 442process description, 441process design, 441

Wastewater and sludge treatment, processselection, flow sheet, 391

Wang_v6_Index_Final 7/23/07, 7:34 AM820