Controlled tungsten melting and droplet studies in ASDEX ... · K. Krieger, 13th PFMC Workshop,...

25
K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011 Max-Planck-Institut für Plasmaphysik Controlled tungsten melting and droplet ejection studies in ASDEX Upgrade K. Krieger T. Lunt, R. Dux, A. Janzer, S. Potzel, T. Pütterich, Z. Yang and the ASDEX Upgrade Team ASDEX Upgrade

Transcript of Controlled tungsten melting and droplet studies in ASDEX ... · K. Krieger, 13th PFMC Workshop,...

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Max-Planck-Institutfür Plasmaphysik

Controlled tungsten melting and dropletejection studies in ASDEX Upgrade

K. KriegerT. Lunt, R. Dux, A. Janzer, S. Potzel, T. Pütterich, Z. Yang

and the ASDEX Upgrade Team 

ASDEX Upgrade

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Outline

Introduction and experimental set‐up.

Trajectories and life time of ejected W droplets.

W penetration to confined plasma.

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Outline

Introduction and experimental set‐up.

Trajectories and life time of ejected W droplets.

W penetration to confined plasma.

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Key issues for a tungsten divertor in ITER

Apart from surface damage issues (talk by J. Coenen)

Where will material ejected from melt layers be transported? 

How much of evaporated tungsten will become ionised?

What is the resulting W leakage to the confined plasma?

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Experimental procedure

Use divertor manipulator in ASDEX Upgrade to place small W‐rod protruding above surface at outer target plate.

Induce melting, droplet ejection and evaporation in near strike‐point plasma.

Determine trajectories of ejected material by fast VIS range camera systems.

Quantify resulting W penetration to confined plasma byVIS range divertor and VUV core plasma spectroscopy.

Experimental input to assess potential consequences for ITER tungsten divertor.

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

ASDEX Upgrade divertor manipulator

1 m

5 cm

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Reference discharge (without W-pin) #26750

Discharge conditions

H‐mode, 0.8MA, ‐2.5T

3 experiments with variation of

NBI power: 6MW / 10MW

density: 6.5‐7×1019m‐3 

0.8MW ECRH

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Melting induced by OSP shift towards W‐pin

S‐coordinate at outer target plate:

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Melting induced by OSP shift towards W‐pin

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Outline

Introduction and experimental set‐up.

Trajectories and life time of ejected W droplets.

W penetration to confined plasma.

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Field of view for fast cameras

View vertically down Tangential view

Both cameras equipped with Hα / Hβ rejection filter to improve contrast

exposure position

toroidal target plate section seen by tangential camera

exposure positionshadowed byinner divertor

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

#26751 ‐ Time sequence from 2.25s‐2.36s, Δt=5ms

View vertically down Tangential view

Ejection of droplets into divertor plasma. Droplets move always downstream. Droplets eventuallymove upwards against gravity

& poloidal B‐field direction.

Glow dischargeanode

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Droplet motion

Droplet acceleration decreasing over time. 

Average acceleration ≈ 400m/s2.

Light emission modulated by ELM impact.

Intensity decreases over time:

Evaporation. Droplets move to cooler regions. 

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Droplet evaporation model

Power flux to droplet leads to evaporation and thermal radiation.

radiation

evaporation

plasma

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Droplet evaporation model

1 1

4||

2

12

vap

A B m

Tvap

vapA

HN k T T

mvap

W B

HN

p em k T

q T

Power flux to droplet leads to evaporation and thermal radiation.

Power flux balance determines droplet temperature. 

T does not depend on radius.

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Droplet life time

Time evolution ofdroplet evaporation

3 2

00

( ) 4 ( ) 4 ( ) ( )3

( ) 1 ( )

1( ) ( )

WW vap

vapW

t

vapW

dN t d r t r t tdt dt

dr t tdt

r t r t dt

Life time at constantpower flux 0 W vapr

Evaporated fraction f assuming m=20 mg ejected as k droplets using plasma parameters @ OSP

k 1 10 100

(s) 3.07 1.42 0.66

f 0.09 0.20 0.39

>> 100 ms typical time along flight trajectories

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Forces on the droplets I

||3 ( )

4 21 ( )

4

ablabl vap

W W

p e e ip

W W

Fa p qm m

F n kT kTam m r

Toroidal acceleration mainly due to plasma friction and droplet ablation.

Typical values for strike point plasma conditions and 10µm droplet radius: aabl=50m/s2, ap=400m/s2.

S. I. Krasheninnikov et al., Phys. of Pl. 11 (2004) 3141.

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Forces on droplets II

Vertical motion is determined by components of zentrifugal force and of gravity force along target plate.

02

2

9 ( ) cos sine

W

e

W

tl T E dm r

F QEm

gRmv

Droplets glide over target plate surface due to electro‐static repelling force in magnetic pre‐sheath.

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Forces on droplets II

2 ( )( ) sin cos

( )

tz

t t

v ta t gR

v t a t

Time evolution of vertical distance from origin for measured tangential droplet acceleration:

Vertical motion is determined by balance of vertical component of zentrifugal force and gravity force:

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Outline

Introduction and experimental set‐up.

Trajectories and life time of ejected W droplets.

W penetration to confined plasma.

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Local tungsten source at W pin

Each droplet ejection leads to a short increase of the local W source.

The W‐pin is in addition eroded by ELMs.

droplets

ELMs

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Resulting W contamination of confined plasma

In a 0D model the number of tungsten ions inside separatrix, Nw, is linked to W source, Φ,particle confinement time, τwand source screening factor, S.

core( ) ( ) ( )W W WW

W

dN t t N tdt S

From the measured evolution of cw and the W divertor source one can derive the divertor screening factor.

1 1

0 0

( ) 1 ( )t t

WW W

Wt t

t dt N t N dtS

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Molten remains after exposure

#25514 / PNBI=6MW

Deviation from vertical in direction of plasma flow.

Droplets accelerated in plasma.Molten W dripping down welds 

to W‐layer on graphite body of sample.

Mass loss without local depositsm=20.6mg @6MW  #25514m=  9.3mg @10MW #25623m=16.5mg @10MW #26751

Before exposure

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Evaporation based on vapour pressure and balance betweenheating by || power flux and cooling by black‐body radiation andevaporation heat during 100ms residence time 30% of lost pin mass.

W divertor retention

Relate this number to W throughput in confined plasma

Sdiv ≈ 120 (#26751), 165 (#25623), 200 (#25514)

Comparing to SOL screening factor from laser ablation, SSOL≈11 

Divertor retention factor ≈ 10‐20 comparable to result from W(CO)6 injection studies (Geier et al., Plasma Phys. Contr. Fusion 44 (2002) 2091). 

K. Krieger, 13th PFMC Workshop, Rosenheim, 13.05.2011

Summary

W droplets ejected by melt events at a target plate can survive travelling through the plasma over distances of several meters toroidally.

Vertical inclination of target plates causes ejected droplets to travel upwards.

Penetration of evaporated  W fraction to confined plasma comparable to that of tungsten sputtered at the target plate.