control systems Transfer function

download control systems Transfer function

of 25

Transcript of control systems Transfer function

  • 8/18/2019 control systems Transfer function

    1/25

     

    Sri Lanka Institute of Information Technology

    Faculty of Engineering

    Department of Electrical and Computer

    Engineering

    EC3501: Control Systems Laboratory

    Lab 01: Transfer Functions

    Name/ Index Number : De Silva O.R.M. (EN14536458)

    Name/ Index Number : Kaushalya S. A. D. T. P. (EN14535468)

    Group : Group 03

    Submission Date : 07th March 2016

  • 8/18/2019 control systems Transfer function

    2/25

    Page | 1

    Table of ContentsList of Figures ................................................................................................................................. 2 

    List of Tables .................................................................................................................................. 3 

    List of Equations ............................................................................................................................. 3 

    Introduction ..................................................................................................................................... 4 

    Task 1 .............................................................................................................................................. 4 

    Exercise 1 ........................................................................................................................................ 5 

    1.  Transfer Function of G1....................................................................................................... 5 

    2. Transfer Function of G2.......................................................................................................... 6 

    3. Transfer Function of G3.......................................................................................................... 7 

    Exercise 2 ........................................................................................................................................ 8 

    1. Step Response of Function of G1 ........................................................................................... 8 

    2. Step Response of Function of G2 ......................................................................................... 10 

    3. Step Response of Function of G3 ......................................................................................... 12 

    Exercise 3 ...................................................................................................................................... 14 

    Exercise 4 ...................................................................................................................................... 18 

  • 8/18/2019 control systems Transfer function

    3/25

    Page | 2

    List of FiguresFigure 1 - Pole-Zero Map for Transfer Function G1 ...................................................................... 5 

    Figure 2 - Pole-Zero Map for Transfer Function G2 ...................................................................... 6 

    Figure 3 - Pole-Zero Map for Transfer Function G3 ...................................................................... 7 

    Figure 4 - Step Response for Transfer Function G1 ....................................................................... 8 

    Figure 5- Step Response for Transfer Function G2 ...................................................................... 10 

    Figure 6- Step Response for Transfer Function G3 ...................................................................... 12 

    Figure 7 - Simulink Model to Obtain Step Response ................................................................... 14 

    Figure 8 - Under-Damped Response ............................................................................................. 14 

    Figure 9 - Simulink Model to Obtain Step Response ................................................................... 15 

    Figure 10 - Critically-Damped Response ..................................................................................... 15 

    Figure 11 - Simulink Model to Obtain Step Response ................................................................. 16 

    Figure 12 - Undamped Response .................................................................................................. 16 

    Figure 13 - Varying Damping Ratio for a Second Order System ................................................. 17 

    Figure 14 - Step Response for G1(S) ............................................................................................ 19 

    Figure 15 - Step Response for G2(S) ............................................................................................ 20 

    Figure 16 - Step Response for G3(S) ............................................................................................ 22 

    Figure 17 - Impulse Response for G3(S) ...................................................................................... 23 

    http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082675http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082675http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082677http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082677http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082679http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082679http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082681http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082681http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082684http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082684http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082684http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082681http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082679http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082677http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445082675

  • 8/18/2019 control systems Transfer function

    4/25

    Page | 3

    List of TablesTable 1 - Result Comparison Table for G1 Step Response .......................................................... 10  

    Table 2 - Result Comparison Table for G2 Step Response .......................................................... 12  

    Table 3 -Result Comparison Table for G3 Step Response ........................................................... 13  

    List of EquationsEquation 1 - General Second Order System Equation .................................................................... 8 

    http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445083083http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445083083http://c/Users/User/Downloads/Lab1%20(1).docx%23_Toc445083083

  • 8/18/2019 control systems Transfer function

    5/25

    Page | 4

    IntroductionControl systems play an important role in most of electro mechanical systems. To control the

    system precisely, it’s important to design the control system accurately. This lab introduces the

    analysis of control systems and determine their stability for step inputs. The Laplace transform is

    frequently used in analyzing the systems since it’s convenient to simplify the equations. The

    system equations are modelled and simulated using MATLAB to analyze.

    Task 1We can construct a transfer function in Matlab window by assigning the numerator or

    denominator coefficient vector s or directly by the following ‘tf ’ function as below

  • 8/18/2019 control systems Transfer function

    6/25

    Page | 5

    Exercise 1

    1. Transfer Function of G1

     Figure 1 - Pole-Zero Map for Transfer Function G1

    Since the real part of poles of the function is positive, the system is unstable. The imaginary partof the poles accounts for the oscillation in the time domain function. According to Pole-Zero

    Map the poles are situated in the right side of the plane making the system unstable.

  • 8/18/2019 control systems Transfer function

    7/25

    Page | 6

    2. Transfer Function of G2

     Figure 2 - Pole-Zero Map for Transfer Function G2

    The poles are situated in the imaginary axis. Therefore, the system is marginally stable andsystem will oscillate with a constant amplitude determined by the initial conditions

  • 8/18/2019 control systems Transfer function

    8/25

    Page | 7

    3. Transfer Function of G3

    .

     Figure 3 - Pole-Zero Map for Transfer Function G3

    The poles have positive real part corresponds to an exponentially increasing component C  −σt 

    in the homogeneous response; thus defining the system to be unstable.

  • 8/18/2019 control systems Transfer function

    9/25

    Page | 8

    Exercise 2General form of a second order system:

    1. Step Response of Function of G1

     Figure 4 - Step Response for Transfer Function G1

     =

     

    + +  =

      .

    + 2 +  

     Equation 1 - General Second Order System Equation 

  • 8/18/2019 control systems Transfer function

    10/25

    Page | 9

    Calculation

     =  21

    2 + 16 + 21 

     =

    21

    2 + 8 + 212

     

    = 21/2 

     =  21/2 

    =  2

     

    =  8

    2 21/2

     

    =  8

    √ 42 = 1.2344 

     = 1 0.4167 + 2.917

     

     = 1 0.41671.2344 + 2.9171.2344

     21/2  = 1.5216 

     =  4 

     =  4

    1.2344 ∗ √ 10.5 = 1 

    ℎ = −  

     − × 100 

    ℎ = −   ×.

     . × 100 → :  

    = lim→∞

    = lim→

    = lim→

    21

    2 + 16 + 21 = 1 

    Below table compares the calculated result vs the simulated result.

  • 8/18/2019 control systems Transfer function

    11/25

  • 8/18/2019 control systems Transfer function

    12/25

    Page | 11

    Calculation

     =  2

    3 + 4 + 6 

     =

    2

    3 + 43 + 2

     

     = 0.333 0.378−. sin1.247 + 1.080 

    = 2 

     = √ 2 

    =  2

     

    =43

    2√ 2 

    =  23√ 2

     = 0.4714 

     = 1 0.4167 + 2.917

     

     = 1 0.41670.4714 + 2.9170.4714

    √ 2

      = 1.0265 

     =  4

     

     =  4

    0.4714 ∗ √ 2 = 6.00005 

    ℎ = −  

     − × 100 

    ℎ = −   ×.

     . × 100 = 18.651% 

    1  

     2 × 1 0.4714 = 2.5188 

    = () = 0.333 0.378−.×. sin1.247 × 2.5188 + 1.080 = 0.3278 

  • 8/18/2019 control systems Transfer function

    13/25

    Page | 12

    Below table compares the calculated result vs the simulated result.

    Table 2 - Result Comparison Table for G2 Step Response

    Parameter Simulated Result Calculated Result

    Rise Time 1. 1222s 1.0265s

    Settling Time 5.8461s 6.00005sOvershoot 18.6513% 18.651%

    Peak 0.3955 0.3278

    Peak Time 2.5180s 2.5188s

    3. Step Response of Function of G3

     Figure 6- Step Response for Transfer Function G3

  • 8/18/2019 control systems Transfer function

    14/25

    Page | 13

    Calculation

     =  √ 6

    + 8 + √ 6 

     =  2.4495

    + 8 + 2.4495 

     = 0.9994 1.0337−. + 0.0441−. 

    = √ 6 

     =  √ 6

     

    =  2

     

    =

      8

    2 √ 6  

    =  4

    1.565 = 2.5557 

    ℎ = −  

     − × 100 

    ℎ = −   ×.

     . × 100 → :  

    = lim→∞

    = lim→

    = lim→

    √ 6

    + 0.319 × + 7.681 = 0.9996 

    Below table compares the calculated result vs the simulated result.

    Table 3 -Result Comparison Table for G3 Step Response

    Parameter Simulated Result Calculated Result

    Rise Time 6.8946s -

    Settling Time 12.4010s -

    Overshoot 0% -

    Peak 0.9988 0.9996

    Peak Time 21.2892s -

  • 8/18/2019 control systems Transfer function

    15/25

    Page | 14

    Exercise 3

      To obtain the step responses of the following transfer functions, following models were

    created using Simulink.

     

    From the scope block step response can be obtained as follows.

    1.

     Figure 8 - Under-Damped Response

     Figure 7 - Simulink Model to Obtain Step Response 

  • 8/18/2019 control systems Transfer function

    16/25

    Page | 15

    2.

     Figure 10 - Critically-Damped Response

     Figure 9 - Simulink Model to Obtain Step Response 

  • 8/18/2019 control systems Transfer function

    17/25

  • 8/18/2019 control systems Transfer function

    18/25

    Page | 17

    Effect of Varying Damping Ratio on a Second Order System

     Figure 13 - Varying Damping Ratio for a Second Order System 

  • 8/18/2019 control systems Transfer function

    19/25

    Page | 18

    Exercise 4

    Transient response of a system is response of a system to a change from equilibrium. A system issaid to be in a transient state when a process variable has been changed and the system has not

    yet reached steady-state. Steady state response is the response that can be achieved in the

    equilibrium state of the control system.

    Transient means changing. Transient state is an interval of time in which our system is either

    "warming up" or taking its time to respond to a disturbance. Steady is the opposite of transient.

    Steady state is a condition where our system continues with an easily predictable behavior and

    few values of it are changing if any. Transient state response is a description of how the system

    functions during transient state. Steady state response is a description of how the system

    functions during steady state.

    2.

    T1(s)-The poles in the transfer function is in left side of the pole zero plot.Therefore the system is

    stable .

    Poles are as follows:

    -2+0.5i , -2-0.5i

    Transfer function for poles

     =

      1

    + 4 + 4.25 

  • 8/18/2019 control systems Transfer function

    20/25

    Page | 19

     Figure 14 - Step Response for G1(S)

    This system is much more stable .There is no overshoot in the system.

  • 8/18/2019 control systems Transfer function

    21/25

    Page | 20

    T2(s): The poles are in the left side of the pole zero plot. Therefore, the system is stable.

    Poles are:

    (-1+1i), (-1-1i)

    The Transfer function :

     =  1

    + 2 + 2 

     Figure 15 - Step Response for G2(S)

  • 8/18/2019 control systems Transfer function

    22/25

    Page | 21

    In this system the step response slightly overshoot therefore the system is much more stable.

    T3(s): The poles are in the imaginary axis of the pole zero plot. Therefore, the system is

    marginally stable.

    Poles:(2i, -2i)

    The transfer function:

     =  1

    + 4 

  • 8/18/2019 control systems Transfer function

    23/25

    Page | 22

    This marginally stable system is oscillating until 250s.

     Figure 16 - Step Response for G3(S) 

  • 8/18/2019 control systems Transfer function

    24/25

    Page | 23

    T4(s):One pole has a positive value in the real axis .Therefore the system is unstable.

    Poles:(0.5,-0.5)

     Figure 17 - Impulse Response for G3(S)

  • 8/18/2019 control systems Transfer function

    25/25

    P | 24

    The system is oscillating and the system is unstable.