Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0...

45
Control Strategies for Solar Sail SMAI 2011 A. Farr´ es 1 & ` A. Jorba 2 1 Institut de M´ ecanique C´ eleste et de Calcul des ´ Eph´ em´ erides, Observatoire de Paris ([email protected]) 2 Departament de Matem` atica Aplicada i ` Analisi, Universitat de Barcelona ([email protected]) 23 - 27 May 2011

Transcript of Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0...

Page 1: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Control Strategies for Solar SailSMAI 2011

A. Farres1 & A. Jorba2

1Institut de Mecanique Celeste et de Calcul des Ephemerides,Observatoire de Paris([email protected])

2Departament de Matematica Aplicada i Analisi,Universitat de Barcelona

([email protected])

23 - 27 May 2011

Page 2: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

1 Brief Introduction to Solar Sails

2 Station Keeping Strategies Around Equilibria

3 Towards a More Realistic Model

4 Conclusions & Future Work

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 2 / 42

Page 3: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

What is a Solar Sail ?

• Solar Sails a proposed form of propulsion system that takes advantage of theSolar radiation pressure to propel a spacecraft.

• The impact of the photons emitted by the Sun on the surface of the sail andits further reflection produce momentum on it.

• Solar Sails open a wide new range of possible missions that are not accessibleby a traditional spacecraft.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 3 / 42

Page 4: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

There have recently been two successful deployments of solar sails in space.

• IKAROS: in June 2010, JAXA managed to deploy the first solar sail in space.

• NanoSail-D2: in January 2011, NASA deployed the first solar sail that wouldorbit around the Earth.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 4 / 42

Page 5: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

The Solar Sail

We consider the solar sail to be flat and perfectly reflecting. Hence, the force dueto the solar radiation pressure is in the normal direction to the surface of the sail.

The force due to the sail is defined by the sail’s orientation and the sail’s lightnessnumber.

• The sail’s orientation is given by the normal vector to the surface of the sail,~n. It is parametrised by two angles, α and δ.

• The sail’s lightness number is given in terms of the dimensionless parameterβ. It measures the effectiveness of the sail.

Hence, the force is given by:

~Fsail = βms

r2ps

〈~rs ,~n〉2~n.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 5 / 42

Page 6: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

The Dynamical Model

We use the Restricted Three Body Problem (RTBP) taking the Sun and Earth asprimaries and including the solar radiation pressure due to the solar sail.

1− µ µ

~FEarth

~FSun

Sail~n

X

Y

Z

EarthSun

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 6 / 42

Page 7: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Equilibrium Points (I)

• The RTBP has 5 equilibrium points (Li ). For small β, these 5 points arereplaced by 5 continuous families of equilibria, parametrised by α and δ.

• For a fixed small value of β, we have 5 disconnected family of equilibria aroundthe classical Li .

• For a fixed and larger β, these families merge into each other. We end uphaving two disconnected surfaces, S1 and S2. Where S1 is like a sphere andS2 is like a torus around the Sun.

• All these families can be computed numerically by means of a continuationmethod.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 7 / 42

Page 8: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Equilibrium Points (II)

Equilibrium points in the XY plane

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Z

X

Sun

T2T1

-0.04

-0.02

0

0.02

0.04

-1.02 -1.01 -1 -0.99 -0.98 -0.97

Z

X

Earth

T2T1

Equilibrium points in the XZ plane

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-1 -0.5 0 0.5 1

Z

X

Sun

T2

-0.02

-0.01

0

0.01

0.02

-1.01 -1.005 -1 -0.995 -0.99 -0.985 -0.98

Z

X

Earth

T2

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 8 / 42

Page 9: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Interesting Missions Applications

Observations of the Sun provide information of the geomagnetic storms, as in theGeostorm Warning Mission.

SunEarth

x

y

z

0.01 AU

0.02 AU

L1

ACE

Sail

CME

Observations of the Earth’s poles, as in the Polar Observer.

Sun

Earthx

z

L1

N

SSummer Solstice

Sail

Sun

Earthx

z

L1

N

SWinter Solstice

Sail

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 9 / 42

Page 10: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

AIM of this TALK

One of the main goals of our work was to understand the geometry of the phasespace and how it varies when the sail orientation is changed. Then use thisinformation to derive strategies to control the trajectory of a Solar Sail.

We will:

1 describe the dynamics of a solar sail around an equilibrium point (for a fixedsail orientation) and show the effects of variations on the sail orientation onthe sail trajectory and show how to use this knowledge to derive a stationkeeping strategy around an equilibrium point.

2 we have two different ways to use this information. We will describe bothstrategies and apply them to the GeoStorm Mission.

3 finally we will discuss the robustness of these strategies when we includedifferent sources of error.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 10 / 42

Page 11: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

AIM of this TALK

One of the main goals of our work was to understand the geometry of the phasespace and how it varies when the sail orientation is changed. Then use thisinformation to derive strategies to control the trajectory of a Solar Sail.

We will:

1 describe the dynamics of a solar sail around an equilibrium point (for a fixedsail orientation) and show the effects of variations on the sail orientation onthe sail trajectory and show how to use this knowledge to derive a stationkeeping strategy around an equilibrium point.

2 we have two different ways to use this information. We will describe bothstrategies and apply them to the GeoStorm Mission.

3 finally we will discuss the robustness of these strategies when we includedifferent sources of error.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 10 / 42

Page 12: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Station Keeping Strategies Around Equilibria

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 11 / 42

Page 13: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Station Keeping for a Solar Sail

We want to design station keeping strategy to maintain a trajectory of a solar sailclose to an unstable equilibrium point.

Instead of using Control Theory Algorithms, we will use Dynamical System Toolsto find a station keeping algorithm for a Solar Sail.

The main ideas are ...

• To focus on the linear dynamics around an equilibrium point and study howthis one varies when the sail orientation is changed.

• To change the sail orientation (i.e. the phase space) to make the system actin our favour: keep the trajectory close to a given equilibrium point.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 12 / 42

Page 14: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Station Keeping for a Solar Sail

We focus on the two previous missions, where the equilibrium points are unstablewith two real eigenvalues, λ1 > 0, λ2 < 0, and two pair of complex eigenvalues,ν1,2 ± iω1,2, with |ν1,2| << |λ1,2|.

• To start we can consider that the dynamics close the equilibrium point is ofthe type saddle × centre × centre.

• From now on we describe the trajectory of the sail in three reference planesdefined by each of the eigendirections.

(x1, y1)

(x2, y2)

(x3, y3)

• For small variations of the sail orientation, the equilibrium point, eigenvaluesand eigendirections have a small variation. We will describe the effects of thechanges on the sail orientation on each of these three reference planes.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 13 / 42

Page 15: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Effects of Variations on the Orientation (I)

In the saddle projection of the trajectory:

• When we are close to the equilibrium point, p0, the trajectory escapes alongthe unstable direction.

• When we change the sail orientation the equilibrium point is shifted.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 14 / 42

Page 16: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Effects of Variations on the Orientation (II)

In the saddle projection of the trajectory:

• Now the trajectory will escape along the new unstable direction.

• We want to find a new sail orientation (α, δ) so that the trajectory will comeclose to the stable direction of p0.

, /

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 15 / 42

Page 17: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Effects of Variations on the Orientation (III)

In the centre projection of the trajectory:

,

A sequence of changes on the sail orientation implies a sequence of rotationsaround different equilibrium points on the centre projection, which can result of anunbounded grouth.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 16 / 42

Page 18: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Effects of Variations on the Orientation (III)

In the centre projection of the trajectory:

/

A sequence of changes on the sail orientation implies a sequence of rotationsaround different equilibrium points on the centre projection, which can result of anunbounded grouth.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 16 / 42

Page 19: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Schematic idea of the Station Keeping Algorithm

We look at the sails trajectory in the reference system {x0;~v1, ~v2, ~v3, ~v4, ~v5, ~v6}, soz(t) = x0 + Σi si (t)~vi .

During the station keeping algorithm:

1 when α = α0, δ = δ0:if |s1(t)| ≥ εmax ⇒ choose new sail

orientation α = α1, δ = δ1.

2 when α = α1, δ = δ1:if |s1(t)| ≤ εmin ⇒ restore the sail

orientation: α = α0, δ = δ0.

3 Go Back to 1.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 17 / 42

Page 20: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

1st Idea for finding αnew , δnew

We will choose a the position of the new equilibrium point (i.e. a new sailorientation) so that projection of the trajectory on the saddle will come back andthe two centre projections remain bounded ?

emax

emin

d

p0

p1

p0

p1

The constants εmin, εmax and d will depend on the mission requirements and thedynamics around the equilibrium point.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 18 / 42

Page 21: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

1st Idea for finding αnew , δnew

We will choose a the position of the new equilibrium point (i.e. a new sailorientation) so that projection of the trajectory on the saddle will come back andthe two centre projections remain bounded ?

emax

emin

d

p0

p1

p0

p1

The constants εmin, εmax and d will depend on the mission requirements and thedynamics around the equilibrium point.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 18 / 42

Page 22: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Remarks

• We do not know explicitly the position of the equilibrium points p(α, δ). Butwe can compute the linear approximation of this function:

p(α, δ) = p(α0, δ0) + Dp(α0, δ0) · (α− α0, δ − δ0)T .

• There are some restrictions of the position of the new equilibria when wechange α and δ. We have 2 unknowns and at least 6 conditions that must besatisfied.

• We will change the sail orientation so that the position of the new fixed pointis as close as possible to the desired new equilibrium point and in the correctside in the saddle projection.

• To decide the new sail orientation we will assume that the eigenvalues andeigendirections do not vary when the sail orientation is changed.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 19 / 42

Page 23: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (RTBPS)

XY and XZ and XYZ Projections

-0.0026

-0.0024

-0.0022

-0.002

-0.0018

-0.0016

-0.0014

-0.0012

-0.9804 -0.9803 -0.9802 -0.9801 -0.98 -0.9799 -0.9798 -0.9797 -0.9796

traj

-6e-06

-4e-06

-2e-06

0

2e-06

4e-06

6e-06

-0.9804 -0.9803 -0.9802 -0.9801 -0.98 -0.9799 -0.9798 -0.9797 -0.9796

traj

-0.9804-0.9803

-0.9802-0.9801

-0.98-0.9799

-0.9798-0.9797

-0.9796-0.0026-0.0024

-0.0022-0.002

-0.0018-0.0016

-0.0014-0.0012

-6e-06

-4e-06

-2e-06

0

2e-06

4e-06

6e-06

traj

Saddle × Centre × Centre Projections

-2e-05

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0 1e-05 2e-05 3e-05 4e-05 5e-05 6e-05 7e-05 8e-05 9e-05 0.0001 0.00011

saddle

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001

centre 1

-6e-06

-4e-06

-2e-06

0

2e-06

4e-06

6e-06

-8e-06 -6e-06 -4e-06 -2e-06 0 2e-06 4e-06 6e-06 8e-06

centre 2

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 20 / 42

Page 24: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (RTBPS)

Variation of the sail orientation

0.55

0.6

0.65

0.7

0.75

0.8

0 20 40 60 80 100 120 140 160 180 200

alfa

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0 20 40 60 80 100 120 140 160 180 200

delta

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 21 / 42

Page 25: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

2st Idea for finding αnew , δnew

The computation of variational equations (of suitable order) w.r.t. α and δ givesexplicit expressions for the effect of different orientations (close to the referencevalues α = α0, δ = δ0) trajectory.

φt(x0, α0 + ha, δ0 + hd) = φt(x0, α0, δ0) +∂φ

∂α(x0, α0, δ0) · ha +

∂φ

∂δ(x0, α0, δ0) · hd ,

With this we can impose conditions on the “future” of the orbit and findorientations that fulfil them (or show that the condition is unattainable).

• We will define the parameters εmax , Dtmin and Dtmax that will vary for eachmission application.

• We will find αnew , δnew and dt ∈ [Dtmin,Dtmax ] so that the trajectory is closeto the fixed point.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 22 / 42

Page 26: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Remarks

We use the variational equations up to first order. Hence, we have a linear mapfor the different final states.

As before we want the final position to be close to the stable direction, keepingsmall the two centre projections.

One can think of different ways to solve this problem. We have seen that the bestresults are found if we:

• For each dt ∈ [Dtmin,Dtmax ] we will find αnew and δnew such that s1 = 0 and(s5, s6) are minimum (i.e. we are close to stable direction and one of thecentres is small).

• We finally choose the dt, αnew and δnew that minimises the other centreprojection (s3, s4).

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 23 / 42

Page 27: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (RTBPS)

XY and XZ and XYZ Projections

-0.0026

-0.0024

-0.0022

-0.002

-0.0018

-0.0016

-0.0014

-0.98025 -0.9802 -0.98015 -0.9801 -0.98005 -0.98 -0.97995 -0.9799 -0.97985 -0.9798

traj

-5e-06

-4e-06

-3e-06

-2e-06

-1e-06

0

1e-06

2e-06

3e-06

4e-06

5e-06

-0.98025 -0.9802 -0.98015 -0.9801 -0.98005 -0.98 -0.97995 -0.9799 -0.97985 -0.9798

traj

-0.98025-0.9802

-0.98015-0.9801

-0.98005-0.98

-0.97995-0.9799

-0.97985-0.9798-0.0026

-0.0024

-0.0022

-0.002

-0.0018

-0.0016

-0.0014

-5e-06-4e-06-3e-06-2e-06-1e-06

0 1e-06 2e-06 3e-06 4e-06 5e-06

traj

Saddle × Centre × Centre Projections

-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

0.00015

-0.00015 -0.0001 -5e-05 0 5e-05 0.0001 0.00015

saddle

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

-0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006

centre 1

-5e-06

-4e-06

-3e-06

-2e-06

-1e-06

0

1e-06

2e-06

3e-06

4e-06

5e-06

-6e-06 -4e-06 -2e-06 0 2e-06 4e-06 6e-06

centre 2

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 24 / 42

Page 28: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (RTBPS)

Variation of the sail orientation

-3

-2

-1

0

1

2

3

4

0 20 40 60 80 100 120 140 160 180 200

alfa

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0 20 40 60 80 100 120 140 160 180 200

delta

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 25 / 42

Page 29: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results

We have applied these station keeping strategy to different mission scenarios. Weshow the results for the Geostorm Warning Mission.

For each mission:

• We have done a Monte Carlo simulation taking a 1000 random initialconditions.

• For each simulation we have applied the station keeping strategy for 30 years.

• We have tested the robustness of our strategy including random errors on theposition and velocity determination, as well as on the orientation of the sailat each manoeuvre.

Note : All the simulations have been done using the full set of equations, we onlyuse the linear dynamics to decide the change on the sail orientation.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 26 / 42

Page 30: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (RTBPS)

Algorithm Used: Fixed Point Algorithm

EType % Success ∆t (days) ∆α (deg) ∆δ (deg)E0 100.0 % 158.32 - 38.90 0.211 - 0.209 4.884e-03 - 5.040e-06P0 100.0 % 158.44 - 38.86 0.211 - 0.209 4.879e-03 - 5.041e-06V1 100.0 % 166.28 - 38.41 0.212 - 0.207 6.399e-03 - 2.461e-05V2 100.0 % 233.42 - 37.01 0.219 - 0.199 2.324e-02 - 1.003e-04V3 100.0 % 363.40 - 35.38 0.228 - 0.189 5.588e-02 - 2.179e-04V4 79.0 % 370.85 - 28.23 0.283 - 0.101 2.123e-01 - 6.749e-04

EType stands for the kind of errors considered in each simulation: E0 = No errors, P0 =

Errors on Position and Velocity only, V1, V2, V3, V4 = Errors on Position, Velocity

and Sail Orientation, where V1 = 0.001◦, V2 = 0.005◦, V3 = 0.01◦, V4 = 0.05◦

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 27 / 42

Page 31: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (RTBPS)

Algorithm Used: Variational Equation Algorithm

EType % Success ∆t (days) ∆α (deg) ∆δ (deg)E0 100.0 % 317.88 - 2.32 2.82 - 0.109 0.160 - 0.000P0 100.0 % 317.88 - 2.32 2.82 - 0.109 0.160 - 0.000V1 100.0 % 321.57 - 2.32 2.82 - 0.110 0.163 - 3.78e-05V2 100.0 % 346.67 - 2.32 2.86 - 0.104 0.292 - 1.72e-04V3 100.0 % 361.96 - 2.32 4.09 - 0.098 0.557 - 2.38e-04V4 100.0 % 334.56 - 2.32 4.47 - 0.041 2.598 - 4.54e-04

EType stands for the kind of errors considered in each simulation: E0 = No errors, P0 =

Errors on Position and Velocity only, V1, V2, V3, V4 = Errors on Position, Velocity

and Sail Orientation, where V1 = 0.001◦, V2 = 0.005◦, V3 = 0.01◦, V4 = 0.05◦

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 28 / 42

Page 32: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (RTBPS)

Fixed Point Algorithm. Error type V3

XY and XZ and XYZ Projections

-0.0026

-0.0024

-0.0022

-0.002

-0.0018

-0.0016

-0.0014

-0.9802 -0.98015 -0.9801 -0.98005 -0.98 -0.97995 -0.9799 -0.97985 -0.9798

traj

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

6e-05

-0.9802 -0.98015 -0.9801 -0.98005 -0.98 -0.97995 -0.9799 -0.97985 -0.9798

traj

-0.9802-0.98015

-0.9801-0.98005

-0.98-0.97995

-0.9799-0.97985

-0.9798-0.0026

-0.0024

-0.0022

-0.002

-0.0018

-0.0016

-0.0014

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

6e-05

traj

Saddle × Centre × Centre Projections

-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

0.00015

-0.00015 -0.0001 -5e-05 0 5e-05 0.0001 0.00015

saddle

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

-0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008

centre 1

-6e-05

-4e-05

-2e-05

0

2e-05

4e-05

6e-05

-8e-05 -6e-05 -4e-05 -2e-05 0 2e-05 4e-05 6e-05

centre 2

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 29 / 42

Page 33: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (RTBPS)

Variational Equations Algorithm. Error type V3

XY and XZ and XYZ Projections

-0.0028

-0.0026

-0.0024

-0.0022

-0.002

-0.0018

-0.0016

-0.0014

-0.0012

-0.9804 -0.9803 -0.9802 -0.9801 -0.98 -0.9799 -0.9798 -0.9797 -0.9796

traj

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

3e-05

4e-05

-0.9804 -0.9803 -0.9802 -0.9801 -0.98 -0.9799 -0.9798 -0.9797 -0.9796

traj

-0.9804-0.9803

-0.9802-0.9801

-0.98-0.9799

-0.9798-0.9797

-0.9796-0.0028-0.0026

-0.0024-0.0022

-0.002-0.0018

-0.0016-0.0014

-0.0012

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

3e-05

4e-05

traj

Saddle × Centre × Centre Projections

-0.0002

-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

0.00015

0.0002

-0.00015 -0.0001 -5e-05 0 5e-05 0.0001 0.00015

saddle

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

0.001

-0.001 -0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001

centre 1

-4e-05

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

3e-05

-4e-05 -3e-05 -2e-05 -1e-05 0 1e-05 2e-05 3e-05 4e-05

centre 2

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 30 / 42

Page 34: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (RTBPS)

Variation of the sail orientation

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 20 40 60 80 100 120 140 160 180 200

alfa

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100 120 140 160 180 200

delta

-4

-3

-2

-1

0

1

2

3

4

0 20 40 60 80 100 120 140 160 180 200

alfa

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120 140 160 180 200

delta

Left: ALgorithim Fixed Point, Right: Algorthim Variational EquationsA. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 31 / 42

Page 35: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Including more realism to the dynamical model

There are several ways to include more realism to the dynamical model. Forexample,

• taking a more realistic model for the Solar Sail by including the forceproduced by the absorption of the photons, the reflectivity properties of thesail material, ... .

• taking a more realistic model for the gravitational perturbations by includingthe eccentricity in the Earth - Sun system. Or the gravitational attraction ofother bodies, i.e. the Moon, Jupiter, ... .

We have started by considering the eccentricity in the Earth - Sun system andstudied the robustness of our strategies. So we take the Elliptic Restricted ThreeBody Problem with a Solar sail as a model.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 32 / 42

Page 36: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

In the ERTBP + Solar Sail

The fixed points that existed in the RTBP + Solar sail no longer exist in thismodel. They have been replaced by periodic orbits of same period as the Earth’sorbit around the Sun.

We can apply the same ideas to remain close to one of these periodic orbits andfulfil the mission requirements of the Geostorm mission or the Polar Observer.

Notice that:

• for each sail orientation (α, δ) we have an unstable periodic orbit replacingthe fixed point.

• taking the Floquet modes we have a periodic reference system that will giveus a good description of the local dynamics around these periodic orbits.

• we can apply the same ideas as before considering this appropriate referencesystem.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 33 / 42

Page 37: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (ERTBPS)

Algorithm Used: Fixed Point Algorithm

EType % Success ∆t (days) ∆α (deg) ∆δ (deg)E0 100.0 % 155.65 - 92.46 0.174 - 0.168 3.650e-03 - 4.087e-06P0 100.0 % 170.83 - 92.61 0.177 - 0.168 4.093e-03 - 2.268e-05V1 100.0 % 173.56 - 92.70 0.177 - 0.167 5.762e-03 - 2.256e-05V2 100.0 % 262.21 - 95.06 0.183 - 0.160 2.478e-02 - 9.557e-05V3 100.0 % 362.44 - 99.53 0.190 - 0.149 5.313e-02 - 1.928e-04V4 29.0 % 351.75 - 87.30 0.242 - 0.700 2.101e-01 - 6.972e-04

EType stands for the kind of errors considered in each simulation: E0 = No errors, P0 =

Errors on Position and Velocity only, V1, V2, V3, V4 = Errors on Position, Velocity

and Sail Orientation, where V1 = 0.001◦, V2 = 0.005◦, V3 = 0.01◦, V4 = 0.05◦

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 34 / 42

Page 38: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (ERTBPS)

-0.00012

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

0

2e-05

-0.0001-8e-05 -5e-05 -2e-05 0

saddle

-0.0004-0.0003-0.0002-0.0001

0 0.0001 0.0002 0.0003 0.0004 0.0005

-0.0004-0.0002 0 0.0002 0.0004

centre 1

-1.2e-05-1e-05-8e-06-6e-06-4e-06-2e-06

0 2e-06 4e-06 6e-06 8e-06 1e-05

-1.5e-05-1e-05-5e-06 0 5e-06 1e-05 1.5e-05

centre 2

-0.99 -0.982 -0.974 -0.02-0.01 0 0.01 0.02

-8e-06-4e-06

0 4e-06 8e-06

xyz proj

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 35 / 42

Page 39: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (ERTBPS)

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0 20 40 60 80 100 120 140 160 180 200

alfa

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0 20 40 60 80 100 120 140 160 180 200

delta

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 36 / 42

Page 40: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (ERTBPS)

Algorithm Used: Variational Equation Algorithm

EType % Success ∆t (days) ∆α (deg) ∆δ (deg)E0 100.0 % 280.56 - 64.07 2.35 - 0.213 0.12 - 0.00P0 100.0 % 338.21 - 67.29 2.37 - 0.102 0.12 - 1.13e-05V1 100.0 % 323.99 - 66.60 2.38 - 0.096 0.13 - 5.09e-05V2 100.0 % 369.22 - 69.12 2.62 - 0.085 0.28 - 1.54e-04V3 100.0 % 355.27 - 69.72 4.00 - 0.077 0.55 - 2.88e-04V4 100.0 % 321.73 - 61.39 4.71 - 0.025 2.34 - 5.90e-04

EType stands for the kind of errors considered in each simulation: E0 = No errors, P0 =

Errors on Position and Velocity only, V1, V2, V3, V4 = Errors on Position, Velocity

and Sail Orientation, where V1 = 0.001◦, V2 = 0.005◦, V3 = 0.01◦, V4 = 0.05◦

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 37 / 42

Page 41: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (ERTBPS)

-0.00015

-0.0001

-5e-05

0

5e-05

0.0001

0.00015

-0.00015 -5e-05 0 5e-05 0.00015

saddle

-0.0005-0.0004-0.0003-0.0002-0.0001

0 0.0001 0.0002 0.0003 0.0004

-0.0004-0.0002 0 0.0002 0.0004

centre 1

-1.5e-05

-1e-05

-5e-06

0

5e-06

1e-05

-1.5e-05 -5e-06 0 5e-06 1.5e-05

centre 2

-0.99 -0.984-0.98 -0.974 -0.02-0.01

0 0.01

0.02-8e-06-4e-06

0 4e-06 8e-06

xyz proj

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 38 / 42

Page 42: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Results for the Geostorm Mission (ERTBPS)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140 160 180 200

alfa

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120 140 160 180 200

delta

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 39 / 42

Page 43: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

References

[1] Farres, A. & Jorba, A.: Dynamical system approach for the station keeping of a solarsail. The Journal of Astronautical Science, 58:2, pp. 199-230, 2008.

[2] Farres, A. & Jorba, A.: Solar sail surfing along families of equilibrium points. ActaAstronautica, Vol. 63, Issues 1-4, pp. 249-257, 2008.

[3] Farres, A.: Contribution to the Dynamics of a Solar Sail in the Earth-Sun SystemPHD Thesis, University of Barcelona, October 2009.

[4] Farres, A. & Jorba, A.: Sailing Between The Earth and Sun. Proc. of the SecondInternational Symposium on Solar Sailing. New York, USA, 20-22 July 2010. Ed: R.Ya.Kezerashvili, pp. 177-182, 2010.

[5] Farres, A. & Jorba, A.: On the station keeping of a Solar sail in the Elliptic

Sun-Earth system. Advances in Space Research. To appear in 2011.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 40 / 42

Page 44: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Background Station Keeping + realistic model Conclusions

Conclusions & Future Work

• We have described the linear dynamics around an unstable equilibrium pointand how it varies when the sail orientation changes.

• We have designed two station keeping strategies using this information andapplied them to a particular mission.

• We have extended these strategies to a more complex model, and we are nowworking to include the effect of the other planets.

• We have discussed the robustness of these algorithms when different sourcesof errors are included. We have seen that the controllability of the sail isstrictly related to the nature of the neighbourhood of the equilibrium point.

• Notice that these strategies do not require previous planning as the decisionsare taken depending on the sails position at each time.

A. Farres, A. Jorba (IMCCE, UB) Control Strategies for Solar Sails SMAI 2011 41 / 42

Page 45: Control Strategies for Solar Sail - SMAI 2011smai.emath.fr/smai2011/slides/ari/Slides.pdf · p1 p0 p1 The constants "min, "max and d will depend on the mission requirements and the

Merci pour votre attention