Control de Procesos - Joyssy Ticona

download Control de Procesos - Joyssy Ticona

of 43

Transcript of Control de Procesos - Joyssy Ticona

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    1/43

    4/17/12

    UNIVERSIDAD NACIONALMAYOR DE SAN MARCOS

    FACULTAD DE QUIMICA, ING.

    QUIMICA E ING. AGROINDUSTRIAL

    Curso: Control de ProcesosProfesor: Ing. Eder Vicua Galindo

    Alumna: Joyssy Ticona Vilca

    Lima, 2011

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    2/43

    4/17/12

    Title:Temperature control at the bottom of an

    aquarium by the variation of heat entering,ambient temperature and the partial pressure ofwater

    One aquarium can be modeled bytwo perfectly mixed pools.

    Be want derive an equations thatrepresent the response of the

    temperature in bottom of anaquarium for the changes in heatinput, in the surroundingtemperature, and in thesurrounding water partial

    pressure.

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    3/43

    4/17/12

    The process is defined:There is a electric heater.

    There are two perfectly mixed pools. The temperature at the bottom is T1(t),C . The temperature at the top is T2(t),C. The rate of vaporization of water from the tank: w = Ky*A*[p(T)-ps(t)] p[T(t)]= e A-B/T+C(Antoanie Equation )

    OBJECTIVE:

    Variable temperature control since this affects the stability of

    operation of a tank which aims to maintain the life of the fishthat inhabit it.

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    4/43

    4/17/12

    process scheme

    f2 f1

    f1

    f2

    VARIABLES:* Inputvariable: T1(t)* Disturbance

    variable: ps(t)* Manipulationvariable: I(t)* State

    variable: T2(t)

    PARAMETROS:

    f [m3/s]

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    5/43

    4/17/12

    Assumptions:

    Transfer of heat and mass to the surroundings isonly from the free surface of the water .

    V1 = V2 = v

    p[T2(t)]

    The physical properties of water (Cp, Cv, and ) are constant.

    Cp = Cv

    1 = 2

    The rate of vaporization is so small that the totalmass of water in the tank, M, kg, maybe assumedconstant.

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    6/43

    4/17/12

    Mass balance1*f1 = 2*f2 1= 2 f1 = f2

    Energy balance at the top:

    1*f1*h1(t)- 2*f2*h2(t) - W(t)* = d[V**U(t)]dt

    *f*Cp[T1(t)- T2(t)] - W(t)* = V**Cv*d[T2(t)] (1)dt

    One equation with three unknows, T1, T2 and w

    MATHEMATICAL MODELDEVELOPMENT

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    7/43

    4/17/12

    Energy balance at the bottom2*f2*h2(t)- 1*f1*h1(t) + Fem = d[V**U(t)]

    dt *f*Cp[T2(t)- T1(t)] + R*I(t)= V**Cv*d[T1(t)] (2)

    dtTwo equations with four unknows, I

    The rate of vaporization of waterw(t)= Ky*A*[p(T2(t))-p(t)]

    Three equations with five unknows, p(T2)(3)

    Antoanie equationP[T2(t)]= e A-B/T2+C

    (4)

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    8/43

    4/17/12Establishing steady state equations

    *f*Cp[ T1 T2] W* = 0 (6)

    *f*Cp[ T2 - T1] + Fem*I = 0 (5)Linearizing and subtracting the aquations

    corresponding to (1) and (2)*f*Cp[T1(t)- T2(t)] - W(t)* = V**Cv*d[T2(t)] (7)

    dt*f*Cp[T2(t)- T1(t)] + R*I(t)= V**Cv*d[T1(t)] (8)

    dt

    Where:T2(t) = T2(t) T2T1(t) = T1(t) T1

    I(t) = I(t) - IW(t)= w(t) w = Ky*A*[p(T2(t))-ps(t)]

    = -

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    9/43

    4/17/12*Replacing (9) in (7)*f*Cp[T1(t)- T2(t)] - Ky*A*[a(T2(t))-ps(t)] * = v**cv*d[T2(t)](10)

    dt

    Using Laplace Transform and rearranging for equation (8) and(10)

    T

    1(s) = 1 T2(s) + K1 I(s)(11)

    s 1+1 s 1+1

    T2(s) = K2 T1s) + K3 Ps(s)(12)

    s 2+1 s 2+1 Then:

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    10/43

    4/17/12

    where

    1= *V*Cv, = 20 segundos K1 = Fem= 0.98 K

    *f*Cp *f*Cp

    2= * V * Cv, = 60 segundos K2 = *f*Cp= 0.08 ,adimensional

    Ky*A* *a+ fCp Ky*A* *a+ fCp

    K3= Ky*A*, = 0.005 K/Pa

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    11/43

    4/17/12

    Process transfer function:

    Disturbance transfer function:

    TRANSFER FUNCTION IN OPENLOOP

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    12/43

    4/17/12

    block diagram for open loop system

    K31s+1

    K22s+1

    K1

    1 11s+1

    I(s)

    T1(s)

    T2(s)

    Ps(s)

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    13/43

    4/17/12

    TT

    TRC

    T2

    (t)

    Tsp(t),K

    m(t)

    mA

    outline of the process control system

    Sensor

    transmitter

    Controller

    Final

    controlelement

    T1(t)

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    14/43

    4/17/12

    sensor transmitter:MBT 153

    Static characteristics

    Noise: 0,1mA p.p.

    Sensor range : -10 50

    Dynamic characteristics

    Response Rate: 2 minPrecision: 0.1%

    - Convert the millivolt output

    current signal (typically 4-

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    15/43

    4/17/12

    Transfer function of the sensor-transmitter

    H(s) = Kt .ts+1

    The transmitter can be represented by the

    following linear relationship.

    Gain:

    Kt = 20 4 mA = 0.26750 (-10) C

    Response time:t =2 min

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    16/43

    4/17/12

    Is Tsp the set point:

    e(t)= Tsp(t) Tm(t)

    Mode of action: Reversible action

    m(t)= m+ (Kc)e(t)

    Mode of controller: Proportional

    CONTROLLER

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    17/43

    4/17/12final control element:Electric actuator

    Accion: fail closed (FC)

    Linear valve characteristic.

    Response time : 10 s

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    18/43

    4/17/12

    Ky Kvp Kvqm(t)

    mp(

    t)

    vp

    (t)

    K= 1 - 020 4

    mA

    Kvq=27.4

    Kv= K*Kvq = 1* 27.416Kv= 1.712

    Transfer function of thecontroller:

    Gv (s)= 1.71210s + 1

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    19/43

    4/17/12

    block diagram

    0.98(20s+1)(s+0.016)(s+0.051)

    0.005(s+0.016)(s+0.051)

    1.712

    10s+1

    KcKsp

    0.267

    2s+1

    Tsp(s)

    Tm(s)

    T1(s)I(t)

    +

    E(s)

    M(s)

    Ps(t)

    +

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    20/43

    4/17/12

    characteristic equation

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    21/43

    4/17/12

    Stability analysis

    1) ROUTH- HURWITZ TEST20 1.8196 0.0078+4.96Kc13.34 0.0764+29.7849Kc 0b1 b2c1 0

    d1

    For b1>0 :

    b1= 1.896 44.65Kc >00.04>Kc Kcu= 0.04

    For b2>0 :b2 = 0.00078 + 0.496Kc >0

    Kc>-1.57*10^(-3)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    22/43

    4/17/12

    2) DIRECT SUBSTITUTION TEST

    Grouping:

    Is obtained:

    Replacing: s = wcuiKc=Kcu

    Then:

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    23/43

    4/17/12

    Kc I D

    PROPORTIONAL 0.175 - -

    PROPORTIONAL-INTEGRAL

    0.159 18.06 -

    PROPOTIONALINTEGRAL

    DERIVATIVO

    0.206 10.83 2.71

    controller tuning parameters

    According to ZieglerNichols:

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    24/43

    4/17/12

    RESPONSE TIMEAND

    STABILITY

    ANALYSIS

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    25/43

    4/17/12

    PROPORTIONALCONTROLLER

    Kc= 0.1749

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    26/43

    4/17/12

    Response time

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    27/43

    4/17/12

    Kc = 0.175rlocus(FTCA)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    28/43

    4/17/12

    Kc = 0.175Bode(FTCA)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    29/43

    4/17/12

    Kc = 0.175nyquist(FTCA)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    30/43

    4/17/12

    PROPORTIONALINTEGRAL

    CONTROLLER

    Kc = 0.159i= 18.06

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    31/43

    4/17/12

    RESPONSETIME

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    32/43

    4/17/12

    rlocus(FTCA)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    33/43

    4/17/12

    bode(FTCA)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    34/43

    4/17/12

    nyquist(FTCA)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    35/43

    4/17/12

    PROPORTIONAL

    INTEGRALDERIVATIVE

    CONTROLLER

    Kc = 0.206i = 10.83D = 2.71

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    36/43

    4/17/12

    RESPONSE TIME

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    37/43

    4/17/12

    rlocus(FTCA)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    38/43

    4/17/12

    bode(FT

    CA)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    39/43

    4/17/12

    nyquist(FTCA)

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    40/43

    4/17/12

    ANALYSIS IN ACONTROLLER OFPROPORTIONAL

    INTEGRALDERIVATIVE

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    41/43

    4/17/12

    An increase of Kc in10%

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    42/43

    / /

    A decrease ofKc in 10%

    4/17/12

  • 8/2/2019 Control de Procesos - Joyssy Ticona

    43/43

    / /

    * Shows that the three response timegraphs for stability, but at the beginningintroduces instability. We conclude a

    change in the controller (Kc) does notinfluence the search process stability

    *The Kc Increase by 10% the amplitudedecreases and the same percentage

    decrease in the amplitude increases,conclude that Kc varies the amplitude andincreasing its value the process will becloser to stability

    ANALYSIS