Consistent Visual Information Processing

49
Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University of Technology [email protected] http://www.emt.tu-graz.ac.at/~pinz

description

Consistent Visual Information Processing. Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University of Technology [email protected] http://www.emt.tu-graz.ac.at/~pinz. “Consistency”. Active vision systems / 4D data streams. - PowerPoint PPT Presentation

Transcript of Consistent Visual Information Processing

Consistent Visual Information Processing

Axel Pinz

EMT – Institute of Electrical Measurement and Measurement Signal Processing

TU Graz – Graz University of Technology

[email protected]://www.emt.tu-graz.ac.at/~pinz

“Consistency”• Active vision systems / 4D data streams

• Imprecision

• Ambiguity

• Contradiction

• Multiple visual information

This Talk: Consistency in

• Active vision systems:– Active fusion– Active object recognition

• Immersive 3D HCI:– Augmented reality– Tracking in VR/AR

AR as Testbed

Consistent perceptionin 4D:

• Space– Registration– Tracking

• Time– Lag-free– Prediction

Agenda

• Active fusion

• Consistency

• Applications– Active object recognition– Tracking in VR/AR

• Conclusions

Active Fusion

fusion, contro lin teraction

w orld

w orlddescription

sceneselection

scene

exposure

im age

im age proc.,segm entation

im age

description

grouping,3D m odeling

scenedescription

integration

Simple top level decision-action-fusion loop:

Active Fusion (2)

• Fusion schemes– Probabilistic– Possibilistic (fuzzy)– Evidence theoretic (Dempster & Shafer)

Probabilistic Active Fusion

N measurements, sensor inputs: mi

M hypotheses: oj , O = {o1, …, oM }

Bayes formula:

),...,(

)()|,...,(),...,|(

1

11

N

jjNNj

mmP

oPommPmmoP

Use entropy H(O) to measure the quality of P(O)

)(log)()(1

j

M

j

j oPoPOH

Probabilistic Active Fusion (2)Flat distribution: P(oj )=const. Hmax

• Measurements can be:• difficult,• expensive,

• N can be prohibitively large, …

Find iterative strategy to minimize H(O)

Pronounced distribution:P(oc ) = 1; P(oj ) = 0, j c H = 0

)(log)()(1

j

M

j

j oPoPOH

Probabilistic Active Fusion (3)

Start with A 1 measurements: P(oj|m1, … ,mA), HA

Iteratively take more measurements: mA+1, … ,mB

Until: P(oj|m1, … ,mB), HB Threshold

Summary: Active Fusion

• Multiple (visual) information, many sensors, measurements,…

• Selection of information sources

• Maximize information content / quality

• Optimize effort (number / cost of measurements, …)

Information gain by entropy reduction

Summary: Active Fusion (2)

• Active systems (robots, mobile cameras)– Sensor planning– Control– Interaction with the scene

• “Passive” systems (video, wearable,…)– Filtering– Selection of sensors / measurements

Consistency

• Consistency vs. Ambiguity– Unimodal subsets Ok

• Representations– Distance measures

Consistent Subsets

Hypotheses O = {o1 ,…, oM }

Ambiguity: P(O) is multimodal

Consistent unimodal subsets Ok O

• Application domains

• Support of hypotheses

• Outlier rejection

Benefits:

Distance Measures

Depend on representations, e.g.:

• Pixel-level SSD, correlation, rank• Eigenspace Euclidean• 3D models Euclidean• Feature-based Mahalanobis, …• Symbolic Mutual information• Graphs Subgraph isomorphism

Mutual Information

Shannon´s measure of mutual information:

O = {o1 ,…, oM }A O, B O

I(A,B) = H(A) + H(B) – H(A,B)

Applications

• Active object recognition– Videos– Details

• Tracking in VR / AR– Landmark definition / acquisition– Real-time tracking

Active vision laboratory

Active Object Recognition

Active Object Recognitionin Parametric Eigenspace

• Classifier for a single view

• Pose estimation per view

• Fusion formalism

• View planning formalism

• Estimation of object appearance at unexplored viewing positions

Applications

Active object recognition– Videos– Details

Control of active vision systems

• Tracking in VR / AR– Landmark definition / acquisition– Real-time tracking

Selection, combination, evaluation Constraining of huge spaces

Landmark Definition / Acquisition

corners blobs natural landmarks

What is a “landmark” ?

Automatic Landmark Acquisition

• Capture a dataset of the scene:– calibrated stereo rig

– trajectory (by magnetic tracking)– n stereo pairs

• Process this dataset– visually salient landmarks for tracking

Automatic Landmark Acquisitionvisually salient landmarks for tracking

• salient points in 2D image• 3D reconstruction• clusters in 3D:

– compact, many points– consistent feature descriptions

• cluster centers landmarks

Processing Scheme

Office Scene

Office Scene - Reconstruction

Office Scene - Reconstruction

Unknown Scene

Real-Time Tracking

LandmarkAcquisition

Real-Time Tracking

• Measure position and orientation of object(s) • Obtain trajectories of object(s)

• Stationary observer – “outside-in” – Vision-based

• Moving observer, egomotion – “inside-out”– Hybrid

• Degrees of Freedom – DoF– 3 DoF (mobile robot)– 6 DoF (head and device tracking in AR)

Outside-in Tracking (1)

stereo-rigIR-illumination

• wireless

• 1 marker/device:3 DoF

• 2 markers: 5 DoF• 3 markers: 6 DoF

devices

2D B

lob

Tra

ckin

gE

pipo

lar

Geo

met

ry3D

Cor

resp

onde

nce

3D O bjects and Pose

2D Backpro jection

Epipolar G eom etry

C onstra in ts

3D C orrespondence

3D Prediction

B lob D etection

Tile Q uantisation

Prediction

B lob D etection

Tile Q uantisation

Prediction

W orkspace

O bject M odels

LEFT IM AG E R IG H T IM AG E

Outside-inTracking (2)

Consistent Tracking (1)

• Complexity– Many targets– Exhaustive search vs. Real-time

• Occlusion– Redundancy (targets | cameras)

• Ambiguity in 3D– Constraints

Consistent Tracking (2)

• Dynamic interpretation tree– Geometric / spatial consistency

• Local constraints– Multiple interpretations can happen– Global consistency is impossible

• Temporal consistency– Filtering, prediction

Consistent Tracking (3)

Hybrid Inside-Out Tracking (1)

• 3 accelerometers• 3 gyroscopes• signal processing• interface

Inertial Tracker

Hybrid Inside-Out Tracking (2)

• complementary sensors

• fusion

Summary: Consistency in

• Active vision systems:– Active fusion– Active object recognition

• Immersive 3D HCI:– Augmented reality– Tracking in VR/AR

Conclusion

Consistent processing of visual informationcan significantly improve

the performance ofactive and real-time vision systems

Acknowledgement

Thomas Auer, Hermann Borotschnig, Markus Brandner, Harald Ganster, Peter Lang, Lucas Paletta, Manfred Prantl, Miguel Ribo, David Sinclair

Christian Doppler Gesellschaft, FFF, FWF, Kplus VRVis, EU TMR Virgo