Conductivity Logging for Thermal Spring...

12
῎ῐ῍ῌῒΐ῏ῑ + 腱腶腩腏腗腒腟,1-**-- 腣腷腘腥腓腝腶腔腫 0/2, , 腱腶腩腎腨腜,1-**-- 腣腷腘腥腓腝腶腔腫 0/2, 腛腮腙腰 + 腚腌 , 腣腷 , 腵腡 +/ . , 腱腞腴腵腡 +0 / ,* 腱腞腸Conductivity Logging for Thermal Spring Well Koji SATO + , Tadashi TAKAYA , , Tadashi CHIBA , + Nihon Chika Kenkyuusho Co. Ltd., 0/2,, Hongo, Funabashi, Chiba ,1-, Japan , Nihon Chika Tansa Co. Ltd., 0/2,, Hongo, Funabashi, Chiba ,1-, Japan Abstract Formerly, we-the present authors reported on the loggings of the self-flowing ther- mal well (Sato et al, +333), and estimated the inflowing depth, temperature, volume and conductivity of thermal water flowing into the well. This estimation was based on the changes of the temperature, flow rate and electric conductivity of the thermal water. We report the results of loggings of fluid temperature and fluid conductivity performed inside the casing pipe of two thermal spring wells. At Y” spring well, after the drilling of +,/** m, the loggings of temperature, di#eren- tial temperature, natural gamma, self potential, electric resistivity, fluid conductivity and di#erential conductivity are carried out. From the results of these loggings, we proposed the set up depths of strainer. When the uplifting of the thermal water (temperature .*, flow +0* l/min, water level-/* m) is stopped temporally, the loggings of fluid temperature and fluid conductivity are done inside the casing pipe. The e#ective strainer and ine#ective strainer are distinguished mainly by the change of the fluid conductivity. At S” spring well (+,*,- m depth), as the temperature of the uplifted thermal water has been lowered largely (/../腅腆ca-*) ; the uplifting is stopped and the loggings of fluid temperature and fluid conductivity are tried inside the casing pipe. The invasion of the di#erent water (perhaps the sea-water) through the broken part of the casing pipe is inferred from the changes in fluid temperature and in fluid conductivity. It is supposed that the steel casing pipe is corroded by the salty water flowing outside of the pipe. Key words : Thermal water well, Logging of conductivity, Logging of temperature, Inflow of water 腈腁腊腁腉 : 腍腤腋腬腯腭腖腦腍腭腖腦腠腇腹腲 /. ,**.25

Transcript of Conductivity Logging for Thermal Spring...

Page 1: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

� �� �

��������

+ ��������� ,1-�**-- � ������� 0/2�,, ���������� ,1-�**-- � ������� 0/2�,

����+� �� �,� � �,

�� +/! ." ,�#$� � +0! /" ,*�#%�

Conductivity Logging for Thermal Spring Well

Koji SATO+, Tadashi TAKAYA

,, Tadashi CHIBA,

+ Nihon Chika Kenkyuusho Co. Ltd., 0/2�,, Hongo, Funabashi, Chiba ,1-, Japan, Nihon Chika Tansa Co. Ltd., 0/2�,, Hongo, Funabashi, Chiba ,1-, Japan

Abstract

Formerly, we-the present authors reported on the loggings of the self-flowing ther-

mal well (Sato et al, +333), and estimated the inflowing depth, temperature, volume and

conductivity of thermal water flowing into the well. This estimation was based on the

changes of the temperature, flow rate and electric conductivity of the thermal water.

We report the results of loggings of fluid temperature and fluid conductivity

performed inside the casing pipe of two thermal spring wells.

At &Y” spring well, after the drilling of +,/** m, the loggings of temperature, di#eren-

tial temperature, natural gamma, self potential, electric resistivity, fluid conductivity and

di#erential conductivity are carried out. From the results of these loggings, we proposed

the set up depths of strainer. When the uplifting of the thermal water (temperature .*',

flow +0* l/min, water level-/* m) is stopped temporally, the loggings of fluid temperature

and fluid conductivity are done inside the casing pipe. The e#ective strainer and

ine#ective strainer are distinguished mainly by the change of the fluid conductivity.

At &S” spring well (+,*,- m depth), as the temperature of the uplifted thermal water

has been lowered largely (/../'(ca-*') ; the uplifting is stopped and the loggings of

fluid temperature and fluid conductivity are tried inside the casing pipe. The invasion of

the di#erent water (perhaps the sea-water) through the broken part of the casing pipe is

inferred from the changes in fluid temperature and in fluid conductivity. It is supposed

that the steel casing pipe is corroded by the salty water flowing outside of the pipe.

Key words : Thermal water well, Logging of conductivity, Logging of temperature,

Inflow of water

)*+*, : -./� 01234� -234� 5678

9 /.: �,**.� 25

Page 2: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

+� � � � �

���������� ��������� ������������������ !���"#�$% #&#����'()*+,�-�.�$�� '()*+,/�#0,�1�.�$23�4�567� �8���6 ���9�:�$�6�� ��;<.�:$% =�4& >+333? � @���A �B��C��� ����BDE�������F��A ���G$��H ��I�� J ��H ��KL����6�MN#�% OP� Q$RS���TU���A���������������F�A ���G$�V ��I�� ��KL��� MN�WX�%

,� ����

����8���� ����6�YDZ��$�� �8 ��KG.�[GN\7QF�]^_(`*a�`(b >S�m? ���c�$% d e\�8 ���:.�[G�8�fg>him? 7Q$% G��jH �8��� >EC? ��8�fg >Rw? � klm D���$%

Rwn+�EC

��HK�oH D��H����G$�p� ����qr st*u��vw:Y 7��x����DFy�$ �z7Q$�� �� {x|Y}�% J�7~�� ,/��BU$�����$% ��� �N�����DF����]�&���S7��.�� ��� ����YQ$ 7�2�N���7Q�� ,/��� �� �� �.��$Y Y��% ��H 23Y� �x��� �����&7Q$��C��$d��9$� �����:��c�$%�d��� ��H �����x��� �!�"##�$�N$������% ���Q$J D���N$ >$�Z%&� +31/? �'�\+����[#� >Fig. +?% ��� ,/� ��7 ��7Q�� �� ��� pH� ���6(�#�% � )* >¡+,-¢� +332? �£¤.��$�:�& �p�H�q >*.+¥¦�l? ,/��BU$�8��� >§o� .~#����¨G$? �Y/©[#Q$% d��X$���H ��� >EC? ��x��� >TSM?� S�� ªk�Q�� ~��«���$D��m D��kl�Q$%

EC>S�m?¬1­TSM>g�l?�p�H�q �j� KCl >� )*� -®� ��7���y�$� ����[.�

�$? BDE NaCl��H�0¯D�7Q$�� HCl� HNO-� H, SO.� NaOH� CuSO.� NH- H�q��H�y�$D�7Q$%~!� � )*�[.��$KCl1°H�q ����'�\+����±²³´G$��

Fig. , D�� KCl ���D$��� 2µ���H�q ���D$2µYXc�$% H�qr �x�� ����:���}�23� ����}����d���$% d KCl 237�������x����3�����}�3�¶:� 0¯��7Y ,/� ��� *� 23 +.1·+.243��¶�����[Gd���$%¸¹ >+30-? NaCl�q ����8�fg>��� e\? � kl��'�\+����[# *·/*� ��7 'º kl�Y/©[#�$ >Fig. -?% ���0¯7Y���}:�$���� �8�fg».: >����¶:?�$d��[.��$%

�� ¼26

Page 3: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

-� ���������

���������� ����� ���� ��� ���� ������ ��� !"#��$%&'(� + m)*+,&'(� -./01� 2(345 + m)*+,2(6789:;<�=>�?@����� �Fig. .� �A;B &CDEFG-.&H678I;J�K*����6�";4#JLMN";B &'(*78O�P� /*Q/*,*** mS�cmR*.*/Q/* mS�cmR*.**/Q/ S�m

�AS� -./01�NaI �TL� ?�TO�U�6�"N +V)*WX��Y� CPS�+Z[;B2(�\']�^�_�`���6�"N";B ����*ab� -2 mm� cZ ,... m� de 1.1

kg�AS� fg2(� +,/h� fi� ,+* kgf�cm,�A;B &'(*78j(� *./ S�m*kl,./��AS� 2(*j(�l*./h�A;B����*mn� op�q(6 -* m�minr�stu[;Xv�T6�"� 2 m�min*mnq(�78��B L3&'(*w�2(xyz{|[N"L"*�� y}J�78~(J3�;2(J��zMN*xy6{|L�[�LuL"B

Fig. + Relation between Concentration of Soluble Matter and Electric Conductivity.

� + �����������

2��*&'(��� /.� �,**.� 27

Page 4: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

-�+ �Y� ������������� +,/** m�� ������� ������������� !"#

$% � &'% � ()*+,� ()-.� -/012� 34-5 678&'-5 9 �:;�<��������=>?�@A�BC� �"D��E F�GH� Fig. /�7I�� JK�LJA678MJA� -/012�N012A� &'34-5 �OPA�Q<� !% R ./S7TNUVUQ�WXY� +,+2/Z+,,02 m� +,-03Z+,-2* m� +,./2Z+,.03 m� -�[�=>?�@.C�\]��E^_4.R`/* mVUIab% .*S�%4 +0* l�min�^_�<U�E F��������!�6U<% "#V-5 "# $cde�mS�cm�f.&gh<U�9V�iQ�GH�Fig. 0�7I� !% j��k��0l�< 1Sm no�� -5 jpqr - S�mm no��Vs� +,,/* m� �tuVt�VvwxOyRzYh�E !% j� +,+2/Z+,,02 m�=>?�@BC{|�noj +S}�+** mV~�X��R� `+,+2/ mtuj ,S}�+** m�`+,,02 mt�j -S}�+** mV�����E -5 j� +,,/* m�� -./ S�mXY ..+ S�m�V *.0 S�mm ��noRzYh� t�j���]��-5 $. S�m��9 �&�E�hY�a�j� +,+2/Z+,,02 m�=>?�@AXY% /,Sm � -5 . S�mm $�

Fig. , Electric Conductivity of KCl Solution.

, KCl��� �

%��28

Page 5: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

���� ,2 g�l��� ��� ��������� ������+,-03�+,-2* m� �+,./2�+,.03 m��� !"#$%&���&'�$� (���)*�+��,-$.(/0�12���/34567.89:;���'�<=.�>?�&45@��>?�12�� *.,/ S�mA7�B12���/3 CD:;7�E +,,/* mF��G�>?� H..+ S�mA7� &IJ��>?�12K��.(LM3'�� 4567�NO.&�� 3** mPQ�>RSTU�VWXYZ��[\�]%-� ^O_`�abK/���cd%-/3 �$��� +,-+* mPQ�VW>e�[\�,12K��$&f%$.'�3

-�, �S� �����gh�(/i.(��� E +,*** m���j.45�k7�l���mn1o!pqrn H22*

mF�&�� !"� ���s��� /../t� pH 0.2� u���� +1.-2 g�l� Na-Cl ,0* l�min1�vw!xyqz�{��:;���k�� 0|�7�� -+.,t�}~�� pH 0.3� u���� -+./. g�l� Na-Cl���[��k HTable +���3

Fig. - Relation between Concentration of Na-Cl Solution and Electric Resistivity at di#erentTemperature (Yamaguchi, +30-).

- NaCl��� � ������� ��� H��� +30-�

��>?�NO� /.� H,**.� 29

Page 6: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

����������� ���� ���������������� ����!"#�$ %�&'(���)*+%,� Fig. 1��-�./01�23 �456789: �;<= $>?��� @A +BC �(�DE�F4 -,* mG�H<#IJ#%K����� LMNO4PQ89 3.* mG�H<����P-�R4ST�$ ��+UVPQ8�4� A ,B� +R#���+� 2�WX�YZ[\] ,,(^4_`#�(�PQ8�$ %�� LMNO�ab#�WX�cd+ -- @WX /** cc4ef�ghijk�l�mnS� oUC� WX�pq+ +.*,<=K�$�� @A ,B� +C �)*+ Fig. 2 @G� +.* mr2,* mC �s�4� t�)*�; R� �+u\Xvw,/ m� ,.xyJ#%4w-.* m� -,.,xH<yz#�]�{J#� w-1*r/-/

m^+ ,1r,3xR% $ |G+yz#9w/1* m< -2xR%}� t�]+~��yz#9w2/* m

� .3xR% $ �8��#9��� @���<�����mS�cm�v<s789: C +u\Xv� *.3 S�myJ#%4w-.* m� +.0/ S�mH<yz#�]�w-1*r.** m� +./ S�mR{J#� |G<+�yz#9w.2* m� ..0 S�mR% $ B:<�����{J#w/1* m< +.2/

S�mR%}� |G+���yz#9w2/* m< ,./ S�mR%K�]�yJ#%4 3** m|G�,.* S�mR% $G� ,+* m� -** m� -0/r.** m%�<+ �4{J�8�����{J� R:K�1�4;8 4� G� .2* m���R� ��������+ �����4��#9:%:<� �R+���%������4;8��R�% $����)*� j�������G� @22* m|GC �}��:��<= G� .2* m� � ¡XR+¢�X42£��n¤#9: ��R;8�$ n¤X� �+ ,../x¥�� n

Fig. . Equipment of the Well Logging.

� . �����

¡¦§30

Page 7: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

Fig. / Logging Chart of �Y” Spring Well (++1*�+/** m depth).

� / �Y� ������ �+,+1*�+,/** m��

������ � /.� �,**.� 31

Page 8: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

Fig. 0 Logging Chart of �Y” Spring Well (2**�+.2* m depth)-before and after uplifting.

� 0 �Y� ������ �2**�+,.2* m�� �������

���32

Page 9: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

������� ..0S�m�� �� ����� -,.,g�l������������������ !��" ����� �� -.#-/g�l����$! %&'(" +331� ��()��*���+,����-$./�0�1 !�23)��� ���4�56�7.2*m8-�/���/�9:" ����;<�" =>)?@ABCDE FE� �GH�IJ�K!���L�1 !�23)��� >��>�MN�7.,*#/0*mO�PQ�R)��� >�S�����5TUVWX$9/Y�" Z)?@ABCDE[U*\]!9/��K!^_��`1 4�" 9/�9a��b:��*��cd23e$� fghi1jk l�mnopq .-rO� �sW��tu Fig. 2�v ,w� ,� 1�" fgx�()���y��MN�z���xY�>�{|U}<��7.,*#0/*m�{|�X4��>�q" fghi~�������A�EU //*m�x��1������fgtu v -w�

Table + Chemical Composition of Thermal Water of �S” Spring4

� + �S� /�����+

Date (Year, Month) +33.4 2 ,**,4 3

Temperature (�) /.4/ -+4,

Flow (l/min) ,0* 7

PH, on site, in laboratory 042 0423 043 042,

Rn�+*7+* Ci/kg *42, *40

E4R4 g/kg +14-2 -+4/.

Component mg/kg mval� mg/kg mval�

Sodium ion Na� /-**4* 1.413 3*014* 114*3

Potassium ion K� ,.24, ,4*0 -./4+ +41-

Ammonium ion NH.� ,+42 *4-3 +*4. *4++

Magnesium ion Mg,� -0,43 3403 32.4* +/42-

Calcium ion Ca,� 1334* +,43. /,14* /4+.

Ferrous ion Fe,� 24* *4*3 343 *4*1

Manganese ion Mn,� -40 *4*. +4- *4*+

Fluride ion F7 *4, *4** +4/ *4*,

Chloride ion Cl7 32+34* 3-4/2 +0-3*4* 3*43-

Bromide ion Br7 .14. *4,* /.43 *4+.

Sulphate ion SO.,7 /,-4+ -402 +22+4* 141*

Bicarbonate ion HCO-7 ./14/ ,4/- -1/4- +4,+

Nitrate ion NO-7 *4, *4**

meta-silicate H,SiO- +2/4+ ,.14*

meta-boric acid HBO, 24* .*4*

Free carbon dioxide CO, +0042 3,4*

Characterictic Na-Cl spring Conc4Na-Cl spring

/�i����tuv /.� ,**.� 33

Page 10: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

�������� Fig. 2�� ����������� //* m���� .2* m����������� !"#$�%&�&' (�� //* m) ���*+,�������-�.�/ 0����1234��� /**50/* m���678/12349:���;�<7����� =>?�6�@ABC�D!"#$�%&E�?�6�@AB��FG�HI���JK�LM;N8�OP�.8/

Fig. 1 Columnar Section of QS” Spring Well.

� 1 �S� ������

HIRS34

Page 11: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

.� � �

���� ,���� �� �������������������� ��� �!"#����$"% ��&'(")*& #+% ��� ���,�-./0123���4'��5�67)���89:;<=>���?@A=���"@�BC ��/����� �D:"#����E"% ��&FGH&�IJ�) 'K>LM4):"=��3:"C �=�NO!P:��"(Q��Q""RS(TQ�UV���IJ) W@XYZ[= #,***% �\23(�B���� �]"���^_`(a�/!P a��B:�� ��b.cFdec�����

Fig4 2 Logging Chart of fS” Spring Well (+.*�2,* m depth)4

� 2 �S� ����� #+.*�2,* mQ%

��g������h /.i #,**.% 35

Page 12: Conductivity Logging for Thermal Spring Wellj-hss.org/journal/back_number/vol54_pdf/vol54no1_025_036.pdfmal well (Sato et al, +333), and estimated the inflowing depth, temperature,

�� ������ ����� ���������������������� ��� !"#�$%&'(�)�����*+�,����-�.� �����-/012�324� 56'(7-�+248�9����4��$ %&'�:#;#�<=�>?28@���ABC�DEF�G �H32� �I�J�-K"#���LM$NO4PLPL�'()���AQ32� :�����RSA�"T�12QU6P$VO�� WXY�8@�Z[\�H32]-^P�_`a#6$ b12cdAeF�4����$

fgh +/i 3j ,0k k�lmnop /0q^o�res

� �tuvw f+332s : �mie� p 1+x� y`� z{$|}~���� ������� f+333s : �l����H��0�l7��� � �lmn� .2

f.s$�����}������� f,***s : �����l� ����l�� ��P2� ����������� p 1+�$

�� ��������� ¡¢��  £�¤¥�¦�(}~���§ ¨�g� © �f+331s : 7�ªm«¬� y`� z{$

­�®¯ f+31/s : °±²��l� ­�®¯³�b´o$µ¶�·[ f+30-s : a+l�¸¹���� º»¼� z{$

�lmn36