Condensed Matter Theory and Quantum Computing - Denis … · 2019. 11. 1. · Rabi oscillations at...

1
Heavy-Hole Spin Resonance in Quantum Dots Denis Bulaev and Daniel Loss Department of Physics and Astronomy, University of Basel, Switzerland ABSTRACT We propose and analyze a new method for manipulation of a heavy hole spin in a quantum dot [1]. Due to spin-orbit coupling between states with different orbital momenta and opposite spin orientations, an applied rf electric field induces transitions between spin-up and spin-down states. This scheme can be used for detection of heavy-hole spin resonance signals, for the control of the spin dynamics in two-dimensional systems, and for determining important parameters of heavy-holes such as the effective g-factor, mass, spin-orbit coupling constants, spin relaxation and decoherence times. Effective Hamiltonian for Heavy Holes H = 1 2m (P 2 x + P 2 y )+ 2 0 2 (x 2 + y 2 ) 1 2 g µ B B σ z + H SO , H SO = iαP 3 σ + + βP P + P σ + + γB P 2 σ + + h.c., where α =3γ0αREz/2m0∆, β =3γ0γ1P 2 z /2m0η∆, γ =3γ0κµB/m0∆, and ∆ = E hh 0 E lh 0 . |+ = ˛ ˛ ˛ ˛ 0, 0, + 3 2 + + 1 ˛ ˛ ˛ ˛ 1, +1, 3 2 + β + 2 ˛ ˛ ˛ ˛ 3, +1, 3 2 + α + ˛ ˛ ˛ ˛ 3, +3, 3 2 + γ + B+ ˛ ˛ ˛ ˛ 2, +2, 3 2 , |− = ˛ ˛ ˛ ˛ 0, 0, 3 2 + 1 ˛ ˛ ˛ ˛ 1, 1, + 3 2 + β 2 ˛ ˛ ˛ ˛ 3, 1, + 3 2 + α ˛ ˛ ˛ ˛ 3, 3, + 3 2 + γ B˛ ˛ ˛ ˛ 2, 2, + 3 2 , where β ± 1 = β(ml) 3 ω±(ω 2 + ω 2 + )/ω ± D , γ ± =3 2γ0κµB(ml) 2 ω 2 ± /m0ω ± , ω± =Ω ± ωc/2, and Ω= q ω 2 0 + ω 2 c /4. Spin Relaxation and Decoherence 1 T 1 = 1 T DSO 1 + 1 T 1 + 1 T RSO 1 , 1 T DSO 1 = β 2 ω 3 Z m 2 2 4 πρ N ωZ + 1 2 ω ω ω Z ω + ω + + ω Z 2 α e ω 2 Z l 2 /2s 2 α s 5 α I (3) , 1 T 1 = γ 2 B 2 ω 5 Z 2 7 πρ4 N ωZ + 1 2 ω 2 2ω ω Z + ω 2 + 2ω + + ω Z 2 α e ω 2 Z l 2 /2s 2 α s 7 α I (5) , 1 T RSO 1 = α 2 3 ω 7 Z 2 8 πρ6 N ωZ + 1 2 ω 3 3ω ω Z ω 3 + 3ω + + ω Z 2 α e ω 2 Z l 2 /2s 2 α s 9 α I (7) . At low temperatures (ω ph T ) [2], T 2 =2T 1 . 1 10 10 2 10 3 10 4 10 5 10 6 10 7 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1 / T 1 (1/s) B (T) B || = 0 T B || = 0.5 T B || = 3 T 0 0.1 0.2 0.3 0.3 0.7 1.1 1.5 Energy (meV) B (T) Fig. 1. Heavy hole spin relaxation rate 1/T 1 in a GaAs QD versus an applied perpendicular magnetic field B (the height of a QD is h = 5nm, the lateral size l 0 = /mω 0 = 40 nm, κ =1.2, γ 0 =2.5, g =2.5). Inset: Energy differences of lowest excited levels with respect to the ground state E 0,0,+3/2 . Interaction of HHs with RF Electric Fields E(t) = E(sin ωt, cos ωt, 0), H E (t) = Tr(ρH E (t)) = d SO · E(t), (coupling energy) d SO = β|e|mω 2 0 ω2 ω 2 ω ω Z + ω 2 + ω + + ω Z (effective dipole moment). RF Power Absorbed by the System P = dH E (t) dt = 2ω(d SO E) 2 T 2 ρ T z / 1+ δ 2 rf T 2 2 + (2d SO E/) 2 T 1 T 2 . 1e-8 1e-6 1e-4 1e-2 1 1e2 1e4 1e6 ω (GHz) B (T) 50 100 150 200 0.4 0.6 0.8 1.0 1.2 Fig. 2. Absorbed power P (meV/s) as a function of perpendicular magnetic field B and rf frequency ω (T 2 =2T 1 , E =2.5V/cm, B = 1 T). B r,1 = ω/g µ B ,B r,2 = ω 0 /g µ B 1+2m 0 /g m, B r,3 = 4ω 0 /g µ B 1+4m 0 /g m, B d =(ω 0 /2g µ B ) 2m 0 /g m. Rabi Oscillations S z = S T z + e (T 1 1 +T 1 2 )t/2 3 2 S T z cos ω R t + (d SO E) 2 T 2 2 ω R S T z T 1 1 T 1 2 2ω R 3 2 S T z sin ω R t , where ω R = (d SO E/) 2 (T 1 1 T 1 2 ) 2 /4 is the Rabi frequency and S T z = (3/2)ρ T z /[1 + (d SO E/) 2 T 1 T 2 ]. -3/2 0 3/2 0 0.2 0.4 0.6 0.8 1 S z t (μs) Fig. 3. Rabi oscillations at three different values of the perpendicular magnetic field: B = 0.8T (damped fast oscillations), B =0.865 T (dotted line), and B =0.5T(solid line). B = 0, δ rf = 0, E =1.5V/cm. Conclusions Spin-orbit coupling is suppressed for flat QDs Spin relaxation time T 1 can be milliseconds Coherent spin manipulation by RF electric fields Strong dependence of Rabi oscillations on B References [1] Denis V. Bulaev, Daniel Loss. Electric Dipole Spin Resonance for Heavy Holes in Quantum Dots, cond-mat/0608410. [2] Denis V. Bulaev, Daniel Loss. Spin Relaxation and Decoherence of Holes in Quantum Dots, Phys. Rev. Lett. 95, 076805 (2005).

Transcript of Condensed Matter Theory and Quantum Computing - Denis … · 2019. 11. 1. · Rabi oscillations at...

Page 1: Condensed Matter Theory and Quantum Computing - Denis … · 2019. 11. 1. · Rabi oscillations at three different values of the perpendicular magnetic field: B ⊥ =0 . 8T (damped

Heavy-Hole Spin Resonance in Quantum DotsDenis Bulaev and Daniel Loss

Department of Physics and Astronomy, University of Basel, Switzerland

ABSTRACT

We propose and analyze a new method for manipulation of a heavy hole spin in aquantum dot [1]. Due to spin-orbit coupling between states with different orbitalmomenta and opposite spin orientations, an applied rf electric field inducestransitions between spin-up and spin-down states. This scheme can be usedfor detection of heavy-hole spin resonance signals, for the control of the spindynamics in two-dimensional systems, and for determining important parametersof heavy-holes such as the effective g-factor, mass, spin-orbit coupling constants,spin relaxation and decoherence times.

Effective Hamiltonian for Heavy Holes

H =1

2m(P 2

x + P 2y ) +

mω20

2(x2 + y2) − 1

2g⊥µBB⊥σz + HSO,

HSO = iαP 3−σ+ + βP−P+P−σ+ + γB−P 2

−σ+ + h.c.,

where α = 3γ0αR〈Ez〉/2m0∆, β = 3γ0γ1〈P 2z 〉/2m0η∆, γ = 3γ0κµB/m0∆, and ∆ = Ehh

0 − Elh0 .

|+〉 =

˛˛0, 0, +

3

2

fl+ iβ

+1

˛˛1, +1,− 3

2

fl+ β

+2

˛˛3, +1,− 3

2

fl+ α

+˛˛3, +3,−3

2

fl+ γ

+B+

˛˛2, +2,− 3

2

fl,

|−〉 =

˛˛0, 0,−3

2

fl+ iβ

−1

˛˛1,−1, +

3

2

fl+ β

−2

˛˛3,−1, +

3

2

fl+ α

−˛˛3,−3, +

3

2

fl+ γ

−B−

˛˛2,−2, +

3

2

fl,

where β±1 = β(ml)3ω±(ω2

− + ω2+)/ω±

D , γ± = 3√

2γ0κµB(ml)2ω2±/m0∆ω±

‖ , ω± = Ω ± ωc/2, and

Ω =q

ω20 + ω2

c/4.

Spin Relaxation and Decoherence

1T1

=1

TDSO1

+1

T‖1

+1

TRSO1

,

1TDSO

1

=β2

ω3Zm2

24πρ

(NωZ +

12

)(ω−

ω− − ωZ− ω+

ω+ + ωZ

)2 ∑α

e−ω2Zl2/2s2

α

s5α

I(3),

1

T‖1

=γ2B2

‖ω5Z

27πρΩ4

(NωZ +

12

)(ω2−

2ω− − ωZ+

ω2+

2ω+ + ωZ

)2 ∑α

e−ω2Zl2/2s2

α

s7α

I(5),

1TRSO

1

=α2

3ω7

Z

28πρΩ6

(NωZ +

12

)(ω3−

3ω− − ωZ− ω3

+

3ω+ + ωZ

)2 ∑α

e−ω2Zl2/2s2

α

s9α

I(7).

At low temperatures (ωph T ) [2], T2 = 2T1.

1

10

102

103

104

105

106

107

0.3 0.5 0.7 0.9 1.1 1.3 1.5

1 /

T1

(1/s

)

B⊥ (T)

B|| = 0 T

B|| = 0.5 T

B|| = 3 T

0

0.1

0.2

0.3

0.3 0.7 1.1 1.5

Ene

rgy

(meV

)

B⊥ (T)

Fig. 1. Heavy hole spin relaxation rate 1/T1 in a GaAs QD versus anapplied perpendicular magnetic field B⊥ (the height of a QD is h = 5nm,the lateral size l0 =

√/mω0 = 40 nm, κ = 1.2, γ0 = 2.5, g⊥ = 2.5).

Inset: Energy differences of lowest excited levels with respect to theground state E0,0,+3/2.

Interaction of HHs with RF Electric Fields

E(t) = E(sin ωt,− cos ωt, 0),〈HE(t)〉 = Tr(ρHE(t)) = −dSO · E(t), (coupling energy)

dSO =β|e|mω2

0

ωΩ2

(ω2−

ω− − ωZ+

ω2+

ω+ + ωZ

)(effective dipole moment).

RF Power Absorbed by the System

P = −d〈HE(t)〉dt

=2ω(dSOE)2T2ρ

Tz /

1 + δ2rfT

22 + (2dSOE/)2T1T2

.

1e-8 1e-6 1e-4 1e-2 1 1e2 1e4 1e6

ω (GHz)

B⊥

(T

)

50 100 150 200

0.4

0.6

0.8

1.0

1.2

Fig. 2. Absorbed power P (meV/s) as a function of perpendicularmagnetic field B⊥ and rf frequency ω (T2 = 2T1, E = 2.5 V/cm,B‖ = 1 T).

Br,1⊥ = ω/g⊥µB, Br,2

⊥ = ω0/g⊥µB

√1 + 2m0/g⊥m,

Br,3⊥ = 4ω0/g⊥µB

√1 + 4m0/g⊥m, Bd

⊥ = (ω0/2g⊥µB)√

2m0/g⊥m.

Rabi Oscillations

〈Sz〉 = STz + e−(T−1

1 +T−12 )t/2

(32− ST

z

)cos ωRt

+[(dSOE)2T2

2ωRST

z − T−11 − T−1

2

2ωR

(32− ST

z

)]sinωRt

,

where ωR =√

(dSOE/)2 − (T−11 − T−1

2 )2/4 is the Rabi frequencyand ST

z = (3/2)ρTz /[1 + (dSOE/)2T1T2].

-3/2

0

3/2

0 0.2 0.4 0.6 0.8 1

S z

t (µs)Fig. 3. Rabi oscillations at three different values of theperpendicular magnetic field: B⊥ = 0.8 T (damped fastoscillations), B⊥ = 0.865 T (dotted line), and B⊥ = 0.5 T (solidline). B‖ = 0, δrf = 0, E = 1.5 V/cm.

Conclusions

• Spin-orbit coupling is suppressed for flat QDs

• Spin relaxation time T1 can be milliseconds

• Coherent spin manipulation by RF electric fields

• Strong dependence of Rabi oscillations on B⊥

References[1] Denis V. Bulaev, Daniel Loss. Electric Dipole Spin Resonance for Heavy Holesin Quantum Dots, cond-mat/0608410.[2] Denis V. Bulaev, Daniel Loss. Spin Relaxation and Decoherence of Holes inQuantum Dots, Phys. Rev. Lett. 95, 076805 (2005).