Computer Vision I: Variational Methods

68
Prof. Dr. Daniel Cremers Chair of Computer Vision & Artificial Intelligence Departments of Informatics & Mathematics Technical University of Munich Computer Vision I: Variational Methods

Transcript of Computer Vision I: Variational Methods

Page 1: Computer Vision I: Variational Methods

Prof. Dr. Daniel Cremers

Chair of Computer Vision & Artificial Intelligence

Departments of Informatics & Mathematics

Technical University of Munich

Computer Vision I: Variational Methods

Page 2: Computer Vision I: Variational Methods

Exercises

Emanuel LaudeMarvin Eisenberger

Page 3: Computer Vision I: Variational Methods

3Daniel Cremers Computer Vision I: Variational Methods

Computer Vision & Driver Assistance

Page 4: Computer Vision I: Variational Methods

4Daniel Cremers Computer Vision I: Variational Methods

Variational Scene Flow

Wedel et al. IJCV ‘11, Wedel & Cremers, Springer 2011

Page 5: Computer Vision I: Variational Methods

3300 delegates!

Page 6: Computer Vision I: Variational Methods

6Daniel Cremers Computer Vision I: Variational Methods

TUM Chair of Computer Vision & AI

Page 7: Computer Vision I: Variational Methods

7Daniel Cremers Computer Vision I: Variational Methods

Spatially Dense 3D Reconstruction

infinite-dimensional optimization

Page 8: Computer Vision I: Variational Methods

8Daniel Cremers Computer Vision I: Variational Methods

Which path is the fastest?

Page 9: Computer Vision I: Variational Methods

9Daniel Cremers Computer Vision I: Variational Methods

Bernoulli & The Brachistochrone

Johann Bernoulli (1667-1748)

Page 10: Computer Vision I: Variational Methods

10Daniel Cremers Computer Vision I: Variational Methods

Image segmentation:

Optimization in Computer Vision

Geman, Geman ’84, Blake, Zisserman ‘87, Kass et al. ’88,

Mumford, Shah ’89, Caselles et al. ‘95, Kichenassamy et al. ‘95,

Paragios, Deriche ’99, Chan, Vese ‘01, Tsai et al. ‘01, …

Multiview stereo reconstruction:

Faugeras, Keriven ’98, Duan et al. ‘04, Yezzi, Soatto ‘03,

Seitz et al. ‘06, Hernandez et al. ‘07, Labatut et al. ’07, …

Optical flow estimation:

Horn, Schunck ‘81, Nagel, Enkelmann ‘86, Black, Anandan ‘93,

Alvarez et al. ‘99, Brox et al. ‘04, Baker et al. ‘07, Zach et al. ‘07,

Sun et al. ‘08, Wedel et al. ’09, …

Non-convex energies

Page 11: Computer Vision I: Variational Methods

11Daniel Cremers Computer Vision I: Variational Methods

Non-convex energy Convex energy

Optimization and Convexity

Page 12: Computer Vision I: Variational Methods

12Daniel Cremers Computer Vision I: Variational Methods

Inverse Problems: Denoising

image denoised image

Rudin, Osher, Fatemi 1992, Goldlücke, Strekalovskiy, Cremers 2012

Page 13: Computer Vision I: Variational Methods

13Daniel Cremers Computer Vision I: Variational Methods

Leonhard Euler

(1703-1783)

Joseph-Louis Lagrange

(1736 – 1813)

Variational Methods

Page 14: Computer Vision I: Variational Methods

14Daniel Cremers Computer Vision I: Variational Methods

Variational Methods & PDEs

Euler-Lagrange equation as necessary condition:

Gradient descent:

Page 15: Computer Vision I: Variational Methods

15Daniel Cremers Computer Vision I: Variational Methods

Overview

Multiview reconstruction Stereo reconstruction

Realtime dense geometry

Super-res.textures

Reconstruction on the flyRGB-D cameras

Page 16: Computer Vision I: Variational Methods

16Daniel Cremers Computer Vision I: Variational Methods

Overview

Multiview reconstruction Stereo reconstruction

Realtime dense geometry

Super-res.textures

Reconstruction on the flyRGB-D cameras

Page 17: Computer Vision I: Variational Methods

17Daniel Cremers Computer Vision I: Variational Methods

3D Reconstruction from Multiple Views

Kolev, Klodt, Brox, Cremers, Int. J. of Computer Vision ’09:

Theorem: Globally optimal surfaces can be computed by convex optimization.

Page 18: Computer Vision I: Variational Methods

18Daniel Cremers Computer Vision I: Variational Methods

Evolution to Global Optimum

Kolev, Klodt, Brox, Cremers, Int. J. of Computer Vision ’09:

Theorem: Globally optimal surfaces can be computed by convex optimization.

Page 19: Computer Vision I: Variational Methods

19Daniel Cremers Computer Vision I: Variational Methods

Image data courtesy of Yasutaka Furukawa.

Reconstruction of Fine-scale Structures

Page 20: Computer Vision I: Variational Methods

20Daniel Cremers Computer Vision I: Variational Methods

Reconstructing the Niobids Statues

Kolev, Cremers, ECCV ’08, PAMI ‘11

Page 21: Computer Vision I: Variational Methods

21Daniel Cremers Computer Vision I: Variational Methods

Multiview Reconstruction

Kolev, Cremers, ECCV ’08, PAMI ‘11

Page 22: Computer Vision I: Variational Methods

22Daniel Cremers Computer Vision I: Variational Methods

Reconstructing Dynamic Scenes

Oswald, Stühmer, Cremers, ECCV ‘14

Page 23: Computer Vision I: Variational Methods

23Daniel Cremers Computer Vision I: Variational Methods

Action Reconstruction

Oswald, Stühmer, Cremers, ECCV ‘14

Page 24: Computer Vision I: Variational Methods

24Daniel Cremers Computer Vision I: Variational Methods

Single View Reconstruction

Can we recover geometry from a single image?

Yes: Shape-from-shading, shape-from-focus, shape from symmetry,…

Solution: Fixed-volume silhouette-consistent minimal surface.

Page 25: Computer Vision I: Variational Methods

25Daniel Cremers Computer Vision I: Variational Methods

Toeppe, Oswald, Rother, Cremers, ACCV 2010

Single View Reconstruction

Page 26: Computer Vision I: Variational Methods

26Daniel Cremers Computer Vision I: Variational Methods

Toeppe et al. ACCV 2010, Oswald et al. CVPR 2012

Single View Reconstruction

Reconstruction computed in fractions of a second on GPU

Page 27: Computer Vision I: Variational Methods

27Daniel Cremers Computer Vision I: Variational Methods

Toeppe, Oswald, Rother, Cremers, ACCV 2010

Single View Reconstruction

Page 28: Computer Vision I: Variational Methods

28Daniel Cremers Computer Vision I: Variational Methods

Modifying the Material Properties

Page 29: Computer Vision I: Variational Methods

29Daniel Cremers Computer Vision I: Variational Methods

Toeppe, Oswald, Rother, Cremers, ACCV 2010

Single View Reconstruction

Page 30: Computer Vision I: Variational Methods

30Daniel Cremers Computer Vision I: Variational Methods

Toeppe, Oswald, Rother, Cremers, ACCV 2010*

In collaboration with Microsoft Research

* Best Paper Honorable Mention

Single View Reconstruction

Page 31: Computer Vision I: Variational Methods

31Daniel Cremers Computer Vision I: Variational Methods

Overview

Multiview reconstruction Stereo reconstruction

Realtime dense geometry

Super-res.textures

Reconstruction on the flyRGB-D cameras

Page 32: Computer Vision I: Variational Methods

32Daniel Cremers Computer Vision I: Variational Methods

Evolution to Global Optimum

Kolev, Klodt, Brox, Cremers, IJCV 2009

Page 33: Computer Vision I: Variational Methods

33Daniel Cremers Computer Vision I: Variational Methods

Super-Resolution Texture Map

Given all images determine the surface color

back-projectionblur & downsample

Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13* Best Paper

Award

Page 34: Computer Vision I: Variational Methods

34Daniel Cremers Computer Vision I: Variational Methods

Super-Resolution Texture Map

Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13* Best Paper

Award

Page 35: Computer Vision I: Variational Methods

35Daniel Cremers Computer Vision I: Variational Methods

Weighted average Super-resolution texture

Super-Resolution Texture Map

Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13* Best Paper

Award

Page 36: Computer Vision I: Variational Methods

36Daniel Cremers Computer Vision I: Variational Methods

Closeup of input image Super-resolution texture

Super-Resolution Texture Map

Goldlücke, Cremers, ICCV ’09, DAGM ’09*, IJCV ‘13* Best Paper

Award

Page 37: Computer Vision I: Variational Methods

37Daniel Cremers Computer Vision I: Variational Methods

Overview

Multiview reconstruction Stereo reconstruction

Realtime dense geometry

Super-res.textures

Reconstruction on the flyRGB-D cameras

Page 38: Computer Vision I: Variational Methods

38Daniel Cremers Computer Vision I: Variational Methods

Example: Stereo Reconstruction

From Binary to Multilabel Optimization

Pock, Schoenemann, Bischof, Cremers, Europ. Conf. on Computer Vision ’08:

Theorem: Stereo reconstruction can be solved by convex optimization.

Page 39: Computer Vision I: Variational Methods

39Daniel Cremers Computer Vision I: Variational Methods

Evolution to Global Minimum

Page 40: Computer Vision I: Variational Methods

40Daniel Cremers Computer Vision I: Variational Methods

1/2 input images (6 Mpixel)

Courtesy of H. Hirschmüller

Depth reconstruction

77 seconds

Reconstruction from Aerial Images

Stangl, Souiai, Cremers, GCPR ‘13

Page 41: Computer Vision I: Variational Methods

41Daniel Cremers Computer Vision I: Variational Methods

One of two input imagesDepth reconstruction

Courtesy of Microsoft

Reconstruction from Aerial Images

Page 42: Computer Vision I: Variational Methods

42Daniel Cremers Computer Vision I: Variational Methods

Reconstruction from Aerial Images

Page 43: Computer Vision I: Variational Methods

43Daniel Cremers Computer Vision I: Variational Methods

Highly accurate Stereo Reconstruction

Möllenhoff, Laude, Möller, Lellmann, Cremers, CVPR ’16 *

* Best Paper Honorable Mention

Stereo input Depth reconstruction

Page 44: Computer Vision I: Variational Methods

44Daniel Cremers Computer Vision I: Variational Methods

1/2 input images (1000x1000) Depth reconstruction

Munich from the Air

Kuschk, Cremers, ICCV Big Data Workshop 2013

Page 45: Computer Vision I: Variational Methods

45Daniel Cremers Computer Vision I: Variational Methods

Overview

Multiview reconstruction Stereo reconstruction

Realtime dense geometry

Super-res.textures

Reconstruction on the flyRGB-D cameras

Page 46: Computer Vision I: Variational Methods

46Daniel Cremers Computer Vision I: Variational Methods

Input video Optical flow field

From Dense Flow to Dense Geometry

Horn & Schunck ‘81, Zach et al. DAGM ’07, Wedel et al. ICCV ’09

Page 47: Computer Vision I: Variational Methods

47Daniel Cremers Computer Vision I: Variational Methods

*

* 60 fps @ 640x480

Horn & Schunck ‘81, Zach et al. DAGM ’07, Wedel et al. ICCV ’09

Input video Optical flow field

From Dense Flow to Dense Geometry

Page 48: Computer Vision I: Variational Methods

48Daniel Cremers Computer Vision I: Variational Methods

Dense geometry from hand-held camera

Stuehmer , Gumhold, Cremers, DAGM ’10

Brightness constancy:

Page 49: Computer Vision I: Variational Methods

49Daniel Cremers Computer Vision I: Variational Methods

Dense geometry from hand-held camera

Stuehmer, Gumhold, Cremers, DAGM ’10

Page 50: Computer Vision I: Variational Methods

50Daniel Cremers Computer Vision I: Variational Methods

Dense geometry from hand-held camera

Stuehmer, Gumhold, Cremers, DAGM ’10

Page 51: Computer Vision I: Variational Methods

51Daniel Cremers Computer Vision I: Variational Methods

16.0 fps 22.0 fps 41.1 fps

Stuehmer, Gumhold, Cremers, DAGM ’10

Realtime Dense Reconstruction

Page 52: Computer Vision I: Variational Methods

52Daniel Cremers Computer Vision I: Variational Methods

Overview

Multiview reconstruction Stereo reconstruction

Realtime dense geometry

Super-res.textures

Reconstruction on the flyRGB-D cameras

Page 53: Computer Vision I: Variational Methods

53Daniel Cremers Computer Vision I: Variational Methods

RGB-D Camera Tracking

Steinbruecker et al. ICCV ’11, Kerl et al., ICRA ‘13

Optimize dense photo-consistency:

Page 54: Computer Vision I: Variational Methods

54Daniel Cremers Computer Vision I: Variational Methods

Realtime 3D Modeling

Color input Depth input

Page 55: Computer Vision I: Variational Methods

55Daniel Cremers Computer Vision I: Variational Methods

Realtime 3D Modeling

Page 56: Computer Vision I: Variational Methods

56Daniel Cremers Computer Vision I: Variational Methods

Realtime 3D Modeling

Page 57: Computer Vision I: Variational Methods

57Daniel Cremers Computer Vision I: Variational Methods

Realtime 3D Modeling

Page 58: Computer Vision I: Variational Methods

58Daniel Cremers Computer Vision I: Variational Methods

Realtime 3D Modeling

Page 59: Computer Vision I: Variational Methods

59Daniel Cremers Computer Vision I: Variational Methods

Realtime 3D Modeling

Page 60: Computer Vision I: Variational Methods

60Daniel Cremers Computer Vision I: Variational Methods

Realtime 3D Modeling

Page 61: Computer Vision I: Variational Methods

61Daniel Cremers Computer Vision I: Variational Methods

Realtime 3D Modeling

Page 62: Computer Vision I: Variational Methods

62Daniel Cremers Computer Vision I: Variational Methods

Full-Body Scanner

Page 63: Computer Vision I: Variational Methods

63Daniel Cremers Computer Vision I: Variational Methods

Overview

Multiview reconstruction Stereo reconstruction

Realtime dense geometry

Super-res.textures

Reconstruction on the flyRGB-D cameras

Page 64: Computer Vision I: Variational Methods

64Daniel Cremers Computer Vision I: Variational Methods

Reconstruction on the Fly

Bylow, Sturm, Kerl, Kahl, Cremers RSS ‘13

Page 65: Computer Vision I: Variational Methods

65Daniel Cremers Computer Vision I: Variational Methods

Kerl, Sturm, Cremers ICRA ‘13

Large Scale: Loop Closure

Page 66: Computer Vision I: Variational Methods

66Daniel Cremers Computer Vision I: Variational Methods

Large Scale: Octrees

Steinbrücker, Kerl, Sturm, Cremers ICCV ‘13

Page 67: Computer Vision I: Variational Methods

67Daniel Cremers Computer Vision I: Variational Methods

Realtime Large-Scale Reconstruction

Steinbrücker, Kerl, Sturm, Cremers ICCV ‘13, ICRA ‘14

Page 68: Computer Vision I: Variational Methods

68Daniel Cremers Computer Vision I: Variational Methods

Summary

multiview reconstruction super-res. textures action reconstruction

3D on the flyRGB-D modelingstereo reconstruction